
Silvio H. Rizzi
e-mail: srizzi2@uic.edu

Cristian J. Luciano
e-mail: clucia1@uic.edu

P. Pat Banerjee1

e-mail: banerjee@uic.edu

2039 Engineering Research Facility,

University of Illinois at Chicago,

842 West Taylor Street, Chicago, IL 60607

Comparison of Algorithms
for Haptic Interaction With
Isosurfaces Extracted From
Volumetric Datasets
Combinations of graphics and haptics libraries are used in medical simulations for simulta-
neous visualization and tactile interaction with complex 3D anatomy models. The minimum
frame rate of 1 kHz for haptics rendering makes it a nontrivial problem when dealing with
complex and highly detailed polygonal models. Multiple haptics algorithms based on po-
lygonal mesh rendering, volume haptics, and intermediate representation are evaluated in
terms of their servoloop rendering time, client thread rendering time, and quality of force
feedback. Algorithms include OpenHaptics’ Feedback Buffer and Depth Buffer, GodObject
and Ruspini renderers in H3D, CHAI3D implementation in H3D, ScalarSurfaceFriction mode
in Volume Haptics ToolKit (VHTK), and the authors’ intermediate representation algorithm
based on volumetric data. The latter, in combination with surface graphics visualization, is
found to deliver the best rendering time, to detect all collisions and to provide correct hap-
tic feedback where other algorithms fail. [DOI: 10.1115/1.4006465]

1 Introduction

Volumetric datasets have become essential in virtual reality and
haptics simulation for medical and surgical training. Technologies
such as computed tomography (CT) and magnetic resonance
imaging provide 3D scans of patient anatomy, from which 3D
models can be generated to represent highly detailed and complex
anatomical structures such as bone, organs, or muscle.

Traditionally, 3D models have been represented as polygonal
meshes, i.e., surfaces in 3D space consisting of multiple triangles.
From the volumetric data, polygonal meshes are constructed using
an isosurface extraction algorithm such as Marching Cubes [1].
Furthermore, mesh processing may be required in order to reduce
the number of triangles in each model (decimation) and to obtain
smooth surfaces. All these preprocessing stages often demand a
fair amount of time to generate high quality models. Although
methods to automate the segmentation and isosurface creation
processes have been discussed in the literature [2], they still
require considerable human intervention.

Alternatively, anatomical 3D models can be displayed using
direct volume rendering, which requires less human participation
and minimum data preprocessing, generally at the expense of
lower graphics frame rates.

Combinations of scene graph managers [3,4] and haptics libra-
ries [5] have been used in surgical simulations for graphics and
haptics rendering of 3D models [6,7]. The goals of these simula-
tions are simultaneous visualization of complex 3D models and
tactile interaction with anatomy at interactive frame rates. While
frame rates in the order of 30–60 Hz are acceptable for graphics
rendering, the minimum required rate of 1 kHz for haptics render-
ing makes it a nontrivial problem when dealing with complex and
highly detailed polygonal models. On the other hand, volume-
based haptics techniques have proven themselves capable of gen-
erating force feedback from complex anatomies at interactive
frame rates [8,9].

This paper presents a comparison of haptics rendering algo-
rithms combined with polygonal graphics rendering within the
framework of medical simulation. This evaluation seeks to assess
the quality of the haptic feedback provided as well as identifying
the best algorithm in terms of rendering time.

2 Literature Review and Related Work

In the past, different techniques have been implemented to pro-
vide force feedback with polygonal meshes, volumetric data, and
intermediate representations. This section describes some
approaches found in the literature.

2.1 Polygonal Mesh Haptics Rendering. Polygonal mesh
methods require 3D models to be represented as rigid polyhedra
obtained from the original dataset. Within these methods, an algo-
rithm used for single-point contacts was proposed in Ref. [10]. This
method used a “GodObject” to constrain the haptic interface point
to the mesh surface, avoiding penetration. The tip of the haptic de-
vice was coupled to the proxy through a spring model. In each hap-
tic frame, the force rendered was proportional to the distance
between the probe and the proxy. A virtual proxy point of finite
size, to avoid fall-through due to numerical gaps in polygonal
meshes, was proposed in Ref. [11]. This paper also proposed HL, a
haptic interface library based on a graphics library (GL) from Sili-
con Graphics. The proxy method and the idea of a haptic library
based on OpenGL were later implemented in SensAble’s OpenHap-
tics [5,12]. It offered two alternative haptics rendering modes:
Feedback Buffer (based on OpenGL 3D polygonal primitives) and
Depth Buffer (based on the OpenGL depth buffer). Feedback
Buffer delivered high quality collision detection and force feed-
back, but the number of polygons it can handle is limited. On the
other hand, Depth Buffer was relatively insensitive to the number
of polygons because it is based on a 2D image drawn on the
Z-buffer. However, it exhibited “noticeable (force) discontinuities
when feeling shapes with deep, narrow grooves, or tunnels” [13].

In addition to point-based algorithms, there are also line-based
approaches, such as given in Ref. [14]. The authors presented a ray-
based method to detect collisions between the 3D polygonal objects
and the haptic stylus, which has been modeled as a line segment.
When a collision was detected, the distance between the collision

1Corresponding author.
Contributed by the Design Engineering Division of ASME for publication in the

JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received
April 28, 2011; final manuscript received February 1, 2012; published online April
23, 2012. Assoc. Editor: Chris Geiger.

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021004-1
Copyright VC 2012 by ASME

point and the tip of the stylus was computed, and the reaction force
in the normal direction was made proportional to that distance using
a simple spring-damper model. Static and dynamic frictional forces
were also computed in the tangential direction.

As pointed out in Refs. [15] and [16], the fact that polygonal
meshes were generated from isosurfaces prevented the user from
dynamically modifying the model during the simulation, since it
is computationally expensive to regenerate the whole mesh in real
time. Having this ability is, though, an essential requirement for
modeling surgical procedures where volume removal is frequently
required, e.g., bone drilling.

