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Abstract 

 

Are similar, or even identical, mechanisms used in the computational modeling of speech 

segmentation, serial image processing and music processing? We address this question by 

exploring how TRACX2, (French et al., 2011; French & Cottrell, 2014; Mareschal & French, 

2017), a recognition-based, recursive connectionist autoencoder model of chunking and 

sequence segmentation, which has successfully simulated speech and serial-image processing, 

might be applied to elementary melody perception. The model, a three-layer autoencoder that 

recognizes “chunks” of short sequences of intervals that have been frequently encountered on 

input, is trained on the tone intervals of melodically simple French children’s songs. It 

dynamically incorporates the internal representations of these chunks into new input. Its 

internal representations cluster in a manner that is consistent with “human-recognizable” 

melodic categories. TRACX2 is sensitive to both contour and proximity information in the 

musical chunks that it encounters in its input. It shows the “end-of-word” superiority effect 

demonstrated by Saffran et al. (1999) for short musical phrases. The overall findings suggest 

that the recursive autoassociative chunking mechanism, as implemented in TRACX2, may be 

a general segmentation and chunking mechanism, underlying not only word- and image-

chunking, but also elementary melody processing. 
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1. Introduction 
Are similar, or even identical, mechanisms used in the computational modeling of speech 

segmentation, serial image processing and music processing?  We address this question by 

exploring how TRACX2, (French et al., 2011; French & Cottrell, 2014; French & Mareschal, 

2017; Mareschal & French, 2017), a recognition-based connectionist recursive autoencoder 

model of chunking and sequence segmentation that has successfully simulated a significant 

body of empirical data in the area of syllable- and image-sequence recognition, might also be 

applied to elementary melody perception. TRACX2 is, indeed, a model of segmentation and 

chunking, and this article might more appropriately be said to be about "melody 

segmentation", but, in our view, segmentation and chunking are the processes that give rise to 

perception, hence our title. 

The features of early music perception (i.e., in young children) have been the object of 

study for many years. It is well known that listeners tend to group together similar sounds 

and, based on regularities perceived in the melodies to which they are exposed, learn to 

anticipate what will come next. Theoretical frameworks have been proposed to account for 

these features of the early developmental stages of music perception and various 

statistical/computational models have been used to simulate them. In the present paper, we 

will show that a single low-level memory-based segmentation-and-chunking mechanism is 

able to reproduce some of the basic characteristics of music perception. The work presented 

here builds on earlier work segmentation-and-chunking in natural language and image 

processing (e.g., Christiansen, Allen, & Seidenberg, 1998; Cleeremans & McClelland, 1991). 

Music perception is more complex than the segmentation and chunking of syllable-

streams or image-streams of simple geometric objects, and for this reason, the work in this 

paper is focused on melody perception, in particular segmentation and chunking as a first, 

crucial step towards full music perception. The input to TRACX2 consisted of melodies taken 

from children songs (i.e., a children’s songs being coded as melody only, that is, as a 

sequence of notes), without taking into account the duration of the notes. Timbre, pauses, 

chords, and emphases, all present in more complex music, were rare in these songs and when 

they did occur, they were removed. This simplified input comes close to the environment that 

infants and children actually hear when listening to children’s songs (e.g., lullabies, play 

songs, etc.). TRACX2 is used here to simulate some of the early developmental stages of 

music learning, in particular melody-related learning. We will show that its internal 

representations cluster in a human-like manner, that its contour information is also encoded in 

these representations, and that the ends of motives have a particular importance for the model, 

as they do for infants. In addition, we briefly compare our model to four other models of 

sequence segmentation – namely, first-order Markov models, PARSER (Perruchet & Vinter, 

1998, 2002), a Recurrent Auto Encoder (RAE, Socher et al., 2011) and a Simple Recurrent 

Network (SRN, Elman, 1990; Cleeremans & McClelland, 1991). 

     This article is organized around a series of studies. After a brief summary of what is 

already known about music perception, we use TRACX2 to simulate four families of studies. 

We begin by explaining the details of the method used in the simulations, the input data, their 

internal representations, and the impact of the temporal organization of the tone sets/units 

(which we refer to as “words”, following the tradition of speech segmentation studies, which 

TRACX2 simulated initially) on the results. We then show that the simple chunking 

mechanism instantiated by TRACX2 can explain three features of human melody perception 

– namely:  

 melodic motives (defined here as short melodic excerpts of 3 to 4 notes, i.e., 2 to 3 

intervals) are identified more rapidly when TRACX2 has already been exposed to other, 

similar, but not identical, structures. In other words, in TRACX2, as in humans, prior 
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learning improves subsequent recognition of similar items, whether or not they were in the 

training set.  

 TRACX2 is responsive, as are humans, to the melodic contours of the motives it has 

identified.  

 When learning a new melody, TRACX2 recognizes the end of familiar motives better than 

their beginning, an observation previously reported for humans in statistical learning 

experiments using melodies/tone sequences. 

