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A Study on Operational Risk and Credit Portfolio Risk Estimation Using Data Analytics 1 

Abstract 2 

In this paper we consider operational risk and use data analytics to estimate the credit portfolio risk. 3 

Specifically, we consider situations in which managers need to make the optimal operational decision 4 

on total provision for risk to hedge against the potential risk in the entire supply chain. We build a new 5 

structural credit model integrated with data analytics to analyze the joint default risk of credit portfolio. 6 

Our model enables the decision maker to better assess the risk of a supply chain, so that they could 7 

determine the optimal operational decisions with total provision for risk, and react in a timely manner 8 

to economic and environmental changes. We propose an efficient simulation method to estimate the 9 

default probability of the credit portfolio with the risk factors having the multivariate t-copula. 10 

Moreover, we develop a three-step importance sampling (IS) method for the t-copula credit portfolio 11 

risk measurement model to achieve an accurate estimation of the tail probability of the credit portfolio 12 

loss distribution. We apply the Levenberg-Marquardt algorithm to estimate the mean-shift vector of the 13 

systematic risk factors after the probability measure change. Besides, we empirically examine the 14 

changes in the credit portfolio risks of 60 listed Chinese firms in different industries using our proposed 15 

method. The results show that our model can help the decision maker make the optimal operational 16 

decisions with total provision for risk, which hedges against the potential risk in the entire supply chain. 17 

Keywords: operational risk management; data analytics; decision making; simulation; credit portfolio 18 

risk 19 

  20 
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1 Introduction 1 

Firms’ ability in risk management significantly affects their operational decisions, especially when 2 

facing rapid economic and environmental changes, and technology advancement. Risk management 3 

affects firms’ operational decisions from different perspectives. A good understanding of risk helps 4 

firms avoid significant losses and make the optimal operational decisions. On the contrary, poor 5 

estimation of risk leads to inferior operational decisions and serious losses to firms. Given that each 6 

firm’s operational decisions have risk, estimating the risk and preparing reasonable risk provision are 7 

essential. As for industries, there must be connections among different firms, no matter they are 8 

competitors or cooperators. Once one firm faces a crisis, the crisis will be spread to its upstream or 9 

downstream firms. It is necessary to have the right risk provision for helping firms to overcome the 10 

crisis. For a government or a central bank, it is also essential for it to prepare enough risk provision for 11 

the situation when the firms of all industries default. Therefore, for firms or leaders of the economy, 12 

they all need to make a decision to prepare the provision of adequate money when a crisis arises. For 13 

instance, Ofo, one of the biggest bicycle-sharing firms in China, has ceased its operations in many 14 

nations, including Germany, Australia, Israel, Austria, and India, and made massive reductions in 15 

operations in other countries due to its worsening financial status. The firm was also sued by its major 16 

supplier, a bicycle manufacturing firm, for unpaid bill (National Business Daily, 2018). Therefore, firms 17 

need to manage financial risk well in order to maintain correct operational decisions. In many industries, 18 

the decision makers need to make operational decisions with appropriate total provision for risk to 19 

hedge again risk in the entire supply chain.  20 

Therefore, financial risk management and operational risk management are closely related to each 21 
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other. For example, when supply disruption occurs due to some disasters, like earthquake or flood, firms 1 

have to use their provision to hedge against the caused damage. When the market demand suddenly 2 

declines due to some unpredictable reasons, like a flu epidemic, firms also need enough provision to 3 

cope with the crisis. On the other hand, too much provision saved will affect firms’ investment efficiency, 4 

which will in turn significantly affect firms’ performance. Therefore, how to calculate the right amount 5 

of total provision for risk is essential to the management of operational risk in the entire supply chain. 6 

Since total provision for risk has an inherent relationship with credit portfolio risk, credit portfolio risk 7 

estimation is key to calculating the right amount of total provision for risk in the entire supply chain. 8 

Thus, a comprehensive and sound understanding of the credit portfolio risk is a prerequisite for effective 9 

operational risk management.  10 

To achieve the optimal operational decisions with total provision for risk, two issues are critical, 11 

namely data collection and risk estimation. Considering the huge amount of data available with the 12 

rapid advances of information technology, it has become important and feasible to examine risk by 13 

using data analytics (Koyuncugil and Ozgulbas, 2012; Chen et al., 2015; Choi et al., 2017; Kou et al., 14 

2019; Sun et al., 2019; Wang and Wu, 2020). Credit default events are rare and thus the probability of 15 

large losses of credit portfolio is small. Calculating the probability of default of rare events and the 16 

corresponding losses are crucial to risk management. Accurately estimating the tail probability 17 

distribution in the credit portfolio risk distribution enables firms to fully prepare the credit portfolio risk 18 

loss reserve in a timely manner. For banks, when the asset portfolio is a loan portfolio, then banks can 19 

simply retain reasonable funds to meet the provision coverage ratio without excessively placing idle 20 

funds, thereby maximizing the bank's profitability while satisfying its risk preparation. The 21 
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corresponding research on estimating firms’ credit portfolio risk has been emphasized in both academia 1 

and industries (Hailemariam et al., 2012; Boudreault, 2015; Hsieh et al., 2018; Osmundsen, 2018; Chen 2 

et al., 2018; Bülbül et al., 2019). 3 

In this paper we develop a data analytics technique to generate some useful information about credit 4 

portfolio risk by exploiting data from different sources. It is worth noting that our model is a general 5 

model, which can be applied to any industries. In this paper we apply it to three industries, namely the 6 

real estate industry, retail industry, and finance and insurance industry. They are classified as industries 7 

in the Shanghai Stock Exchange in China. First, in the computational experiments, using the classical 8 

structural credit model, we integrate the six dimensions of data embracing firm assets, firm volatility, 9 

firm debts, firm leverage ratios, return on assets, and interest rate level to calculate the default 10 

probability of an individual firm. By doing so, we are able to understand more about the firms’ credit 11 

risks. Second, we integrate the multivariate t-copula into the classical structural credit model to calculate 12 

the joint default probability of the credit portfolio. Simultaneously, we integrate multiple dimensions of 13 

data to obtain the joint default probability of the credit portfolio. Thus, the joint default probability 14 

contains information from various sources. Third, we further incorporate the achieved Expected 15 

Shortfall (ES) value to determine the optimal operational decision on total provision for risk. Thus, the 16 

total provision is obtained by integrating the multivariate t-copula into the classical structural credit 17 

model, and using the proposed three-step importance sampling (IS) model. Our integrated model can 18 

be widely applied in different situations, and the corresponding results enable firms to better assess the 19 

financial risks of themselves and their suppliers/customers. As such, the firms could make proper 20 

operational decisions in a timely manner, especially when facing rapid economic and environmental 21 
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changes, and technology advancement. The above explains how we apply the proposed data analytics 1 

technique in three aspects, i.e., synergizing the classical structural credit model, integrating the 2 

multivariate t-copula with the classical structural credit model, and using the proposed three-step 3 

importance sampling (IS) model, to estimate credit portfolio risk in the framework of operational risk 4 

management.  5 

Further, we extend the two-step importance sampling (IS) technique to a three-step IS technique for 6 

the t-copula credit portfolio risk measurement model in order to further reduce the variance. Note that 7 

choosing the mean-shift vector of the systematic risk factors after the probability measure change 8 

undermines the effectiveness of the IS technique when solving the optimization problem. The Gauss-9 

Newton method is usually used to solve the optimization problem. But the Gauss-Newton method has 10 

the shortcoming of slow convergence, which needs improvement. To address this issue, we apply the 11 

Levenberg-Marquardt algorithm, a nonlinear optimization technique, to improve the solution. The 12 

algorithm combines the merits of the Gauss-Newton algorithm and the gradient approach. This is the 13 

main difference between our model and the previously proposed models in the literature, such as Kang 14 

and Shahabuddin (2005), Kostadinov (2006), Bassamboo et al. (2008), Chan and Kroese (2010), and 15 

Reitan and Aas (2010), in the context of determining the optimal mean-shift vector. 16 

In addition, Value-at-Risk (VaR) lacks the property of subadditivity when the risk factors have 17 

heavy-tailed distributions. As VaR is sensitive to changes in the significance level, it is not a coherent 18 

risk measure. This leads to failures in achieving the numerical stability needed for bank management 19 

decisions (Frey and McNeil, 2002; Kalkbrener et al., 2004; Broda, 2012). In view of these drawbacks 20 

of VaR, we apply expected shortfall (ES), i.e., the expected excess loss given that there are portfolio 21 
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losses, to measure credit portfolio risk. Since VaR and ES are generally based on the same estimated 1 

loss distribution, ES is closely related to VaR. Meanwhile, the Basel III Accord (the Third Basel Accord) 2 

suggests that ES should be applied to complement VaR for estimating the probabilities of portfolio 3 

losses. Therefore, we introduce the two risk measures VaR and ES to measure credit portfolio risk in 4 

the multivariate t-copula framework and compare their functionality.  5 

Finally, differing from most of the studies on estimating credit portfolio risk that are focused on 6 

numerical computation, we empirically examine the data of 60 listed Chinese firms in different 7 

industries, taking into consideration an inherent relationship between dependent default and asset 8 

returns in the classical structural model. Specifically, we use data from 25 real estate firms, 20 retail 9 

firms, and 15 finance and insurance firms listed in the Shanghai Stock Exchange in China covering the 10 

period from 4 January 2012 to 7 June 2013. During this period, the real estate industry in China faced 11 

a new round of regulation whereby five new national real estate regulation policies were promulgated 12 

on 20 February 2013, stipulating home buying restrictions and loan limitations. Applying the proposed 13 

model to compute the tail probabilities of the credit portfolio loss distributions of these 60 listed firms 14 

and their corresponding VaR and ES values, we obtain large variance reductions. We also check the 15 

changes in credit portfolio risk in different industries corresponding to the new national real estate 16 

regulation policies promulgated in China in the same period to see how well the analytical results align 17 

with the historical events that transpired. 18 

We organize the rest of the paper as follows: In Section 2, we review the related literature and 19 

identify the research gap. In Section 3, we apply the classical structural credit model to calculate the 20 

default probability of each firm. In Section 4, we discuss ways to derive the default probability of the 21 
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credit portfolio. In Section 5, we develop a three-step importance sampling for the credit portfolio 1 

measurement model based on the t-copula. In Section 6, we explore the use of the proposed model to 2 

assist managers to hedge against risk in the entire supply chain. In Section 7, we conduct an empirical 3 

study using real data to assess the performance of the proposed model. In Section 8, we conclude the 4 

paper and suggest future research topics. 5 

 6 

2 Literature Review 7 

Our study is closely related to four streams in the literature. The first stream is about the interface 8 

between operational management and financial risk management. The second stream relates to using 9 

the data analytics to hedge against the operational risk. The third stream is about credit portfolio risk 10 

measurement. The fourth stream is about how to select a suitable copula to depict the dependent default 11 

in practice. We review the four streams to identify the research gap and position our paper in this section.  12 

We start with the first stream on the interface between operational management and risk 13 

management. Based on financial portfolio theory, Kumar and Park (2019) proposed an integrated 14 

approach to study a variety of relationships between supply chain risk, risk management, and supply 15 

chain value. Brusset and Bertrand (2018) proposed an approach using weather index-based financial 16 

instruments to enable the risk taker to take account of weather risk and reduce sales volatility. Kouvelis 17 

et al. (2018) integrated financial hedging decision and inventory replenishment decision to maximize 18 

the mean-variance of terminal wealth over a finite horizon. Ma et al. (2019) considered the impact of 19 

risk averse on a firm’s advance selling decisions and identified the conditions under which the firm 20 

prefers advance selling. Azadegan et al. (2020) illustrated a strong link between business continuity 21 
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programmes (which are important in response to and making recovery from supply chain disruptions) 1 

and financial performance using fuzzy set qualitative comparative analysis. These studies demonstrate 2 

the close relationship between financial risk management and operational risk management. Particularly, 3 

firms have to consider their financial status when making operational decisions to hedge against risk. 4 