2.2 Volume Haptics Rendering. Iwata and Noma [17] pre-
sented an approach called volume haptization to provide force
feedback from volumetric datasets. For scalar data, they mapped
either the voxel values to torque vectors or the gradient of voxel
values to force vectors. Avila and Sobierajski [18] described a
gradient method where the normal and viscosity force components
at a given point depend on the material density and the gradient
magnitude at that point. The disadvantage of these methods is that
they can produce instabilities or undesired vibrations, especially
in regions containing sharp transitions, where the gradient magni-
tude and direction can vary abruptly.

In terms of using volume haptics for surgical simulation, there
are significant works focusing on bone surgery. Gibson [19]
developed a prototype for haptic exploration of a 3D model of a
human hip based on voxels. Using occupancy maps, collisions
were easily detected, and haptic feedback was generated to pre-
vent penetration of virtual models. However, this method required
the generation of occupancy maps, which is essentially a form of
segmentation, demanding some preprocessing work. Petersik
et al. [20] presented a haptic rendering algorithm based on a mul-
tipoint collision detection approach. A ray-based algorithm was
used for graphics and haptics rendering. While static objects were
represented by voxels, the location of their surfaces was obtained
by a ray-casting algorithm at subvoxel resolution. This approach
was found to be limited in the effective stiffness of the simulations
[21]. Morris et al. [21] presented a hybrid approach based on vox-
els for haptics rendering and on polygonal meshes for graphics
rendering. As parts of the virtual bone were being removed, their
algorithm modified the surface locally and then recomputed the
meshes in real time, solving the stiffness problem in Ref. [20].

Volume haptics has been systematically studied in a series of
publications [22–26]. In Ref. [22], a method to generate surface
and viscosity haptic feedback from volumes along with simulation
of material properties was presented. The method evolved in Ref.
[23], where haptic primitives, such as directed force, point, line,
and plane, were used as building blocks for their proxy-based
method. Based on those haptic primitives, a number of haptic
modes were constructed, i.e., viscosity mode, gradient force mode,
vector follow mode, and surface and friction modes. The method
was refined in Ref. [24], where a numeric solver to compute the
final forces was described. In Ref. [25], the VHTK was presented and
implemented as an extension to SenseGraphics H3D library [4]. An
analytical solver, which falls back into their numerical solver when
its requirements were not satisfied, was introduced in Ref. [8].
Finally, a method that contemplates time-varying volumetric data
was introduced in Ref. [26].

2.3 Intermediate Representation Methods. Intermediate
representation methods were first proposed in Ref. [27]. The idea
consisted of representing touchable surfaces at a given point by a
virtual plane tangent to the surface at that point. The collision
detection loop ran independent of the servoloop and was updated at
a lower rate, whereas the servoloop was updated at a higher rate
required to render stiff objects. Combining intermediate representa-
tions and lower update rates allowed simplification of the collision
detection problem and quicker detection of collisions between the
tip of the haptic device and the virtual plane. The method, however,

had a fundamental limitation. If the update rate for the virtual plane
(computed in the collision detection loop) was too low, the operator
perceived discontinuities as the proxy “jumps” from one plane to
another. This problem was addressed in Ref. [28], where the recov-
ery time method was presented. The method reduced the magnitude
of the force immediately after a new virtual plane was computed,
allowing to gradually and smoothly bring the tip of the haptic stylus
to the new surface. A simple algorithm using the intermediate rep-
resentation method on volumetric data was presented in Ref. [29].
The algorithm extracted virtual planes from the volumetric data
without the need of precomputing isosurfaces. This algorithm, com-
bined with a proxy-based method, allowed the generation of haptic
feedback directly from the volumetric data. Similarly, Ref. [9] pre-
sented a collision detection algorithm based on determining where
a line segment intersected an isosurface defined by transfer func-
tions that depended on voxel intensities. A line segment was cre-
ated from the position of the haptic interaction point in the previous
haptic frame and its current position. If a collision was detected, the
point where it occurred as well as the surface normal at that point
were computed. With that information, the underlying haptics
library was able to compute feedback forces as if it was working
with polygonal models. In Ref. [30], an intermediate local represen-
tation, which used Marching Cubes to generate isosurfaces from
voxel data adjacent to the haptic stylus position, was proposed.
Local isosurfaces from a 7� 7� 7 cube were passed to the servo-
loop in the haptics library as an intermediate representation of the
local volume data.

2.4 Evaluation of Haptic Algorithms. A number of evalua-
tion methods for haptic algorithms have been proposed in the lit-
erature. The dependency of haptic algorithms on the user’s input
has been pointed out in Ref. [31]. The same paper described a
methodology for evaluating haptic algorithms based on recording
actual forces and trajectories from a user interacting with a real
object. The recordings were used as inputs to the algorithm being
tested and compared with its output. Similarly, Ref. [32] presented
a virtual handwriting simulator where the position of the haptic
device and its forces were recorded. For validation purposes, the
haptic device was coupled to a robotic arm programmed to imitate
typical inputs from a human user. In this way, the forces generated
by the haptic device in response to reproducible inputs were
recorded and their variations analyzed.

3 Background

3.1 OpenHaptics Architecture. SensAble haptic devices
require the use of proprietary software libraries in order to access
their low-level functionalities. As such, the GHOST SDK [33] ini-
tially offered by SensAble has been superseded by the OpenHap-
tics Toolkit [5], which provides two different application
programming interfaces (API): HDAPI and HLAPI [12]. The for-
mer enables low-level access to haptic devices, whereas the latter
is a high-level interface conceived to mimic OpenGL commands.

OpenHaptics is designed as a multithread API that handles: (i)
a client-application thread that runs at about 30–60 Hz; (ii) a servo
thread that runs at 1 kHz; and (iii) a collision thread that runs at
100 Hz. The client thread performs the graphics rendering and
asynchronically sends the 3D geometry and haptic materials to the
servo thread, which in turn performs the collision detection and
computes the forces applied by the haptic device [12]. The colli-
sion thread is only intended to be used when the program needs to
perform dynamics simulation or a more sophisticated collision
detection algorithm that is more time consuming and, therefore,
cannot run at 1 kHz.

