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Abstract

Content-based image retrieval (CBIR) offers the potential to identify similar case histories, 

understand rare disorders, and eventually, improve patient care. Recent advances in database 

capacity, algorithm efficiency, and deep Convolutional Neural Networks (dCNN), a machine 

learning technique, have enabled great CBIR success for general photographic images. Here, we 

investigate applying the leading ImageNet CBIR technique to clinically acquired medical images 

captured by the Vanderbilt Medical Center. Briefly, we (1) constructed a dCNN with four hidden 

layers, reducing dimensionality of an input scaled to 128×128 to an output encoded layer of 

4×384, (2) trained the network using back-propagation 1 million random magnetic resonance 

(MR) and computed tomography (CT) images, (3) labeled an independent set of 2100 images, and 

(4) evaluated classifiers on the projection of the labeled images into manifold space. Quantitative 

results were disappointing (averaging a true positive rate of only 20%); however, the data suggest 

that improvements would be possible with more evenly distributed sampling across labels and 

potential re-grouping of label structures. This prelimainry effort at automated classification of 

medical images with ImageNet is promising, but shows that more work is needed beyond direct 

adaptation of existing techniques.
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1. INTRODUCTION

Over the last 18 months, the Vanderbilt Medical Center has compiled over 100 million 

anonymized medical images. If this database could be mined with a Content Based Image 

Retrieval System (CBIR), researchers and clinicians could retrieve images visually similar 

to those of their patients, allowing for a comparison of patient histories and treatment 

profiles, eventually leading to improved patient care.
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Although CBIR is not a new idea for the medical field, recent efforts have not been 

particularly effective [1–3]. Broadly speaking, there are two perpetual challenges for 

computer vision: the sensory gap and the semantic gap.[3] The sensory gap refers to the 

fundamental limitations of imaging the physical world with a limited capture device. The 

semantic gap arises between the captured pixels and the objects that humans recognize and 

name within the image. The goal of CBIR is to bridge the semantic gap and enable the 

computer to extrapolate high order information of the image’s subject.[4] CBIR garnered a 

lot of attention in the mid-1990s. At that time, however, the field suffered from slow 

database management. [1] Since then database management efficiency has vastly improved, 

allowing for implementation on image sets in the millions. In 2012, at the ImageNet 

competition, the group from the University of Toronto used a Deep Convolutional Neural 

Network (dCNN) trained on over 1 million images to achieve results far better than the 

previous state of the art. [5] The goal of the manuscript is to evaluate the ImageNet 

framework on unsupervised feature learning and subsequent classification on clinically 

acquired magnetic resonance (MR) and computed tomography (CT) images.

2. METHODOLOGY

Two datasets were randomly selected from the previous 9 months of the Vanderbilt Medical 

Center’s anonymized image archive of all MR and CT images acquired for clinical care. 

First 1 million image slices were selected at random from a library of ~50 million images. 

Second, a non-overlapping random sample of 2,100 images was retrieved. The images were 

normalized (Windsorized to the 5th and 95th percentile) and scaled using bicubic 

interpolation to 128×128 pixels.

2.1 Data labeling

In collaboration with a radiologist, the anatomy was divided for classification into 16 non-

mutually exclusive subfields representing the human anatomy (Figure 1). A trained 

undergraduate rater then labeled the 2100 single slice images with a boolean for each of the 

16 labels.

2.2 Manifold training

Using the 1 million unlabeled images, a manifold was trained with a series of autoencoders 

of increasing size (pylearn2 [10]) as illustrated in Figure 2. Each layer consisted of a square 

patch of the image and the corresponding channels of the image. The autoencoder was 

trained through back-propagation to minimize the mean square reconstruction (eq. 1) error 

between the input image patch and the learned image patch

(1)

where xi is the input intensity value, x̂ι is the reconstructed intensity value, and P is the total 

number of points in the input. The first layer consisted of patches of size 13×13×1 with an 

autoencoder layer of size 36, the second was 5×5×36 with a hidden layer of size 96, the third 

was 5×5×96 with a hidden layer of size 256, the fourth and final was 3×3×256 with a hidden 
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layer of size 384. To be clear, the first two dimensions describe the patch shape, and the 

third dimension describes the number of neurons in the subsequent hidden layer. Each layer 

of the manifold was trained with an independent set of 200,000 images with a total of 

2,000,000 patches extracted from the images. Each layer was trained for 500 epochs.

