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Abstract

We present a new standard atlas of the human brain based on magnetic resonance images. The 

atlas was generated using unbiased population registration from high-resolution images obtained 

by multichannel-coil acquisition at 3T in a group of 24 normal subjects. The final atlas comprises 

three anatomical channels (T1-weighted, early and late spin echo), three diffusion-related channels 

(fractional anisotropy, mean diffusivity, diffusion-weighted image), and three tissue probability 

maps (CSF, gray matter, white matter). The atlas is dynamic in that it is implicitly represented by 

nonrigid transformations between the 24 subject images, as well as distortion-correction 

alignments between the image channels in each subject. The atlas can, therefore, be generated at 

essentially arbitrary image resolutions and orientations (e.g., AC/PC aligned), without 

compounding interpolation artifacts. We demonstrate in this paper two different applications of 

the atlas: (a) region definition by label propagation in a fiber tracking study is enabled by the 

increased sharpness of our atlas compared with other available atlases, and (b) spatial 

normalization is enabled by its average shape property. In summary, our atlas has unique features 

and will be made available to the scientific community as a resource and reference system for 

future imaging-based studies of the human brain.
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1. INTRODUCTION

An anatomical atlas, like a geographical atlas, provides a standardized coordinate system in 

which anatomical structures and their spatial relationships with each other are represented. 

Digital anatomical atlases, in particular, commonly take the form of three-dimensional (3D) 

images that depict anatomy by means of one or more morphological imaging modalities, 

e.g., X-ray computed tomography (CT), or magnetic resonance imaging (MRI). These are 

often accompanied by maps of semantic labels, so-called segmentations, that delineate 

various structures of interest. As Maziotta et al.1 point out, however, anatomy is different in 

every individual, and thus, unlike geography, does not have an underlying unambiguous and 

invariant physical reality.
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Many different atlases of different anatomies have therefore been created. Some atlases are 

based simply on a single individual, such as the well-known Talairach & Tournoux atlas2 of 

the human brain, or the whole-body Visible Human dataset.3 Other atlases attempt to 

capture subject-independent properties by virtue of being constructed from populations of 

individuals. Population atlases have been created of the human brain,4-7 as well as for other 

species, such as the rat;8 the honey bee, Apis Melifera,9,10 the desert locust, Schistocerca 

gregaria;11 the fruitfly, Drosophila.12,13 More detailed atlases that focus on particular 

organs or anatomical regions are also common, such as the recently presented 

comprehensive map of the Drosophila olfactory system at the single-neuron level.14

Atlases of the human brain based on MRI in particular have enabled numerous neuroscience 

studies by providing standard anatomical coordinate systems for joint data analysis. They 

are also used to define anatomical structures and then propagate them to individual images 

(atlas-based segmentation), where they can then be used, for example, as standardized seed 

and target regions in population studies of fiber tracking in diffusion tensor images (DTI).

It is noteworthy that quite different atlases are typically used for the two aforementioned 

applications. Atlases for spatial normalization usually represent subject-independent 

anatomical relationships derived from a population of individuals, but contain some residual 

uncertainty of spatial localization due to imperfect alignment (i.e., registration) across 

individuals. Atlases for label propagation, on the other hand, are commonly based on images 

obtained from a single individual, so that anatomical landmarks are well-defined, albeit in a 

coordinate system that is not necessarily a good representative of the population of interest.

We present in this work a new brain atlas that is based on high-resolution MRI acquired 

from 24 subjects and named accordingly, “SRI24 atlas.” The SRI24 atlas improves on 

currently available atlases several ways: it includes a rich collection of data channels 

(structural, DTI, tissue classes, anatomical region definitions) in an unbiased population-

average coordinate system. Most importantly, by its construction the SRI24 atlas is equally 

well-suited for spatial normalization and for label propagation, thus eliminating the need to 

use different atlases for each task.