Two mechanisms are provided to extend OpenHaptics’ func-
tionality, namely, custom shapes and custom effects [12]. The cus-
tom shapes mode enables application programmers to create user-
defined surfaces and constraints. It is the mode used to implement
the low-level functionality of algorithms such as given in Ref. [9].

021004-2 / Vol. 12, JUNE 2012 Transactions of the ASME

On the other hand, custom effects can be implemented as part of
the HLAPI, with callback functions that must be defined for start-
ing, stopping, and computing forces as part of the servoloop.

3.2 Algorithms Evaluated. Multiple algorithms for haptic
interaction with isosurface models are evaluated in this work. The
selection of algorithms is based on the following criteria: (i) an
implementation must be available using OpenHaptics, conse-
quently making use of SensAble haptic devices and (ii) the algo-
rithm must provide haptic feedback from isosurfaces. Seven
algorithms satisfying the requirements were identified, as listed in
Table 1.

A fundamental idea in OpenHaptics HLAPI is to emulate the
interface of OpenGL [12], getting the geometry to be haptically
rendered from graphics primitives. In Feedback Buffer, the first
algorithm evaluated, OpenHaptics captures all the geometric
primitives that generate points, lines, and polygons from OpenGL.
One of the limitations of this mode is that it is required a priori to
tell the API the number of vertices to be rendered for buffer allo-
cation. In case of Depth Buffer, the second algorithm, an image
rendered on the OpenGL depth buffer by a haptic camera is used
to simplify computations and reduce buffering requirements. Its
disadvantage is that, when disabling the haptic camera view opti-
mization provided by OpenHaptics, only parts of the geometry
visible from the viewpoint used to render the shapes are touch-
able. Even enabling the haptic camera view optimization,
“noticeable force discontinuities are felt when touching shapes
with deep, narrow grooves, and tunnels” [13].

The third algorithm evaluated, ScalarSurfaceFriction in VHTK

[25], uses a plane determined by the surface gradient to detect
touchable surfaces from the volumetric data. Transfer functions
are used to specify the strength of the surface and its friction as a
function of the voxel intensities. There is an additional parameter
called distinctness which is based on the magnitude of the gradi-
ent. This mode can be used from the H3D environment using X3D

and PYTHON scripts.
The fourth algorithm, IR [9], while based on voxels, preserves

desirable features from polygonal mesh models. Taking advantage
of OpenHaptics’ custom shapes, it creates isosurfaces on-the-fly
from volumetric data, which OpenHaptics uses exactly as it does
with polygonal meshes. This also means that models can use stiff-
ness, damping, dynamic, and static friction parameters as well as
event callback functions (touch, untouch, motion) available to
polygonal models in OpenHaptics. This algorithm runs in the
OpenHaptics servoloop.

GodObject [10] and Ruspini [11] renderers are implemented as
part of HAPI, a low-level layer in the H3D API [4]. H3D also
includes an option to render polygonal models using the CHAI3D

[34] library. Due to their availability, these implementations in
H3D are the ones used in this work.

3.3 Polygonal Mesh and Volumetric Methods. In modern
graphics cards, graphic pipelines are optimized for polygonal mesh
models. There is also a great majority of haptic algorithms based
on polygonal meshes. On the other hand, a voxel-based approach
for both graphics and haptics allows one to implement volume
removal procedures with relative simplicity. However, graphics

volume rendering techniques are slower than polygonal mesh
graphics. For this reason, some researchers have opted for using
voxel-based models for haptics and volume removal procedures
combined with polygonal meshes of the deformed models, which
are generated on-the-fly [21]. Moreover, results in Ref. [9] also sug-
gest that the use of volume haptics with polygon-based graphics is
a promising combination in terms of efficiency. The above is one
of the motivations for the comparison presented in this work. All
haptics algorithms evaluated in this paper, including voxel-based
algorithms, are combined with polygonal mesh graphics rendering
for visualization.

4 Experiments and Results

In our experiments, the running time for each servoloop frame
is measured to determine if a given algorithm is able to maintain
the required rate of 1 kHz. In addition, haptics quality of the algo-
rithms is evaluated based on the continuity of forces generated
when performing a specific task. Finally, the performance of all
algorithms is evaluated in terms of rendering time in the client-
application thread. The details of the experimental setup used, as
well as the measurement techniques employed, are shown in
Appendix.

4.1 Description of the Experiments. The common part to
all our experiments consists of haptically exploring anatomical
models (described in Appendix), maintaining contact with the
smooth surface (skull shown in Fig. 1) at all times. In the interest
of generating reproducible inputs to the algorithms, we considered
the approaches described in Refs. [31] and [32]. Using prere-
corded trajectories and injecting them into the algorithms [31]
was not possible, as OpenHaptics receives its input from the

Table 1 Haptic algorithms studied

Algorithm Rendering type API Nomenclature

1 OpenHaptics’ Feedback Buffer [12] Polygonal mesh rendering H3D FB
2 OpenHaptics’ Depth Buffer [12] Polygonal mesh rendering H3D DB
3 VHTK’s ScalarSurfaceFriction mode [25] Volume haptics rendering H3D VHTK

4 Intermediate representation algorithm in Ref. [9] Intermediate representation methods ImmersiveTouch IR
5 GodObject [10] Polygonal mesh rendering H3D GodObject
6 Ruspini method [11] Polygonal mesh rendering H3D Ruspini
7 CHAI3D [34] Polygonal mesh rendering H3D CHAI3D

Fig. 1 Predefined trajectory for the experiments. The red
sphere is animated and moves following a straight-line trajec-
tory on the 3D surface from the green sphere (starting point) to
the blue (end point) at constant velocity.

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021004-3

haptic device. Similarly, using another device coupled to the hap-
tic device to provide its input [32] is not applicable, as we need to
capture and evaluate the intrinsic variability of human users inter-
acting with the models in a closed loop.

Our solution consists of having the user follow a prerecorded
trajectory that has been converted to animated VRML and X3D files.
In the experiments, a red sphere traverses the prerecorded path
continuously and at constant speed (Fig. 1).