Our study provides a method to better estimate firms’ financial risk in multiple dimensions, based on 5 

which the firms are able to calculate the appropriate provision for operational risk. 6 

The second stream of the related literature concerns the adoption of data analytics to hedge against 7 

operational risk. With the rapid development of data analytics, the technique is widely applied to 8 

generate useful information by exploiting data from different sources. Academia and industries are 9 

making great efforts to mitigate operational risk by using data analytics (Leveling et al., 2014; Choi et 10 

al., 2017; Goel et al., 2017). Sun et al. (2020) study the application of data analytics to mitigate 11 

operational risk in the airline industry. Wang and Yao (2019) use data analytics to investigate how to 12 

jointly optimize the capacity decision and hedging decision. Ivanov et al. (2018) discuss the relationship 13 

between data analytics and supply chain disruption risk management. These studies emphasize the 14 

feasibility and importance of applying data analytics in operational risk management. They also stress 15 

the importance of assessing risk appropriately when applying data analytics. Our paper contributes to 16 

this research stream by proposing a new structural credit model to better assess the joint default risk of 17 

a credit portfolio using data analytics. Our proposed model could help managers gain a comprehensive 18 

understanding of risk and make a better hedge against operational risk.   19 

The third steam is about credit portfolio risk measurement. As the credit risk of asset transferring 20 

and trading in market increases and bank regulation tightens, businesses are urged to develop new 21 
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methods to measure and manage credit risk over the past few years. Plentiful studies have investigated 1 

credit portfolio risk (e.g., McNamara, 1998; Smith et al., 1996; Hu, 2016). Many popular credit portfolio 2 

risk measurement models, such as Credit-Metrics of J.P. Morgan, KMV Portfolio Manager, CreditRisk+ 3 

of Credit Suisse First Boston, and McKinsey’s Credit Portfolio View, rely on Monte Carlo simulation 4 

to calculate the tail probability of the credit portfolio loss distribution or its Value-at-Risk (VaR) at a 5 

given confidence level over a fixed time horizon. However, as credit defaults by firms are rare and the 6 

threshold value of default is large, the tail probability of the credit portfolio loss distribution is small. 7 

Consequently, to conduct standard Monte Carlo simulation requires significantly large sampling, which 8 

is computationally demanding and inefficient, especially for credit portfolios involving many trading 9 

parties.  10 

To improve the efficiency of simulation, Merino and Nyfeler (2002) proposed a method combining 11 

the fast Fourier transforms and Monte Carlo simulation to estimate the tail probability of the credit 12 

portfolio loss distribution in the frame of conditional independence. Grundke (2007) extended the well-13 

known credit portfolio model CreditMetrics and applied an efficient Fourier transforms method to 14 

calculate credit risk. Glasserman and Li (2005) provided a two-step importance sampling (IS) technique 15 

for the extensively used multivariate normal copula model of credit portfolio risk to overcome the 16 

difficulty of calculating the small tail probability of the credit portfolio loss distribution. To increase the 17 

frequencies of large losses in the two-step IS technique, Glasserman et al. (2008) developed the 18 

Knapsack problem and the corresponding nonlinear dynamic programming solution algorithm to find 19 

the mean vector of the systematic risk factors. Grundke (2009) developed a two-step IS technique for 20 

the credit portfolio risk measurement model based on the Fourier transforms.  21 
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However, a typical shortcoming of the above research is that the systematic risk factors are described 1 

and modelled as a multivariate normal. Note that when the coefficient of the linear correlation between 2 

two random variables is less than one, the tail dependence coefficient of the normal copula is zero. This 3 

causes the default indicator function being asymptotically independent, conditional upon the marginal 4 

default probability being small. However, this is contrary to dependent default in practice. In this paper 5 

we develop a new three-step IS technique for the t-copula credit portfolio risk measurement model for 6 

further variance reduction so that we can obtain the tail probability of the credit portfolio loss 7 

distribution or ES value of the credit portfolio quickly and accurately, and then we can calculate the 8 

total provision for risk based on the obtained ES value. 9 

Our study is also closely related to the selection of a suitable copula to depict the dependent default 10 

in practice. Moreover, many empirical studies have found that the distributions of asset returns often 11 

have heavy tails and high kurtosis (see, e.g., Huang and Kou, 2014; Aldrich et al., 2016; Ankudinov et 12 

al., 2017; D'Amico and Petroni, 2018). In addition, asset returns have an intrinsic relationship with 13 

dependent default in the classical structural credit model. This indicates that the traditional normal 14 

copula assumption is not entirely valid in view of the generic features of practical data. In other words, 15 

the normal copula assumption may not be able to model the dependence between the pertinent financial 16 

variables in a realistic and satisfactory manner.  17 

The copula can well depict more default dependence by the correlations between the latent variables. 18 

However, selecting a suitable copula is difficult for cases with small samples. Because there are 19 

nonlinear correlations among the default data, depicting the default dependence between financial 20 

variables is of great importance (Rosenberg and Schuermann, 2006; Kole et al., 2007; Biglova et al., 21 

http://dict.cnki.net/dict_result.aspx?searchword=%e7%ba%bf%e6%80%a7%e7%9b%b8%e5%85%b3%e7%b3%bb%e6%95%b0&tjType=sentence&style=&t=linear+correlation+coefficient
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2009).  1 

Besides, the multivariate normal copula is unable to fully depict the dependence between financial 2 

variables. However, the t-copula supports extremal dependence between financial variables, given that 3 

a useful interpretation of extremal dependence is that it obeys a multivariate t-distribution consisting of 4 

the square root of a scaled chi-squared random variable and a multivariate normal (Kang and 5 

Shahabuddin, 2005; Bassamboo et al., 2008; Reitan and Aas, 2010; Chan and Kroese, 2010). 6 

Some research found that fitting the Student’s t-distribution to risk factors is a comparatively more 7 

proper approach to measure the market risks of portfolios (Glasserman et al., 2002; Johannes et al., 8 

2009; Kamdem, 2009; Broda, 2012). Some other research developed the above market risk 9 

measurement models to measure credit portfolio risk based on the multivariate t-copula and estimate 10 

the tail probability of the credit portfolio loss distribution using the two-step IS technique (e.g., Kang 11 

and Shahabuddin, 2005; Kostadinov, 2006; Bassamboo et al., 2008; Chan and Kroese, 2010; Reitan and 12 

Aas, 2010). In this paper we adopt multivariate t-copula to capture the credit portfolio risk, where the 13 

risk factors have heavy-tailed distributions.  14 

We show the conceptual framework of the proposed credit portfolio risk estimation in Figure 1. 15 

First, we calculate the default probability of each individual firm using the classical structural credit 16 

model, with the integration of six dimensions of data. Second, the multivariate t-copula being adopted 17 

to capture the credit portfolio risk is tested/estimated by normality test and nonparametric kernel density 18 

estimation; then, we integrate the multivariate t-copula into the classical structural credit model to 19 

calculate the joint default probability of the credit portfolio, which contains information on multiple 20 

dimensions of data. Third, we obtain the ES value of portfolio losses using the proposed three-step IS 21 
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method for the t-copula credit portfolio risk measurement model. We further obtain the total provision 1 

for the risk of the portfolio using the achieved ES value. 2 

 3 

Figure 1 The conceptual framework of credit portfolio risk estimation 4 

 5 

3 Calculation of default probability of each firm using the classical structural credit model  6 

To measure the aggregated portfolio credit risk, we need to specify a model that can link defaults of 7 

several entities. Moreover, when measuring the credit portfolio risk, we face two fundamental problems: 8 

First, how to establish the correlation structure between the debtors’ default probability, which we will 9 

address in the sequel. Second, how to integrate the credit portfolio and the economic environment, 10 

which reflects the real default expectation of the credit portfolio. In order to solve the second problem, 11 

we first solve the default probability of an individual firm based on the structural credit model. The 12 

structural credit model can be used to obtain the market-implied default probability of each firm with 13 

the explicit assumptions about the dynamics of the firm’s assets and its volatility, and about the firm’s 14 

debts and its leverage ratio, return on assets, and interest rate level. In other words, the structural credit 15 
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model integrates the six dimensions of data, i.e., firm assets, volatility, debts, leverage ratio, return on 1 

assets, and interest rate level, to calculate the default probability of a firm. Obviously, the structural 2 

credit model possesses economic and intuitive appeals. 3 

The basis of the classical structural credit model, dating back to Merton (1974) and Black and 4 

Scholes (1973), is that a firm’s liabilities are contingent claims on the market value of the firm. The 5 

asset value of a firm is the ultimate source of indeterminacy driving credit risk. Therefore, pricing equity 6 

and credit risky debt reduce to pricing European options in the classical structural credit model. 7 

Hillegeist et al. (2004) discovered that the structural credit model can provide significantly more 8 

information than either of two popular accounting-based measures of Altman’s (1968) Z-score and 9 

Ohlson’s (1980) O-score, which effectively summarizes publicly available information about the 10 

default probability of a firm. Vassalou and Xing (2004) found that the small-minus-big (SMB) and 11 

high-minus-low (HML) factors in Fama and French’s three-factor model cannot replace the default risk 12 

factor, and that the risk factor obtained from the structural credit model is more effective. In practice, 13 

Moody’s KMV model uses the structural credit model to predict the default probability of an individual 14 

firm. 15 

We consider the classical Black-Scholes setting. Suppose a firm has a market value V , which 16 

denotes the expected discounted future cash flow of the firm. The firm is financed by equity and a zero 17 

coupon bond with a face value K and a maturity date T . A contractual obligation of the firm is to pay 18 

back the amount K to the bond investors at time T . If it fails to pay, the bondholders will have the 19 

right to take over the firm. Define 
TV  as a firm’s market value on the maturity date T . To estimate 20 

the default probability, we suppose that changes in the value of the firm’s assets over time follow the 21 
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geometric Brownian motion, i.e., t
t

t

dV
dt dW

V
 = + , where R  is the drift parameter, 0   1 

is the volatility parameter, and 
tW  is the standard Brownian motion. Suppose 21

2
m  = − . By Ito’s 2 

lemma, we obtain 
0

tmt W

tV Ve += , where 0 t T  .  3 

Assuming that the firm defaults on the maturity date T , then the default probability ( )p T is given 4 

by 5 

log
( ) ( ) ( log ) ( )T T

L mT
p T P V K P W L mT

T




−
=  =  − = ,         (1) 6 

where

0

K
L

V
=  is the primary financial leverage ratio，and    is the standard normal cumulative 7 

distribution function (CDF).  8 

Because pricing an equity and its credit risky debt are ascribed to pricing a European option, the 9 

equity value tE  of a firm is equal to a European call option on the firm’s assets V with maturity T , 10 

strike price BD  (i.e., 
iDB  is the debt of the i -th firm), and risk-free interest rate r . Supposing 11 

that the equity value tE  and its volatility 
E are known, Jones et al. (1984) indicated that the market 12 

value of a firm’s assets and its volatility can be derived by an option pricing formula. The market value 13 

of an asset and its volatility can usually be estimated through the asset’s stock price, its stock price 14 

volatility, and the book value of its underlying debt. 15 

In the classical structural model, a firm in the market, say, the i-th firm, defaults if its asset value is 16 

below the value of its debt, i.e.,  17 

1 i

i T i
D W B=   ,                           (2) 18 

where 
log( / )i i

i T t i
T

i

V V mT
W



−
=  , 

log( )i i
i

i

L mT
B



−
=  , 21

2
i i im  = −  , i

i i i

t t

K DB
L

V V
= =   is the 19 

financial leverage ratio, iDB is the debt of the i -th firm, and iD  is the default indicator function for 20 
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the i -th firm (1 if the i -th firm defaults; and 0, otherwise). If the time interval −T t is equivalent to a 1 

unit time, i

TW  is the standardized asset returns of the i -th firm and iB  is the standardized book value 2 

of the debt of the i -th firm, which is also called the default distance.  3 

Moreover, using Eq. (1), we can re-write Eq. (2) as follows:    4 

( ) ( )==  i

i i ip P W B B ,                              (3) 5 

where    is the standard normal CDF. Once 
log( / )i i

i T t i
T

i

V V mT
W



−
=   and 6 

log( )i i
i

i

L mT
B



−
=  are estimated, we can compute the default probability 

ip  using Eq. (3). 7 

It is evident that we integrate the six dimensions of data of firm assets, volatility, debts, leverage 8 

ratio, return on assets, and interest rate level, to calculate the default probability of each firm using Eq. 9 