2. ATLAS CONSTRUCTION

2.1 Rationale

To maximize the usefulness of the new atlas, we pose several requirements that guided the 

design of the image acquisition protocols and image processing pipeline. In particular, the 

atlas shall:

1. be based on image data acquired using state-of-the art imaging equipment and 

techniques,

2. represent normal human brain anatomy across a large age range, and

3. provide all practically relevant channels of information.
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2.2 Imaging and Subjects

Volunteers were 12 young (25.5±4.34, range = 19 to 33 years) and 12 elderly (77.67±4.94, 

range = 67 to 84 years), righthanded, non-smoking healthy men and women, recruited from 

the local community. All participants underwent a thorough psychiatric interview by a 

trained research psychologist using the Structured Clinical Interview for the Diagnostic and 

Statistical Manual (DSM) IV to detect psychiatric diagnoses or medical conditions that can 

affect brain functioning (e.g., diabetes, head-injury, epilepsy, substance abuse) or preclude 

MR study (e.g., pacemakers).

Imaging was performed on a 3.0T GE scanner with an 8-channel head coil. Some sequences 

used the temporal acceleration of GE’s Array Spatial Sensitivity Encoding Technique 

(ASSET). Four imaging sequences were collected:

1. For T1-weighted structural images: 3D axial IR-prep SPoiled Gradient Recalled 

(SPGR), TR=6.5ms, TE=1.54ms, thick=1.25mm, skip=0, locations=124.

2. For T2-weighted and proton density-weighted images: 2D axial dual-echo fast spin 

echo (FSE), TR=10,000ms, TE=14/98ms, thick=2.5mm, skip=0, locations=62.

3. For diffusion tensor computation: 2D echo-planar diffusion-weighted images 

(DWI), TR=7500ms, TE=97.6ms, thick=2.5mm, skip=0, locations=62, b=0 (5 

NEX), plus 15 non-collinear diffusion directions b=860 s/mm2 (2 NEX), plus 15 

opposite polarity non-collinear diffusion directions b=860,s/mm2 (2 NEX) 

FOV=240 mm, x-dim=96, y-dim=96, reconstructed to 128×128 pixels.

4. For field map computation to spatially unwarp DWI: 2D axial dual-echo gradient 

echo (GRE), TR=460ms, TE=3/5ms, thick=2.5mm, skip=0, locations=62.

In the DWI, eddy-current distortions were minimized on a slice-by-slice basis by within-

slice registration that takes advantage of the symmetry of the opposing polarity acquisition. 

The individual repeat acquisitions for each diffusion direction were averaged, eliminating 

the need to account for the cross terms between imaging and diffusion gradients producing 

15 images per location for tensor computation. A field map was constructed from the 

complex difference image between two echoes (3 and 5ms) of the GRE after unwrapping 

with PRELUDE. B0 inhomogeneity distortion was corrected with FUGUE (FSL Utility for 

Geometrically Unwarping EPIs).

2.3 Image Preprocessing

For each subject, the following preprocessing steps were performed to correct imaging 

artifacts and bring all image channels into alignment:

1. A preliminary brain mask was extracted by thresholding the late-echo FSE image.

2. Intensity inhomogeneity correction was applied to the late-echo FSE images using 

the preliminary brain mask. We computed a second-order polynomial 

multiplicative bias field using a model-free entropy-minimization algorithm.15

3. The final brain mask was extracted from intensity-corrected late-echo image using 

the FSL Brain Extraction Tool, BET.16
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4. Intensity inhomogeneity correction was achieved by applying a second-order 

multiplicative bias field that was computed from the late-echo FSE images using 

the final brain mask.15 The same estimated bias field was equally applied to the 

early-echo FSE image. Use of the same bias field for early and late echo images 

guarantees invariance of R2 values that can be derived at each pixel from the log-

ratio of early and late-echo image intensities.

5. The early-echo FSE images were registered to the respective SPGR images and the 

FSE brain masks were transferred to the SPGRs by label propagation.