2. Music perception: similarities and differences with syllable-sequence and 

image-sequence processing 
 

2.1. Music perception  
At least two different principles have been suggested for how the human auditory system 

binds discrete sounds together into perceptual units (e.g., Bendixen, Bohm, Szalardy, Mill, 

Denham & Winkler, 2013): the feature-similarity principle, which is based on linking 

together sounds with similar characteristics over time (temporal proximity, pitch proximity, 

timbre similarity, etc.) and the predictability principle, which is based on linking together 

sounds that follow each other in a predictable way (e.g., listeners expect upcoming tone-

sequences in a melody to be similar to tone-sequences they have already heard either in that 

particular melody or in general). These principles apply to intervallic differences between 

notes, to meter, to accents and dynamics, to the consonance of sounds and higher level 

properties of music linked to tonal structures, such as, the role of the tonic, of other key-

defining elements like third and fifth scale degrees, or the equivalence of tones separated by 

octaves (e.g., Krumhansl, 1983, Schellenberg et al., 2002; Deutsch, 2013). In the simulations 

presented in this paper, we have simplified the musical material to isochronous melodies and 

focused on relative pitch, with its intervals and melodic contour.  

     When tones of different pitch heights are linked together in a sequence, a melody 

emerges. The differences in pitch height between two adjacent tones (e.g., the tones C and D 

are separated by two semitones in the upward direction, +2) define intervals, which are the 

elements of the melodic contour. Contour refers to the pattern of ups and downs of pitch from 

tone to tone in a melodic sequence. For example, the sequence with the tones C-D-G-E-C-C 

can be coded in terms of intervals (+2 +5 -3 -4 0), which gives rise to a contour (+ + - - =). 

Both types of information describe the melody in terms of “relative pitch” information. This 

means that the melody can be placed at different absolute pitch heights (or be put at different 

tonal degrees in a given tonal key; Dowling, 1978), while still respecting the same interval 

pattern and contour (e.g., Dowling & Fujitani,1971). The coding of tone sequences as relative 

pitch information enables the recognition of a melody regardless of the pitch range of the 

singer. Even infants can encode tone sequences in terms of relative pitch information by 

ignoring the change of the pitch range while detecting intervallic changes in the melodic 

sequence in both short-term and long-term memory tasks (Trehub et al., 1985; Plantinga & 

Trainor, 2005). Similar patterns have also been observed in adult listeners. For example, in 

short-term memory recognition tasks in a delayed-matching-to-sample paradigm, performance 

is better when the “different” item includes a contour change compared to when it preserves 

the contour (e.g., Dowling, 1978). 

Melodic contour has also been shown to play a role in listeners’ melodic expectations, 

allowing them to predict upcoming tone(s) (e.g., Huron, 2006). Narmour (1990) has proposed 

a theoretical framework for melodies, the implication-realization model, that generates 

predictions for listeners’ expectations. It applies Gestalt principles to the influence of melodic 

contour (i.e., the patterns of ups and downs) and interval sizes. A just-heard melodic interval 
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“implies” a certain kind of continuation, and the “realization” of this melodic “implication” 

allows listeners to integrate the tones into larger melodic patterns. Namour’s model contains a 

set of principles whereby listeners expect future tones to be similar to previous tones, to be 

proximate, to provide a good continuation, etc. The predictions of Narmour’s rather complex 

model have been tested in a number of experimental contexts (e.g., Carlsen, 1981; 

Krumhansl, 1995, 1998; Schellenberg, 1996; Unyk & Carlsen, 1987). Results have led to the 

proposal of reduced versions of the Narmour model that focus on pitch proximity and pitch 

reversal (Krumhansl, 1995, 1998; Schellenberg, 1996; Schellenberg et al., 2002).  

Even though the application of Gestalt principles to music can lead to the hypothesis of 

an innate, hard-wired basis for music perception, analyses of the statistical distribution of 

tones also support the hypothesis that listeners can become sensitive to these distributions and 

features via exposure alone, which then influence melodic expectancy formation (e.g., Huron, 

2006). Krumhansl and colleagues applied tone statistics combined with behavioral 

measurements to the perceptual expectations of listeners for two different musical styles 

(Finnish spiritual folk hymns, Krumhansl et al., 1999, and North Sami yoiks, Krumhansl et 

al., 2000). Trained on this data, a Self-Organizing Map (SOM, Kohonen, 1982) suggests that 

listeners become sensitive to the statistical distributions of tones as well as to higher-order 

statistics, such as two or three-tone transitions. SOMs are unsupervised connectionist 

networks that learn regularities in the environment through exposure alone (i.e., without an 

explicit teacher signal). These networks produce representations of regularities that can be 

used to simulate listeners’ behavior (e.g., in terms of perception, expectations or memory). 

Krumhansl et al. (1999, 2000) focused on melodic expectations in different styles, while 

others have used SOMs to simulate tonal knowledge representation with underlying tonal-

harmonic relations (Leman, 1995; Griffith, 1995; Tillmann, Bharucha & Bigand, 2000). An 

SOM, whose connections are shaped by exposure to musical material without a teacher signal, 

can then be used to simulate empirical data on music perception and memory, as well as tonal 

expectations (e.g., Tillmann et al., 2000). 

 Statistical and computational models, as well as various artificial neural networks, 

have been proposed to describe and simulate human music perception. A significant 

advantage of connectionist models is their capacity to adapt in such a way that 

representations, categorizations or associations between events can be learned.  