2.3 Classifier training

First, multi-layer perceptrons (MLP) were trained to predict all 16 of label variables in 

binary classification problems (pylearn2 [10]). For each individual label ‘a’, a 10-fold cross 

validation was performed on a classifier that decided ‘a’ or ‘~a’ for all samples in the 2100 

image labeled set. As a secondary analysis, a reduced labeling scheme was created so that 

every image was a member of one and only one of the following five classes: {Head, 

Thorax, Abdomen, Pelvis, Legs}. This resulted in two reduced datasets: ‘Axial Images 

Only’ (350 total images, 70 per class), and ‘All Images’ (500 total images, 100 per class).

Each of the five group classification tasks were evaluated with Fisher’s linear discriminant 

analysis (FLDA), a support vector machine (SVM) with a radial basis kernel, and a random 

forest (RF) classier (Sci-kit Learn machine learning library [11]) The FLDA classifier was 

initialized without bound on the number of estimators. The SVM classifier had a kernel 

function of degree 3, a penalty of 1 for the error term, and a termination criterion tolerance 

of 0.001. The RF classifier had a bound of 100 estimators, determined quality of split on the 

Gini impurity, had no limit to depth, and used bootstrap samples to build the trees.

3. RESULTS AND DISCUSSION

Despite the promise of initial theory, overall results were disappointing. As can be seen in 

Figure 3, only 3 of the original 16 labels achieved a true positive rate greater than 50%. As 

can be seen in Figure 1, however, the distribution among labels is uneven, ranging from 80 

to 1123 examples for a given label. This disparity might have had detrimental effects on the 

classifiers. Examining the two labels with the most samples (Axial Plane, Brain), we see that 

they are the top performing classes, with recall > 65% and precision > 85%. Figure 4 

provides examples of each of three cases of main interest (false-positive, false-negative, 

true-positive) for each label that achieved observable results. Note that the false-positive for 

‘Neck’ is N/A because there were no false positives for this label. It is also worth noting that 

the three most successfully classified structures (Brain, Thigh, and Axial Plane) have 

definite texture features. The brain has many curved lines, the thighs contain two grayish 

structure separated by black space whereas most contain only one, and axial scans are 

generally ovular and often contain an outline of the scanning table. It is possible that these 

obvious visual signifiers were also factors in the success of these three classifiers. Note 

especially that Thigh, despite its small number of samples (90) was able to achieve success 

comparable to Brain (675) and Axial Plane(1123), seeming to point toward unique texture as 

a factor of success. See Figure 1 for further comparison of class distribution.

By exploring the performance of alternative classifiers on the reduced datasets (Figure 5) we 

can infer likely performance of the complete system given more data. Results become 

volatile with a training set of size less than 10. However, as size of the training set increases, 

we see a dramatic increase in classifier performance. This shows that it is quite possible that 
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given a greater number of labeled images, a classifier of might perform better. Note the 

substantively lower recall scores for the set of All Images versus Axial Only. The poor 

performance here could be the result of poor definition of classes, causing error in their 

reduction from a non-mutually exclusive label set to the reduced independent label set. 

Ensuring greater homogeneity of classes through synchronizing meta-data could help 

improve the label set. For example, one could possibly implement a hierarchical ontology.

4. CONCLUSION

Unlike the general photographs used in the ImageNet competition, there is very little 

variance of context for the subjects of medical images. All images are roughly gray ovals 

appearing on a black background. This is why the prevalent CBIR systems for medical 

images involved a coding system of metadata that must be input manually. [6] Unlike 

ImageNet, these systems have been limited in scale to a database size in the thousands or 

tens of thousands. [7, 8] This tight bound on scope necessitated the combination of many 

techniques, often resulting in a complex framework. In dealing with clinically acquired 

images, some pre-regularization steps are often necessary to account for translations or 

rotations of regions on interest within the image. Towards simplifying this process, the use 

of a dCNN is promising because it is an unsupervised machine learning technique 

specifically designed to address these issues. [9] Future efforts at CBIR can make greater 

use of the existing automatically coded information in radiological databases.
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Figure 1. 
Illustration of the 16 non-mutually exclusive labels on normalized and resampled images. 

Name (#occurences)
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Figure 2. 
Flowchart of the ImageNet approach applied the the anonylized imaging data from clinical 

radiology.
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Figure 3. 
Precision was moderate (>0.7) for 7 of 16 labels, but recall was uniformly low.
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Figure 4. 
Representative examples of classifer failures for the 10 labels with non-null (true 

positive>0) classifiers.
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Figure 5. 
Results of image classification on the reduced label sets.
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