(3). In other words, we integrate six dimensions of data to obtain the default probability of each firm. 10 

Likewise, the dimension of the portfolio increasing can be dealt with in the same way using this data 11 

analytics technique. In the following empirical tests, we apply this data analytics technique to discover 12 

useful information about credit risk of each firm by exploiting pertinent data from different sources. 13 

 14 

4 Default probability of the credit portfolio under the t-copula 15 

Given that a large number of empirical studies have found that financial variables often show high 16 

kurtosis and heavy tails, the dependence between financial variables is generally extremal (Behr and 17 

Pötter, 2009; Jules, 2012; Schneider and Schweizer, 2015; Ankudinov et al., 2017; D'Amico and Petroni, 18 

2018). In view of this, we use the t-copula model of credit risk to depict the extreme dependence of 19 

financial assets. In the t-copula model, the latent variables corresponding to the counterparties (risk 20 
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factors) are supposed to have the multivariate t-distribution, instead of the multivariate normal 1 

distribution. Specifically, we use the multivariate t-distribution as the ratio of a multivariate normal and 2 

the square root of a scaled chi-squared random variable, which has been adopted in previous research 3 

(see, e.g., Kang and Shahabuddin, 2005; Kostadinov, 2006; Bassamboo et al., 2008; Chan and Kroese, 4 

2010; Reitan and Aas, 2010). 5 

We introduce the multi-factor linear model in the multivariate t-copula setting, which has been 6 

applied by Kang and Shahabuddin (2005), Kostadinov (2006), Bassamboo et al. (2008), Chan and 7 

Kroese (2010), and Reitan and Aas (2010). In this case, the standardized returns on asset 
iW  of the 8 

i -th firm can be parameterized by the multi-factor linear model 9 

                
1

= ( )（ + ）=
 

 
=

+
d

i

i i i ik k i i
k

W a Z b a Z b
V V

,                      (4) 10 

where Z  is multivariate normal with the zero mean vector and the covariance matrix  ,  i
 are 11 

independent and standard normal, 
1a ( ,... )=i i ida a  is a row vector of constant factor loadings for the 12 

i -th firm, 
ib  is the idiosyncratic factor loadings, and )(~ 2 vV   is a chi-square distributed random 13 

variable with   degrees of freedom. By Eq. (4), conditional upon both Z  and V , we see that the 14 

conditional default probabilities are independent. Thus, we derive the conditional default probability of 15 

the i -th firm as follows: 16 

, ,( ) ( | ) ( )





−
=  =

i i
i

i i

i

B a Z
VV Vp Z P W B Z

b
V

.                      (5) 17 

Here, ,( )i
Vp Z  is the conditional default probability of the i-th firm and iB  is the standardized 18 

book value of the i-th firm, namely the standardized default threshold. Using the fact that the defaults 19 
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conditional upon Z   and V  are independent, we have the joint default probability of the credit 1 

portfolio under the multivariate t-copula as 2 

( )1 21, 1, , 1np D D D= = =  3 

        ( )1 21, 1, , 1 ,nE p D D D Z V=  = = =    4 

( )
1

,
n

i
i

E p Z V
=

 
=  

 
  5 

                        ( )
1

;
m

n i i

d V
i iR

V
B a Z

z f dz
b

 
=

 
− 

 =  
 
 
 

                (6) 6 

where );( zd indicates the d-variate normal density function with the covariance matrix   and Vf  7 

indicates the chi-square distributed density function with  degrees of freedom. 8 

It is evident that integrating multivariate t-copula into the classical structural credit model to 9 

calculate the joint default probability of the credit portfolio using Eq. (6). Namely, more than six 10 

dimensions of data are being integrated to obtain the joint default probability of the credit portfolio. In 11 

the following empirical test, we apply this data analytics technique, i.e., integrating multivariate t-12 

copula into the classical structural credit model, to discover useful information about credit risk of 13 

portfolio including 60 listed Chinese firms by exploiting data from different sources. 14 

 15 

5 Importance sampling for the credit portfolio risk measurement model under the t-copula 16 

A critical factor in the credit portfolio risk measurement model is to depict the dependence among the 17 

counterparties. To facilitate presentation, we introduce the following notation: 18 

n = number of counterparties to which the portfolio is exposed, 19 
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=
iD  the default indicator for the i -th firm (1 if the i -th firm defaults; and 0, otherwise), 1 

ip =
 
the marginal default probability that the i -th firm defaults, 2 

=ic
 
the loss owing to default to the i -th firm, 3 

=L  the total loss from defaults. 4 

Then the total loss L  is given by
1 1

*
= =

= = 
n n

i i i
i i

L L c D .                               (7) 5 

Focusing on the distribution of loss L from default over a fixed horizon, we wish to find the tail 6 

probability of the loss distribution L , especially in the case where the value of the threshold x is large 7 

and the event { }L x is rare, i.e., )( xLP  = )]([ xLIE  ,                                 (8) 8 

where (.)I  is the indicator function (1 if L x ; and 0, otherwise). 9 

To capture the dependence among the obligators (firms), we introduce the dependence among the 10 

default indicators 
1D , 

2D , …, 
nD . In the t-copula model, dependence is introduced through the 11 

multivariate t vector (
1W , 

2W , …, 
nW ) of the standardized returns on asset. Each default indicator 12 

is denoted as [ ]= i

ii
I W BD  , where =i n,,2,1   and the standardized default threshold iB  is 13 

selected to match the marginal default probability 
ip . Let t be the cumulative distribution function 14 

(CDF) of the t-distribution with    degrees of freedom. In this case, we need 
iB = 1(1 )

− − ipt   to 15 

guarantee that ( 1)
i

P D = =
ip  . A few studies also use a similar form, e.g., Kang and Shahabuddin 16 

(2005), Kostadinov (2006), Bassamboo et al. (2008), Chan and Kroese (2010), and Reitan and Aas 17 

(2010).  18 

5.1 Monte Carlo simulation based on importance sampling  19 

It is noted that applying Monte Carlo simulation based on importance sampling requires selecting a 20 

proper probability, which makes the rare event more likely to happen under different changes in the 21 
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probability measure. Monte Carlo simulation is generally applied to estimate the tail probability of the 1 

loss function in Eq. (8). However, for a large value of x , very few samples actually have xL  , 2 

leading to the outcome that most samples are wasted because 0)( = xLI . 3 

The importance sampling (IS) technique is particularly well fit for simulating such a rare event. It 4 

matches the VaR problem with a small tail probability (see, e.g., Glasserman et al., 2000; Glasserman 5 

et al., 2002; Glasserman and Li, 2005; Grundkeb, 2009; Fernández et al., 2012; Xie et al., 2019). When 6 

using IS technique to evaluate a tail probability )( xLP  , a key consideration is the proper selection of 7 

a proposed default probability that makes the rare event }{ xL   more likely to happen. Specifically, 8 

in using the IS technique, we engender samples from the proposed default probability iq  instead of 9 

the original default probability 
ip . Afterwards, the basic IS identity is 10 

                  ( )P L x ( )
1

1

1

1

i iD D
n

i i

i i i

p p
E I L x

q q

−

=

    −
 =     

−     
 ,                (9) 11 

where ( ).I  is the indicator function of the event in the braces, E  indicates that the expectation is 12 

based upon the new default probability iq , and 

1

1

1

1

i iD D
n

i i

i i i

p p

q q

−

=

   −
   

−   
  is the likelihood ratio (LR) 13 

relating the original distribution of (
1D  , 

2D  , …, 
nD  ) to the new one. Therefore, the term 14 

( )
1

1

1

1

i iD D
n

i i

i i i

p p
I L x

q q

−

=

   −
    

−   
 inside the expectation is an unbiased estimator of ( )P L x , with 15 

the default indicator sampled based on the new default probability. 16 

5.2 Exponential twisting 17 

In the following section we show how to obtain the likelihood ratio when applying the IS technique. To 18 

do so, we need to change the conditional marginal default probabilities from the original to the new 19 

default probabilities under exponential changes in the probability measure. Rather than raising the 20 
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default probability discretionarily, we restrict the IS technique so that it corresponds to exponential 1 

twisting of the form L  (expressed in Eq. (7)). Exponential twisting often appears in analysis of rare 2 

events and the corresponding IS technique (see, e.g., Huang and Shahabuddin, 2003). We apply IS 3 

through changing the conditional marginal default probabilities from 
ip  to exponentially twisted one 4 

,ip 
. Let   be the exponential twisting parameter for all i  and define 5 

                           
( )
( )( ),

exp

1 exp -1
i i

i i

i i

p c
q p

p c





= =

+
.                        (10)                           6 

Then, if 0   , the new default probability 
,ip   after exponential twisting is greater than the 7 

original 
ip . If =0 , the original default probability is invariant. 8 

Given =
iD  the default indicator for the i -th firm (1 if the i -th firm defaults; and 0, otherwise) 9 

and the moment generating function of the 0-1 distribution just also ( )( )1 exp -1i ip c +   , 10 

( ) ( )( ) ( ) ( )( )
,

exp exp exp1 exp -1i
i i ii i

i

p
c cp c

p 

    = − = −+  , where )(i  is the logarithm 11 

of the moment generating function of a random variable that follows the binomial distribution iiYc , i.e., 12 

the cumulative moment generating function (CGF) of iiYc . ( )( )
,

1
exp

1
i

i

i

p

p 

 
−

=
−

is the likelihood 13 

ratio in the absence of default. There is no ( )exp ic−  factor, because in that case there is no default, 14 

i.e., default loss 0ic = . 15 

Thus after exponential twisting by changing the default probability 
,ip , the LR of  16 

1

1

1
( ) ( )

1

−

=

−

−


i

i

Dn
Di i

i i i

p p

q q
simplifies to

1

1 , ,

1
( ) ( ) exp( ( ))

1

i

i

Dm
Di i

i i i

p p
L

p p 

  
−

=

−
= − +

−
 ,         (11) 17 

where ( )( ) ( )
1

( ) log exp log(1 (exp 1))
n

i i
i

E L p c   
=

= = + −  is the logarithm of the moment 18 

generating function of L , i.e., the cumulative moment generating function (CGF) of L . Furthermore, 19 
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for any  , the estimator ( )exp( ( ))I L x L   − + is an unbiased estimator of ( )P L x , with the 1 

total loss from defaults L  sampled based on the new default probability 
,ip . Eq. (11) means that 2 

exponential twisting the default probability as in Eq. (10) is equal to using an exponential twisting of 3 

L  itself.  4 

5.3 Variance reduction analysis and choice of the exponential twisting parameter  5 

In this section we explain why the variance of the estimator is reduced when the IS technique is applied. 6 

The exponential twisting parameter   needs to be chosen while carrying out the probability measure 7 

change in the default probability. The variance of the estimator of ( )P L x also decreases with such 8 

a probability measure change. In the following we address these issues. 9 

To reduce the variance of the estimator of ( )P L x , we minimize its second moment under IS. 10 