The operator is instructed to follow the red sphere while trying
to maintain contact with the surface at all times, starting from the
green sphere in Fig. 1 and ending in the blue one. This simple
arrangement guarantees repeatability without the need to intro-
duce haptic constraints to the user movement, which could affect
the force rendered by the algorithms.

4.2 Experiment 1—Servoloop Frame Rate. It is well
known that a minimum frame rate of 1 kHz is required to hapti-
cally display moderately stiff objects. The objective of this first
experiment is assessing the performance of the algorithms by
measuring their servoloop frame rate.

For haptic algorithms based on polygonal meshes, the average
servoloop execution time is computed and presented in Fig. 2 as a
function of the number of polygons in the model. Depth Buffer and
Feedback Buffer remain insensitive to the number of polygons and
their average frame rendering times are well below 1 ms. A de-
pendence on the number of polygons is clearly visible for CHAI3D,
Ruspini, and GodObject methods. The dependence is not significant
for the GodObject algorithm, whereas it is more pronounced for the
Ruspini and CHAI3D methods. Furthermore, for models of approxi-
mately 185K polygons and up, CHAI3D average frame rendering
times are above 1 ms (represented by the bold red line in Fig. 2),
which means CHAI3D is not able to maintain a haptics frame rate of
1 kHz for moderately complex polygonal models.

Volume-based haptic algorithms are independent of the number
of polygons being visualized; hence, in this experiment the results
for VHTK and IR are not presented as a function of the number of
polygons. Instead, a normalized histogram of the sampled servo-
loop frame rendering time is shown in Fig. 3. For the volumetric
model described in Sec. 4.1, VHTK’s peak is at 0.08 ms, while IR’s
peak is at 0.14 ms. The distributions for both methods decay to
zero well below the critical value of 1 ms, shown also as a bold
vertical red line at the rightmost side of Fig. 3.

4.3 Experiment 2—Force Rendering. Evaluation of force
rendering is essential to determine the quality of force feedback

provided by a haptic algorithm. Force discontinuities and fall-
through, where a collision is not properly detected, are among the
major causes of improper force feedback perceived by the user. In
order to quantify the quality of haptic feedback for each algo-
rithm, we have defined a metric called force anomaly coefficient.

4.3.1 Force Anomalies. Even though the volumetric dataset
and its related polygonal models used in the experiments are rela-
tively smooth, they pose a challenge to the algorithms under
study. Some of the anomalies observed in the experiments include
fall-through, force irregularities, and discontinuities, as well as the
haptic device getting stuck into the surface.

We are interested in quantifying the smoothness of forces ren-
dered, and therefore, the derivative of the recorded forces is used
for this purpose. In our method, the derivative of the force magni-
tude is computed for each case using the central differences
method. Once a vector containing force derivatives is calculated,
the average force magnitude and its standard deviation are com-
puted. A force anomaly is detected for each element of the force de-
rivative vector whose value is outside the interval l� 10 � r;½
lþ 10 � r�, where l is the average of the force derivative vector
and r its standard deviation. The number of values lying outside
the interval divided by the total number of force measurements for
each case is what we call force anomaly coefficient.

It is important to mention that we have designed this metric
specifically for smooth surfaces, such as the test case described in
Appendix and shown in Fig. 1. For other less frequent cases in
surgical simulation where nonsmooth surfaces are required, this
metric would not be entirely appropriate as in those cases large
derivatives in the force magnitude are expected. For the most fre-
quent cases, though, we have found this metric adequately cap-
tures force discontinuities and fall-through occurrences.

Table 2 summarizes the process of obtaining the force anomaly
coefficient.

Figures 4–7 exemplify force anomalies detected in different
experiments. Z components of the recorded trajectory are shown
in blue, whereas the detected anomalies are shown in red stars.
The example shown in Fig. 4 corresponds to CHAI3D, where the
haptic stylus got stuck on the surface near the end of the trajectory
(right of the figure). Although there is a deviation from the pre-
scribed trajectory, there is no actual fall-through. The irregular-
ities in the trajectory correspond to the operator pulling the haptic
stylus trying to release it from the stuck position. The system
reacts with high-magnitude forces as the operator tries to pull out
the stylus and return to the predefined path. The peaks in red show

Fig. 2 Servoloop average rendering time for polygonal mesh methods

021004-4 / Vol. 12, JUNE 2012 Transactions of the ASME

anomalies detected in that particular region, where a strong force
discontinuity was sensed.

On the other hand, Fig. 5 shows an actual occurrence of fall-
through using the GodObject renderer in H3D, for a model consist-
ing of 159K polygons. Force discontinuities are detected in the
zone where fall-through occurs, as well as in another two regions
where minor deviations from the ideal trajectory are found. Both
previously discussed examples show that our evaluation method is
able to identify deviations from the ideal path.

The method also detects irregularities of rendered forces.
Figure 6 presents data for the OpenHaptics renderer in H3D using
Feedback Buffer, for a model consisting of 53K polygons. The op-
erator felt certain spots along the trajectory with sudden high-
level friction which are visible as small deviations from the trajec-
tory and detected as force anomalies.

In a similar way, an experiment using VHTK is shown in Fig. 7,
combined with surface graphics rendering of a model consisting of
238K polygons. Even though the friction transfer function was set
to zero, the operator felt a rough surface, which is shown by small
peaks in the trajectory and detected by large force variations.

From the examples shown, it is clear that the force anomaly
coefficient not only detects anomalies in force rendering but also
it is able to detect deviations from the trajectory through their
associated force discontinuities. Thus, the method provides a good
metric for assessing haptics quality.

