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ABSTRACT 29 
 30 

Lattice structures (LS) manufactured by 3D printing are widely applied in many areas, such as aerospace and 31 

tissue engineering, due to their lightweight and adjustable mechanical properties. It is necessary to reduce 32 

costs by predicting the mechanical properties of LS at the design stage since 3D printing is exorbitant at 33 

present. However, predicting mechanical properties quickly and accurately poses a challenge. To address 34 

this problem, this study proposes a novel method that is applied to different LS and materials to predict their 35 
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mechanical properties through machine learning. First, this study voxelised 3D models of the LS units and 36 

then calculated the entropy vector of each model as the geometric feature of the LS units. Next, the porosity, 37 

material density, elastic modulus, and unit length of the lattice unit are combined with entropy as the inputs 38 

of the machine learning model. The sample set includes 57 samples collected from previous studies. Support 39 

vector regression was used in this study to predict the mechanical properties. The results indicate that the 40 

proposed method can predict the mechanical properties of LS effectively and is suitable for different LS and 41 

materials. The significance of this work is that it provides a method with great potential to promote the 42 

design process of lattice structures by predicting their mechanical properties quickly and effectively. 43 

Keywords: Lattice structures; mechanical properties; 3D printing; machine learning 44 

 45 
1. INTRODUCTION 46 

 47 

Lattice structures (LS), whether inspired by nature or created by mathematicians, 48 

are considered promising candidates for lightweight energy absorption and heat 49 

dissipation because their unique geometric shape can realise different functions. As 50 

FIGURE 1 shows, the most applied LS are body-centred cubic (BCC) [1], face-centred cubic 51 

(FCC) [2], BBC with vertical struts (BCCZ) [3], and triply periodic minimal surface (TPMS) 52 

structures [4]. Parts composed of LS are designed by arraying the LS unit; however, they 53 

are hard to fabricate via traditional manufacturing methods because of their complex 54 

interior shapes. 55 

Additive manufacturing (AM), also called 3D printing, is an advanced 56 

manufacturing technology to fabricate complex parts that cannot be manufactured by 57 

traditional technology. AM includes various manufacturing methods, such as fused 58 

deposition modelling, electron beam melting, selective laser melting (SLM), and selective 59 

laser sintering. These methods also allow the manufacture of parts using non-metallic and 60 
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metallic materials. SLM is widely applied in aerospace, automotive, and tissue engineering 61 

and moulds because it allows the use of many metallic powders: Ti6Al4V [5], stainless 62 

steel 316L [6], and maraging steel [7]. Furthermore, the layer-by-layer fabricated feature 63 

of SLM can freely manufacture samples with complex shapes and internal structures. 64 

Thus, SLM is considered a promising manufacturing method for fabricating metallic parts 65 

composed of LS. 66 

The mechanical properties of LS are the basic requirements when they are used in 67 

various applications. LS have many advantages, and their elastic modulus and yield 68 

strength can be adjusted by designing with different unit parameters. This can save 69 

materials by choosing a suitable lattice structure to match the mechanical requirements. 70 

The elastic modulus is one of the most important mechanical properties of LS; it can 71 

achieve around 1% to 100% of the elastic modulus of solid material by manufacturing with 72 

different designed parameters. 73 

In some application areas, the mechanical properties of parts composed of LS have 74 

strict design requirements. These include SLM-built bone scaffolds; as shown in FIGURE 75 

2, the mechanical properties of the implanted scaffold should match those of damaged 76 

human bones to avoid “stress-shielding”, which may lead to bone osteoporosis [8]. 77 

Furthermore, these kinds of porous scaffolds can also satisfy other functional 78 

requirements, such as good mass-transporting requirements [9]. 79 

Yield strength is another important mechanical property of parts composed of LS; 80 

parts will undergo permanent deformation if the loading stress is higher than yield 81 

strength. Thus, studying the yield strength of the LS can guide us to avoid parts failure. 82 
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Estimating the elastic modulus and yield strength of LS quickly can help designers 83 

choose a suitable structure accurately and shorten the design time of parts. In general, 84 

the elastic modulus and yield strength are calculated using the strain-stress diagram 85 

obtained from compressive experimentation on LS samples. However, fabricating all LS 86 