The second moment of the unbiased estimator of ( )P L x  is 11 

         ( )2 ,m x  =  2 2 ( ) 2 2exp( ( )) exp( ( ))E I L x xL       − + − + ,          (12) 12 

where
E indicates the expectation under IS with the exponential twisting parameter   and the upper 13 

bound holds for all 0   . While finding the value of the exponential twisting parameter    is 14 

difficult, minimizing the upper bound in Eq. (12) is a simple matter. This amounts to minimizing15 

( )  − x  over 0  . The logarithm of the moment generating function ( )   is strictly convex 16 

and passes through the origin point, so the upper bound in Eq. (12) is minimized at 17 

'( ) , (0)

0 (0)

  




 = 
= 


x

solution to x x

x
.                      (13) 18 

The root of the above equation is easily solved numerically. The value x determined by Eq. (12) 19 

has an additional interpretation that makes it appealing. The function ( )   is the logarithm of the 20 

moment generating function (MGF) of the random variable L  . By differentiating the function 21 
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( )( )( ) log expE L  =  and the definition of the exponential change of the probability measure, we 1 

obtain 2 

( )  exp exp[ ( ( )) ( ( ))]


     = − − +E L L L [ ]


= E L .          (14) 3 

According to Eq. (14), the expected value of [ ]


E L under the new probability measure is equal to4 

x by Eq. (13). While x  is in the tail of the original probability measure, it is near the centre of the 5 

new distribution when the IS technique is applied. In other words, the rare events  L x are more 6 

probable to occur under the new probability measure P  and are no longer rare events. Furthermore, 7 

the variance of the estimator of ( )P L x  is reduced. Meanwhile, ( )exp( ( ))I L x L   − + is an 8 

unbiased estimator of ( )P L x , too. 9 

5.4 Three-step importance sampling technique 10 

We extend the two-step IS procedure to the three-step IS procedure for the t-copula credit portfolio risk 11 

measurement model with a view to achieving further variance reduction Three-step importance 12 

sampling can better capture the distributional property of credit portfolio loss, namely the tail probability, 13 

while the dependence structure of the multiple counter parties in the portfolio conforms to the t-14 

distribution. The key to the three-step IS procedure, which will be used for the t-copula credit portfolio 15 

risk measurement, is to obtain the corresponding likelihood ratio in each step under exponential changes 16 

in the probability measure. This is essential to the importance sampling technique because we can 17 

calculate the tail probability of the loss distribution of the credit portfolio using the likelihood ratio in 18 

each step, and further obtain the total provision for risk in the algorithm in Section 6.2. Now we discuss 19 

how to achieve the corresponding likelihood ratio in each step when applying the three-step importance 20 

sampling technique.  21 



 

23 

 

We have used the first step of IS to effectuate probability measure change in the default probability. 1 

Now we apply the other two steps of IS, conditional on both the systematic risk factors Z  and the chi-2 

square distributed random variable V . Conditional on both Z and V , the default indicators 
1D , 3 

2D  , …, 
nD   are mutually independent and the i-th firm has the conditional default probability 4 

,( )i
Vp Z  as defined in Eq. (5). Applying 

iB = 1( )−

v ipt , we express this probability as 5 

( ),ip Z V  ( )1 ,iP D Z V= =  6 

           ( ),i
iP W B Z V=   7 

                                   
( )1

i i

i

V
t p a Z

b


−

 
− 

 =
 
 
 

.                    (15) 8 

Therefore ( , )x Z V   is solved first by substituting
ip  for ,( )i

Vp Z   in Eq. (13), then the revised 9 

conditional default probability 
,

( , )
xi

Z Vp  after exponential changes of the probability measure is 10 

determined by substitutingx for ( , )x Z V , and by substituting
ip for ,( )i

Vp Z  in Eq. (10), i.e., Eq. 11 

(10) becomes
( , )

, ( , )

( , ))
( , )

1 ( , )( 1)



 
=

+ −

x i

x x i

Z V c

i
i Z V c

i

p Z V e
Z Vp

p Z V e
.                                   (16) 12 

By Eq. (11), we find the first likelihood ratio for the conditional IS default probability as  13 

1

1

1 , ( , ) , ( , )

( , ) 1 ( , )
[ ( , ) ( , ) ]( ) ( ) exp ( )

( , ) 1 ( , ) 

  
−

=

−
= = − +

−


i

i

x x

Dm
Di i

x x

i i Z V i Z V

p Z V p Z V
Z V Z VL

p Z V p Z V
.   (17) 14 

The IS distribution of the systematic risk factors Z  under the new probability measure is a 15 

multivariate normal distribution with a shifted mean vector   (we will discuss how to find   to 16 

enhance the effectiveness of the IS procedures in the next section) and a covariance matrix equal to the 17 

identity matrix I . In other words, the systematic risk factors Z after the probability measure change 18 

are sampled from ,( )N I . The corresponding second likelihood ratio for the systematic risk factors 19 
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Z under the new probability measure is 1 

2

2

1
(2 ) exp( )

2
1

(2 ) exp{ ( ) ( )}
2

/

/  

−

−

−
=

− − −

d T

Z
d T

π Z Z

π Z Z

= exp( / 2)T  − +TZ .    (18) 2 

Besides using IS to estimate the loss probability, we also need to show how to sample the random 3 

variable V after the probability measure change in the process of simulation. We now pay attention to 4 

the exponential changes of the probability measure for V . Let ( )f V  be the chi-square distributed 5 

density function with  degrees of freedom and   be the exponential twisting parameter. Thus, the 6 

density function ( )f V is changed to ( )

f V under the new probability measure, i.e., 7 

( )
( )

exp( ( ))V

f V
V

f V




  = − +                               (19) 8 

where ( ) 
V

 is the logarithm of the moment generating function of V .  9 

Since the logarithm of the moment generating function is ( ) 
V

log[ ( )] =
V

 and the moment 10 

generating function is /2( ) (1 2 )   −= −
V

, we apply Eq. (19) to obtain Theorem 1 below. 11 

Theorem 1 If ( )f V  is the chi-square distributed density function with   degrees of freedom,   is 12 

the exponential twisting parameter, and the density function ( )f V  is changed to ( )

f V  after the 13 

exponential changes of the probability measure, then the density function ( )

f V  is  14 

( )

f V = /22

( )
1 2




−

−

( /2 1)

( / 2)

v



−



V
exp( )

2 / (1 2 )
−

−

V
.                (20) 15 

The proof of Theorem 1 is given in Appendix 1, which demonstrates that we need to take the 16 

random variable from a transformed gamma distribution rather than the original chi-square 17 

distribution in the following algorithm. Eq. (20) indicates that ( )

f V  is the gamma distributed 18 

density function with the scale parameter 
21

2

−
 and shape parameter / 2 , we need to sample 19 



 

25 

 

the random variable V from this gamma distribution in the three-step IS technique. 1 

Glasserman and Li (2005) developed the Zero Variance Measure method to determine the 2 

exponential twisting parameter  . We use their approach and obtain  = −
n

c ,              (21) 3 

where 
21

2
 =

n
c n , min{ }  = Z , and Z  are sampled from ,( )N I . 4 

Furthermore, the corresponding second likelihood ratio for V  after exponential changes of the 5 

probability measure by an amount −
n

c  is given by 6 

=
V

( )

( )


f V

f V
exp( ( ))  = − +

V
V exp(c )=

n
V (-c )

V n
,        (22) 7 

where (-c )
V n

/2(1 2 ) −= +
n

c . 8 

Therefore, in the IS technique, V  (after exponential changes of the probability measure by an 9 

amount −
n

c ) is sampled from 
2

Gamma( / 2, )
1 2


+

n
c

, i.e., the gamma distribution with the scale 10 

parameter 
2

1 2+
n

c
and shape parameter 2/v . Applying Eqs. (17), (18), and (22), we obtain 11 

( )P L x ( )1 2= 1, 1, , 1np D D D= = =  12 

                    ( )( ),E p I L x Z V =   ( ) ( ) 1,
=

x Z VZ V
E I L x     13 

( ) ( ) ,
=

x Z V
E I L x FGH  ,                             (23) 14 

where ( ) ( )( )( )exp , ,x xF Z V L Z V  = − +  , ( )exp / 2T TG Z  = − +  , and 15 

( )( )exp n V nH c V c= + − . 16 

Therefore, the term ( )I L x [ ( , ) ( , ) ] (c (-c ))/2( ) e ee
T      +− +− + T

x x n V nZ V Z V VZL
 inside the expectation 17 

is an unbiased estimator of ( )P L x  with the exponential twisting parameter ( , )x Z V  in the IS 18 

technique. 19 

5.5 Mean-shifting method 20 
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To improve the effectiveness of the IS technique, we now discuss how to obtain the multivariate normal 1 

distribution shifted mean vector    under exponential changes in the probability measure. By the 2 

Variance Decomposition Theorem, for any estimator 
x̂p of ( )P L x , we have 3 

, ,( ) ( [ | ]) ( [ | ])
  

= +x x x
Z V Z VVar p E Var p Var E p .              (24) 4 

Conditional on Z  and V  , the firms are independent, and we know that minimizing the upper 5 

bound on the second moment of the IS estimator of the tail probability in Eq. (12) makes 6 

,[ | ]x
Z VVar p



minimum or small when applying IS to Z  and V . Therefore, in order to make the 7 

variance ( )


xVar p minimum or small, we should pay attention to the second term ,( [ | ])


x
Z VVar E p8 

in Eq. (24). Given that 
x̂p  is the estimator of ( )P L x   and [ | , ] ( | , )xE p Z V P L x Z V



=   , we 9 

have  10 

)( xLP  ( , ( ) ( )
Z V

I L x Z V f Z f V dZdV=  | ) ,             (25) 11 

where ( )
Z

f Z is the probability density function of the systematic risk factors Z  and ( )
V
f V  is the 12 

probability density function of the chi-square distributed random variable V . This implies that the IS 13 

distributions for Z and V should reduce the variance in the integral of ( | , )P L x Z V against the 14 

densities of Z  and V . 15 

The zero variance IS distribution for the multi-factor problem would sample the systematic risk 16 

factors Z   from the probability density proportional to what is inside the integral in Eq. (25). 17 

According to Glasserman and Li (2005), Kang and Shahabuddin (2005), and Reitan and Aas (2010), 18 

sampling this probability density is generally impracticable. On the contrary, they suggested using a 19 

normal density with the same method as the optimal probability density. This method occurs at the 20 

solution to the optimization problem ( ) /2 1 /2

/2

1
expmax ( | , ) / 2

2 ( / 2)
T V

Z
VP L x Z V Z Z e

 
− − −


,    (26) 21 



 

27 

 

which is also the mean of the approximating normal distribution. 1 

 It is difficult to obtain the exact solution of Eq. (26). There are several methods to approximate the 2 

solution (see, e.g., Kang and Shahabuddin, 2005; Kostadinov, 2006; Bassamboo et al., 2008; Chan and 3 

Kroese, 2010; Reitan and Aas, 2010). However, these methods have slow convergence rates. To solve 4 

this problem, we use the Levenberg-Marquardt algorithm, a nonlinear optimization technique, to obtain 5 

the optimal mean-shift vector. The algorithm proposed by Levenberg (1944) and Marquardt (1963) has 6 

the combined merits of the Gauss-Newton algorithm and the gradient method.  7 

5.6 Expected Shortfall 8 

In this section we discuss how ES and VaR are closely related to each other. It is well known that VaR 9 

is not a coherent risk measure since it lacks the property of subadditivity when the risk factors have 10 

heavy-tailed distributions. In addition, VaR is sensitive to changes in the significance level. This leads 11 

to a lack of the numerical stability needed for bank management decisions (Frey and McNeil, 2002; 12 

Kalkbrener et al., 2004; Reitan and Aas, 2010). 13 

In view of the drawbacks of VaR, we apply expected shortfall (ES), i.e., the expected excess loss, 14 

given that there are portfolio losses, to measure credit portfolio risk. Acerbi and Tasche (2002) defined 15 