6. Intensity inhomogeneity correction15 with a second-order multiplicative bias field 

was applied to the SPGR images using the propagated brain masks.

2.4 Within-Subject Registration

Using the brain-stripped images and intensity bias-corrected images as described above, the 

different MRI channels acquired for each subject were brought into alignment as follows:

1. Masked and bias-corrected late-echo FSE images were registered to the masked 

and bias-corrected SPGR images.

2. To align DTI and anatomical images and to correct for residual geometrical 

distortion, each b = 0 EPI was registered nonrigidly17 to the corresponding late-

echo FSE image.

The final registration transformations that connect the channels within each subject are 

shown in Fig. 1.

2.5 Across-Subject Alignment by Population Image Registration

All 24 brain-stripped and bias-corrected SPGR images were first simultaneously registered 

with affine transformations using a template-free registration algorithm. The reference 

coordinate space, which was not related to any of the subject image spaces, was mapped 

onto each subject’s SPGR image by an affine coordinate transformation with the following 

nine degrees of freedom:

1. three translations, δx, δy, δz,

2. three rotation angles, α, β, γ, and

3. three log-scale factors, lx = log cx, ly = log cy, lz = log cz.

The use of log-scale factors ensures that the identity transformation is described by the zero 

parameter vector and allows us to enforce zero sums over all subjects for each of the 

transformation parameters.

The image similarity measure for the template-free affine registration was a multi-image 

generalization of mutual information.18 To avoid the common issues with sparse 

histograms, this algorithm takes advantage of the fact that, under certain assumptions, the 

marginal and joint entropies of the registered image channels are proportional to the 

determinants of appropriate covariance matrices (see reference for details).
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The affine registration stage was followed by a novel unbiased nonrigid registration 

algorithm based on the B-spline transformation model by Rueckert et al.,17 the stack 

entropy similarity measure used in the “congealing” algorithm by Learned-Miller,19 and the 

zero-mean deformation strategy by Studholme & Cardenas.20

Our implementation of this new algorithm uses shared-memory parallelism,21 distributed-

memory parallelism, and dynamic load balancing. Using a multi-resolution approach for 

image data and B-spline control point grid, our implementation completed the simultaneous 

nonrigid registration of all 24 images with a final control point spacing of 2.5mm (resulting 

in 47 million degrees of freedom) in about 60 hours on a cluster of 8 dual-CPU servers with 

a total of 16 Intel Xeon processors (Nocona) at 3.0 GHz.

2.6 Atlas Generation

The final registration transformations that connect the different channels of all subject 

images are illustrated in Fig. 2. Using concatenations of the appropriate transformations, all 

channels of information are reformatted directly into the final atlas space. Each image was, 

therefore, interpolated only once to avoid accumulation of interpolation artifacts.

2.6.1 Structural Channels—All co-registered structural image channels were 

reformatted into the atlas space using a cubic interpolation kernel. The image intensities of 

the reformatted images were then normalized to equal means and standard deviations. The 

reformatted and normalized images were then averaged.

2.6.2 Diffusion Channels—The DTI-derived image channels of scalar diffusion 

measures (FA and MD) were generated in subject space from tensor fields that were 

reconstructed in native image coordinates. The scalar images were then reformatted into the 

atlas space using a cubic interpolation kernel. The reformatted and normalized images were 

then averaged, and the value range of the averaged FA image was truncated to [0, 1] so as to 

eliminate illegal values introduced by the cubic interpolation.

2.6.3 Tissue Probability Maps—Tissue probability maps were independently obtained 

for each subject using FSL’s “FAST” tool22 on the stripped and bias-corrected SPGR 

images in each subject’s individual coordinate space. The segmentation probability maps 

were then reformatted into atlas space and numerically averaged.