4.3.2 Force Anomaly Coefficient for Experimental Data. In
the previous subsection, some specific cases were shown. Here,
we present results obtained from the whole data collected in the

Table 2 Steps required to compute the force anomaly
coefficient

(1) Given a vector F containing recorded forces compute |F| and calculate
its derivative using the central differences method. Store the result in vec-
tor |F|0.
(2) Compute the mean and standard deviation of vector |F|0

(3) Find the values of |F|0 outside the interval l� 10 � r; lþ 10 � r½ �.
That is the number of force anomalies
(4) Normalize the number of force anomalies by the total number of sam-
ples recorded

Fig. 4 Force anomalies in CHAI3D for 265K visualized polygons

Fig. 3 Servoloop frame rendering time for volumetric methods

Fig. 5 Force anomalies in GodObject for 159K visualized
polygons

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021004-5

experiment. Figure 8 shows the average force anomaly coefficient
for each algorithm analyzed, as well as their maximum and mini-
mum values. It can be seen that Depth Buffer does not show any
force discontinuity or fall-through, in agreement with what the op-
erator experienced. IR, the volume haptics algorithm implemented
in the ImmersiveTouch API, also produced an absolutely smooth
force feedback in all cases. All other haptics rendering algorithms
presented anomalies at least once during the experiment, shown
by nonzero values of their force anomaly coefficient.

4.4 Experiment 3—Client Thread Running
Time. Measuring the running time of the haptics rendering code
in the client thread gives us additional insight for evaluating the
algorithms from a practical point of view. As shown in Sec. 4.2,
almost all algorithms are able to maintain the required 1 kHz
frame rate in the servo thread. However, there are substantial dif-
ferences when measuring the running time in the client thread,
which is executed at graphics rendering rates (30–60 Hz). This
metric directly determines the usability of each algorithm, since it
affects the effective interaction frame rate of the final application
as perceived by the user.

Figure 9 shows the average running time of each algorithm as a
function of the number of polygons in the models. It is important
to remark that the number of polygons used as independent vari-
able is common to all algorithms (even voxel-based haptic meth-
ods), as it refers to the number of polygons used for graphics
visualization.

For polygonal mesh methods, the independent variable is also
the number of polygons used for haptics, whereas for voxel-based
haptics the model remains invariable (only the associated polygo-
nal graphics models change). Since we are comparing the com-
bined graphics and haptics execution times, it is still fair to
compare polygon-based and volume-based haptic algorithms in a
single experiment and show the results as a function of the num-
ber of polygons visualized. If a rigorous comparison among all
methods is desired, one should only account for the last set of
measurements in Fig. 9 (rightmost side). In that case, the polygo-
nal mesh representing the model is directly comparable to their
voxel-based counterpart, as the polygonal mesh has been obtained
by the Marching Cubes from voxels and no decimation has been
applied (see Appendix). All other points in Fig. 9 are presented to
show dependence on polygon count for polygonal mesh-based
methods.

As expected, haptics algorithms based on polygons demand
more time to process the geometry as the number of polygons
increase. It is also important to highlight that both voxel-based
approaches (VHTK and IR) are insensitive to the number of

Fig. 6 Force anomalies in Feedback Buffer for 53K visualized
polygons

Fig. 7 Force anomalies in VHTK for 238K visualized polygons

Fig. 8 Average force anomaly coefficient for all cases and its range of variation

021004-6 / Vol. 12, JUNE 2012 Transactions of the ASME

polygons visualized, since once the volume model is loaded in
memory it is not necessary to regularly update model geometry in
the client thread. Therefore, their client thread execution time for
haptics updates remains essentially invariant.

Since graphics and haptics rendering in the main application
thread are intimately related, we also measured the graphics ren-
dering time for each case. As expected, the overall application
frame rate is directly dependent on the combined haptics and
graphics rendering time. Figure 10 shows the average combined
haptics and graphics running time.

Note that all algorithms implemented in H3D have the same
graphics renderer, which has a significant impact on the overall per-
formance. In the ImmersiveTouch API, graphics rendering took an
average of 3.5 ms independent of the number of polygons, the rea-
son being a number of optimizations (Vertex Buffer Objects) pres-
ent in COIN3D. In contrast, the graphics rendering time in the H3D

API increases significantly with the number of polygons.
As a result, it can be seen that all combinations of haptics and

graphics increase their combined execution time with the number
of polygons, except for our algorithm (IR) combined with COIN3D,
which maintains an almost constant execution time with 3D mod-
els of up to 270K polygons.

5 Conclusions

As previously mentioned, surgical simulation requires simultane-
ous graphics and haptics visualization of 3D models at interactive
frame rates. It was also noted that 3D models of patient anatomy
for simulation are generated from volumetric data obtained with
medical imaging techniques. When complexity of the models
increases, performance of the simulations is seriously affected.

One of the motivations for the work presented in this paper is the
identification of haptic algorithms capable of providing adequate
haptic feedback when complex isosurface models are used. For that
purpose, performance of multiple algorithms in terms of rendering
time and quality of haptic feedback has been experimentally eval-
uated in Sec. 4. The results lead to important conclusions. First of
all, we found that CHAI3D, as implemented in the H3D API, is not
able to maintain a minimum haptics frame rate of 1 kHz for models
of a large number of polygons. This is likely the cause of undesired
effects observed in experiments, such as fall-through or the haptic
probe getting stuck when moving along the surface. Also, all other
algorithms evaluated in this experiment were able to meet the
required 1 kHz rate in the servoloop. Depth Buffer and Feedback
Buffer are insensitive to the number of polygons in the models.

Fig. 10 Combined haptics and graphics rendering time in client thread

Fig. 9 Haptics rendering time in client thread

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021004-7

Naturally, VHTK and IR are also insensitive to the number of poly-
gons for being nonpolygonal mesh-based methods. Unlike the pre-
vious algorithms, the Ruspini method shows an important
dependence on the number of polygons. Extrapolating the data,
we could expect that it would not maintain a 1 kHz servoloop rate
for a model consisting of more than 400K polygons.

We have proposed a metric called force anomaly coefficient,
which nicely captures fall-through and irregularities of force render-
ing. All algorithms presented some degree of irregularities during
our experiments, with the exception of Depth Buffer and our volume
haptics algorithm (IR) implemented in the ImmersiveTouch API.

As a result of evaluating the haptics rendering performance in
the client thread, we found that the voxel-based algorithms are the
fastest, the reason being that it is not necessary to regularly trans-
mit geometry updates to the servoloop. Furthermore, when also
considering graphics updates, the only combination that maintains
its performance invariable is our voxel-based algorithm with
COIN3D polygonal mesh graphics rendering. Based on experimen-
tal evidence, we claim that, except in our approach, the main per-
formance bottleneck in OpenHaptics applications is to be found in
the client thread. This is a point we would like to highlight and
propose for further investigation.