Various other computational approaches have been proposed to simulate musical 

composition, music performance and improvisation, as well as perception (cf. Cope, 1989; 

Todd & Loy, 1991; Griffith & Todd, 1999). Music-perception simulations have addressed the 

perception of timbre, tones, chords and sequences as well as temporal structures. In addition 

to cognitive simulations, powerful computational models, such as deep neural nets have been 

used to extract harmonic information from musical audio signals (Korzeniowski, 2018). Other 

algorithms have been developed in the field of music-information retrieval (MIR) to 

automatically detect and extract repeated patterns from musical scores (Müller & Clausen, 

2007, Nieto & Farbood, 2014) or sound files. However, these latter computational 

approaches, even though powerful, are unconcerned with the cognitive validity of the 

procedures and mechanisms used. For cognitive scientists, the simulation of music perception 

is relevant only insofar as the algorithms used simulate, at least qualitatively, the cognitive 

processes of the human brain. This includes the generation of errors, confusions, and other 

problems that arise in real human perception of music, thereby potentially gaining a better 

understanding of how the human cognitive system processes music.  

In the present paper, we adopt this approach and apply a well-known connectionist 

segmentation-and-chunking architecture (TRACX2) to musical material and, specifically, to 

melodic processing. This model has previously been successfully applied to the simulation of 

sequential verbal and visual processing. The extension of the TRACX2 architecture to a new 
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type of material would further strengthen its psychological plausibility as a general 

segmentation-and-chunking mechanism. That said, it is clear that the model, as well as the 

simplified, interval information input to it, must be considered merely as a first step in 

developing statistically driven models (i.e., models that do not include explicit musical rules) 

of early music perception. One must crawl before one can walk, and it is our hope that this 

model will provide a jumping off point for future, more sophisticated models based on some 

of its architectural principles. 

 

 

2.2. Syllable- and image-sequence processing: Similarities and differences to melody 

processing 

 

TRACX2, and its predecessor, TRACX, have been able to successfully simulate a wide 

range of experimental data in the area of syllable- and image-sequence data, among them 

infant data from Saffran et al. (1996a,b), Aslin et al. (1998), Kirkham et al. (2002), Slone & 

Johnson (2018, two experiments), and French et al. (2011, Equal Transitional-Probability 

experiment), as well as adult data from Perruchet & Desaulty (2008, two experiments), 

Giroux & Rey (2009), Frank et al. (2010, two experiments), and Brent & Cartwright (1996). 

TRACX/TRACX2 have also been shown to be able to generalize to new input and to develop 

clusters of emergent internal representations that correspond to the clusters of the input data 

and simulate top-down influences on perception, as observed in the human data sets (French 

et al., 2011). 

 

2.2.1. Similarities  

There are a number of obvious similarities between syllable sequences and music interval 

sequences. A first similarity is linked to the sequentiality of items presented to the system: 

musical intervals in a melody are processed in a sequential manner. In addition, the 

sequences, in both visual and auditory modalities, exhibit statistical regularities (non-uniform 

distribution of the atomic elements, recurring sub-structures, different transitional 

probabilities from one atomic element to the other, etc.) Furthermore, boundaries exist 

between chunks of graphical motives or sounds. Atomic elements, and their aggregates have 

forms that make it possible to define similarities and distances between them, which can be 

expressed in terms of perceptual distance. Sequence segmentation and chunking require 

learning. And this learning is particularly sensitive to the closeness of elements, to the 

adjacency of sounds, syllables, image features. Generalizations to new sequences based on 

prior learning occur, and prior learning influences new learning.  

These similarities suggest that TRACX2 could be an appropriate model for reproducing 

some of the basic features of melody-sequence processing, thereby hinting at the potential 

generality of TRACX2’s recursive autoassociative chunking mechanism for sequence 

segmentation and chunking.  

 

2.2.2. Differences 

There are, however, a number of differences between syllable-sequence, image-sequence 

and melody-sequence processing. A chunk in a syllable sequence generally corresponds to a 

“word” in a given language. A chunk in an image sequence generally corresponds to some 

higher-level image (e.g., a feature or an object). Studies by Saffran et al. (1996a, b) and Aslin 

et al. (1998) on infant word learning and work by Kirkham et al. (2002), Tummeltshammer et 

al. (2017) and Slone & Johnson (2018) on image-sequence learning, all start with a pre-

defined set of “words” (short syllable sequences or short sequences of geometric images). 

Long syllable or image sequences are then constructed by concatenating these “words”. These 
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sequences of “words” are heard or seen by the infants or adults who are then tested for their 

capacity to extract these words from the continuous stream. This implementation mirrors 

processes related to language acquisition, partly based on the segmentation of the speech 

stream into word units. The same applies for studies on human image-sequence segmentation 

(Chantelau, 1997). For a given piece of music, however, there is nothing that corresponds to a 

pre-defined set of sequentially presented tones or sets of tones (“words”) out of which the 

piece of music is built. In a melody, there is generally no such direct correspondence between 

chunks of notes and clearly recognizable musical “words” (even if in most musical pieces 

there are highly identifiable motives, like the 4-note opening motif of Beethoven’s Fifth 

Symphony). Nevertheless, “chunks” of frequently-occurring sequences of notes or intervals 

do fall into certain human-recognizable categories (e.g., a rising interval followed by a 

descending interval), and listeners are sensitive to this information.  