2.6.4 Brain Masks—Brain masks were generated in subject space using the FSL Brain 

Extraction Tool, BET,16 reformatted into atlas space and averaged using Rohlfing and 

Maurer’s shape-based averaging algorithm.23

2.6.5 Diffusion Tensor Field—An experimental average tensor field was generated by 

reconstructing re-oriented diffusion tensors from all subjects in atlas space.24 The tensor 

fields were then averaged using simple arithmetic matrix averaging of the diffusion tensors.

Rohlfing et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2009 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. ATLAS APPLICATIONS

3.1 The SRI24 Brain Atlas

Representative axial slices through the different channels that comprise the SRI24 atlas are 

shown in Fig. 3. Note the detailed representation of brain anatomy, in particular the clearly 

defined subcortical structures. Accordingly, the tissue probability maps (Fig. 3, bottom row) 

are almost binary images.

3.2 Label Propagation

Label propagation, or atlas-based segmentation, is a commonly used technique to segment 

images by registering them to an already segmented atlas image and then propagating the 

labels from the atlas to the new image according to the spatial transformation between them.

25 We have previously shown26-28 that segmentation results can be greatly improved by 

using multiple independent atlases. However, this is not always a practical approach as it 

requires time-consuming manual labeling of all structures of interest in more than a single 

atlas image. As we have also demonstrated previously,26 an “average shape atlas,” like the 

SRI24, does not perform as well as multiple independent atlases, but it still typically 

outperforms an atlas based on a single individual. According to work by Wang et al.,29 

label propagation from a carefully constructed average shape atlas can perform close to 

independent propagation from multiple individual atlases but requires substantially less 

effort to construct.

The usefulness of our atlas for region definition, and thus atlas-based labeling, is illustrated 

in Fig. 4. A parcellation of the corpus callosum in the atlas was propagated onto a co-

registered subject image and provided target regions for DTI fiber tracking.

3.3 Spatial Normalization

To assess the usefulness of the SRI24 atlas for spatial normalization, we compared it with 

four other established atlases, which are all shown in Fig. 5: the MNI152 atlas,4 the 

ICBM-452T1/air12 and ICBM-452T1/warp5 atlases,30 and the Colin27 brain. Each of these 

atlases was used as the target for spatially normalizing 14 brain images from the IBSR 

database.31 For simplicity, we selected those 14 out of all 18 images available from the 

IBSR for which the BET brain extraction tool successfully performed skull stripping without 

manual adjustments. These were all images except 6, 9, 10, and 12.

The segmentations provided for 19 anatomical structures (paired structures were mapped 

separately as well as combined) in each of the IBSR images were then propagated onto each 

of the atlases. Here, groupwise overlap scores accordingto Crum et al.32 were computed for 

all 14 brains registered onto each atlas. Higher overlap scores indicate better consistency 

between the anatomies mapped onto the atlas, suggesting that an atlas with higher overlap 

scores is better suited for spatial normalization than one with lower scores.

The overlap scores for all structures mapped onto each atlas are shown in Table 1. We report 

the volume-weighted (each anatomical structure weighted according to its volume) and 

equally-weighted (all structures assigned equal weights) overlaps (see Crum et al.32 for 
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details). The overlaps for the separate structures are also graphically depicted in Fig. 6. All 

results suggest that the SRI24 atlas performs at least as well as the other four evaluated 

atlases for spatial normalization, and in most cases better. Although the SRI24 atlas does not 

perform equally well for all brain structures (Fig. 6), it is not as susceptible to outliers as are 

the Colin27 brain and the two ICBM atlases. Compared with the MNI152 atlas, the SRI24 

atlas demonstrated better performance when all brain structures in this experiment are 

considered.

For a practical demonstration of the utility of the atlas for spatial normalization, data from 

ten young and ten elderly subjects not used in the atlas construction were registered to the 

atlas and group averages of FA constructed (Fig. 7). The resulting group-average FA maps 

demonstrate the well-known effect of decreased FA with increasing age. Analyses similar to 

this are frequently done in Voxel-Based Morphometry studies for comparisons between 

different groups of subjects. Of particular interest here is how consistently the FA maps 

from all subjects in either group were co-registered with the SRI24 atlas, although 

registration was based on the SPGR image channels of subjects and atlas.

