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Abstract 
This article presents a new in situ method to monitor the particle size distribution (PSD) 
during batch solution crystallization processes. Using a new in situ imaging probe, the 
“EZProbe sensor,” real time acquisition of 2-D images of particles during the batch process is 
now possible. To analyze these images, a novel image analysis method is carried out. First, 
segmentation and restoration algorithms are performed to identify the particles and 
thereafter geometrical particle measurements are achieved to obtained the PSD of the batch 
crystallization process over time. Satisfactory measurements are obtained provided that the 
overall solid concentration does not exceed a threshold above which too many overlapping 
crystals make discrimination between particles impossible. 

KKeeyywwoorrddss::  
particle size distribution ; (PSD) ; image analysis ; 2-D images of particles ; batch 
crystallization process ; EZProbe sensor ; segmentation algorithms ; restoration algorithms 

I. Introduction 
Solution crystallization processes are widely used in the process industry and notably in the 
pharmaceutical industry as separation and purification operations and are expected to 
produce solids with desirable properties. In particular, in terms of pharmaceutical solid 
ingredients, the size and the shape of crystals are known to have a considerable impact on the 
final quality of drugs (i.e., bioavailability, stability during storage, ease of processing, etc.). To 
measure the particle size distribution (PSD); it is well established that conventional 
monitoring techniques, such as laser diffraction (LD), ultrasonic attenuation spectroscopy 
(UAS), or focused-beam reflectance measurement (FBRM) do not provide reliable in-line 
estimates. Major difficulties arise from the use of LD techniques since it requires highly 
diluted samples of rather ideally shaped particles. Indeed, “ideally shaped” means here that 
the particles, to fit the theoretical models used to process LD measurements, should be as 
close as possible to spheres and exhibit rather simple distributions [1] (i.e., multimodal 
distributions should be very cautiously analyzed). The main disadvantage of UAS is that it 
requires a large set of accurate physical data related to the liquid and particle phases, [2] 
which is almost prohibitive for routine industrial applications. Finally, the main disadvantage 
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of FBRM is that it does not actually measures the PSD but the chord length distribution 
(CLD).  
One must therefore convert the measured CLD into its corresponding PSD, which is an ill-
posed problem, even though successful experimental applications have been reported for 
spheres [3] and octahedrons [4]. Various 2-D image based methods also exist, [5-7] but most 
of them require a priori knowledge and/or assumptions about the shape of the particles. 
Therefore, the latter methods cannot easily handle crystallization phenomena such as 
aggregation or breakage of particles. Moreover, those methods do not take into account 
particles outside the focal plane. Contrary to those methods, this study does not make any 
assumption about the shape of the particles. Therefore, it can handle particles of any shape, 
and moreover, it restores out-of-focus particles to maximize the data to be analyzed and to 
acquire an accurate particle characterization. In the first section, the experimental system 
used to monitor the crystallization process is explained. In the second section, the image 
analysis algorithm is developed (image segmentation, restoration and measurement). Finally, 
typical characterization results are presented before concluding. 

II. Materials, Experimental Setup, and Image Acquisition 
IIII..11..  MMaatteerriiaallss  aanndd  EExxppeerriimmeennttaall  SSeettuupp  
Crystallization experiments were performed with citric acid particles crystallizing in water in a 
3-L lab-scale batchjacketed crystallizer, equipped with a profiled pale propeller (Mixel TT) 
and four baffles. The stirring rate was set to 250 rpm. The temperature of the crystallizing 
suspension was controlled by means of hydroalcoholic fluid circulating in the jacket. 
Isothermal desupersaturation crystallization experiments were started though seeding: sieved 
citric acid particles were introduced in the crystallizer maintained under supersaturated 
conditions. To monitor the experiments a new in situ imaging probe, the “EZProbe sensor” 
[Figure 1(a)], developed at the University of Lyon (Lyon 1) was used. A CCD camera 
connected to an acquisition interface records transmitted light images. The interface retrieves 
the video data, compresses it if necessary, and sends it to a computer [Figure 1(b)]. The probe 
was immersed into the reactor, as shown in [Figure 1(b)] and filmed a restricted volume 
within the suspension. The system acquires video sequences of 2-D projections of 3-D 
particles with the following specifications: 25 frames/ s, each frame is 640 x 480 pixels 8-bit 
grayscale bit depth representing 1.3 x 1 mm. In addition to the in situ camera, the process was 
monitored using in situ temperature and supersaturation measurements; the latter were 
performed using attenuated total reflection (ATR) Fourier transform infrared (FTIR) 
spectroscopy [8-9]. 