3. Computational simulations of melody perception with TRACX2. General 

methods 
 

3.1. General architecture of TRACX2  

 

TRACX2 (French & Cottrell, 2014; French & Mareschal, 2017; Mareschal & French, 

2017), and its closely related predecessor, TRACX (French et al., 2011), are recursive 

connectionist autoencoders (Pollack, 1989, 1990; Blank, Meeden, & Marshall, 1992, Socher 

et al., 2011) that model sequence segmentation and chunk extraction. The TRACX 

architecture was originally developed to simulate a pair of classic experiments (Saffran et al., 

1996; Aslin et al., 1998) in infant syllable-stream segmentation and chunking. The key 

features of both the TRACX and TRACX2 architectures (see Figure 1) are as follows: 

- it is a three-layer autoencoder (i.e., an autoassociator with a hidden layer) that modifies 

its weights so that it can reproduce on output what is on its input 

- it recognizes “chunks” of sequential items that have been frequently encountered on 

input; 

- it dynamically incorporates the internal representations developed in its hidden layer 

into new input; 

- its internal representations cluster in a manner that is consistent with how the input 

clusters (i.e., similar chunks have similar internal representations); 

- it generalizes well to new input. 

 

The key point about an autoencoder network is that the degree to which its output matches 

its input is a measure of how often the network has encountered that input before. If it has 

encountered a particular input often, its output will closely match that input. If, on the other 

hand, it has not encountered a particular input before, or has encountered it only rarely, there 

will be a significant error between the input to the network and the output produced by that 

input. 
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Figure 1. The 3-layer TRACX2 architecture with feed-forward weights between 

each successive fully connected layer. 

 

The TRACX2 architecture consists of three layers as shown in Figure 1. The input layer 

is divided into two parts of equal length, the left-hand side (LHS) and the right-hand side 

(RHS). Crucially, the hidden layer is the same size (i.e., has the same number of nodes) as the 

LHS and the RHS of the input layer. Bipolar inputs, {-1, 1}, were used. The standard mean 

squared error function was the objective function used with the backpropagation algorithm.  

As with prior simulations using TRACX2, the learning rate of the network was fixed at 

0.01 and there was no momentum term. A Fahlman offset (Fahlman, 1988) of 0.1 was used to 

eliminate flat spots in the learning. The network weights were initialized to random values 

between -0.5 and 0.5. A bias node was added to the input and hidden layers. A modified 

ReLU (Rectified Linear Unit) squashing function at the hidden and output layers, which was 

linear over the interval [-5, 5] and -1 for output less than -5 and 1 for output greater than 5, 

was used. (A tanh function was used in previous versions of TRACX2. We decided to use a 

ReLU function because it has become standard practice, especially for deep neural networks, 

and because it is considerably faster to calculate (Glorot, Bordes, Bengio, 2011) and, finally, 

it can be adjusted, if need be, more easily than tanh.) 

 Results for all simulations were averaged over 20 runs of the model with different 

starting weights of the connection matrices, with the exception of the calculations on the 

internal representations because combining the network's internal representations over several 

runs is problematic. 

 

3.2. Weight changes  
The “teacher” that drives TRACX2's learning is the input itself. In other words, on each 

weight-change iteration, the network attempts to reproduce on output what was on its input. 

The difference between the actual output of the network and the input drives the Generalized 

Delta Rule (Rumelhart & McClelland, 1986), which is used to change the weights of the 

connection matrices between the layers. A mean distance, defined as the mean of the absolute 

values of the differences between all of the corresponding values of the input and the output 

vectors, is used to calculate a dissimilarity measure, denoted by E in Figure 1. To understand 

the chunking mechanism implemented by TRACX2, we will consider that items: S1, S2, ..., St-

1, St, St+1, ... are sequentially input to the network. At each time step, one new item is put into 

the RHS of the input. Assume that St-1 and St are currently on input. This input, [St-1, St], is 

fed through the network. This produces a vector, Ht, at the hidden layer and a vector on 

Two items on input

Hidden layer is 
exactly half the 
size of the input 
layer Its input is compared 

to its output

E
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output, [Outt-1, Outt], each of whose terms is between -1 and 1. This latter vector is compared 

to the input vector, [St-1, St], and a measure of dissimilarity, E, between the two is computed. 

E is always between 0 (if the input-output correspondence is perfect) and 2 (if it is as bad as 

possible). Based on this dissimilarity, E, the weights of the connections between the Hidden-

to-Output and the Input-to-Hidden layers are changed according to the standard 

backpropagation algorithm (Rumelhart & McClelland, 1986).  

 

3.3. Context-dependent input  
What is put on the input of TRACX2 on the next iteration depends on the size of E. On 

the next time step, t+1, a weighted combination of St and the content of the hidden units Ht, is 

put in the LHS of the input unit : (1-Δ)*Ht + Δ*St where Δ is simply E squashed by a slightly 

modified tanh function to be between 0 (when E = 0) and 1 (when E = 2). A value, which is 

referred to as Temperature, determines the shape of this modified tanh. The larger the value of 

Temperature, the steeper this curve. The higher value of this parameter, the steeper the tanh 

function that determines Δ. In the current implementation we set Temperature = 5. The 

system also puts the next item, St+1, in the sequence into the RHS of the input. This means 

that if Δ is close to 1 (as is the case at the beginning of learning, when the difference between 

the network's input and what it produces on output is high), the network essentially slides item 

St from the RHS of the input to the LHS, (and puts St+1 into the RHS of the input). If, on the 

other hand, Δ is very small, the network "assumes" that it has seen the input pair [St-1, St] 

many times before (which is the only way Δ could be very small). Any pair of inputs that 

occur together many times is considered by the network to constitute a "chunk", which is 

encoded by the hidden units, Ht. Thus, on the next iteration (i.e., at time t+1) the network 

puts, not St, but essentially Ht, TRACX's hidden-unit representation of the chunk [St-1, St] into 

the LHS of the input, and then, as before, puts St+1 (the next incoming item) into the RHS of 

the input. When Δ is neither large nor very small, the content at t+1 of the LHS of the input is 

a mixture of the internal representation, Ht, and of the preceding RHS, St (Figure 2).  

