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Rebecca Saxe2 (saxe@mit.edu), and Michael C. Frank1 (mcfrank@stanford.edu)
1Department of Psychology, Stanford University, 2Department of Brain and Cognitive Sciences, MIT

Abstract

From birth, humans constantly make decisions about what to
look at and for how long. Yet the mechanism behind such
decision-making remains poorly understood. Here we present
the rational action, noisy choice for habituation (RANCH)
model. RANCH is a rational learning model that takes noisy
perceptual samples from stimuli and makes sampling deci-
sions based on Expected Information Gain (EIG). The model
captures key patterns of looking time documented in develop-
mental research: habituation and dishabituation. We evaluated
the model with adult looking time collected from a paradigm
analogous to the infant habituation paradigm. We compared
RANCH with baseline models (no learning model, no percep-
tual noise model) and models with alternative linking hypothe-
ses (Surprisal, KL divergence). We showed that 1) learning and
perceptual noise are critical assumptions of the model, and 2)
Surprisal and KL are good proxies for EIG under the current
learning context.

Keywords: decision making; learning; bayesian modeling;
cognitive development

Introduction
From trying to find our way through a busy street to swiping
through TikTok, people are constantly making the decision of
whether to keep looking or to look at something else. Even
the youngest infants decide whether to keep looking at what
is in front of them or move on (Haith, 1980). How can we
explain this decision-making process? Our goal in the current
paper is to provide a model of the basic decision: whether
to keep looking at a stimulus. To do so, we model looking
as rational active selection of noisy perceptual samples for
learning.

Developmental researchers have long capitalized on in-
fants’ ability to control their attention, making inferences
about learning and mental representations from changes in
looking duration (Baillargeon, Spelke, & Wasserman, 1985;
Fantz, 1963). In a typical experiment, infants decrease their
looking duration upon seeing the same stimulus repeatedly
(habituation) but recover interest when seeing a novel stim-
ulus (dishabituation) (Colombo & Mitchell, 2009). While
these phenomena are well-documented, the mechanisms un-
derlying them remain poorly understood, even though as-
sumptions about habituation and dishabituation underpin
many other claims about infants’ cognitive repertoire (Aslin,
1991; Carey, 2009; Haith, 1998; Sim & Xu, 2019).

One classic theory of infant looking posits that infants look
at stimuli in order to learn from them, so the dynamics of

looking time are driven by the dynamics of learning (Hunter
& Ames, 1988). This theory describes looking duration as
a function of exposure, stimulus complexity, and processing
difficulty. The more an infant has already been exposed to a
stimulus, the less they have yet to learn about it, but the more
complicated the stimulus is, the more they have to learn over-
all, and older infants are assumed to learn faster than younger
infants. Although this theory is influential, its predictions are
qualitative, not quantitative, and have not been systematically
tested (For exception, see Bergmann & Cristia, 2016; Hunter,
Ames, & Koopman, 1983). Nevertheless, it is often invoked
as a post-hoc explanation of observed patterns in infant data.

Recent work has attempted to overcome these limita-
tions by describing infants’ looking behaviors quantitatively
through computational modeling. Kidd, Piantadosi, & Aslin
(2012) developed a paradigm in which infants are shown se-
quences of events until they look away. A rational learning
model computed the surprisal (negative log probability) of
each event. Infants looked away most from events that were
either too high or too low in surprisal (a “goldilocks” effect),
suggesting that infants might be looking longer at stimuli with
an optimal level of information content.

In this work, surprisal functioned as a quantitative linking
hypothesis, connecting between a learning model and data.
But other such linking hypotheses are possible. For exam-
ple, research on information foraging postulates that human
exploratory behaviors are driven by maximizing expected in-
formation gain (Hills et al., 2015; Pirolli & Card, 1999). In
this formulation, agents focus on locations or examples where
the amount to be learned is on average highest, a conclusion
that is ratified by the emerging literature on curiosity in devel-
opmental robotics and reinforcement learning (Oudeyer, Ka-
plan, & Hafner, 2007). Indeed, EIG provides a good model of
curiosity-driven learning in human children and adults (e.g.,
Liquin, Callaway, & Lombrozo, 2021).