IIII..22..  IImmaaggee  AAccqquuiissiittiioonn  
The new imaging probe enables real-time acquisition of 2-D images of the particles generated 
during crystallization processes. Figure 2 shows some typical images of citric acid particles 
during crystallization at different times. To quantitatively characterize the particles, some 
difficulties must be considered in the different image processing steps: particle clustering, 
shape heterogeneity, anisotropy, particles outside the focal plane, etc. However, because the 
image analysis method was designed without any assumption about the shape of the particles 
and it restores blurred particles, it can handle these phenomena. The next section explains the 
image analysis method, which was designed so as to deal with these difficulties. 

III. Image Analysis Method: PSD Imaging 
IIIIII..11..  IImmaaggee  SSeeggmmeennttaattiioonn  
First, for each image of the video sequence [Figure 3(a)], all particle regions were isolated, as 
displayed in [Figure 3(b)]. The method here consists of applying the watershed algorithm [10] 
constrained by the h-minima [10] of the image. Then, the spatial support of each particle was 
detected [Figure 3(c)] by applying on each delimited area the automatic thresholding 
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proposed by Gonzalez and Woods [12]. Second, the particles in the focal plane (in-focus 
particles) were discriminated from those outside the focal plane (blurred-particles) using a 
focus measurement [13-15] calculated locally: the variance focus measurement [16] defined as 
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Then, performing a reconstruction process between the “watershed image” and the “variance 
image”, out-of-focus regions and in-focus regions were determined, respectively [Figure 3(d)]. 
Therefore, at the end of the segmentation two elements of information were obtained: the 
spatial support and the degree of focus of each particle/region [17]. 
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IIIIII..22..  IImmaaggee  RReessttoorraattiioonn  
To maximize the data to be analyzed and to achieve an accurate particle characterization, a 
restoration step was performed: particles outside the focal plane were restored. To do so, a 
blind deconvolution technique was applied to the detected blurred particles/clustered 
particles. Due to the presence of “ringing effects” in classical blind deconvolution algorithms, 
[18-20] a new blind deconvolution algorithm based on the image characteristics was 
developed [21]. 
About the latter, it is assumed that a particle 1-D profile can be modeled by a perfect square 
function [Figure 4]. However in practice, it is assumed that only the edge of an in-focus 
particle is perfect. If holes occur inside the particle image, they are filled. Moreover, it is 
hypothesized that on each region: 

  The particle image is noise free and the blur is spatially invariant; that is, g(x)= f(x)h(x), 
where g is the gray-level image of the blurred particle resulting from a convolution of f, 
the gray level image of the original particle, and h, the point spread function (PSF). 

 The blur is weak in the sense that max(g)=max(f). 

 The PSF h is isotropic and normalized so that ( ) 1h x dx
∞

−∞
=∫ . 

Under these hypotheses and using Fubini’s theorem, it can be demonstrated that 

( ) ( )g x dx f x dx
∞ ∞

−∞ −∞
=∫ ∫ . Consequently, the gray level image f of the original particle can be 

approximated by optimization: 

argmin ( ) ( )
p

f p x dx g x dx
∞ ∞

−∞ −∞
= −∫ ∫ , (2) 

where p belongs to the set of the square functions of “height” max(g). To compute the solution 
of Equation (2), f was calculated by iteratively eroding in the sense of mathematical 
morphology [22] the spatial support of g (p0 , p1, etc.) [Figure 5]. The blind deconvolution 
algorithm already described was applied to the already detected blurred particles. The focused 
particles were not processed. Figure 6 shows the results for a few selected particles from the 
original image [Figure 3(a)]. 



Journal of Electronic Imaging, 2010, 19(3), 0312071-7, Note: Special Section on Quality 
Control by Artificial Vision, doi: 10.1117/1.3462800 
 

4 
 

IIIIII..33..  RReessttoorraattiioonn  VVaalliiddaattiioonn  
To validate the proposed deconvolution algorithm, an image of an isotropic object [Figure 
7(a)] and an image of an anisotropic one [Figure 7(b)] were blurred artificially by a 
normalized Gaussian PSF with a standard deviation 1,5σ ∈ . Then, the proposed 

segmentation step was applied on these images with or without the deconvolution step, and in 
each case, the normalized root mean square error (NRMSE) was calculated according to σ 
[Figure 7(c)]. As it can be noticed in [Figure 7(c)], whatever the object is and whatever σ is, 
the value of the NRMSE is less important when the algorithm is applied with the restoration 
step than without it. 