samples with different designed parameters to study their mechanical properties and 87 

thereby choose the most suitable structure is expensive and time-consuming, especially 88 

since multiple candidate structures and materials are involved. 89 

Finite element analysis (FEA) seems to be a promising method to predict the 90 

mechanical properties of LS because it only requires the 3D model of the LS. However, 91 

this method has certain disadvantages that limit its use. First, most 3D models of the LS 92 

are outputted as .stl files by modelling or programming software. These .stl files cannot 93 

be meshed directly by the simulation software; they need to be solidified first, and this 94 

process may cause the 3D models to lose some details of geometric features. In addition, 95 

the parameters of simulation need to be set for each 3D model, and the simulation usually 96 

takes hours. Therefore, finding a quick and accurate method to predict the mechanical 97 

properties of LS remains a challenge.  98 

With the development of computer power, data collection, and algorithms, 99 

machine learning has been used in many areas because it can build a predictive model 100 

based on a wide variety of input features and predict the target result. Naif et al. used 101 

convolutional neural networks to predict porous media properties from 2D micro-102 

computed tomography images [10]. Jinlong built a model to predict the permeability of 103 

porous samples from images; the results showed that, compared with FEA, this machine 104 
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learning method can reduce the computational time by several orders of magnitude [11]. 105 

Therefore, machine learning offers the possibility to predict the mechanical properties of 106 

LS quickly. This paper proposes a novel method that can predict the mechanical 107 

properties of various LS and materials by machine learning. The entropy of the 3D model 108 

of LS, which represents the geometric characteristics of different LS units, together with 109 

general design parameters for different LS (such as the porosity, unit length, and elastic 110 

modulus of solid materials), are adopted as input features for the machine learning. 111 

Support vector regression (SVR) is then used to fit and predict the elastic modulus and 112 

yield strength of 57 LS models. These input features are easy to obtain, and once the 113 

predictive model is built, the prediction process is completed in a matter of seconds. 114 

This paper bases on previous work [12] and presents a novel method to predict 115 

the mechanical properties of 3D printed samples composed of different LS and materials. 116 

The related literature is presented in section 2, and the input features and prediction 117 

method are introduced in section 3. The evaluation of the predictive model and the 118 

comparison of measured and predicted values of elastic modulus and yield strength of LS 119 

samples are discussed in section 4. Conclusions and prospects for future studies are 120 

outlined in section 5. 121 

 122 
2. LITERATURE REVIEW 123 
2.1 Prediction method of mechanical properties of LS 124 
 125 
Elastic modulus and yield strength were calculated from the strain-stress diagram, based 126 

on the compressive experiments. The compressive experiment is the most basic and 127 

accurate method for investigating the mechanical properties of LS. Sing et al. studied the 128 
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mechanical properties of Ti6Al4V LS in different orientations and densities [13]. FEA is a 129 

common method for predicting the mechanical properties of complex models. Maskery 130 

et al. compared the mechanical properties of gyroid, diamond, and primitive LS through 131 

both experimental and simulated methods: their results showed that the error of elastic 132 

modulus ranged from 4% to 18% [14]. However, the prediction accuracy of FEA fluctuated 133 

because the LS were too complex and there were some manufacturing defects in the as-134 

built samples. Arun et al. studied the mechanical properties of six porous scaffolds by 135 

experimental and simulated methods: the best-predicted errors for elastic modulus and 136 

yield strength were 19.6% and 24.7%, respectively [15]. Shuai et al. built and studied (by 137 

FEA) the mechanical properties of five gyroid structures with 75.1% to 88.8% porosities; 138 

prediction accuracy ranged from 30% to 56% [9]. Kevin et al. investigated the mechanical 139 

properties of seven strut structures through compressive experiments and predicted 140 

them using simulated and analytical methods; the highest predicted error could reach 141 

300% to 400% [16]. 142 

The experimental and simulated method is not only expensive but also time-consuming. 143 

Other researchers have proposed fitting formulae: Maxwell et al. built a multiple linear 144 

regression model to predict the mechanical properties of stochastic lattice structures in 145 

terms of density, fabric, and eigenvalue. For elastic modulus, the off-axis properties 146 

ranged from 4.2% to 13%, and the coefficient of determination R2 ranged from 0.84 to 147 