Unfortunately, EIG can be difficult to compute. Because
EIG is a measure of expected information gain, its compu-
tation requires combinatorial search over all future possibili-
ties. As a result, EIG is often approximated by what is termed
“learning progress”: the amount of information the agent just
learned (Haber, Mrowca, Fei-Fei, & Yamins, 2018). Follow-
ing this intuition, Poli, Serino, Mars, & Hunnius (2020) for-
malized learning progress as the Kullback-Leibler (KL) di-
vergence between the model’s knowledge before and after
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each stimulus and found that a higher KL (i.e. more learn-
ing progress) predicted longer looking time in a look-away
paradigm.

Thus, existing models take important steps towards a quan-
titative model of infant attention, but they have three key lim-
itations. First, conceptually, these previous models are not
models of choice. The models retrospectively fit infants’
overall pattern of attention, without modeling the decision
that infants must make in each moment, whether to keep look-
ing at the current stimulus. Second, and relatedly, these mod-
els assume that infants acquire a perfect representation of a
given stimulus upon exposure. These prior models do not
accommodate the noisy nature of perception, and thus can-
not explain why infants would have more information to gain
from longer looking at the same, already perceived stimu-
lus (Callaway, Rangel, & Griffiths, 2021; Kersten, Mamas-
sian, & Yuille, 2004). Third, because of the first two limi-
tations, the prior models could only directly predict one spe-
cific infant looking behavior given an unusual learning prob-
lem: looking away from an ongoing stream of stimuli while
learning about event probabilities. Substantial further inno-
vation is required to use these models to generate quantita-
tive predictions for infant looking behavior in more standard
habituation-dishabituation experimental designs.

Here we attempt to overcome these limitations by pro-
viding a model of looking behaviors as arising from opti-
mal decision-making over noisy perceptual representations
(Bitzer, Park, Blankenburg, & Kiebel, 2014; Callaway et al.,
2021). We present the rational action, noisy choice for ha-
bituation (RANCH) model. RANCH works by accumulat-
ing noisy samples and choosing at each moment whether to
continue to look at the current stimulus or to look away to
the rest of the environment. Critically, RANCH allows us to
explore a learning problem closer to the problem faced by
infants in a standard habituation experiment: instead of as-
suming a learner is estimating the probability of events, the
model learns a category based on the exemplars that are pre-
sented during habituation (Oakes, 2010). Furthermore, the
architecture allows us to investigate different information-
theoretic linking hypotheses as informing choice, including
EIG, surprisal, and KL. We make a preliminary evaluation of
the RANCH model using adult looking time data collected
from a self-paced habituation paradigm that captures habitu-
ation, dishabituation, and how these phenomena are modified
by stimulus complexity. We begin by presenting our experi-
ment, since it frames the learning task for our model.

Experiment
To reproduce the key looking time patterns from infant habit-
uation experiments in adult participants, we chose a learning
context in which participants learn about the stimuli as they
look at visually presented exemplars for as long as they like,
with no explicit task. The time participants spent exploring
the exemplars served as the adult proxy for looking time. This
experimental setup resembles the classic infant habituation-

dishabituation paradigm, rather than the look-away paradigm
where infants were assumed to learn about event probabilities
(Kidd et al., 2012; Poli et al., 2020).

Our initial data come from adults for two reasons. First,
adult data are suitable for establishing quantitative links be-
tween models and human behaviors, since infants’ looking
time data tend to have small sample sizes and are therefore
limited in their quantitative details (Frank et al., 2017). Sec-
ond, adult data allow us to test the hypothesis that similar
rational choice processes underlie infant and adult behavior
under similar learning contexts.

Methods

Figure 1: Experimental design and examples of simple and
complex stimuli. In each block, a deviant could appear on the
second, fourth (as depicted here) or sixth trial or not at all.
Stimuli within a block were either all simple or all complex.

Stimuli We created the animated creatures using Spore (a
game developed by Maxis in 2008). There were forty crea-
tures in total, half of which had low perceptual complexity
and half of which have high perceptual complexity (see Fig.
1 for examples). We used the “animated avatar” function in
Spore to capture the creatures in motion.

Procedure The experiment was a web-based, self-paced vi-
sual presentation task. Participants were instructed to look at
a sequence of animated creatures at their own pace and an-
swer some questions throughout. On each trial, an animated
creature showed up on the screen. Participants could press
the down arrow to go to the next trial whenever they wanted
to, after a minimum viewing time of 500 ms.