IIIIII..44..  IImmaaggee  MMeeaassuurreemmeenntt  

As the spatial support of each particle is now well defined (blurred particles in particular), an 
accurate PSD analysis is possible. To do so, each particle projected area was measured and for 
each projected area, the diameter of the sphere with the same projected area was calculated. 
Then, the PSD of the particles was constructed by calculating the normalized histogram of the 
diameter values. Hence, the particle size is equal to the diameter of the sphere with an 
equivalent projected area. 

IV. Validation and Results 
IIVV..11..  VVaalliiddaattiioonn  tthhrroouugghh  CCoommppuutteerr  SSiimmuullaattiioonn  
To validate the PSD imaging method explained in the previous section, an experiment was 
performed on simulated images. A thousand isotropic particles with random size diameters D 
(2 pixels≤D≤60 pixels) were computationally generated [hence, their PSD was known (PSD1)]. 
Then, each particle was blurred artificially by a normalized gaussian PSF with a random 
standard deviation 1,5σ ∈ . Applying the PSD imaging method already explained, the PSD 

of the particles was recovered (PSD2). To achieve reliable statistical data, this process was 
repeated 100 times and each time, to quantify the error between the two PSDs, the 
normalized L1 e 1Err)  between the two cumulat ve size distributions (CSD1 and CSD2) rror (NL i

was calculated { }1 1 2100 /NL Err CSD CSD CSD⎡ ⎤= −⎣ ⎦∫ 1∫ . Figure 8 shows an example of CSDs 

obtained with this simulation. As one can notice, CSD2 fits better CSD1 for particles with 
diameters larger than 12 pixels. Indeed, for small particles, the hypothesis max(g)=max(f) has 
a greater probability to be unverified. However, on average, the normalized L1 error was only 
about 2.49% with a standard deviation of 0.18%. 

IIVV..22..  EExxppeerriimmeennttaall  VVaalliiddaattiioonn  

To validate the PSD imaging method explained in the previous section, an experiment was 
performed using polydisperse silica beads. The PSD of the silica beads was obtained using two 
different methods: the PSD imaging method presented here and Coulter counter 
measurements. The Coulter counter is a rather reliable offline device that is currently used for 
particle sizing and counting, e.g., in the field of biology [23] (blood cells, microscopic algae, 
etc.). It detects the change in electrical conductance of a small aperture as a fluid containing 
particles/cells is drawn through. The particle size measured with the Coulter counter is the 
diameter of the sphere whose volume is equal to that of the particle. The measured particles in 
this experiment are spherical beads, therefore the diameters measured with the PSD imaging 
method are comparable to the diameters measured with the Coulter counter. The PSD 
obtained with the Coulter counter is expressed in terms of volume percentage and for 
convenience, the bins size was chosen as 4 µm. By calculating for each diameter obtained with 
the PSD imaging method the volume of the corresponding bead, it is also possible to express 
the PSD of the silica beads in terms of volume percentage. Therefore, the PSDs obtained with 
these two techniques are comparable. The image processing PSD was calculated on 1000 
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particles. First, one can notice in Figure 9 that the two PSDs look very similar and more 
particularly that the main modes obtained with the two different methods are both located 
around 90 µm. Moreover, the value of the normalized L1 error between the two cumulative 
size distributions is only about 3%.  

IIVV..33..  RReessuullttss  

Figure 10(b) shows a typical result of PSD (PSD is expressed in terms of percentage in 
number of particles) obtained after processing the raw image displayed in Figure 10(a) using 
the PSD imaging method explained in the previous section. Both the PSD in the reactor and in 
the measurement cell are assumed to be homogeneously distributed due to stirring, which 
maintains the particles in suspension. Five minutes after seeding (i.e., after crystallization the 
begun), it can be observed that the majority of the particles still exhibit a diameter (the 
measured diameter corresponds to the diameter of the sphere with an equivalent projected 
area) smaller than 100 µm [Figure 10(b)]. However, note that a peak is present around 167 
µm, which corresponds to the aggregated particle present in the bottom center of the image 
[Figure 10(a)]. Since only few particles can be observed in each image, an improvement is 
obtained after averaging the PSD. It is usually considered that correct particle sampling 
requires at least 1000 particles to be measured. Therefore, to link the averaging of the PSD to 
the crystallization process, a particle counter was implemented in the PSD imaging method. 
Once the particle counter is above the threshold of 1000 particles, an average PSD is 
computed. 
Figure 11(a) (PSD1) shows the average PSD of citric acid particles computed after about 2 min 
of crystallization and Figure 11(b) (PSD2) shows the average PSD of citric acid particles 
computed after about 5 min of crystallization. As one can notice, due to the development of 
both crystal nucleation and growth, the PSD spreads and the growth of the initial seed 
particles leads to the emergence of new PSD classes: [140µm, 200µm] [Figure 11(b)]. Note 
that the average PSD computed after about 5 min of crystallization is quite different from the 
PSD calculated at t=5 min 23 s [Figure 10(b)]. This is clearly because the set of particles 
processed to yield the “instantaneous PSD” at t=5 min 23 s is too small to achieve an accurate 
measurement. 
In addition to the size distribution, note that shape parameters (elongation, convexity, etc.) 
could be calculated for each particle, providing information about possible anisotropy of the 
particles and aggregation processes. 