ES as follows: 16 

Definition 5.1. (Expected shortfall). Given an integrable random variable L , the ES at confidence 17 

level   is given by  18 

( )

1
( ) ( [ ] ( )(1 [ ( )]))

1   
 = + − − 

−
L VaR LES L E LI VaR L P L VaR L ,        (27) 19 

where 𝑉𝑎𝑅𝛼(𝐿) = inf⁡{𝑙 ∈ ℝ,𝑃(𝐿 > 𝑙) ≤ 1 − 𝛼} . For a random variable L  with a continuous 20 

distribution, the second term in Eq. (27) disappears and Eq. (27) reduces to  21 
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( )[ ]
( )

1


 


=
−

L VaR LE LI
ES L [ ( )]= E L L VaR L

[ ; ( )]

( ( ))





=



E L L VaR L

P L VaR L
.       (28) 1 

ES is a coherent risk measure and possesses the subadditivity property, which reflects the idea that 2 

risk can be reduced by diversification, a time-honoured principle in Finance and Economics (see Acerbi 3 

and Tasche, 2002, for a concrete proof). It has become an increasingly popular risk measure in the 4 

finance industry.  5 

While VaR is sensitive to changes in the significance level, ES does not fluctuate drastically with 6 

changes in the significance level. Since VaR and ES are generally based on the same estimated loss 7 

distribution, ES is closely related to VaR according to Eq. (27) and Eq. (28) when ES is applied to 8 

compute credit portfolio risk. In fact, the two measures complement each other (Basel Committee on 9 

Banking Supervision, 2009). Thus, we apply VaR and ES together to measure credit portfolio risk based 10 

on the same estimated loss distribution. 11 

 12 

6 Calculation of the total provision for risk 13 

6.1 Total provision for risk 14 

Decision makers need to make operational decisions based on their assessment of the risk of the firm 15 

in a specific industry. In Sections 3 and 4, we demonstrated how to estimate the credit portfolio risk 16 

with the proposed model. In this section, we illustrate how to calculate the total provision for risk.   17 

Based on our proposed model, the decision maker can effectively measure the comprehensive risk 18 

of the portfolio position and obtain ES. Then the decision maker can effectively determine the 19 

operational decisions on the total provision for risk with consideration of credit risk and market risk, 20 

preparing the risk loss reserve in a timely and adequate manner. Specifically, the Basel III Accords 21 
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(2011) require the preparation of the total provision for risk, which consists of the provision for credit 1 

risk and the provision for market risk. Based on the Basel III Accords, the provision for credit risk 2 

should be at least equal to 8% of the bank’s risk-weighted assets. The provision for market risk 3 

commonly equals the former ES, or the last 60 trading days’ average ES multiplied by a multiplier factor 4 

k that is not less than 3. It follows that 5 

60

1
1

1
8% max( , )

60
i i t i t

i i

TRC CRC MRC wA k ES ES− −
=

= + = +  ,      (29) 6 

where TRC is the total provision for risk, CRC is the provision for credit risk, MRC is the provision for 7 

market risk, iA  is the value of the i-th asset, iw  is the weight of iA , and the penalty factor k equals 3 8 

(the lower limit value of the penalty factor k is 3 according to the Basel III Accords, for convenience of 9 

calculation, we set the penalty factor k as 3 in this paper). Eq. (29) shows that the estimated ES value 10 

directly affects the operational decisions of the total provision for risk. This relationship highlights the 11 

importance of estimating the credit portfolio risk with an efficient and effective method. 12 

It is evident that on the basis of achieving an accurate estimation ES using the proposed three-step 13 

IS method for the t-copula credit portfolio risk measurement model, the paper further integrates the 14 

achieved ES value to calculate the total provision for risk using Eq. (29). Thus, the obtained total 15 

provision for risk reacting in a timely manner to economic and environmental changes is to be obtained 16 

by synergizing the classical structural credit model, the integrating multivariate t-copula into the 17 

classical structural credit model, and the proposed three-step importance sampling (IS) model. In the 18 

following empirical test, the eleven dimensions data are being integrated together to calculate the joint 19 

default probability of credit portfolio and obtain the total provision for risk for adapting to economic 20 

and environmental changes. This also further illustrates that this data analytics technique is useful to 21 
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extract and utilize useful information about credit portfolio risk by exploiting data from different 1 

sources. 2 

6.2 Algorithm to calculate the credit portfolio risk under t-copula condition  3 

In order to calculate the credit portfolio risk under t-copula condition, we provide a formal algorithm to 4 

calculate the credit portfolio risk under the t-copula condition as follows: 5 

Part 1 Parameter estimation based on classical structural credit model and multivariate t-copula 6 

1) Calculate the individual default probability of the 60 listed firms based on the classical structural 7 

credit model.  8 

2) Utilizing normality test and nonparametric kernel density estimation to test if each individual 9 

default probability of the 60 listed firms conforms to the t-distribution, and choose the appropriate 10 

copula function by tail coefficient of correlation. 11 

3) The systematic risk factor loadings row vector for the i-th firm ia , the idiosyncratic risk factor 12 

loadings for the i-th obligator (firm) ib , and the  degrees of freedom have been estimated based on 13 

the data of the 60 listed firms and the corresponding data on treasury yields in China, Shanghai real 14 

estate index, retail sales index, and financial sector index spanning the same period. 15 

4) In applying the Levenberg-Marquardt algorithm, we need to estimate the mean-shift vector   16 

for Z  after the probability measure change. Solve the shifted mean vector    and the degree of 17 

freedom   of Gamma under the condition of 18 

( ) /2 1 /2

/2

1
exp / 2max ( | , )

2 ( / 2)

T v

z
Z ZP L x Z z V v v e

 
− −− = =


. 19 

Part 2 Formal algorithm of the IS procedure for calculating credit portfolio risk based on the t-20 

copula 21 
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Step 1. Sample Z from ,( )N I . 1 

Step 2. Sample V  from 
2

Gamma( / 2, )
1 2


+

n
c

 , i.e., the gamma distribution with the shape 2 

parameter 2/v   and scale parameter 
2

1 2+
n

c
 , where 

21

2
 =

n
c n   and 3 

min{ }  = Z . 4 

Step 3. Calculate the conditional default probability ( ),ip Z V
( )1

i i

i

V
t p a Z

b


−

 
− 

 =
 
 
 

, given 
ip , 5 

ia , 
ib , and  .  6 

Step 4. Obtain the exponential twisting parameter ( , )x Z V  through numerically solving Eq. (13).  7 

Step 5. Calculate the twisted conditional default probability  8 

( , )

, ( , )

( , ))
( , )

1 ( , )( 1)



 
=

+ −

x i

x x i

Z V c

i
i Z V c

i

p Z V e
Z Vp

p Z V e
, =i n,,2,1  . 9 

Step 6. Calculate = （ + ）


i

i i iW a Z b
V

 and 
iB =

1

,
( ( , ))



−

xv i
Z Vt p , =i n,,2,1  . Note: Sample  i10 

is from (0,1)N . 11 

Step 7. Generate the default indicators [ ]= i

ii
I W BD  from the twisted conditional default 12 

probability 
,

( , )
xi

Z Vp , =i n,,2,1  . 13 

Step 8. Calculate ( )( ),
1

( ( , )) log 1 ( , ) exp , 1
x

n

x x ii
i

Z V Z V Z V cp 
  

=

  = + −     and (-c )
V n

14 

log 1 2
2 n

c
−

 = +  . 15 

Step 9. Compute the loss 
1 1

*
= =

= = 
n n

i i i
i i

L L c D . 16 

Step 10. Calculate the likelihood ratios 1 [ ( , ) ( , ) ]exp ( )  = − +x xZ V Z VL  , 
Z

17 
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= exp( / 2)T  − +TZ  , and 
V

exp(c (-c ))= +
n V n
V   by Eq. (17), Eq. (18), and 1 

Eq.(22), respectively. 2 

Step 11. Return the estimator ( )I L x FGH  . Note: ( ) ( )( )( )exp , ,x xF Z V L Z V  = − +  , 3 

( )exp / 2T TG Z  = − + , and ( )( )exp n V nH c V c= + − . 4 

Step 12. Obtain the estimator p̂ of the tail probability ( )( ) ( ) ( ) ( )

1

1 N
j j j j

j

I L x F G H
N =

 
   through repeating 5 

Steps 1 to 11 N   times ( N   is the number of simulation runs). Note:6 

( ) ( ) ( )( ) ( ) ( )( )( )( )exp , ,
j j j j j

x xF Z V L Z V  = − +  , ( ) ( )( )exp / 2
j jT TG Z  = − +  , and 7 

( ) ( ) ( ) ( )( )( )exp
j j j j

n V nH c V c= + − . 8 

Step 13. Calculate the estimator 
2
( , )ˆ 

x
m x   of the second moment under IS 9 

( )( ) ( )( ) ( )( ) ( )( )
2 2 2

1

1 N
j j j j

j

I L x F G H
N =

 
  

   through Eq. (12). Note:10 

( )( ) ( ) ( )( ) ( ) ( )( )( )( )
2

exp 2 , 2 ,
j j j j j

x xF Z V L Z V  = − +  , 11 

( )( ) ( )( )
2

exp 2
j jT TG Z  = − + , and ( )( ) ( ) ( ) ( )( )( )

2

exp 2 2
j j j j

n V nH c V c= + − . 12 

Step 14. Estimate 
( )[ ]

L VaR LE LI . 13 

Step 15. Return the estimator 
( )[ ]ˆ ( )

ˆ





=

L VaR LE LI
ES L

p
. 14 

Step 16. Repeat Step1 to Step 15 when i ranges from 1 to 60 and estimate 15 

60

1
1

1
8% max( , )

60
i i t i t

i i

TRC CRC MRC wA k ES ES− −
=

= + = +  . 16 

The above concrete steps of the algorithm to calculate the credit portfolio risk under the t-copula 17 

condition can be used to clarify the computational process. 18 

 19 

7 Empirical tests 20 
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Most recent studies on estimating portfolio credit risk resort to numerical computation. However, given 1 

the inherent relationship between dependent default and asset returns in the classical structural model, 2 

we empirically examine the data of 60 listed Chinese firms. We apply our proposed model to three 3 

industries, namely the real estate industry, retail industry, and finance and insurance industry. They are 4 

classified as industries in the Shanghai Stock Exchange in China. We choose these three industries for 5 

three reasons. First, the three industries account for a large portion of the Gross Domestic Product (GDP), 6 

so they can effectively reflect the state of the national economy. Second, the three industries have their 7 

own industry indices, which contain systemic risk information. The information can be used as the 8 

values of the systematic risk factors. Third, the industry indices and their information are accessible to 9 

us. Particularly, we select 60 listed Chinese firms, including 25 firms from the real estate industry (serial 10 

numbers 1 to 25), 20 firms from the retail industry (serial numbers 26 to 45), and 15 firms from the 11 

finance and insurance industry (serial numbers 46 to 60) listed in the Shanghai Stock Exchange, as 12 

shown in Appendix 2. We source the data of the 60 firms from the China Stock Market & Accounting 13 

Research (CSMAR) database covering the period from 4 January 2012 to 7 June 2013, excluding the H 14 

shares, overseas listed stocks, and suspended stocks in the period. We also gather the corresponding 15 

data on treasury yields in China, Shanghai real estate index, retail sales index, and financial sector index 16 