0.97; for yield strength, the relative error ranged from 5.1% to 10%, and R2 ranged from 148 

0.84 to 0.94 [17]. Matteo et al. used the Gibson-Ashby equation to study the relationship 149 

between the mechanical properties of LS and solid materials [18]: the R2 values were all 150 
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greater than 0.98. Although it is quick to calculate elastic modulus by fitting functions in 151 

this way, the function is only suitable for one structure and has limitations for predicting 152 

various structures. Furthermore, Han et al. investigated the mechanical properties of 153 

strut-based structures by structural mechanics analysis [19], but this only proved suitable 154 

for simple strut structures and not for complex LS such as TPMS. 155 

2.2 Machine learning application in mechanical properties prediction 156 
 157 
With its development and successful application in different areas, machine learning has 158 

attracted the attention of many researchers. Hany et al. used the shallow neural network, 159 

deep neural network, and deep learning neural network to predict the mechanical 160 

properties of the diamond lattice structure; the best mean percentage errors of elastic 161 

modulus and yield strength were 14.6% and 5.26%, respectively [20]. However, the 162 

authors only use strut length, diameter, and orientation angle as study features; these 163 

features are not suitable for other kinds of structures. Mark et al. developed an adaptive 164 

neural network-based model to predict femoral neck strains and fracture loads. Their 165 

results were better than the finite element model, with the R2 ranging from 0.84 to 0.98 166 

[21]. Meng et al. predicted lumbar vertebral strength through a general regression neural 167 

network and SVR according to the grayscale distribution of quantitative computed 168 

tomography images, structural rigidity, and other features [22]. Zhenghua et al. used the 169 

chemical composition and porosity of compacts as descriptors to predict the mechanical 170 

properties of Cu-Al alloys. Six algorithms were introduced, of which SVR showed the best 171 

prediction ability [23]. Together, these studies show the great application potential for 172 
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machine learning. In the context of this study, SVR was chosen to predict the mechanical 173 

properties of LS. 174 

2.3 Geometric feature selection 175 
 176 
Bael et al. investigated the influence of geometry on the mechanical properties of LS. 177 

Their results showed that the shapes of LS will significantly affect the mechanical 178 

properties of parts. Parts composed of LS were arrayed by the LS units; thus, the 179 

mechanical properties and geometric features of LS can be represented by the single unit 180 

model, and the geometric features of unit 3D models were considered as the studied 181 

features in this research.  182 

In general, geometric features such as point cloud [24,25], feature curves [26,27], and 183 

voxelisation [28] have been applied in parts retrieval and classification. Wei et al. 184 

voxelised and calculated the entropy of 3D models to represent and retrieve different 185 

machine parts [29], they all be proved as the promising methods to represent the 186 

geometric features of 3d models. However, the point cloud method will generate tens of 187 

thousands of coordinate data for each 3d model, and the complex internal shapes of LS 188 

cannot be perfectly represented by the feature curves method. Thus, entropy vectors of 189 

LS unit 3D models are applied as the input parameters of the prediction model. 190 

Furthermore, Maskery et al. studied a series of 78% porosity gyroid parts with different 191 

unit lengths (from 3 mm to 9 mm) and indicated that unit length would affect the 192 

mechanical properties of parts [30]. Bartolomeu et al. studied the elastic modulus of 193 

lattice structures with different porosities ranging from 64.2% to 93.3%; their elastic 194 

modulus ranged from 28.6 GPa to 12.4 GPa [31]. In summary, entropy, porosity, unit 195 



Journal of Computing and Information Science in Engineering 

9 
 

length, the density of LS unit, and elastic modulus of solid materials were considered as 196 

features in this study. 197 

3. METHODOLOGY 198 
3.1 Entropy of 3D models 199 
 200 
Typically, point cloud, view-based features, and feature curves are used in parts retrieval 201 

to represent the geometric features of parts, and they all be proved as promising and 202 

effective methods. However, for 3D printed structures, applying these methods results in 203 

certain problems, such as too much data, errors caused by inconsistent viewing 204 

directions, the difficulty of representing the complex internal structure of LS, and the 205 

feature curves method cannot effectively represent the structures with the same 206 

primitive surface. Thus, considering the universality of the method to the 3d models of 207 