Based on the results from Secs. 4.2, 4.3, and 4.4, we have cre-
ated Table 3 where the problems observed for each algorithm are
presented. We have arranged the algorithms from top to bottom
according to their perceived usability (increasing downwards).

In conclusion, the combination of intermediate representation
haptics in Ref. [9] with polygonal mesh visualization appears to
be the most efficient method for medical simulation of highly
complex models. Among all the evaluated methods, it provides
the lowest total rendering time, it is insensitive to model complex-
ity, and it correctly generates haptic feedback in all cases.

Acknowledgment

This work was supported in part by a subcontract from NIST
ATP Cooperative Agreement 70NANB1H3014 and by NIH
NIBIB Grant No. 1R21EB007650-01A1.

Appendix: Experimental Setup

Our experimental setup consists of a Dell Precision 690 work-
station, Quad Intel Xeon @ 3.20 GHz processors, 4 GB RAM,
nVidia Quadro FX 4600 graphics card, and MS Windows 7 Pro-
fessional 32 bit. The haptic device is a SensAble Phantom Omni,
driver version 4.2.122. Our haptics library is OpenHaptics 3.0
Academic Edition. Applications are developed using COIN3D ver-
sion 3, SystemsInMotion’s implementation of OpenInventor. We
have also used the VHTK from SenseGraphics. In our experiments,
VHTK version 1.9.0 was built along with the latest snapshot of ver-
sion 2.1 of the H3D API. Version 2.0.0 of the CHAI3D library was
also built and linked against the H3D API.

The software runs on the ImmersiveTouch platform [35,36],
which is used for collocated graphics and haptics, providing also
head tracking for displaying viewer-centered perspective. The dis-
play resolution is set as 1600� 1200 pixels at a vertical refresh
rate of 100 Hz.

The experimental dataset is a subset of a head CT scan consisting
of 228� 234� 91 voxels. Each voxel represents a volume of
0.94� 0.94� 1.25 mm. Voxel values are linearly converted from
their original DICOM representation to eight bit unsigned values. A

Fig. 11 Original mesh—265,348 polygons

Fig. 12 50% decimated mesh—132,674 polygons

Fig. 13 90% decimated mesh—26,534 polygons

Table 3 Observed issues

CHAI3D Unacceptable servoloop frame rendering times com-
bined with the largest rendering time observed in client
thread

Ruspini Servoloop frame rendering time markedly dependent on
the number of polygons and expected to become unac-
ceptable for more than 400K polygons. Moderate force
anomaly coefficient.

VHTK Largest number of force anomalies
Depth/Feedback
Buffer

Other than CHAI3D, highest client thread rendering time.
Larger number of force anomalies in Feedback Buffer
and higher client thread rendering time in Depth Buffer.

GodObject Moderate number of force anomalies, lower client
thread rendering time

IR No issues observed

021004-8 / Vol. 12, JUNE 2012 Transactions of the ASME

trapezoidal transfer function is used to extract bone surfaces from
the dataset. A three-dimensional Gaussian smoothing kernel of size
7 is applied to the original data in order to smooth the edges.

The controlled variable in the experiments is the number of pol-
ygons for Surface Graphics and Surface Haptics. For this purpose,
it is necessary to generate multiple polygonal meshes from the
original set of voxels. The Marching Cubes [1] implementation in
the Visualization ToolKit (VTK) [37] is used. In order to create
models of decreasing quality, the original mesh delivered by
Marching Cubes is decimated while preserving their topology
using VTK’s decimation algorithm. In this way, different meshes
with increasing level of decimation (i.e., decreasing number of
polygons) are generated from the original volumetric dataset. As a
result, we obtained ten different meshes representing the same
model. The number of polygons composing the meshes varies
from approximately 26K (lowest quality) to 260K (maximum
quality) as shown in Figs. 11–13.

A polygonal mesh extracted as an isosurface from a volumetric
dataset (without decimation) is directly comparable to the isosur-
faces computed on-the-fly by the voxel-based methods evaluated
in this paper. Decimated polygonal meshes, having a lower poly-
gon count than the original mesh, are expected to be less demand-
ing in terms of computational resources.

Measurements. There are two different places where our
measurements are collected in the H3D and ImmersiveTouch APIs.
One is the client-application thread (also known as main-loop
thread) running usually at a frequency of 30–60 Hz (in stereo-
scopic and monoscopic modes, respectively). The second place is
within the servoloop thread, running at 1 kHz.

Measurements in the Main Application (Client)
Thread. The client-application thread is managed by a GUI
library generally using OpenGL Utility Toolkit (GLUT) [38] or
other implementations of GLUT (e.g., FLTK). The code for haptics
and graphics update is usually located in either glutDisplay-
Func() or glutIdleFunc(). The callback function defined
by glutDisplayFunc() is used to update the graphics
primitives representing the geometry to be displayed. The al-
ternative is to use the callback function defined by glutI-
dleFunc(), which is called when the computer is idle.

The evaluated APIs follow both of the above approaches. H3D

updates graphics and haptics in its Scene::idle() method,
whereas the ImmersiveTouch API uses SoViewer::dis-
play() for graphics updates and SoViewer::idle() for
haptics updates. The advantage of the latter is that when
graphics updates are fast, the calls to SoViewer::idle()
are more frequent, allowing for a more frequent update of the
geometry to the haptics library. Logically, we have added the
timing routines for the client thread in Scene::idle() for
H3D and SoViewer::display() and SoViewer::idle()
for the ImmersiveTouch.

Measurements in the Servoloop Thread. Since forces are
computed and rendered on each servoloop cycle, they must be
measured in the servoloop thread. In addition, the current position
of the haptic device is collected in each frame, along with the
frame execution time.

In H3D, the measurement code has been placed as part of the
PhantomHapticsDevice::sendOutput() method in
PhantomHapticsDevice.cpp, immediately before the
updated force is sent to the haptic device. In the Immersive-
Touch API, the code is part of the computeForceCB() call-
back function provided by OpenHaptics, which is also
executed by the servoloop in each frame.