 

 
Figure 2. The architecture of TRACX2. (Hid refers to Hidden units. LHS/RHS to 

the Left-hand side/Right-hand side of the input layer.)  

 

In this way, the network chunks frequently-seen pairs of input and re-uses those chunks 

dynamically to potentially create increasingly larger chunks from the input. Assume, for 

example, that the item sub-sequence, abc, is a frequently repeated subsequence in the item 

sequence. At some point, the pair, a-b, on input (a in the LHS and b in the RHS of the input) 

would be recognized as having been seen together often and E would become small. 

Therefore a-b will be considered to be a chunk by the network. TRACX2's internal 

representation (i.e., hidden-layer representation) of a-b would be H(ab). So, on the next time 

step, essentially H(ab) plus a very small contribution from b, rather than only b, would be put 

into the LHS of the input and, as always, the next item in the sequence, in this case, c, would 

be taken from the item sequence and put into the RHS of the input. Once the input pair 
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[H(ab), c] produced output that closely resembled the input, [H(ab), c] would be chunked as 

H(abc). In this way, larger and larger chunks of items, if they occur together frequently in the 

item stream, will be chunked by TRACX2.  

It is important to note at this stage that if Δ is always given a value of 0, the network will 

function as a Recurrent Auto Encoder (RAE). In the present paper, we have extensively 

compared the behavior of TRACX2 to both the RAE and an SRN.  

 

3.4. Input data 
We trained TRACX2 on a series of well-known French children's songs in which only 

pitches are considered (all with equal duration). These songs (Set 1) were: Ah les crocodiles; 

Bateau sur l'eau; Fais dodo, Colas mon p'tit frère; Au clair de la lune ; Ainsi font; Une souris 

verte; Ah vous dirai-je maman; Pomme de reinette; Sur le pont d'Avignon; Frappe, frappe, 

petite main. To ensure that our results were not dependent on our choice of children songs, we 

also trained TRACX2 on a second set of similar children's songs (Set 2): Alouette, gentille 

alouette; Biquette ne veut pas sortir du chou; Dans la forêt lointaine; Je te tiens, tu me tiens; 

Le bon roi Dagobert; Il était une bergère; J'ai du bon tabac; J'ai perdu le do; Frère Jacques; 

Il court le furet. Features, such as rhythm, meter, tempo, harmony, and texture were not taken 

into account. Based on the importance of relative pitch, intervals and melodic contour in 

music perception, for all of the simulations reported in this paper we encoded, not notes, but 

rather the intervals between notes. So, just as the "primitives" in Saffran et al. (1996a, b) and 

Aslin et al. (1998) were individual syllables, the primitives in Slone & Johnson (2018) were a 

small number of the geometrical shapes (e.g., crosses, triangles, circles), and the primitives in 

Saffran et al. (1999) were musical notes, the primitives of our simulations were the intervals 

between successive notes. The difference with respect to the above studies, of course, is that 

we did not construct the melodies used from our set of primitives.  

In order to test a possible prior-learning effect of the network's exposure to these 

children's songs, we used the first 42 measures of the Allegro Assai of the Sonata for Violin 

Solo in C Major BWV 1005 by J. S. Bach.  

     The children's songs and the part of the Bach sonata BWV 1005 that we used in the 

prior-learning study required a total of 39 intervals (Figure 5b). (The children's songs 

contained only 25 of these intervals.) Figure 3 shows a short melody with labels of pitch and 

the intervals between pairs of tones. From the note A to the note E, there is a decrease in pitch 

by 5 semitones, hence an encoding of -5. Between E and B, on the other hand, there is a rise 

of 7 semitones, thus +7. (Figure 3). 

 
Figure 3. Encoding of intervals between notes. The number indicates the number of 

semitone steps between the notes and the +/- sign the direction (+ up or - down). 

 

Figure 4 shows how these intervals were labeled for the purpose of the present 

simulations. For convenience and for accessibility for non-musician readers, we labeled each 

of the intervals from -19 to 19 with capital letters included or from a to y, instead of using the 

music-theory terms, with + or -  indicating the direction (rising or falling) of the interval. 

Two-note intervals are designated in our paper here by capital letters or lowercase letters: A, 

A    E    B G    D    A

-5 +7 -5 +7-4
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B, ... a, b, c, ..., x, y, ... Y, Z. There were only 25 intervals (from -12 to +12) in the children's 

songs, and these were labeled with lowercase letters from a to y. (See Figure 4) 

 
Figure 4. The labeling of the 39 different intervals found in the children's songs and 

in the Bach sonata. 

 

Two types of encoding were tested. We initially used a one-hot encoding scheme, where 

each interval was represented by a single unit set to 1 with all others set to -1. This type of 

encoding was used by TRACX and TRACX2 when simulating segmentation and chunking of 

syllable- and image-sequences (French, 2011; Mareschal & French, 2017). But we rapidly 

realized the limitations of that scheme for encoding musical sequences. Unlike for syllables 

and geometrical images, there was a clear need to impose a distance metric on the input 

coding of intervals. In a musical piece, the passage from the tone C to the tone D is perceived 

as being very different than going from C to A, something one-hot encoding cannot capture. 