Each block consisted of six trials. Unbeknownst to the
participants, each trial within the block was either a back-
ground trial or a deviant trial. One creature was assigned to
be the ‘background’ for each block, and was presented five
or six times. If the block contained a deviant trial, then a
new, unique, creature was presented on that trial. The deviant
trial could appear at either the second, the fourth, or the sixth
trial in the block, or not at all. The creatures presented in the
deviant trials and background trials were matched for com-
plexity. Each participant saw eight blocks in total, four with
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simple creatures and four with complex creatures, in random
order across participants.

To test whether behavior was related to task demands, par-
ticipants were randomly assigned to one of three attention
check conditions, differing in the questions asked following
each block: Curiosity, Memory, and Math. In the Curios-
ity condition, participants were asked to rate “How curious
are you about the creature?” on a 5-point Likert scale. In
the Memory condition, a forced-choice recognition question
followed each block (“Have you seen this creature before?”
showing either a creature presented in the preceding block or
a novel creature matched in complexity). In the Math condi-
tion, the participants were asked a simple arithmetic question
(“What is 5 + 7?”) in a multiple-choice format.

To check if our complexity manipulation was successful, at
the end of the eight blocks, participants were asked to rate the
complexity of creatures they encountered on a 7-point Likert
scale.

Participants We recruited 449 participants (Age M =
30.49; SD = 9.74) on Prolific. They were randomly assigned
to one of the three conditions of the experiment. Participants
were excluded if they showed irregular reaction times or their
responses in the filler tasks indicated low engagement with
the experiment. All exclusion criteria were pre-registered.
The final sample included 380 participants (Curiosity: N =
143; Memory: N = 98; Math: N = 139).

Results
The sample size, methods, and main analyses were all pre-
registered and are available at https://aspredicted.org/
3CR VDR. Data and analysis scripts are available at https://
github.com/anjiecao/pokebaby CogSci2022

We first checked whether the basic complexity manipu-
lations were successful. Complex animated creatures were
rated as more perceptually complex (M = 4.63 ; SD = 1.08)
than the simple animated creatures (M = 1.06; SD = 1.06; p
< 0.001).

Next, we tested whether the task (Curiosity, Memory, or
Math) affected reaction times in self-paced viewing (our mea-
sure of interest). There were no task effects so we averaged
all results across three conditions.

We were interested in whether our paradigm successfully
captured the characteristic looking time patterns observed in
infant literature: habituation (the decrease in looking time for
a stimulus with repeated presentations), dishabituation (the
increase in looking time to a new stimulus after habituated
to one stimulus), and complexity effects (longer looking time
for perceptually more complex stimuli). The visualization of
our results suggests that we reproduce the phenomena qual-
itatively (Fig. 3, row 1). To evaluate the phenomena quan-
titatively, we ran a linear mixed effects model with maximal
random effect structure. The predictors included in the model
were a three-way interaction term between the trial number
(modeled as an exponential decay; Kail, 1991), the type of
trial (background vs. deviant) and the complexity of the stim-

uli (simple vs. complex). The model failed to converge, so we
pruned the model following the pre-registered procedure. The
final model included per-subject random intercepts. All pre-
dictors except for the three-way interaction were significant
in the model (all p < .001), providing a quantitative confir-
mation that our paradigm successfully captured the key look-
ing time patterns: habituation (trial number), dishabituation
(the deviant effect), and complexity (the stimulus complex-
ity effect). We next tested whether we could capture these
behavioral results using the RANCH model.

Model
RANCH treats the learning problem that participants face
in our experiment as a form of Bayesian concept learning
(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Tenen-
baum, 1999). In this setting, multiple noisy samples inform
the learner’s hypothesis about a probabilistic concept repre-
sented by a set of binary features (Figure 2). Like our par-
ticipants, the model needs to decide at every step whether to
keep looking at the current stimulus or terminate the trial by
“looking away.”

Figure 2: Graphical representation of RANCH. Circles in-
dicate random variables. The square indicates fixed model
parameters.