Measurement Techniques. In the H3D API, the current force
is measured using hdGetDoublev(HD_CURRENT_FORCE,
force), where force is the destination variable. This function

is part of the OpenHaptics HD API and it adds only a negligi-
ble overhead to the servoloop. In a similar way, the current
position is measured using hdGetDoublev(HD_CURRENT_-
POSITION, pos), where pos is the destination variable. To
minimize servoloop overhead, the values collected are stored
in a memory buffer, requiring only fast memory-to-memory
copy operations. The buffer is dumped to a file after the
experiment has concluded.

In the ImmersiveTouch API, the current force is received as a
parameter in the computeForceCB() callback function. As in
H3D, the current position of the haptics device is obtained
through hdGetDoublev(HD_CURRENT_POSITION, pos).
These values are also stored in a memory buffer and dumped
to a file at the end of the experiment.

For timing purposes in the main application thread, two
functions from the MS Windows API are used, namely,
QueryPerformanceCounter() and QueryPerforman-
ceFrequency() [39]. These functions use a high-resolution
performance counter with submillisecond resolution. In our
system, QueryPerformanceFrequency() returned a value
of 3,117,119, which means the system increases its counter
more than three million times per second. This value repre-
sents a timer granularity of less than 1 ls, which is sufficient
for our goals.

Two timestamps are taken at the beginning and the end of the
haptics and graphics update routines, respectively. Two time-
stamps per pass allow us to calculate running time in seconds as
the difference of timestamps divided by the value returned by
QueryPerformanceFrequency().

In contrast to the client thread, a function provided by Open-
Haptics to measure frame rendering time is used in each servoloop
frame. This function is hdGetSchedulerTimeStamp(),
which returns the time elapsed since the start of the current
servoloop frame [13].

References
[1] Lorensen, W., and Cline, H., 1987, “Marching Cubes: A High Resolution 3D

Surface Construction Algorithm,” SIGGRAPH ’87 Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques, pp.
163–169.

[2] Rizzi, S., Banerjee, P., and Luciano, C., 2007, “Automating the Extraction of
3D Models From Medical Images for Virtual Reality and Haptic Simulations,”
IEEE International Conference on Automation Science and Engineering. CASE
2007, pp. 152–157

[3] Systems in Motion Coin3D, http://www.coin3d.org/
[4] H3D.org, http://www.h3dapi.org/
[5] SensAble Technologies OpenHaptics, http://www.sensable.com/products-open-

haptics-toolkit.htm
[6] Luciano, C., Banerjee, P., Lemole, G. M., and Charbel, F., 2006, “Second Gen-

eration Haptic Ventriculostomy Simulator Using the ImmersiveTouchTM Sys-
tem,” Proceedings of 14th Medicine Meets Virtual Reality, J. D. Westwood,
R. S. Haluck, H. M. Hoffman, G. T. Mogel, R. Phillips, R. A. Robb, K. G.
Vosburgh, eds., IOSPress, pp. 343–348.

[7] Banerjee, P., and Charbel, F., 2006, “On-Demand High Fidelity Neurosurgical
Procedure Simulator Prototype at University of Illinois Using Virtual Reality
and Haptics,” Accreditation Council for Graduate Medical Education
(ACGME) Bulletin, pp. 20–21

[8] Lundin, K., 2007, “Fast and High Precision Volume Haptics,” EuroHaptics
Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems. World Haptics 2007, pp. 501–506

[9] Rizzi, S., Luciano, C., and Banerjee, P., 2010, “Haptic Interaction With Volu-
metric Datasets Using Surface-Based Haptic Libraries,” IEEE Haptics Sympo-
sium, pp. 243–250.

[10] Zilles, C. B., and Salisbury, J. K., 1995, “A Constraint-Based God-Object
Method for Haptic Display,” Proceedings of the 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems 95. ‘Human Robot Interaction
and Cooperative Robots,’ Vol. 3, pp. 146–151.

[11] Ruspini, D. C., Kolarov, K., and Khatib, O., 1997, “The Haptic Display of
Complex Graphical Environments,” Proceedings of the 24th Annual Confer-
ence on Computer Graphics and interactive Techniques International Confer-
ence on Computer Graphics and Interactive Techniques, ACM Press/Addison-
Wesley Publishing Co., New York, pp. 345–352.

[12] Itkowitz, B., Handley, J., and Zhu, W., 2005, “The OpenHaptics Toolkit: A
Library for Adding 3D Touch Navigation and Haptics to Graphics
Applications,” Eurohaptics Conference and Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems, pp. 590–591

[13] SensAble OpenHaptics Toolkit Version 3.0 Programmer’s Guide, Section 7.

Journal of Computing and Information Science in Engineering JUNE 2012, Vol. 12 / 021004-9

http://www.coin3d.org/
http://www.h3dapi.org/
http://www.sensable.com/products-openhaptics-toolkit.htm
http://www.sensable.com/products-openhaptics-toolkit.htm

[14] Basdogan, C., Ho, C., and Srinivasan, M. A., 1997, “A Ray-Based Haptic Ren-
dering Technique for Displaying Shape and Texture of 3D Objects in Virtual
Environments,” The Winter Annual Meeting of ASME’97, DSC-Vol. 61, pp.
77–84.

[15] Basdogan, C., Laycock, S. D., Day, A. M., Patoglu, V., and Gillespie, R. B.,
2008, “Three-Degree-of-Freedom Rendering,” Haptic Rendering - Foundations,
Algorithms, and Applications, Ming C. Lin and Miguel A. Otaduy, eds., A K
Peters/CRC Press, Boca Raton, Fl, pp. 311–332.

[16] Lundin, K., 2007, “Direct Volume Haptics for Visualization,” Ph.D. thesis,
Linköping University, Linköping, Sweden.

[17] Iwata, H., and Noma, H., 1993, “Volume Haptization,” Proceedings of the
IEEE Symposium on Research Frontiers in Virtual Reality, pp. 16–23

[18] Avila, R. S., and Sobierajski, L. M., 1996, “A Haptic Interaction Method for
Volume Visualization,” IEEE Visualization, Proceedings of the 7th Conference
on Visualization ‘96, San Francisco, CA, 197-ff.