The first pair describes an upward movement with a distance of two semitones (+2), whereas 

the second pair describes a downward movement with a distance of three semitones (-3). 

Depending on the pitch-height difference of the two tones, the pairs/contours described in this 

manner have greater or lesser perceptual similarity. Our study of TRACX2's internal 

representations after learning, for example, clearly showed the necessity of maintaining the 

proximity information of the intervals input to the network. We, therefore, replaced the 

traditional one-hot encoding by what we called an “ordinal” encoding of the input (also called 

"thermometer encoding" in the machine-learning literature). In addition, the error measure, E, 

used to drive TRACX2's backpropagation learning had to be adapted to this type of input 

encoding: the original Chebyshev distance (a maximum distance) used in prior versions of 

TRACX and TRACX2 had to be replaced by the mean absolute difference between the input 

and output vectors. Finally, we made the assumption that listeners are perfectly able to 

discriminate the here used tone differences. This is a reasonable assumption as the required 

minimal discrimination between two tones here was a semitone apart (i.e., +1 or -1), and pitch 

discrimination thresholds for non-musicians have been reported to be inferior to a semitone 

(e.g., an average of 0.22 semitones, Pralus et al., 2019).  

The ordinal encoding of the musical intervals encountered in the set of children's songs 

was done as follows:  
A  1, -1, -1, -1, -1, -1, ..., -1  

B 1,  1, -1, -1, -1, -1, ..., -1 

C 1,  1,  1, -1, -1, -1, ..., -1 
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... 
X   -1, ...,  -1, -1, -1,  1, 1,  1 
Y  -1, ...,  -1, -1, -1, -1, 1, 1 
Z  -1, ..., -1, -1, -1, -1, -1, 1 
 

Ordinal encoding reflects both the size and direction of the intervals. So, for example, m is the 

interval corresponding to the repetition of a note and, therefore, has a value of 0, o is the 

interval corresponding to a rise in pitch of 2 semitones, and t corresponds to a rise of 7 or a 

perfect fifth. Ordinal encodings of m and o differ by two bits, whereas m and t differ by seven 

bits. The use of ordinal encoding corresponds, or at least approximates, what a human would 

perceive in listening to m and o versus m and t.  

 

3.5. Procedures used for training and testing 
The entire training corpus of children's songs was presented to the TRACX2 network for 

30 epochs. We chose this small number of epochs compared to the many thousands of epochs 

generally used in connectionist networks, in an attempt to simulate, in a very approximate and 

conservative manner, the number of times a young child might be exposed to these songs. On 

each training epoch the order of the songs presented to the network was randomized. It is 

clear that many children listen to these songs considerably more than 30 times, but our aim 

was to avoid typical connectionist training regimes of many thousands of epochs, since it is 

not clear what these enormous numbers of training cycles actually correspond to empirically. 

We, therefore, chose a small number of epochs to model the data, even though this might 

seem unusual in comparison to standard connectionist simulations. 

   

3.6. Description of the training data 
The distribution of all the intervals contained in the two sets of children songs is shown in 

Figure 5a. By far the most frequently encountered interval was the one in which the two 

successive notes are identical. This contrasts with an excerpt of a Bach sonata that constituted 

one of our test pieces, in which there were no such intervals (Figure 5b). In addition, in the 

children's song corpus less consonant intervals, such as tritones (e.g., s = +6) and minor sixths 

(u, +8), were completely absent.  

The first set of 10 songs used to train the network contained a total of 437 intervals. 

During training there was no intervallic connection between the last interval of one song and 

the first interval of the next song. The average size (measured in semitones) of the 437 

intervals was -0.0092. In other words, ascending  (+) intervals nearly exactly balanced out 

descending (-) intervals. Their standard deviation (measured in semitones) was 3.45. 
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Figure 5a. The distributions of all intervals encountered in the two training corpora of 

children's songs (Set 1, Set 2).  

 

Figure 5b. Distribution of intervals in the first 42 measures of Bach's sonata for violin 

BWV 1005. The size of the intervals is indicated on the x-axis. Note the complete 

absence of the "flat" interval, m, of size = 0. 

 

We also analyzed the distribution of all 2- and 3-interval "words" in the training corpus. 

In keeping with the literature on sequence segmentation (e.g., Saffran et al., 1996a, b; Aslin et 

al., 1998; Slone & Johnson, 2018), we have called short sub-sequences of intervals "words" 

instead of using terminology like bigrams, trigrams or triplets. Figure 6 shows this 

distribution for 2-interval words in Set 1 of the children's songs 

  

Figure 6. Raw frequencies of 2-interval words appearing in the first training corpus 

at least 5 times. 

 

mm words (i.e, words consisting of two occurrences of the "flat" interval, m, in which both 

notes are identical) are, by far, the most frequently encountered 2-interval words in the 

training corpus. For 3-interval words, mmm was the most common. (These distributions are 

essentially the same when the program is run on the second set of children's songs.) 

 

3.7. Word error calculation 

 

The degree to which TRACX2 recognizes words is based on the input-output error 

produced when a word is presented to its input. For 2-interval words, the word is encoded and 

input to the network. Activation then spreads via the hidden layer to the output and the error 

value, E, is calculated, as indicated earlier, as the mean absolute difference between the input 

and output vectors. A small error means that the word is well recognized by (i.e., is "familiar" 
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to) the system, whereas a large error means the word is not well recognized by the network, 

because it is new or has been seen only infrequently by the network. 