LS, the geometric features of different LS units could be represented by the entropy of 208 

their voxelised 3D models. 209 

Voxelisation involves converting the 3D model to a model consisting of pixels of a 210 

specified size; the new model is located at a space with R3 resolution. There are two kinds 211 

of pixels in this space: empty and solid pixels. To calculate the entropy of a voxelised part, 212 

first, the 3D models of LS units were voxelised into 3D voxels. To avoid too much data and 213 

ensure sufficient precision, 203, 503, 1003, 1503, 2003, and 3003 resolutions were tested. 214 

The porosities of re-built voxelised models were calculated and compared with the 3d 215 

models, thus, 100 × 100 × 100 resolution was adopted in this study. As FIGURE 3 shows, 216 

for the circle voxelised at 20 × 20 × 20 resolution, the proportions of solid and empty 217 
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voxels were defined as P1, P2, respectively. Then, the entropy was calculated by the 218 

equation [29]: 219 

 𝐻𝐻2 = −𝑃𝑃1𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃1 − 𝑃𝑃2𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃2  (1) 220 

 𝑃𝑃1 + 𝑃𝑃2 = 1 (2) 221 

where H2 represents the entropy of the 3D model. 222 

The global entropy of the 3D model makes it difficult to distinguish different models with 223 

the same P1 and P2 but which have different shapes. Thus, the voxelised models were 224 

divided into 100 layers. To maintain consistency, the fabricated direction z-axis was 225 

applied as the divided direction since the compression experiments were processed in 226 

the same direction. As FIGURE 4 shows, 20 subspaces with 100 × 100 × 5 resolution were 227 

divided from each voxelised model, meaning that every five layers were divided into a 228 

subspace. The H2 value of each subspace was then calculated, and an entropy vector 229 

composed of 20 entropy was obtained to represent the 3D model of the LS unit. The 230 

entropy vectors of all samples were obtained using this method and applied as the 1 to 231 

20 input features of the predictive model. 232 

3.2 Design parameters of lattice structures 233 
 234 
Modelling the 3D models of LS units is the first step in designing parts composed of porous 235 

structures. Once the type of lattice structure is chosen, some parameters can still be 236 

modified to obtain different unit cells. For strut-based structures, as shown in FIGURE 5 237 

(a), the length and diameter of struts were used as the featured parameters. For surface-238 

based structures (one kind of TPMS), as shown in FIGURE 5 (b), the pore size and thickness 239 

of the surface were applied.  240 
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However, to predict the mechanical properties of different structures using one predictive 241 

model, common parameters that suit all kinds of LS must be considered in this study. As 242 

FIGURE 5 (c) shows, L is the length of the unit; another common parameter is porosity (P), 243 

as defined by the equation below: 244 

 𝑃𝑃 = �1 − 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� × 100% (3) 245 

where Vsolid and Vcube are the volumes of the unit and the cube, respectively.  246 

These two common parameters are suitable for all LS. Furthermore, for the prediction of 247 

mechanical properties of LS manufactured with different materials, the density and 248 

elastic modulus of solid metallic materials were also introduced as input features in the 249 

machine learning model.  250 

In summary, a total of 24 parameters were used as input features: 20 entropy of 251 

subspaces, plus unit length, unit porosity, and density and elastic modulus of materials. 252 

3.3 Collection of study samples 253 
 254 
Considering that the information of structures given in the related papers is not complete 255 

as input features. To obtain the complete data and correct 3d models, the details of fifty-256 

seven SLM samples (fabricated using Ti6Al4V and 316L stainless steel powders) were 257 

collected from previous studies of the 3D printing research group, Chongqing University. 258 

The 3D models of all LS units were re-built and outputted as .stl files using Rhino software. 259 

Magics software was then used to convert all 3D models to the same accuracy of the 260 

triangular patch (0.05 mm) in order to eliminate the influence of modelling accuracy. To 261 

allow the predictive model to examine as many kinds of structures as possible, 11 kinds 262 

of common LS units (with different designed parameters and materials) were introduced 263 
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in this study. These LS units are shown in TABLE 1. The study set included strut structures 264 

and strut-based and sheet-based TPMS structures. 265 

To build the predictive model, 10 samples were randomly picked from the 57 study 266 

samples to compose the test set. The remaining samples were used as the training set. 267 