[19] Gibson, S. F., 1995, “Beyond Volume Rendering: Visualization, Haptic Explo-
ration, and Physical Modeling of Voxel-Based Objects,” Mitsubishi Electric
Research Laboratories, Technical Report No. 95-04.

[20] Petersik, A., Pflesser, B., Tiede, U., Hohn, K. H., and Leuwer, R., 2002, “Haptic
Volume Interaction With Anatomic Models at Sub-Voxel Resolution,” Pro-
ceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems - HAPTICS 2002, pp. 66–72.

[21] Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N. H., and Girod,
S., 2006, “Visuohaptic Simulation of Bone Surgery for Training and Eval-
uation,” IEEE Comput. Graphics Appl., 26(6), pp. 48–57.

[22] Lundin, K., Ynnerman, A., and Gudmundsson, B., 2002, “Proxy-Based Haptic
Feedback From Volumetric Density Data,” Proceedings of the Eurohaptic Con-
ference, University of Edinburgh, United Kingdom, pp. 104–109.

[23] Lundin, K., Gudmundsson, B., and Ynnerman, A., 2005, “General Proxy-Based
Haptics for Volume Visualization,” Eurohaptics Conference, 2005 and Sympo-
sium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
pp. 557–560

[24] Lundin, K., Cooper, M., and Ynnerman, A., 2005, “The Orthogonal
Constraints Problem With the Constraint Approach to Proxy-Based Volume
Haptics and a Solution,” Proceedings of SIGRAD Conference, Lund, Sweden,
pp. 45–49.

[25] Lundin, K., Cooper, M., Persson, A., Evestedt, D., and Ynnerman, A., 2006,
“Enabling Design and Interactive Selection of Haptic Modes,” Virtual Reality,
11(1), pp. 1–13.

[26] Lundin, K., Cooper, M., and Ynnerman, A., 2008, “Haptic Rendering of Dynamic
Volumetric Data,” IEEE Trans. Vis. Comput. Graph., 14(2), pp. 263–276.

[27] Adachi, Y., Kumano, T., and Ogino, K., 1995, “Intermediate Representation for
Stiff Virtual Objects,” Virtual Reality Annual International Symposium, pp.
203–210

[28] Mark, W. R., Randolph, S. C., Finch, M., Van Verth, J. M., and Taylor, R. M.,
1996, “Adding Force Feedback to Graphics Systems: Issues and Solutions,”
Proceedings of the 23rd Annual Conference on Computer Graphics and inter-
active Techniques SIGGRAPH ‘96, ACM, New York, pp. 447–452.

[29] Chen, K., Heng, P., and Sun, H., 2000, “Direct Haptic Rendering of Isosurface
by Intermediate Representation,” Proceedings of the ACM Symposium on Vir-
tual Reality Software and Technology. VRST ‘00, Seoul, Korea, Oct. 22-25,
ACM, New York, pp. 188–194.

[30] Körner, O., Schill, M., Wagner, C., Bender, H. J., and Männer, R., 1999,
“Haptic Volume Rendering With an Intermediate Local Representation,” Pro-
ceedings of the 1st International Workshop on Haptic Devices in Medical
Applications, pp. 79–84

[31] Ruffaldi, E., Morris, D., Edmunds, T., Barbagli, F., and Pai, D., 2006,
“Standardized Evaluation of Haptic Rendering Systems,” 14th Symposium on Hap-
tic Interfaces for Virtual Environment and Teleoperator Systems, pp. 225–232

[32] Srimathveeravalli, G., Gourishankar, V., Kumar, A., and Kesavadas, T., 2009,
“Experimental Evaluation of Shared Control for Rehabilitation of Fine Motor
Skills,” ASME J. Comput. Inf. Sci. Eng., 9(1), pp. 014503-1–8.

[33] SensAble GHOST SDK Programmer’s Guide, SensAble Technologies, 2002.
[34] CHAI3D.org, http://www.chai3d.org
[35] Luciano, C., Banerjee, P., Florea, L., and Dawe, G., 2005, “Design of the

ImmersiveTouchTM: A High-Performance Haptic Augmented VR System,”
Proceedings of Human-Computer Interaction (HCI) International Conference,
Las Vegas.

[36] Banerjee, P., Luciano, C., Florea, L., Dawe, G., Florea, L., Steinberg, A., Drum-
mond, J., and Zefran, M., 2010, “Compact Haptic and Augmented Virtual Real-
ity Device,” U.S. Patent No. 7,812,815.

[37] Schroeder, W., Martin, K., and Lorensen, B., 2006, The Visualization ToolKit—
An Object-Oriented Approach to 3D Graphics, 4th ed., Kitware Inc., Clifton
Park, NY.

[38] GLUT, The OpenGL Utility Toolkit, http://www.opengl.org/resources/libraries/
glut/

[39] QueryPerformanceCounter Function, Microsoft MSDN library, http://msdn.
microsoft.com/en-us/library/ms644904(VS.85).aspx

021004-10 / Vol. 12, JUNE 2012 Transactions of the ASME

http://dx.doi.org/10.1109/MCG.2006.140
http://dx.doi.org/10.1109/TVCG.2007.70409
http://dx.doi.org/10.1115/1.3086031
http://www.chai3d.org
http://www.opengl.org/resources/libraries/glut/
http://www.opengl.org/resources/libraries/glut/
http://msdn.microsoft.com/en-us/library/ms644904&hx0028;VS.85&hx0029;.aspx
http://msdn.microsoft.com/en-us/library/ms644904&hx0028;VS.85&hx0029;.aspx

	s1
	s2
	s2A
	cor1
	l
	s2B
	s2C
	s2D
	s3
	s3A
	s3B
	s3C
	s4
	s4A
	T1
	F1
	s4B
	s4C
	s4C1
	F2
	s4C2
	T2
	F4
	F3
	F5
	s4D
	F6
	F7
	F8
	s5
	F10
	F9
	F11
	F12
	F13
	T3
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39