 For 3-interval words, the error-calculation is somewhat more complex and will be 

explained by means of a concrete example. Consider the 3-interval word, kmm. At time t, the 

interval k is put on the LHS of the input, and m on the RHS. km is then fed through the 

network and the output error, E1, is calculated. E1 is then converted by a modified tanh into Δ 

(see Section 3.3 Context-dependent input), which then determines how much of the hidden-

unit activations and the RHS activations at time t are to be included in the LHS of input at 

time t+1 (see Figure 2). In other words, as was done during the original learning of the first 

two intervals, the LHS is filled with a combination of the hidden-unit vector (Ht) plus the 

RHS input vector -- specifically, (1-Δ)*Ht + Δ*RHS. The encoding of the second m is then 

put into the RHS of the input vector. This full input is then fed to the output nodes of the 

network, and the mean absolute error between input and output (E2) is calculated. The average 

of E1 and E2 is used as the error-measure for kmm. 

4. Study 1: TRACX2's internal representations 
 

In this section, we examine TRACX2's internal representations. We address the following 

question : What kind of information is encoded in TRACX2's internal representations and 

how is that information organized? Three different studies (St1.1, St1.2 and St1.3) will be 

considered.  

 In the original TRACX paper, French et al. (2011) showed that the internal 

representations of TRACX clustered in a way that tracked the grammatical structure of the 

syllable sequences that were input to it. Do we get similar results and do TRACX2's internal 

representations create clusters of similar musical 2-interval words? St1.1, therefore, looked at 

the "topological organization" of TRACX2's internal representations.  

 We then decided to examine the internal representation of longer words. St1.2 studied 

whether the network keeps a trace in its internal representations of the values of the intervals 

that define these longer words.  

 Finally, we studied (St1.3) the relationship between the errors of words and their 

temporal location in the training set. In particular, we investigated whether there are primacy 

or recency effects. 

 

4.1 General method 

In the three studies, we considered the internal representations and the errors that TRACX2 

generated after training on the children's songs. The simulations were done on both the 

primary set (Set 1) and the verification set (Set 2) of children's songs, and the results were 

essentially identical. We present the results of a number of simulations carried out by 

TRACX2 (Figure 8) and compare the performance of the model with other systems -- namely, 

first-order Markov chains (i.e., transitional probabilities only), PARSER, an RAE and an 

SRN.  

 

4.2. PCA grouping of 2-interval word contours (St1.1) 

4.2.1 Method 

 We trained TRACX2 on one set of children's songs. We then performed a principal 

components analysis of the first two principal components of the 39-element hidden-unit 

representations of all of the 84 2-interval words in the training corpus. The various types of 

contours of 2-interval words can be defined depending on whether their component intervals 

were rising (R), falling (F), or flat (=). In all, nine clusters of two-interval contours will thus 

be considered: rising-rising (RR), flat-rising (=R), falling-rising (FR), falling-flat (F=), 
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falling-falling (FF), flat-falling (=F), rising-falling (RF), rising-flat (R=), and, finally, flat-flat 

(==).  

 

4.2.2 Results 

     Unsurprisingly, no reasonable clustering of the hidden-unit representations was 

obtained when we used one-hot coding for the intervals input to the network. The points 

projected onto the plane of the first and second principal components did not cluster 

according to their contour. However, when ordinal coding was used, we discovered that the 

internal representations of TRACX2 cluster in a very meaningful way (Figure 7).  

     Figure 7 ("TRACX2 contours") shows the space defined by the first two principal 

components of the hidden-unit representations of the 84 2-interval words found in the first set 

of children's songs. This figure clearly shows that 2-interval words with similar contours tend 

to group together. It is interesting to note that the clusters containing a flat interval are exactly 

where they should be with respect to the larger clusters on either side of them. For example, 

consider RR (R means "rising"), the cluster of hidden-unit representations of 2-interval words 

where both intervals are rising, and RF (F means "falling"), the cluster where the first interval 

rises and the second falls. R= (= means "flat") is the cluster representations of words whose 

first interval rises (like RR and RF) and whose second interval is flat (i.e., "between" rising 

and falling). In other words, the R= cluster should reasonably fall between the RR and RF 

clusters, which, in fact, it does. The same is true for all of the other clusters containing a flat 

interval. 
      

 
 

 

TRACX2 contours

First principal component

Se
co

nd
 p

ri
nc

ip
al

 c
om

po
ne

nt



15 
 

 

 

 

 

Figure 7. Comparison of TRACX2's and RAE's clusters of internal-representation of 2-

interval-word contours after 30 epochs of learning of the children's songs.  

 

In addition, for TRACX2, within each class of intervals containing the flat interval, m, and 

a rising or falling interval (i.e., R=, =R, F=, and =F), the distance of each word in the class 

from mm (the word with two flat intervals, ==) depends on the size of the rising or falling 

interval making up the word. To see this, consider the clusters F=, made up of the words: {fm, 

hm, im, km, lm} and R=, made up of the words: {nm, om, pm, qm, rm, tm, vm}. The sizes of 

the two intervals making up each word are shown in square brackets. Starting at mm (i.e., 

"==") and moving downward through the class, F= consists of, in order: {lm = [-1,0], km = [-

2,0], im = [-4,0], hm = [-5,0], and fm = [-7,0]}. Starting at mm (i.e., "==") and moving upward 

through the class, R=, consists of, in order: {nm = [1,0], om = [2,0], pm = [3,0], qm = [4,0], 

rm = [5,0], tm = [7,0],  vm = [9,0]} 

    Thus, it can be seen that distances and directions from "==" (the "flat word") correspond 

precisely to the size and +/- direction of the non-flat interval in each of the words in these two 

classes. The same is true for the classes =R and =F. 