(the value of the systematic risk factors) spanning the same period from the Flush iFind financial 17 

database. 18 

During this period, the real estate industry in China faced a new round of regulation where five new 19 

national real estate regulation policies were promulgated on 20 February 2013 in China, which centred 20 

on home buying restrictions and loan limitations. The five new national real estate regulation policies 21 
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are to perfect the responsibility system for stabilizing house prices, resolutely curbing speculative 1 

investment in housing purchases, increasing the supply of general commodity housing and land, 2 

speeding up the planning and construction of secure residence projects, and strengthening market 3 

supervision. Since the beginning of real estate market regulation and control in December 2009, the 4 

policy has gone through four upgrades, namely, the “National 11” in January 2010, the “National Ten” 5 

in April, the “9.29 New deal” in September, the eight new national real estate regulation policies in 6 

January 2011, and the five new national real estate regulation policies issued on 20 February, 2013. The 7 

focus of the series policies of real estate market regulation and control is on home buying restrictions 8 

and loan limitations. This means that the credit portfolio including 25 listed Chinese firms in the real 9 

estate industry will be affected by the stringent policies of real estate market regulation and control, and 10 

the default risk of the 25 listed Chinese firms in the real estate industry will increase. 11 

We apply the proposed t-copula credit portfolio risk measurement model to compute the tail 12 

probabilities of the credit portfolio loss distributions of the 60 listed Chinese firms and their 13 

corresponding VaR and ES, obtaining large variance reductions. We also check the changes in credit 14 

portfolio risk in different industries corresponding to the new national real estate regulation policies 15 

promulgated in China in the same period to test the model’s ability to produce results that agree with 16 

the historical events that transpired. 17 

7.1 Calculation of default probability of each firm 18 

Since the market value of a firm’s assets and its volatility can be derived by an option pricing formula, 19 

the market value of an asset and its volatility can usually be estimated through the asset’s stock price, 20 

its stock price volatility, and the book value of its underlying debt. Using the classical structural model 21 
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in Section 3, we calculate the market value of each listed firm in each day in the corresponding period. 1 

Based on the market values of the firms, we further use Eq. (2) and Eq. (3) to find the standardized asset 2 

returns of each firm 
log( / )i i

i T t i
T

i

V V mT
W



−
=  and the corresponding default distance 3 

log( )i i
i

i

L mT
B



−
= . Using Eq. (3), we can obtain 60 default probabilities of the 60 firms in each day, 4 

382 default probabilities of each firm in the corresponding period, 9,550 default probabilities of the 25 5 

firms in the real estate industry, 7,640 default probabilities of the 20 firms in the retail industry, and 6 

5,775 default probabilities of the 15 firms in the finance and insurance industry in the corresponding 7 

period. Thus, we can further obtain the three average default probabilities in the real estate industry, in 8 

the retail industry, and in the finance and insurance industry. We plot the daily average default 9 

probability in each industry in Figures 2-4, and give the overall average default probability in each 10 

industry in Table 1. 11 

 12 

Figure 2 Trend of the default probability of each firm in the real estate industry 13 
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 1 

Figure 3 Trend of the default probability of each firm in the retail industry 2 

 3 

Figure 4 Trend of the default probability of each firm in the finance and insurance industry 4 
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Table 1 The average default probabilities of the firms in the three industries 1 

 

Finance and insurance 

firms 

Real estate firms Retail firms 

Average default 

probabilities 

0.031 0.0009 0.00002 

 2 

Figures 2-4 and Table 1 show that the average default probability in finance and insurance firms is 3 

larger than those in the retail firms and real estate firms in general. This is related to the fact that banks 4 

rely on deposits to maintain their operations. Currently, the asset-liability ratios of banks are generally 5 

up to 90 percent and that of the insurance industry is around 80 percent. So the ratios are much higher 6 

than those of the real estate and retail industries. 7 

Although the ratio of asset-liabilities in the real estate industry is high and its cash flow is generally 8 

tighter, we only consider assets and liabilities, i.e., we do not examine the cash flows of the firms and 9 

other related factors in this paper. Also, we consider only the data disclosed in the financial statements 10 

of the firms and do not consider off-balance sheet businesses such as implicit liabilities. Therefore, the 11 

overall risk of the finance and insurance industry is relatively large when the house prices remain high 12 

and no inventory valuation loss is incurred in the real estate business.  13 

It is evident that, in the process of the computational experiments, using the classical structural 14 

credit model, we integrate the six dimensions of data embracing firm assets, volatility, debts, leverage 15 

ratio, return on assets, and interest rate level, to calculate the default probability of each listed firm on 16 

each day in the corresponding period. Specifically, we input a total of 137,520 data using the classical 17 
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structural credit model to generate 60 values of the default probability of each firm on each day. 1 

Likewise, the dimension of the portfolio increasing can be dealt with in the same way using this data 2 

analytics technique. This illustrates that data analytics technique is useful to discover information about 3 

credit risk of individual firm by exploiting data from different sources. 4 

7.2 The credit portfolio risk measurement model based on the t-copula 5 

7.2.1 Normality test 6 

It is essential to perform a goodness-of-fit test on the copula function to ascertain its viability. Whether 7 

the copula function can fully describe the structure of the dependence between financial variables 8 

depends on whether the selected copula model is proper and reasonable. We determine the appropriate 9 

copula model by conducting a series of normality tests on the pertinent financial variables, such as the 10 

KS-test, JB-test, and Lillie-test. Using the classical structural credit model that pricing equity and credit 11 

risky debt reduces to pricing European options, we calculate the market value of each listed firm on each 12 

day in the corresponding period. Furthermore, by standardizing the asset returns i

tW of the i -th firm 13 

using Eq. (1), we perform a series of correlation analysis on the standardized asset returns to test whether 14 

they conform to the normal distribution. We report the interval values of the results in Table 2 and 15 

provide the details in Appendix 3.  16 

Table 2 Normality test of standardized asset returns 17 

 Statistics KS-test JB-test Lillie-test 

Interval value of  

standardized asset 

returns  

Skewness Kurtosis h P h P h p 

Maximum value 3.28 20.1 1 0.001818 1 0.001 1 0.001 

Minimum value -1.66 3.1 1 0.0000476 1 0.001 1 0.001 
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 1 

The results of the normality test show that, according to the KS-test, JB-test, and Lillie-test, all the 2 

values of the test statistic H for the idiosyncratic risk of each firm is 1. This means that the standardized 3 

asset returns do not follow the normal distribution, so we exclude the possibility that the tail is 4 

uncorrelated. 5 

 In view of the test statistics, and the corresponding skewness and kurtosis values, we may conclude 6 

that the standardized asset returns follow a heavy-tailed distribution, so the normal copula is not suitable 7 

for capturing the structure of the dependence between the assets for calculating credit portfolio risk. 8 

Since the normality test cannot reveal the distribution of the standardized asset returns, we use the 9 

nonparametric kernel density estimation to fit its distribution. 10 

7.2.2 Nonparametric kernel density estimation 11 

Observing the shape of the sample distribution is beneficial to further determining the form of the copula. 12 

Based on the estimated results, we use the distribution curves of the standardized asset returns due to 13 

Poly Real Estate in the real estate industry, Minmetals Development in the retail industry, and Southwest 14 

Securities in the finance and insurance industry to address our problem. 15 

Figures 5-7 show that the nonparametric kernel density estimation can better fit the distribution of 16 

the sample, so we use this estimation to fit the distribution of the standardized asset returns of each firm. 17 
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 1 

Figure 5  Distribution curves due to Poly Real Estate in the real estate industry 2 

 3 

Figure 6  Distribution curves due to Minmetals Development in the retail industry 4 

 5 
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 1 

Figure7 Distribution curves due to Southwest Securities in the finance and insurance industry 2 

 3 

7.2.3 Selecting an appropriate copula for calculating credit portfolio risk 4 

On the premise that the marginal distribution of the standardized asset returns of each firm is known, 5 

we choose the appropriate copula function to construct the dependence between assets. Considering 6 

whether or not its distribution is symmetrical, we calculate the tail correlation coefficient between assets 7 

by identifying whether or not the tail correlation coefficient is 0 to determine the form of the copula 8 

function. 9 

Figure 8 shows that the tail coefficient of correlation between assets is not zero, which shows 10 

obvious tail dependence between assets. It also shows that the upper tail and lower tail correlation 11 

coefficients are equal, which establishes that its distribution is symmetrical. Thus, it is reasonable to 12 

assume that the distribution of the standardized asset returns follows the t-distribution, and choosing 13 

the t-copula can better capture the tail dependence between assets. 14 
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 1 

Figure 8 Histogram of the tail correlation coefficient 2 

7.2.4 Parameter estimation for risk factor loadings 3 

Since the distribution of the standardized asset returns shows obvious tail dependence between assets, 4 

we select the t-copula to capture the tail dependence. We use Eq. (4) that combines the various 5 

systematic and idiosyncratic risk factors to calculate credit portfolio risk. First, we estimate the various 6 

risk factor loadings as follows: 7 

1

= ( )
n

i

i i i ik k i i
k

W a Z b a Z b
V V

 
 

=

+（ + ）= ，and , = , = , 1,2,3,4.i k iik i
b ka b

V V

 
 =  8 

We select the corresponding data on treasury yields in China, Shanghai real estate index, retail sales 9 

index, and financial sector index as the values of the systematic risk factors, and then standardize the 10 

data. For each standardized asset returns of a listed firm we need to find the corresponding factor 11 

loadings 
1 2 3 4, , ,i i i ia a a a  of the systematic risk factors and the factor loading 

ib  of the idiosyncratic 12 

risk factor. Through the copula fit function, we obtain that the optimal degree of freedom is 4. We also 13 

estimate the factor loadings of the systematic and idiosyncratic risk factors by nonlinear estimation in 14 

Appendix 4. 15 
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 1 

7.2.5 Estimating the joint default probability of the credit portfolio under the t-copula 2 

The analysis in Section 6.1.4 establishes that the t-copula model with a degree of freedom of 4 can 3 

capture the tail dependence between assets through the copula fit function. Thus, using the factor 4 

loading estimators 
1 2 3 4, , ,i i i ia a a a  and 

ib  , we use Eq. (6) to estimate the historical joint default 5 

probability of the credit portfolio under the t-copula and show the results in Fig. 9 (Note: The order of 6 

magnitude of the vertical axis of the default probability is 10-7). 7 

 8 

Figure 9 Joint default probability of the credit portfolio 9 

As Figure 9 shows, from January 2012 to June 2013, the joint default probability of the credit 10 

portfolio was small as a whole; while from February 2013 to March 2013, the joint default probability 11 

fluctuated significantly. There are two reasons for this. First, industries in China were facing a 12 

downward domestic economic environment. This means that the whole credit portfolio including 60 13 

listed Chinese firms was affected by the downward domestic economic environment, and the default 14 
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industry in China was facing a new round of regulation, i.e., China promulgated five new national real 1 

estate regulatory policies on 20 February 2013, stipulating home buying restrictions and loan limitations. 2 

This means that the credit portfolio including 25 listed Chinese firms in the real estate industry would 3 

be affected by the stringent policies of real estate market regulation and control, and the default 4 

probability of the 25 listed Chinese firms in the real estate industry will increase with five new national 5 

real estate regulatory policies being promulgated. Meanwhile, the domestic consumption in China was 6 

weak during this period. This means that the credit portfolio including 20 listed Chinese firms in the 7 

retail industry would be affected by the weak domestic consumption, and the default probability of the 8 

20 listed Chinese firms in the retail industry would increase. Later on, the impact of the real estate 9 

regulation was digested by the market and housing prices stopped falling and became stable, and 10 

domestic consumption rebounded. Therefore, the joint default probability of the credit portfolio 11 

remained low. This means that integrating multivariate t-copula into the classical structural credit model 12 

can detect the credit risk of the portfolio including 60 listed Chinese firms covering the period from 4 13 