3.4 Algorithm and evaluation of prediction 268 
 269 
SVR was used as the machine learning algorithm in this study. The grid search method 270 

and 10-fold cross-validation were conducted to obtain a robust predictive model. The 271 

predictive model was fitted using Pycharm software and the scikit-learn toolkit. The 272 

program was processed on Surface Pro 6 (Microsoft Corporation, i5-8350U, 8G RAM). 273 

As FIGURE 6 shows, the 3D models of LS units were voxelised and divided into 20 274 

subspaces; the entropy of each subspace was calculated to obtain the entropy vector, 275 

which was then combined with other studied features as input parameters to train the 276 

predictive model (processed by SVR). The root mean squared error (RMSE) and 277 

determination (R2) were introduced to evaluate the predictive model as the following 278 

equations: 279 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑚𝑚
∑ (𝑦𝑦𝑖𝑖 − ŷ𝑖𝑖)2𝑚𝑚
𝑖𝑖=1  (4) 280 

 𝑅𝑅2 = 1 − ∑ (ŷ𝑠𝑠−𝑦𝑦𝑠𝑠)2𝑚𝑚
𝑠𝑠=1

∑ (𝑦𝑦�𝑠𝑠−𝑦𝑦𝑠𝑠)2𝑚𝑚
𝑠𝑠=1

 (5) 281 

where m is the number of samples, yi, ŷ i, and y represent the actual, predicted and the 282 

average value of output. Furthermore, the predicted error (e) and relative error (er) 283 

between predictive and experimental mechanical properties are defined using the 284 

following equations: 285 
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 𝑒𝑒 = �𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑅𝑅𝑝𝑝𝑒𝑒𝑝𝑝� (6) 286 

 𝑒𝑒𝑝𝑝 = �𝐸𝐸𝑝𝑝𝑝𝑝𝑐𝑐−𝐸𝐸𝑐𝑐𝑒𝑒𝑝𝑝�
𝐸𝐸𝑐𝑐𝑒𝑒𝑝𝑝

× 100% (7) 287 

where Epre and Eexp represent the predicted and experimental mechanical properties 288 

(elastic modulus and yield strength) of LS, respectively. 289 

Also, considering the time cost of the fitting formulae and structural mechanics analysis 290 

is hard to measure, and FEA is the most common method to predict the mechanical 291 

properties of LS, this study compared the current and FEA methods to evaluate the speed 292 

and accuracy of this method. 293 

4. RESULTS AND DISCUSSION 294 
 295 
To assess whether entropy vectors can effectively represent the geometric features of 296 

different structures, TABLE 2 shows the entropy distribution of four kinds of LS with 297 

different design parameters. For the entropy distributions of different LS categories, the 298 

shapes of the distribution are significantly different. However, the 3D models in the same 299 

row belong to one kind of structure but with different design parameters, such as 300 

diameter and porosity; their entropy distributions have the same shape but different 301 

values. The results indicate that the entropy vectors are suitable for representing various 302 

lattice structures; therefore, they provide a good group of input features for the machine 303 

learning model. 304 

The parameters of the predictive model were optimised using the grid search method. 305 

The evaluation of the resulting model is shown in TABLE 3. For elastic modulus, in the 306 

training set, the RMSE and R2 reached 636 and 0.93, respectively. The results also indicate 307 

that the geometric features of LS 3D models have a high correlation with elastic modulus. 308 
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Considering that the actual elastic modulus of the training set ranged from 68 MPa to 309 

9,309 MPa, with 244 MPa predicted error and 5.6% relative error, the results are good for 310 

this model. In the test set, the RMSE (885) is higher than in the training set. R2 is 0.81, 311 

which is slightly lower than in the training set, and the relative error reaches 24.6%. 312 

Compared to the existing prediction methods outlined in section 2.1, their R2 values 313 

ranged from 0.84 to 0.98 and relative error from 4% to 18%. The results of this study show 314 

that the current prediction method has great application potential. 315 

In terms of the yield strength predictive model, the actual yield strength of all samples 316 

ranged from 1.9 MPa to 590.3 MPa. In the training set, the RMSE and mean error were 317 