V. Conclusions 
During this work, a novel image processing method, called PSD imaging, enabling us to 
estimate the time-varying PSD of particles in suspension was developed and evaluated 
through crystallization experiments performed with citric acid in water. We acquired 2-D 
images using a new in situ imaging probe and treated them using an image analysis method 
composed of three steps. A segmentation step enabled us to identify each particle in an image 
(spatial support and focused/nonfocused particles). Thereafter, a restoration step was 
designed that enabled us to maximize the number of particles that could be processed in a 
reliable way. Such a goal was reached by means of the deconvolution of blurred particles. 
Finally, the last step (particle measurement) enabled us to obtain the PSD over time (up to 
moderate solid concentration). Experimental validation was performed through computer 
simulation and silica beads experiments. The proposed PSD imaging method was 
implemented in MATLAB and all the computations were performed on a personal computer 
with a 2-GHz CPU and 512 Mb of RAM running windows XP. With such computer setup and 
after a few optimizations, the PSD imaging method required about 1s to complete an image. It 
is clear that such a processing time is too long to enable real-time PSD calculation. However, a 
conversion to the C language and a multi-CPU optimization could drastically improve it. 
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FFiigguurree  11::  EExxppeerriimmeennttaall  ssyysstteemm::  ((aa))  EEZZPPrroobbee  sseennssoorr  aanndd  ((bb))  sscchheemmaattiicc  ooff  tthhee  ssyysstteemm..  
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FFiigguurree  22::  22--DD  iimmaaggeess  ooff  cciittrriicc  aacciidd  ppaarrttiicclleess  ttaakkeenn  bbyy  tthhee  iinn  ssiittuu  iimmaaggiinngg  pprroobbee  ((aa))  tt==33  mmiinn  aanndd  ((bb))  tt==1111  mmiinn..  
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FFiigguurree  33::  SSeeggmmeennttaattiioonn  ooff  tthhee  ppaarrttiicclleess  iimmaaggee;;  TThhee  ssppaattiiaall  ssuuppppoorrtt  ooff  eeaacchh  ppaarrttiiccllee  iiss  ddeetteecctteedd  aanndd  bblluurrrreedd  aanndd  
ffooccuusseedd  ppaarrttiicclleess  aarree  ddiissccrriimmiinnaatteedd::  ((aa))  aann  oorriiggiinnaall  iimmaaggee  wwiitthhiinn  aa  vviiddeeoo  sseeqquueennccee,,  ((bb))  tthhee  ccoonnssttrraaiinneedd  
wwaatteerrsshheedd  aallggoorriitthhmm  aapppplliieedd  ttoo  tthhee  oorriiggiinnaall  iimmaaggee,,  ((cc))  ssppaattiiaall  ssuuppppoorrtt  ooff  eeaacchh  ppaarrttiiccllee  ((bblluuee  ssoolliidd  lliinnee)),,  ((dd))  
bblluurrrreedd  ((bbllaacckk))//ffooccuusseedd  ((wwhhiittee))  rreeggiioonn//ppaarrttiicclleess..  ((CCoolloorr  oonnlliinnee  oonnllyy))..  
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FFiigguurree  44::  RReeaall  aanndd  mmooddeelleedd  ppaarrttiiccllee  11--DD  pprrooffiillee::  bblluuee  ssqquuaarreess  iinnddiiccaattee  tthhee  pprrooffiillee  ooff  aa  rreeaall  ““ppeerrffeecctt””  ((nnoott  bblluurrrreedd))  
ppaarrttiiccllee  iimmaaggee;;  iinn  bbllaacckk,,  tthhee  ccoorrrreessppoonnddiinngg  ssqquuaarreedd  mmooddeelleedd  pprrooffiillee..  ((CCoolloorr  oonnlliinnee  oonnllyy))..  