January 2012 to 7 June 2013. 14 

Obviously, in the process of the computational experiments, using the integrating multivariate t-15 

copula in the classical structural credit model, the eleven dimensions of data are being integrated 16 

together, i.e., the five dimensions of data embracing treasury yields in China, Shanghai real estate index, 17 

retail sales index, financial sector index, and return on assets, as the values of the systematic risk factors 18 

is being integrated with the original six dimensions of data embracing firm assets, volatility, debts, 19 

leverage ratio, return on assets, and interest rate level, collected from 60 listed Chinese firms covering 20 

the period from 4 January 2012 to 7 June 2013. We integrate the eleven dimensions of data to compute 21 
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the joint default probability of credit portfolio including 60 listed Chinese firms on each day in the 1 

corresponding period. In other words, we input a total of 252,120 data to generate 382 joint default 2 

probabilities of the credit portfolios each day including 60 listed Chinese firms covering the period from 3 

4 January 2012 to 7 June 2013. Likewise, the dimension of the portfolio increasing can be managed in 4 

the same way using this data analytics technique, i.e., integrating multivariate t-copula with the classical 5 

structural credit model. This further illustrates that data analytics techniques are useful to discover 6 

information about credit portfolio risk by exploiting pertinent data from different sources. 7 

 8 

7.3 Estimator of credit portfolio risk 9 

We now illustrate the performance of our three-step IS procedure based on the multivariable t-10 

distribution. Making an accurate calculation of the tail probability of the credit portfolio loss distribution 11 

or the corresponding loss is crucial for risk management. A good estimation of the risk value facilitates 12 

financial institutions to keep adequate loss reserves to protect them against potential risk. For financial 13 

institutions, when their assets mainly consist of credit portfolios, they could manage to improve their 14 

profitability by keeping a reasonable amount of capital to satisfy various provisions, such as the 15 

coverage ratio, rather than having too much idle fund, to meet the risk supervision requirements. 16 

Because the marginal default probability and historical recovery rate of each asset in the portfolio are 17 

difficult to obtain, we make the following assumptions. First, we assume that the recovery rate is zero, 18 

meaning that all the risky assets are lost once the default occurs. Second, similar to Glasserman and Li 19 

(2005), we assume that the marginal default probability of the i-th firm is =0.02 (1 sin(16 i/m))ip  + ,20 

1,...,60i = , which is between 0 and 0.04. 21 
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Since the standardized asset returns among the firms follow a multivariable t-distribution, through 1 

the Levenberg-Marquardt algorithm, we obtain the shifted mean vector 
1 2 3 4

=（ ， ， ， ）     shown 2 

in Table 3. 3 

Table 3 Estimators of the elements of the shifted mean vector   4 

Element 1
  

2
  

3
  

4
  

Estimator 0.0115 0.0032 0.00436 0.00237 

Then using the proposed three-step IS algorithm for calculating credit portfolio risk based on the t-5 

copula, we simulate the portfolio loss 4,000 times; at the same time, we conduct standard Monte Carlo 6 

simulation 10,000 times. We show in Table 4 and Figure 10 the obtained tail probabilities of the loss 7 

distribution )( xLP   , the corresponding threshold values of loss x  , and the corresponding ES 8 

values for the credit portfolio. 9 

Table 4 Estimating credit portfolio risk using the three-step IS procedure under the t-copula 10 

)( xLP   Threshold value of 

loss x (billion) 

ES (billion) Variance ratios 

0.05 12567.3148 20286.8675 13.03 

0.03 15273.4207 21229.4916 21.27 

0.01 20009.1061 24431.3777 57.01 

0.008 21362.1591 25467.6459 89.01 

0.006 22038.6855 25933.1488 90.42 

0.004 23391.7385 26858.4827 141.94 



 

47 

 

 1 

Figure 10 Tail probability of the loss distribution of the credit portfolio  2 

The variance ratios in Table 4 show more than double-digit or triple-digit (one order of magnitude 3 

or two orders of magnitude) reductions in variance. This means that the three-step IS procedure achieves 4 

large variance reductions. Since the variance ratio is the ratio of the standard Monte Carlo variance to 5 

the IS variance, the larger the ratio is, the more effective is the proposed three-step IS procedure. So our 6 

proposed model is effective and efficient.  7 

Accordingly, simulation precision is greatly improved. The key reason is that the rare events 8 

}{ xL  are more likely to occur under the new probability measure P  through exponential change 9 

of the probability measure, as explained by the theoretical analysis in Section 4.3. 10 

Moreover, as shown in Table 4, the variance ratio increases with decreasing loss probability. This 11 

means that the smaller the loss probability is, the more effective is the three-step IS procedure. This 12 

coincides with the above theoretical analysis. As the loss probability becomes smaller, the 13 

corresponding loss value L  of the portfolio increases, leading to reductions in the likelihood of the 14 

events }{ xL   . Furthermore, as the loss probability decreases, the second-order moment with 15 
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importance sampling decreases more rapidly than without importance sampling (i.e., by Eq. (12), the 1 

second-order moment with importance sampling decreases at twice the exponential rate of the loss 2 

probability itself). This causes the second-order moment 2( , )m x   and the variance ratio in Table 4 to 3 

increase when the loss probability becomes smaller. 4 

In addition, according to the definition of VaR, for a given loss probability, the threshold value of 5 

loss x  is equivalent to VaR. The corresponding VaR and ES show that VaR is sensitive to changes in 6 

the loss probability, while ES does not fluctuate drastically with decreasing loss probability. This result 7 

again agrees with the theoretical analysis in Section 4.6. 8 

According to the computational method of the portfolio ES in Section 6.2 and Eq. (29), we obtain 9 

the total provision for risk with consideration of credit risk and market risk in Table 5. As every day’s 10 

default probability of each firm varies, the corresponding expected shortfalls and total provision for 11 

risks of portfolio are also changing. Based on the method in this paper, we can adjust the corresponding 12 

total provision for risk hedge against the risk in the supply chain every day.  13 

Table 5 Estimating total provision for risks of portfolio 14 

)( xLP   Total provision for risk (billion) 

0.05 16681.40279 

0.03 19171.02021 

0.01 23527.85078 

0.008 24772.65954 

0.006 25395.06383 

0.004 26639.87259 
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Based on the ES value in Table 5, we calculate the total provision for risk by using Eq. (29). Thus, 1 

the obtained total provision for risk reacting in a timely manner to economic and environmental changes 2 

is to be obtained by synergizing the classical structural credit model, the integrating multivariate t-3 

copula into the classical structural credit model, and the proposed three-step importance sampling (IS) 4 

model. Simultaneously, the eleven dimensions of data are being integrated together to calculate the joint 5 

default probability of credit portfolio and obtain the total provision for risk for adapting to economic 6 

and environmental changes. This also further illustrates that this data analytics technique is useful to 7 

extract and utilize useful information about credit portfolio risk by exploiting data from different 8 

sources. Namely, intelligent knowledge achieved through the data analytics is helpful to predict the risk 9 

level of the total credit portfolio. Our synergizing structural credit model can be widely applied in 10 

different situations and the corresponding results enable firms to better assess their own financial risk 11 

and those of their suppliers/customers, so that firms could make proper operational decisions in a timely 12 

manner, especially in facing rapid economic and environmental changes, and technology advancement. 13 

 14 

8 Conclusions 15 

In this paper we investigate how to improve operational risk management by giving a better estimation 16 

of the credit portfolio risk using data analytics. Specifically, we consider the decision maker that seeks 17 

to make the optimal operational decision on total provision for risk, based on his/her understanding of 18 

the credit portfolio risk. To do so, we investigate the impact of ES on operational decisions with total 19 

provision for risk. We build a structural credit model integrated with data analytics to estimate the tail 20 

probability of the total credit portfolio loss distribution. As such, we extend the two-step IS procedure 21 
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into a three-step IS procedure for the t-copula portfolio credit risk measurement model in order to further 1 

reduce variance. Moreover, we apply the Levenberg-Marquardt algorithm, a nonlinear optimization 2 

technique, to find the optimal mean-shift vector of the systematic risk factors after the probability 3 

measure change to enhance the effectiveness of the IS procedure. We introduce the two risk measures 4 

VaR and ES to compute portfolio credit risk in the multivariate t-copula framework and compare their 5 

functionality. The results show that VaR is sensitive to changes in the loss probability, while ES does 6 

not fluctuate drastically with decreasing loss probability. 7 

To assess the performance of our proposed model, we collect data from 60 listed Chinese firms and 8 

conduct simulation runs on the collected data using our model. Based on these real data, we calculate 9 

the tail probability of the credit portfolio loss distribution, and the corresponding VaR and ES. The 10 

simulation results show large variance reductions, which demonstrate that our three-step IS procedure 11 

based on the multivariable t-distribution is effective. 12 

In addition, using the proposed t-copula portfolio credit risk measurement model, we check the 13 

changes in credit portfolio risk in different industries corresponding to the new national real estate 14 

regulation policies promulgated in China. The analytical results are in good agreement with the 15 

historical events that transpired, again illustrating that the proposed model is effective and reliable for 16 

practical use. With application of our model, firms could assess their financial risk better and calculate 17 

the total provision for risk with consideration of credit risk and market risk to prepare for risk loss 18 

reserve in a timely and adequate manner, so that they could make appropriate operational decisions 19 

when their financial status changes.  20 

We calculate the credit portfolio risk of 60 listed Chinese firms in different industries using our 21 
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proposed credit portfolio risk measure model in Empirical Tests section. One of the assumptions is that 1 

the recovery rate is zero, meaning that all the risky assets are lost once default occurs for the sake of 2 

calculation convenience. However, this may not reflect the real world.  3 

In fact, the recovery rate is a key variable that determines the credit portfolio (Basel Committee on 4 

Banking Supervision, 2011; Chen et al., 2018). To predict changes in the recovery rate from historical 5 

defaulted loss, detecting the recovery rate density function is pivotal in credit risk analysis. Thus, in 6 

order to accurately calculate the tail probability of the credit portfolio loss distribution or make the 7 

corresponding optimal operational decisions with total provision for risk that hedges against the 8 

potential risk in the entire supply chain, one needs to integrate the time-variant and random recovery 9 

rates into our proposed credit portfolio risk measure model. Future research should consider how such 10 

integration should be done. 11 
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This completes the proof. 9 
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Appendix 2 60 Listed firms 1 

Details of the 60 listed Chinese firms are given in the following table. The 60 firms, listed in the 2 

Shanghai Stock Exchange, include 25 firms from the real estate industry (serial numbers 1 to 25), 20 3 

firms from the retail industry (serial numbers 26 to 45), and 15 firms from the finance and insurance 4 

industry (serial numbers 46 to 60).  5 

Serial 

number  
Listed firm name Industry 

Serial 

number 
Listed firm name Industry 

1 Poly Real Estate 
real 

estate  
31 Tailong Pharmaceutical retail  

2 Zhejiang Guangsha 
real 

estate  
32 Nanjing Zhongshang retail  

3 Songdu shares 
real 

estate  
33 Jiangsu Haotian retail  

4 Daming City 
real 

estate  
34 Commercial city retail  

5 Xiangjiang Holdings 
real 

estate  
35 Great Eastern retail  

6 Xinhu Zhongbao 
real 

estate  
36 Meike shares retail  

7 Lushang Real Estate 
real 

estate  
37 Hualian Comprehensive retail  

8 Wantong Real Estate 
real 

estate  
38 Guangdong Pearl retail  

9 
Beijing Urban 

Construction 

real 

estate  
39 Sinopharm retail  

10 Huafa Shares 
real 

estate  
40 New world retail  

11 Gemdale Group 
real 

estate  
41 Nanjing Xinbai retail  

12 Qixia Construction 
real 

estate  
42 Dongbai Group retail  

13 Dingli 
real 

estate  
43 Eurasian Group retail  

14 Fenghua shares 
real 

estate  
44 Property in the big retail  

15 Wanye Enterprise 
real 

estate  
45 

Nanning Department 

Store 
retail  
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16 Cinda Real Estate 
real 

estate  
46 

Shanghai Pudong 

Development Bank 

 finance and 

insurance  

17 
Heaven and earth 

source 

real 

estate  
47 Minsheng Bank 

 finance and 

insurance  

18 Chinese company 
real 

estate  
48 CITIC Securities 

 finance and 

insurance  

19 Zhujiang Industry 
real 

estate  
49 China Merchants Bank 

 finance and 

insurance  

20 Doron shares 
real 

estate  
50 Guojin Securities 

 finance and 

insurance  

21 Phoenix shares 
real 

estate  
51 Southwest Securities 

 finance and 

insurance  

22 Shanghai Xinmei 
real 

estate  
52 Haitong Securities 

 finance and 

insurance  

23 Huayuan Real Estate 
real 

estate  
53 

China Merchants 

Securities 

 finance and 

insurance  

24 Tibet City Investment 
real 

estate  
54 Bank of Nanjing 

 finance and 

insurance  

25 Shimao shares 
real 

estate  
55 

Agricultural Bank of 

China 

 finance and 

insurance  

26 
Minmetals 

Development 
retail  56 Ping An 

 finance and 

insurance  

27 Zhejiang Oriental retail  57 Bank of Communications 
 finance and 

insurance  

28 Hongtu Hi-Tech retail  58 ICBC 
 finance and 

insurance  

29 Hongye shares retail  59 Bank of China 
 finance and 

insurance  

30 Jianfa shares retail  60 CITIC Bank 
 finance and 

insurance  

 1 

 2 

 3 

 4 

 5 

 6 
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Appendix 3 Normality test 1 