25.96 MPa and 14.14 MPa, respectively, and the R2 value reached 0.96, which 318 

demonstrates a stronger correlation than the elastic modulus; however, the mean 319 

relative error was 20.1%. The RMSE and R2 of the test set were worse than in the training 320 

set. Furthermore, the mean relative error is the highest at 40.9%; the reasons will be 321 

analysed below. 322 

FIGURE 7 (a) shows the actual and predicted elastic modulus of the training set. Most of 323 

the predicted values have a strong correlation with the actual results. The largest 324 

predicted error occurs in sample 22, a sheet-based I-WP structure with 55% porosity; the 325 

error is 3,007 MPa. This may be because I-WP structures have greater mechanical 326 

properties compared with other structures, and this error could be reduced by 327 

introducing more samples with different parameters.  328 

FIGURE 7 (b) shows the relative errors for the training set. The largest relative error 329 

(47.9%) is observed in sample 8, an 85% porosity strut-based diamond structure whose 330 
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actual elastic modulus is only 1,074 MPa. Its predicted error is 514 MPa, which is slightly 331 

higher than the mean error of the training set (244 MPa) and far below the maximum 332 

error observed in sample 22. 333 

To compare the actual and predicted results, 10 samples in the test set were inputted into 334 

the predictive model; the results are shown in FIGURE 8. The largest errors were observed 335 

in samples 2 and 7, which have roughly 55% porosity and belong to strut-based and sheet-336 

based Schwarz primitive structures, respectively. The possible reason for the error is that 337 

the elastic modulus of LS will increase significantly as porosity decreases, and the 338 

porosities of 44 of 57 samples were higher than 60%. With more lower-porosity samples, 339 

the predicted results should show great improvement. For relative error, only sample 10 340 

has 37.5 MPa actual elastic modulus, which will make the relative error sensitive to the 341 

predicted difference. 342 

FIGURE 9 shows the differences between actual and predicted yield strengths. Generally, 343 

the predicted curve matched the actual curve well. The minimum predicted error is 0.97 344 

MPa, while the maximum predicted error is 118.23 MPa. For sample 10, the strut-based 345 

diamond structure, the actual value is 249.5 MPa. Except for three samples with high 346 

predicted errors, the predicted errors of the other 44 samples were lower than 23.5 MPa. 347 

Four relative errors are high, while the relative errors of the 43 remaining samples are 348 

lower than 27%. The highest value is 164%: the relative error of sample 11, a strut-based 349 

gyroid structure, which has 95% porosity and 6.1 MPa yield strength. However, the 350 

predicted error of sample 11 is only 10 MPa, lower than the mean error of 14 MPa. The 351 

mean relative error would reach 16.9% by excluding sample 11. 352 
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The maximum predicted error of the test set is 128.77 MPa, and the actual value of this 353 

sample is 326 MPa. The errors for 8 out of 10 samples are lower than 40 MPa. As FIGURE 354 

10 (b) shows, the relative error of sample 10 is 171%, but the predicted error is only 3.2 355 

MPa, which has a significant effect on the mean relative error; if sample 10 is excluded, it 356 

would decline to 26.4%. 357 

Considering that even the mechanical properties obtained from the compression 358 

experiments have fluctuating errors, as TABLE 4 shows, errors ranged from 33 MPa to 162 359 

MPa, while the elastic modulus ranged from 1,465 MPa to 2,676 MPa [32]. Experimental 360 

error ranged from 100 MPa to 130 MPa, and experimental elastic moduli of LS ranged 361 

from 2,700 MPa to 3,600 MPa [33]. Furthermore, errors from 120 MPa to 3,640 MPa for 362 

elastic modulus and 0.38 MPa to 12 MPa for yield strength have also been reported [16]. 363 

Thus, the predicted errors of 244 MPa to 593 MPa for elastic modulus and 14.14 MPa to 364 

37.14 MPa for yield strength in this study still show good agreement, since the elastic 365 

modulus and yield strength ranged from 37.5 MPa to 9,309 MPa and 1.9 MPa to 590.3 366 