 

FFiigguurree  55::  IItteerraattiivvee  eerroossiioonn  ooff  tthhee  ssppaattiiaall  ssuuppppoorrtt  ooff  gg::  pp00,,  ssqquuaarree  ffuunnccttiioonn  ooff  ““hheeiigghhtt””  mmaaxx  ((gg))  aanndd  ssppaattiiaall  ssuuppppoorrtt  
gg;;  pp11,,  ssqquuaarree  ffuunnccttiioonn  ooff  ““hheeiigghhtt””  mmaaxx  ((gg))  aanndd  ssppaattiiaall  ssuuppppoorrtt  gg  eerrooddeedd  oonnccee,,  eettcc..  
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FFiigguurree  66::  RReessttoorraattiioonn  ooff  tthhee  bblluurrrreedd  ppaarrttiicclleess  ((oouuttssiiddee  tthhee  ffooccaall  ppllaannee))  sshhoowwnn  oonn  aa  mmaaggnniiffiieedd  iimmaaggee::  iinn  bblluuee,,  
ssppaattiiaall  ssuuppppoorrtt  ooff  bblluurrrreedd  ppaarrttiicclleess;;  iinn  ggrreeeenn,,  ssppaattiiaall  ssuuppppoorrtt  ooff  ffooccuusseedd  ppaarrttiicclleess;;  aanndd  iinn  rreedd,,  ssppaattiiaall  ssuuppppoorrtt  ooff  
tthhee  ddeeccoonnvvoollvveedd  ppaarrttiicclleess..  ((CCoolloorr  oonnlliinnee  oonnllyy))..  
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FFiigguurree  77::  NNRRMMSSEE  aass  aa  ffuunnccttiioonn  ooff  ssiiggmmaa  ffoorr  ((aa))  aann  iissoottrrooppiicc  aanndd  ((bb))  aann  aanniissoottrrooppiicc  oobbjjeeccttss  aanndd  ((cc))  ccaallccuullaatteedd  
wwiitthh  aanndd  wwiitthhoouutt  tthhee  ddeeccoonnvvoolluuttiioonn  sstteepp  ffoorr  tthhee  ttwwoo  oobbjjeeccttss..  
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FFiigguurree  88::  IInn  rreedd  ((ssoolliidd  lliinnee))  tthhee  rreeaall  CCSSDD  ooff  tthhee  ppaarrttiicclleess  ((CCSSDD11));;  iinn  bblluuee  ((ddaasshheedd  lliinnee))  tthhee  rreeccoovveerreedd  CCSSDD  ((CCSSDD22))..  
((CCoolloorr  oonnlliinnee  oonnllyy))..  
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FFiigguurree  99::  PPSSDDss  ooff  tthhee  ppoollyyddiissppeerrssee  ssiilliiccaa  bbeeaaddss  oobbttaaiinneedd  wwiitthh  ((aa))  tthhee  PPSSDD  iimmaaggiinngg  mmeetthhoodd  aanndd  ((bb))  tthhee  CCoouulltteerr  
ccoouunntteerr  mmeetthhoodd..  PPSSDDss  aarree  eexxpprreesssseedd  iinn  tteerrmmss  ooff  vvoolluummee  ppeerrcceennttaaggee..  
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FFiigguurree  1100::  PPSSDD  ooff  aacciidd  cciittrriicc  ppaarrttiicclleess  aatt  tt==55  mmiinn  2233  ss::  ((aa))  pprroocceesssseedd  22--DD  iimmaaggee  aanndd  ((bb))  PPSSDD  iinn  nnuummbbeerr..  TThhee  PPSSDD  
iiss  eexxpprreesssseedd  iinn  tteerrmmss  ooff  ppeerrcceennttaaggee  ooff  nnuummbbeerr  ooff  ppaarrttiicclleess..  
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FFiigguurree  1111::  AAvveerraaggee  PPSSDD  aafftteerr  aabboouutt  ((aa))  22  mmiinn  aanndd  ((bb))  55  mmiinn  ooff  ccrryyssttaalllliizzaattiioonn..  TThhee  PPSSDDss  aarree  eexxpprreesssseedd  iinn  tteerrmmss  ooff  
ppeerrcceennttaaggee  iinn  nnuummbbeerr  ooff  ppaarrttiicclleess..  
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