The formulation of the learner as taking noisy samples
from a stimulus allows us to do two things. First, we can
explicitly model the learner’s decision about when to stop
sampling by asking the model to decide, after every sample,
whether it wants to continue sampling from the same stimulus
or not. This aspect of RANCH contrasts with previous mod-
els, which correlate information-theoretic measures to look-
ing data overall (Kidd et al., 2012; Poli et al., 2020) but do
not provide a mechanism for how these measures could con-
trol moment-to-moment sampling decisions. Second, a con-
sequence of making a decision at every time step is that we
can study the behavior of another information-theoretic mea-
sure: the model’s expected information gain (EIG). EIG is
commonly used in rational analyses of information-seeking
behavior to assess whether information-seeking is optimal
with respect to the learning task (Markant & Gureckis, 2012;
Oaksford & Chater, 1994).
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Model definition

In our setting, the goal is to learn a concept θ, which is a set of
probabilities over independent binary features θ1,2,..,n, where
n is the number of features. θ in turn generates exemplars y:
instantiations of θ̄, where each feature y1,2,..,n is present or ab-
sent. The weights on each feature θi are sampled from a Beta
prior, and individual exemplars yi are distributed as a bino-
mial with parameter θi, forming a conjugate Beta-Bernoulli
distribution. Since the features are independent, this relation-
ship holds for the entire concept θ.

To model the timecourse of attention, RANCH does not
observe exemplars directly. Instead, it can observe repeated
noisy samples z̄ from each exemplar. For any sample z from
an exemplar y there is a small probability ε that the obser-
vation is flipped and the feature is seen to be present when
it was actually absent or vice versa. ε is assumed to be un-
known but to have a Beta prior; in practice, we integrate over
all possible values of ε. Therefore, by making noisy observa-
tions z̄, RANCH obtains information about the true identity
of the exemplar y, and by extension, about the concept θ̄. By
Bayes’ rule:

P(θ|z̄) = p(z̄|y)p(y|θ)p(θ)/p(z̄) (1)

To compute approximate posterior probability distributions
during inference, we used a discrete grid approximation with
a step size of .001 over both θ and ε.

Upon observing a sample, RANCH then decides whether
to keep sampling or not. We chose EIG from the next sample
as the main linking hypothesis between the learned posterior
and sampling choice.

RANCH computes EIG by iterating through each pos-
sible next observation and weighing the information gain
from each observation by its posterior predictive probabil-
ity p(z|θ). We defined information gain as the KL between
the hypothetical posterior after observing a future sample zt+1
and the current posterior (Baldi & Itti, 2010):

EIG(zt+1) = ∑
zt+1∈[0,1]

p(zt+1|θt)∗DKL(θt+1||p(θt)) (2)

Finally, to get actual sampling behavior from the model, it has
to convert EIG into a binary decision about whether to con-
tinue looking at the current sample, or to advance to the next
trial. The model does so via a Luce choice between the EIG
from the next sample and a constant “environmental EIG”
that is assumed to be the amount of information to be gained
via looking away from the stimulus.

p(lookaway) =
EIG(env)

EIG(zt+1)+EIG(env)
(3)

The basic structure of the model can be described in the
following pseudocode:

RANCH model
for each exemplar y

sample← T
while sample take another sample z

update posterior P(θ|z)
compute EIG of next sample zt+1

flip coin with p(lookaway) = EIG(env)
EIG(zt+1)+EIG(env)

if coin = T
sample← F

Simulations
To model the behavioral experiment, we first represented the
stimuli as binary-valued vectors indicating the presence (1) or
absence (0) of each feature. All stimulus vectors were cho-
sen to be length 6 to provide sufficient representational flex-
ibility. Complex stimuli were represented as having three 1s
and simple stimuli were represented as having one 1, with the
rest of the features set to 0. Individual stimuli were then as-
sembled into sequences to reflect the stimuli sequences in the
behavioral experiment. For a particular sequence, we con-
structed the deviant stimulus based on the background stim-
ulus to make sure that they were always maximally different
and had the same number of features present.

Since the model makes stochastic choices about how many
samples to take from each stimulus, behavior varies substan-
tially across runs. Thus, we conducted 500 runs for each stim-
uli sequence and parameter value to obtain a reasonably pre-
cise estimate of the model’s behavior.