MPa, respectively. 367 

As TABLE 5 shows, the results and time costs of the formula, FEA, and the current methods 368 

are compared with ref [5]. The yield strength of all samples, and the elastic modulus of 369 

complex structure Fcc-BCC, can not be predicted by the formula method. FEA method 370 

exhibits the lowest error of predicted yield strength of BCC structures, while for complex 371 

fcc-BCC structure, the SVR method shows higher accuracy. For the time consumption, 372 

once the SVR model is built, the prediction will finish in about 5 secs, while FEA will cost 373 

about 30 mins in the simulated process. 374 
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In summary, the predictive model in this study shows the potential to predict the 375 

mechanical properties of 3D printed structures. The study also proves that geometric 376 

features represented by entropy vectors have a strong correlation with mechanical 377 

properties in LS since R2 ranges from 0.8 to 0.96. The highest accuracy of the predictive 378 

model can also reach the level reported by previous studies. Furthermore, this method 379 

has the following advantages: 380 

(1) The model can predict the mechanical properties of one LS unit in a matter of seconds. 381 

(2) The model is suitable for different types of structures and predicts the mechanical 382 

properties of LS made of different materials. 383 

(3) The model exhibits the potential to predict other properties of LS, such as permeability 384 

and failure mode. 385 

5. CONCLUSIONS 386 
 387 
To investigate an effective method to predict the mechanical properties of LS, this study 388 

proposed a novel method based on machine learning that extracts the entropy vector 389 

from LS unit 3D models to represent the geometric features of LS, in combination with 390 

other commonly designed parameters as input features. The predictive model was then 391 

built using SVR. The results include the following: 392 

(1) Entropy vectors can effectively represent the geometric features of LS. Similar shapes 393 

of entropy distributions are observed in the same types of structures, while the 394 

distribution shape varies between different types of structures; dividing the subspaces 395 

along the compression direction can eliminate the differences caused by the random 396 

dividing direction. 397 
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(2) This study collected 57 LS samples, and the model to predict the elastic modulus of LS 398 

was successfully built based on SVR. For elastic modulus, RMSE was measured at 636.48 399 

and R2 at 0.93 for the training set; for the test set, RMSE was 885.7 and R2 was 0.81. For 400 

yield strength, R2 and mean predicted error ranged from 0.8 to 0.96 and 14.14 MPa to 401 

37.14 MPa, respectively. This indicates that the chosen input features have a strong 402 

correlation with the mechanical properties of LS. 403 

(3) Compared with common predicted methods, the current method can reach the 404 

accuracy of other methods and is not limited by materials and LS categories. In particular, 405 

the predicted time is reduced from tens of minutes to a few seconds, which can greatly 406 

improve the efficiency of the design process. 407 

In summary, compared with the high-cost experimental method and the time-consuming 408 

simulated method, this study proposes a prediction method for the elastic modulus of LS 409 

that has genuine potential application value. It has the advantage of being applicable to 410 

various kinds of structures and materials, while other methods based on machine learning 411 

and formulae can only be applied to one kind of structure. This study is significant as it 412 

can improve the efficiency of designing lattice structures, thereby reducing time and costs 413 

in the design phase. 414 

Future studies will consider the processing parameters of the SLM machine, the expected 415 

relative density, and the manufacturing errors of structures to enhance prediction 416 

accuracy. The study of predicting the failure modes of lattice structures will also be of 417 

interest. 418 

 419 
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FIGURE 1 (a) BCC structure unit; (b) BCCZ structure unit; (c) TPMS structure units. 

FIGURE 2 TI6AL4V bone scaffold composed of gyroid structures 

FIGURE 3 Schematic diagram of voxelisation 

FIGURE 4 Process of dividing subspace and calculating entropy vector 

FIGURE 5 Featured parameters of (a) strut structures; (b) TPMS structures; (c) 

common parameters of all lattice structures. 

FIGURE 6 Process of predicting mechanical properties of LS units by machine 

learning 

FIGURE 7 Elastic modulus of training set: (a) actual/predicted values; (b) relative 

error. 

FIGURE 8 Elastic modulus of test set: (a) actual/predicted values; (b) relative error. 