4. DISCUSSION

In summary, we claim the following contributions: (1) The SRI24 atlas is derived from a 

sample of subjects, unlike the Colin27 brain (Fig. 5(a)), and is thus potentially better suited 

to represent a “typical” anatomy. This makes our atlas useful as a spatial normalization 

template by reducing the average deformation required to map subjects onto it. (2) We used 

nonlinear registration (unlike the MNI250,34 MNI305,35 ICBM152,4 and ICBM-452T1/

air1230 atlases), which provides substantially improved sharpness (compare Fig. 3 with Fig. 

5(b-d)). This makes our atlas useful for definition of regions that can be transferred onto 

other images by label propagation. (3) We used unbiased nonrigid population registration, 

unlike any other published atlas, to capture normal anatomy and take advantage of 

population information during the registration stage, rather than perform pairwise 

registrations and combine them into a population alignment. We thus avoid the potentially 

difficult registration problem between two outlier subjects with very dissimilar anatomies. 

(4) Our atlas is multi-spectral and, unlike any other available atlas, includes DTI-derived 

scalar diffusion parameter maps and an experimental group-average tensor field. (5) The 

atlas is dynamic and can be generated in arbitrary resolutions and orientations, without 

compounding interpolation artifacts.

Our technical contributions are the application of Russakoff’s high-dimensional entropy 

computation to population registration and the introduction of an unbiased nonrigid B-spline 

population registration algorithm. Both algorithms were implemented to use both shared-

memory and distributed memory parallelism simultaneously and to optimize node 

workloads using dynamic load balancing.

We have demonstrated the usefulness of the SRI24 atlas for both spatial normalization and 

label propagation. For spatial normalization, we have performed a quantitative evaluation 

study and compared it with four commonly used MR brain atlases: the MNI152 atlas, the 

ICBM452/air5 and ICBM452/warp5 atlases, and the Colin27 brain. Our results indicate that 

Rohlfing et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2009 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the SRI24 atlas is at least as suitable for spatial normalization as the other four atlases. This 

is remarkable in particular because the SRI24 atlas is based on image data acquired at 3T, 

whereas all other atlases and the images of the IBSR database were all acquired at 1.5T. 

This demonstrates that the use of the SRI24 atlas is not limited to applications involving data 

acquired at the same field strength.

For label propagation, we have not performed an analogous comparison study between the 

different atlases. We note that out of the four comparison atlases only the Colin27 brain 

lends itself to label propagation in the first place, because the MNI152 as well as both 

ICBM452 atlases do not show sufficient anatomical detail to define regions of interest. 

Similarly, only the Colin27 brain and the SRI24 atlas represent the cortical surface with 

sufficient sharpness to identify the major gyri and sulci (Fig. 8).

To use the ICBM and MNI atlases for label propagation, one could of course define regions 

in the images that the atlases were created from and then transfer these labellings to the atlas 

to obtain a probabilistic label map.4 The obvious practical drawback of such an approach is 

the need to label a large number of brains rather than a single one. Of course this also 

requires access to the original brains and the transformations between them, neither of which 

are publicly available. The SRI24 atlas, on the other hand, is sufficiently crisp that 

anatomical structures of interest can be identified and labeled directly in the atlas itself.