 Statistics KS-test JB-test Lillie-test 

Firm name Skewness Kurtosis h P h P h p 

Poly Real Estate -0.83 6.8 1 0.000678 1 0.001 1 0.001 

Zhejiang Guangsha 1.67 8.1 1 0.000928 1 0.001 1 0.001 

Songdu shares 0.22 3.1 1 0.000608 1 0.001 1 0.001 

Daming City 1.89 9.8 1 0.000644 1 0.001 1 0.001 

Xiangjiang Holdings 2.15 10.9 1 0.000669 1 0.001 1 0.001 

Xinhu Zhongbao 0.13 4.8 1 0.000785 1 0.001 1 0.001 

Lushang Real Estate -1.66 14.3 1 0.000695 1 0.001 1 0.001 

Wantong Real Estate -0.02 6.0 1 0.000603 1 0.001 1 0.001 

Beijing Urban 

Construction 

0.38 3.2 
1 0.000459 

1 0.001 1 0.001 

Huafa Shares 1.45 6.6 1 0.000964 1 0.001 1 0.001 

Gemdale Group -1.46 6.0 1 0.000634 1 0.001 1 0.001 

Qixia Construction 3.28 20.1 1 0.001238 1 0.001 1 0.001 

Dingli 0.15 4.3 1 0.001163 1 0.001 1 0.001 

Fenghua shares 0.02 4.3 1 0.000812 1 0.001 1 0.001 

Wanye Enterprise -0.05 6.3 1 0.001139 1 0.001 1 0.001 

Cinda Real Estate 1.35 5.5 1 0.000592 1 0.001 1 0.001 

Heaven and earth 

source 

0.25 3.5 
1 4.76E-05 

1 0.001 1 0.001 

Chinese company 0.93 9.1 1 0.000902 1 0.001 1 0.001 

Zhujiang Industry 1.53 8.0 1 0.000334 1 0.001 1 0.001 

Doron shares 0.41 4.4 1 0.000703 1 0.001 1 0.001 

Phoenix shares 1.79 6.9 1 0.000228 1 0.001 1 0.001 

Shanghai Xinmei 0.58 4.5 1 0.001249 1 0.001 1 0.001 

Huayuan Real Estate -0.07 4.3 1 0.001143 1 0.001 1 0.001 

Tibet City Investment 0.07 6.6 1 0.000725 1 0.001 1 0.001 

Shimao shares 0.55 3.3 1 0.00144 1 0.001 1 0.001 

Minmetals 

Development 

0.21 3.6 
1 0.000139 

1 0.001 1 0.001 

Zhejiang Oriental 0.38 4.5 1 0.000351 1 0.001 1 0.001 
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Hongtu Hi-Tech 1.14 5.4 1 0.000798 1 0.001 1 0.001 

Hongye shares -0.32 5.5 1 0.000257 1 0.001 1 0.001 

Jianfa shares -0.70 6.7 1 0.000226 1 0.001 1 0.001 

Tailong 

Pharmaceutical 

0.64 5.2 
1 0.000832 

1 0.001 1 0.001 

Nanjing Zhongshang -0.97 5.8 1 0.000929 1 0.001 1 0.001 

Jiangsu Haotian 0.51 4.7 1 0.000547 1 0.001 1 0.001 

Commercial city 2.19 9.3 1 0.000562 1 0.001 1 0.001 

Great Eastern 0.75 5.5 1 0.000396 1 0.001 1 0.001 

Meike shares 0.13 6.9 1 0.001252 1 0.001 1 0.001 

Hualian 

Comprehensive 

1.35 5.8 
1 0.000874 

1 0.001 1 0.001 

Guangdong Pearl -0.61 5.0 1 0.001216 1 0.001 1 0.001 

Sinopharm 0.30 3.5 1 0.000258 1 0.001 1 0.001 

New world 0.21 5.1 1 0.001331 1 0.001 1 0.001 

Nanjing Xinbai 2.74 13.8 1 0.000892 1 0.001 1 0.001 

Dongbai Group -1.02 5.6 1 0.000629 1 0.001 1 0.001 

Eurasian Group -0.68 9.5 1 0.00038 1 0.001 1 0.001 

Property in the big -1.36 9.3 1 0.000795 1 0.001 1 0.001 

Nanning Department 

Store 

0.20 4.7 
1 0.000762 

1 0.001 1 0.001 

Shanghai Pudong 

Development Bank 

2.18 10.8 
1 0.00037 

1 0.001 1 0.001 

Minsheng Bank 1.55 6.2 1 0.000501 1 0.001 1 0.001 

CITIC Securities -0.77 8.5 1 0.000909 1 0.001 1 0.001 

China Merchants Bank -0.35 5.2 1 0.001028 1 0.001 1 0.001 

Guojin Securities 1.57 7.7 1 0.00128 1 0.001 1 0.001 

Southwest Securities -0.19 3.5 1 0.000563 1 0.001 1 0.001 

Haitong Securities -1.52 8.3 1 0.001258 1 0.001 1 0.001 

China Merchants 

Securities 

-0.51 9.4 
1 0.001022 

1 0.001 1 0.001 

Bank of Nanjing 1.41 8.6 1 0.000651 1 0.001 1 0.001 

Agricultural Bank of 

China 

2.54 14.0 
1 0.001818 

1 0.001 1 0.001 
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Ping An -1.23 12.9 1 0.000583 1 0.001 1 0.001 

Bank of 

Communications 

0.09 4.0 
1 0.001359 

1 0.001 1 0.001 

ICBC 0.16 4.2 1 0.001214 1 0.001 1 0.001 

Bank of China -0.15 3.7 1 0.001279 1 0.001 1 0.001 

CITIC Bank 1.53 7.9 1 0.000266 1 0.001 1 0.001 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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Appendix 4  Parameter estimation of copula function 1 

 Systematic risk factors Factor loading 

Firm name 1ia  2ia  
3ia  4ia  

ib  

Poly Real Estate 0.026 0.003 0.001 0.000 0.9997 

Zhejiang Guangsha 0.002 0.000 0.011 0.154 0.9879 

Songdu shares 0.090 0.000 0.031 0.012 0.9954 

Daming City 0.014 0.000 0.028 0.000 0.9995 

Xiangjiang Holdings 0.044 0.000 0.000 0.000 0.9990 

Xinhu Zhongbao 0.000 0.045 0.007 0.143 0.9887 

Lushang Real Estate 0.027 0.000 0.000 0.002 0.9996 

Wantong Real Estate 0.000 0.160 0.115 0.281 0.9393 

Beijing Urban Construction 0.058 0.000 0.000 0.007 0.9983 

Huafa Shares 0.032 0.000 0.000 0.000 0.9995 

Gemdale Group 0.489 0.000 0.003 0.147 0.8599 

Qixia Construction 0.000 0.001 0.000 0.289 0.9575 

Dingli 0.000 0.030 0.031 0.004 0.9991 

Fenghua shares 0.000 0.138 0.185 0.400 0.8871 

Wanye Enterprise 0.000 0.165 0.181 0.420 0.8740 

Cinda Real Estate 0.000 0.122 0.213 0.149 0.9578 

Heaven and earth source 0.000 0.122 0.222 0.357 0.8989 

Chinese company 0.000 0.153 0.152 0.240 0.9464 

Zhujiang Industry 0.000 0.002 0.000 0.035 0.9994 

Doron shares 0.000 0.128 0.119 0.210 0.9621 

Phoenix shares 0.000 0.252 0.347 0.438 0.7898 

Shanghai Xinmei 0.000 0.007 0.000 0.067 0.9977 

Huayuan Real Estate 0.001 0.001 0.000 0.032 0.9995 

Tibet City Investment 0.000 0.003 0.000 0.432 0.9020 

Shimao shares 0.000 0.087 0.102 0.231 0.9638 

Minmetals Development 0.002 0.000 0.000 0.011 0.9999 

Zhejiang Oriental 0.000 0.001 0.096 0.176 0.9797 

Hongtu Hi-Tech 0.000 0.000 0.015 0.150 0.9885 

Hongye shares 0.000 0.052 0.358 0.666 0.6525 

Jianfa shares 0.000 0.008 0.001 0.014 0.9999 
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Tailong Pharmaceutical 0.000 0.164 0.150 0.398 0.8903 

Nanjing Zhongshang 0.035 0.010 0.067 0.000 0.9971 

Jiangsu Haotian 0.000 0.059 0.055 0.254 0.9638 

Commercial city 0.684 0.013 0.000 0.245 0.6870 

Great Eastern 0.000 0.000 0.178 0.444 0.8784 

Meike shares 0.000 0.044 0.048 0.161 0.9848 

Hualian Comprehensive 0.000 0.129 0.156 0.152 0.9674 

Guangdong Pearl 0.086 0.000 0.015 0.000 0.9962 

Sinopharm 0.000 0.119 0.254 0.230 0.9320 

New world 0.000 0.159 0.195 0.447 0.8583 

Nanjing Xinbai 0.000 0.031 0.160 0.307 0.9378 

Dongbai Group 0.036 0.000 0.000 0.055 0.9978 

Eurasian Group 0.304 0.000 0.000 0.038 0.9518 

Property in the big 0.000 0.000 0.000 0.192 0.9814 

Nanning Department Store 0.000 0.123 0.328 0.422 0.8360 

Shanghai Pudong 

Development Bank 

0.000 0.000 0.000 0.010 
0.9999 

Minsheng Bank 0.000 0.016 0.000 0.033 0.9993 

CITIC Securities 0.000 0.000 0.000 0.001 1.0000 

China Merchants Bank 0.000 0.017 0.012 0.018 0.9996 

Guojin Securities 0.000 0.001 0.002 0.233 0.9724 

Southwest Securities 0.000 0.023 0.000 0.016 0.9996 

Haitong Securities 0.068 0.006 0.000 0.000 0.9977 

China Merchants Securities 0.000 0.000 0.029 0.000 0.9996 

Bank of Nanjing 0.013 0.000 0.000 0.025 0.9996 

Agricultural Bank of China 0.000 0.045 0.001 0.078 0.9959 

Ping An 0.007 0.017 0.000 0.023 0.9996 

Bank of Communications 0.000 0.004 0.000 0.000 1.0000 

ICBC 0.000 0.000 0.000 0.003 1.0000 

Bank of China 0.001 0.113 0.000 0.087 0.9898 

CITIC Bank 0.052 0.003 0.027 0.000 0.9983 

 1 