Parameter estimation
We performed an iterative grid search in parameter space. We
a priori constrained our parameter space on the prior beta dis-
tribution to have shape parameters αθ > βθ, which describe
the prior beliefs as “more likely to see the absence of a fea-
ture than the presence of a feature.” We then searched for
the priors over the concept (θ), the noise parameter that de-
cides how likely a feature would be misperceived (ε), and the
constant EIG from the environment (EIG(env)). The prior
over the noise parameter was fixed for all searches (αε = 1;βε

= 10). We selected the parameters that achieved the highest
correlation with the behavioral data averaged across partici-
pants and blocks (αθ = 1, βθ = 4, ε = 0.065, EIG(env) = 0.01).
No parameter regimes showed qualitatively different patterns,
though the magnitude of dishabituation was strongly depen-
dent on the priors over θ; a test of the generality of these
specific parameter values is left for future work.

Results
RANCH exhibited the main phenomena of interest, showing
habituation, dishabituation, and complexity effects (Fig. 3,
row 2). We also quantitatively explored the model by fitting
the model results to the behavioral data (See Table 1, row 1).
Overall RANCH achieved a good fit, though it did show a
slightly more gradual habituation process than the behavioral
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Figure 3: The first row shows behavioral data. All models results were adjusted to match behavioral datas scale and intercepts
for easier comparisons. All results were log-transformed. Red lines indicate results for complex stimuli, and blue lines indicate
results for simple stimuli.

data.

Model Type (Linking Hypothesis) Pearson’s r RMSE
RANCH (EIG) 0.92 [0.84, 0.96] 0.19 [0.16, 0.24]
Baseline: No Learning 0.21 [-0.09, 0.46] 0.27 [0.23, 0.34]
Baseline: No Noise 0.5 [0.36, 0.65] 0.25 [0.21, 0.31]
RANCH (Surprisal) 0.92 [0.85, 0.95] 0.13 [0.11, 0.16]
RANCH (KL-divergence) 0.93 [0.88, 0.96] 0.12 [0.1, 0.15]

Table 1: This table shows the correlations between the log-
transformed model results and the log-transformed looking
time data. The values in square brackets are 95% confidence
intervals. RANCH model implemented with the three dif-
ferent linking hypotheses showed similar performance with
slight numerical differences and outperformed the baseline
models.

Alternative Models
Baseline models We next wanted to test what aspects of the
model are necessary to produce the phenomena. We focused
on two assumptions: 1) the model makes decisions based on
learning and 2) perception is noisy. We implemented lesioned
baseline models corresponding to each assumption.

The first baseline model (No Learning) made random sam-
pling decisions by drawing p(lookaway) from a uniform dis-
tribution between 0 and 1 at every time step. The second
baseline model (No Noise) omitted the noisy sampling aspect
of RANCH. We assumed that learning is free from perceptual
noise, i.e. that learners can observe the exemplars y directly.
To do so, we set ε to 0 and replaced the learner’s beliefs about
the true value of ε with the assumption that perception was
noiseless (for numerical stability we set the value to 0.000001
instead of 0). The baseline models used the parameters ob-
tained from fitting the EIG model to the behavioral data.

The baseline models fit the data poorly (Table 1, row 2-3;
Fig 3, row 3-4), suggesting that both learning and noisy per-
ception are critical for modeling the phenomena of interest.
Alternative linking hypotheses We also studied the behav-
ior of RANCH using two other linking hypotheses, surprisal
and Kullback-Leibler (KL) divergence. Both have been used
in previous attempts to model infant looking behavior (Kidd
et al., 2012; Poli et al., 2020) and to approximate EIG in
the reinforcement learning literature (Kim, Sano, De Freitas,
Haber, & Yamins, 2020).

We implemented these by replacing EIG(zt+1) in Equa-
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tion 2. Surprisal, formally described as −log(p(z|θ)), intu-
itively refers to how surprising an observation z is given the
model’s beliefs about θ – the intuition that surprising events
should result in longer looking times has served as a founda-
tional assumption in developmental psychology (Sim & Xu,
2019). KL, formally described as ∑x∈X p(θ = x|z)log p(θ=x|z)

p(θ=x) ,
measures how much the model changed to accommodate the
most recent observation z. The intuition behind using KL as
a linking hypothesis is that, if one observation causes a large
change, the next one might too, so continuing to sample is
likely to be informative. We re-fit the free parameters (prior,
noise and the environmental EIG) for these linking hypothe-
ses to ensure a fair comparison.