5. CONCLUSIONS

We have described the construction of a multi-channel brain atlas using state-of-the-art and 

partly novel population registration methods. We have furthermore demonstrated the 

application of the atlas for spatial normalization in a group comparison study and for region 

definition in a fiber tracking study. Our atlas has unique features and will be made available 

to the scientific community as a resource and reference system for future imaging-based 

studies of the human brain.
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Figure 1. 
Illustration of the registration links between the images from one subject. The b = 0 echo-

planar image (EPI) is registered to the late-echo FSE image, which is in turn registered to 

the SPGR image. The diffusion tensor-derived parameter maps are naturally co-registered to 

the b = 0 EPI. The early-echo FSE image is naturally co-registered to the late-echo image 

(due to dual-echo acquisition). Only the final transformations are shown; intermediate 

transformations, computed for the purpose of propagating brain masks, are omitted for 

clarity.
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Figure 2. 
Illustration of the registration links between the images that the SRI24 atlas is constructed 

from. For each subject, the b = 0 EPI is registered to the late-echo FSE image, which in turn 

is registered to the SPGR image. The early and late-echo FSE images from each subject 

were acquired in a single, dual-echo acquisition and are, therefore, in perfect registration. 

The SPGR images from all 24 subjects are co-registered using a simultaneous, template-free 

registration algorithm.
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Figure 3. 
Axial slices from the SRI24 multi-channel brain atlas. (a) Anatomical SPGR image. (b) 

Early-echo spin echo image. (c) Late-echo spin echo image. (d) Fractional anisotropy map. 

(e) Mean diffusivity map. (f) Average diffusion-weighted image. (g) CSF probability map. 

(h) Grey matter probability maps. (i) White matter probability map.
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Figure 4. 
Example of region definition for fiber tracking using the SRI24 atlas and label propagation. 

Left: parcellation of the corpus callosum into nine segments defined in the SRI24 atlas (top 

row) and propagated onto a subject’s FA map (bottom row). Right: fiber tracts determined in 

subject’s diffusion tensor image and colored according to the parcellation of the corpus 

callosum.
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Figure 5. 
Examples of other publicly available MRI-based brain atlases. Only T1-weighted images are 

available for all atlases in this figure. (a) Colin-27 brain atlas generated by averaging 27 

independently acquired SPGR images of the same subject. (b) MNI-152 atlas (at 2 mm 

resolution, as distributed with FSL). (c) ICBM452/air12 atlas. (d) ICBM452/warp5 atlas. 

Note the still substantial fuzziness of this atlas, especially when compared with the SRI24.
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Figure 6. 
Overlap scores for spatial normalization of 14 segmented MR head images from the IBSR to 

different atlases. Note that the SRI24 atlas is derived from images acquired at 3.0T, whereas 

all other atlases and the IBSR images used to evaluate spatial normalization were acquired at 

1.5T.
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Figure 7. 
Illustration of the SRI24 atlas for spatial normalization. (a) Average FA maps for ten young 

(left) and ten elderly (right) subjects (from33) after registration and reformatting into the 

atlas space. (b) Line profile reveals lower FA in the elderly subjects (gray line) than the 

young subjects (black line). White line in (a) marks the level at which FA is quantified.
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Figure 8. 
Volume renderings of four atlases illustrate the level of sharpness with which the cortical 

surface is defined in each.

Rohlfing et al. Page 18

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2009 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rohlfing et al. Page 19

T
ab

le
 1

G
ro

up
w

is
e 

ov
er

la
p 

sc
or

es
 f

or
 1

4 
im

ag
es

 f
ro

m
 th

e 
IB

SR
 d

at
ab

as
e 

sp
at

ia
lly

 n
or

m
al

iz
ed

 to
 e

ac
h 

of
 f

iv
e 

at
la

se
s

A
tl

as
SR

I2
4

C
ol

in
27

IC
B

M
45

2/
ai

r1
2

IC
B

M
45

2/
w

ar
p5

M
N

I1
52

O
ve

rl
ap

, v
ol

um
e 

w
ei

gh
te

d
0.

74
5

0.
73

3
0.

72
0

0.
72

8
0.

71
2

O
ve

rl
ap

, e
qu

al
ly

 w
ei

gh
te

d
0.

51
0

0.
51

9
0.

48
7

0.
50

2
0.

48
7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2009 January 30.