FIGURE 9 Yield strength of training set: (a) actual/predicted values; (b) relative error. 

FIGURE 10 Yield strength of test set: (a) actual/predicted values; (b) relative error. 
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 590 
FIGURE 1: (a) BCC structure unit; (b) BCCZ structure unit; (c) TPMS structure units. 591 
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FIGURE 2: TI6AL4V bone scaffold composed of gyroid structures 595 
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FIGURE 3: Schematic diagram of voxelisation 599 
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 601 
FIGURE 4: Process of dividing subspace and calculating entropy vector 602 
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 604 

 605 
FIGURE 5: Featured parameters of (a) strut structures, (b) TPMS structures, (c) common 606 

parameters of all lattice structures. 607 
  608 
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 610 
FIGURE 6: Process of predicting mechanical properties of LS units by machine learning 611 
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 613 
FIGURE 7: Elastic modulus of training set: (a) actual/predicted values; (b) relative error. 614 
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 616 
FIGURE 8: Elastic modulus of test set: (a) actual/predicted values; (b) relative error. 617 
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 619 
FIGURE 9: Yield strength of training set: (a) actual/predicted values; (b) relative error. 620 
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 622 
FIGURE 10: Yield strength of test set: (a) actual/predicted values; (b) relative error. 623 
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TABLE 1: Categories of studied LS samples 625 

Category 
number 3D model Structure type 

Number 
of 

samples 

1 

 

BCC 7 

2 

 

BCCZ 3 

3 

 

Strut-based 
Schwarz 
primitive 

8 

4 

 

Strut-based 
diamond 3 

5 

 

Strut-based 
gyroid 3 

6 

 

Strut-based 
diamond 3 

7 

 

Sheet-based 
gyroid 9 

8 

 

Sheet-based 
Schwarz 
primitive 

11 

9 

 

Sheet-based I-
WP 3 

10 

 

Neovius 3 

11 

 

FCC 4 

  626 
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TABLE 2: Results of entropy distributions of different LS units 627 

LS unit 

  

Entropy 
distribution 

  

LS unit 

  

Entropy 
distribution 

  

LS unit 

  

Entropy 
distribution 

  

LS unit 

  

Entropy 
distribution 

  
 628 
  629 
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TABLE 3: Evaluation of the predictive model in training set and test set 630 

 Set RMSE R2 Mean error 
(MPa) 

Mean er 
(%) 

Elastic 
modulus 

Training set 636.48 0.93 244.11 5.66 

Test set 885.70 0.81 593.72 24.61 

Yield 
strength 

Training set 25.96 0.96 14.14 20.1 

Test set 51.74 0.80 37.14 40.9 

 631 
 632 
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TABLE 4: Comparison of errors in previous and current studies 634 

 Elastic modulus 
range (MPa) 

Error 
(MPa) 

Yield strength 
range (MPa) 

Error 
(MPa) 

[32] 1465 ~ 2676 33 ~ 162 - 
[33] 2700 ~ 3600 100 ~ 130 - 

[16] 1060 ~ 28590 120 ~ 3640 9.3 ~ 327.47 0.38 ~ 12 

[34] 2700 ~ 7400 100 ~ 400 233 ~ 520 3 ~ 60 
Current 
study 37.5 ~ 9309 244 ~ 593 1.9 ~ 590.3 14.14 ~ 

37.14 
 635 

 636 
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TABLE 5: Comparison of formula, FEA, and current methods 638 

 Error of elastic modulus (MPa)  Error of yield strength 
(MPa) 

 Formula FEA SVR  Formul
a FEA SVR 

BCC 1 117 521 1  - 8 10 
BCC 2 23 60 1  - 2.5 10 
BCC 3 24.5 67.5 1  - 1.15 4.03 
BCC 4 19.5 10.5 31  - 0.375 3.26 

Fcc-BCC 1 - 2200 1  - 14 3.81 
Fcc-BCC 2 - 407 1  - 13.5 10 
Fcc-BCC 3 - 170 1  - 4.5 2.2 
Fcc-BCC 4 - 56 1  - 1.1 5.03 

Average 
time - ~ 30 

mins ~ 5 secs  - ~ 30 
mins ~ 5 secs 

 639 
 640 