In our experiment, the performance of surprisal and KL
matched that of EIG (Table 1, row 4-5, Fig 3, row 5-6). To
calculate EIG, the model needs to consider all combinations
of possible features for the next observation and how infor-
mative they would be, a computation that can be intractable
in richer environments. The similarity of model fits between
EIG, surprisal and KL suggests that easier-to-compute met-
rics could be viable heuristics for choice behavior, at least in
the current learning context.

General discussion
The current work aims to provide a computational model that
can explain key phenomena observed in typical infant looking
time paradigms: habituation, dishabituation, and how these
are modified by stimulus complexity. RANCH assumes a ra-
tional learner that takes noisy perceptual samples from stim-
uli and makes sampling decisions based on EIG. We evalu-
ated the model with adult looking time data collected from a
paradigm that mirrors classic infant looking time paradigms,
in which participants are learning about multi-feature con-
cepts, and found that RANCH could successfully reproduce
the patterns observed in behavioral data. By contrasting the
model results with our baseline models, we showed that ha-
bituation, dishabituation, and complexity effects only arise in
a learning model that takes into account the noisy nature of
perception. Moreover, we found that, in the current learning
context, other information theoretic quantities (surprisal and
KL) are good proxies for the optimal linking hypothesis, EIG.

RANCH constitutes a significant step forward in the mod-
eling of looking time in that it models the moment-to-moment
decision making process of whether to keep sampling or look
away. Previous approaches incremented time in steps of
whole stimuli and therefore correlated information-theoretic
variability in the stimulus sequence to look-away probability
and looking time, rather than producing these behaviors en-
dogenously. Our account of the sampling process depends on
assuming that perception is noisy, which makes it necessary
to take multiple samples from a stimulus until the information
content of the stimulus has been learned sufficiently.

The similarity between model fits among models with dif-
ferent linking hypotheses highlights the significance of learn-
ing contexts. Our results should not be interpreted as evi-

dence showing that the three linking hypotheses are indis-
tinguishable across all learning contexts. Previous work has
shown that adopting surprisal as learning policy can lead
to undesirable behaviors in artificial agents (e.g. “the white
noise problem,” Oudeyer et al., 2007). Moreover, the two
alternative linking hypotheses are backward-looking metrics
that utilize heuristics about the past to make decisions. This
characteristic could constrain their application to situations
in which the environment is stable and the cost of sampling
is low. Since adult exploration is sensitive to environmen-
tal complexity, a forward-looking metric like EIG might be
particularly suitable to predict behaviors in a more dynamic
learning context (Dubey & Griffiths, 2020; Vogelstein et al.,
2022).

There are several limitations to our work. For our behav-
ioral data, one concern is that adult looking time might not be
driven by intrinsic interest to the same degree as infant look-
ing time. Rather, they might be driven by task-preparation.
However, across the three conditions with different cover
tasks, we found no differences in looking time patterns. In
regards to the model, a few concerns can be raised. First, the
current stimulus representation is oversimplified, using an un-
weighted collection of binary features. Future research could
apply RANCH to stimulus representations generated from a
perceptual model. Second, RANCH assumes that the EIG
from the environment is a constant throughout the experi-
ment, but one can argue that environmental EIG might in-
crease as the experiment progresses (e.g. the longer you have
not attended to the things in your surroundings, the more they
may have changed in the meantime). While implementing
more sophisticated assumptions could potentially explain ad-
ditional variance in the data, our current work suggests that
even a simple rational learner that takes noisy samples from
a set of independent binary features is capable of explaining
key phenomena.

Our ultimate goal is to provide a rational learner model
that can account for information-seeking behaviors reflected
in infants’ looking time. Here we have shown that a simple
model of learning from sampling can reproduce habituation,
dishabituation, and complexity effects. Moving forward, we
aim to capture and explain more contentious phenomena doc-
umented in the infant looking time literature such as familiar-
ity preferences and age effects (Hunter & Ames, 1988). Our
ongoing work with infants will eventually enable us to evalu-
ate our model with developmental data. When combined with
adult results, the data and model will provide insights into the
general mechanisms through which learners decide what to
look at, and when to stop looking.
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