 

4.3. Does the memory trace of longer words contain traces of its components? (St1.2) 

4.3.1. Method 
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     We carried out analyses on longer words to see whether a trace is kept in the internal 

representations of the values of the successive intervals that made up the words in the 

children's songs. An example illustrates the method we used. Consider the 4-interval word 

mnoh. It can be characterized in two different ways: 

i) from the values of its 4 intervals, namely  0 (m), +1 (n), +2 (o) and -5 (h). We will 

denote these 4 values by I1(mnoh), I2(mnoh) , I3(mnoh) , I4(mnoh), respectively;  

ii) from its internal representation, denoted by R(mnoh), a vector of 39 real numbers.  

Consider I1. It is the function that associates the 4-interval word mnoh with the value of its 

first interval, i.e., I1(mnoh) = 0. As training and chunking progress, m is first chunked with n, 

then mn is chunked with o and, finally, mno is chunked with h. This means that the interval m, 

as such, has progressively disappeared as a distinct input to the network. But is its value 

retained in one way or another in the internal representation, R(mnoh)?  In other words, can 

we reconstruct I1 from R? And are I2, I3 and I4, also "hidden" in R(mnoh). 

     A simple way to determine the extent to which I1, I2, I3 and I4 are "present" in R(mnoh) 

is to calculate the multiple correlation between I1and R (as well as I2, I3, and I4, respectively, 

with R). If this correlation is high, then the value of I1 can be derived as a linear combination 

of the components of R, which means that it can be reconstructed from R.  

 

4.3.2. Results 

The analysis carried out on longer words showed that, with ordinal encoding, a trace was 

kept in the internal representations of the values of the successive intervals that made up the 

words in the children's songs. With one-hot coding this trace was much poorer (see Table 1), 

which is one of the main reasons that we rejected one-hot coding for modeling early melody 

perception. 

The table below gives the values of the multiple correlations for both one-hot and ordinal 

encoding for words of length 3 and 4. We show in parentheses the values obtained on the 

second set of children songs.  

 

3-interval words 

Coding Multiple 

square 

correlation 

with I1 

Multiple 

square 

correlation 

with I2 

Multiple 

square 

correlation 

with I3 

One-hot 0.44 (0.38) 0.63 (0.45) 0.93 (0.90) 

Ordinal 0.97 (0.98) 0.98 (0.96) 1 (1) 

 

4-interval words 

 

Coding Multiple 

square 

correlation 

with I1 

Multiple 

square 

correlation 

with I2 

Multiple 

square 

correlation 

with I3 

Multiple 

square 

correlation 

with I4 

One-hot 0.23 (0.26) 0.36 (0.32) 0.57 (0.41) 0.84 (0.80) 

Ordinal 0.84 (0.83) 0.85 (0.91) 0.97 (0.97) 1 (1) 

 

Table 1. Multiple square correlations of subwords making up longer words (3- or 4-interval 

words) 

 

Clearly, ordinal encoding enables the system to keep a trace of the components making 

up its internal representations of the whole structure of the words. As expected, the trace 
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decreases with the length of the word. The final interval of a word is better memorized than 

the first one.  

These results go some way in demonstrating a "chunking" effect at the level of non-

adjacent dependencies. The fact that both I1 and I3, for 3-interval words, and I1 and I4 for 4-

interval words, have a high multiple correlation with the internal representation means that the 

system establishes through its internal representations a link between non-adjacent intervals. 

However, to show that TRACX2 is explicitly sensitive to non-adjacent dependencies would 

require additional analyses as chunks are progressively built from co-occurrences of adjacent 

elements. This is clearly an issue that should be explored in future work.  

 

4.4. Word errors and their relation to frequency and order of appearance in the 

training set (St1.3) 

4.4.1. Method 

    We examined the errors associated with the 2-interval words and their relation to their 

frequency and order of appearance in the training sets. To investigate the possibility of a 

primacy effect, we take the musical sequence obtained by chaining the 10 different songs (no 

break between the songs) to get a new input of length 437. After training the network on that 

sequence, we obtain new errors. They are compared with the previous ones (generated with 

the 10 songs in the way described in section 3). We also modified the sequence in different 

ways by moving occurrences of some words to the beginning of the sequence. This was done 

to test the possible effect of the order of appearance of those words on their associated errors. 

 

4.4.2. Results 

Errors associated with 2-interval words are negatively correlated with their frequencies (r 

= -0.35). A word that has been seen by the system frequently generally will have a smaller 

error on output than infrequently encountered words. However, for certain words in the 

training corpus, this is not the case. For example, the 2-interval word, mi, has a low error on 

output (0.16), even though it occurs relatively infrequently in the training corpus (only 4 

times). On the other hand, the more frequent 2-interval word, ok, has a high frequency of 

occurrence of 17 but, nonetheless, has a higher output error (0.19) than mi.  

This apparent discrepancy is due to the impact of the temporal organization of words. A 

close look at the songs in the training set shows that mi occurs at the beginning of one of the 

10 children's songs, thereby potentially producing a primacy effect. After training the network 

on a new sequence obtained by concatenating the 10 different songs, the error associated with 

the high-frequency word mo, which appears 24 times in the sequence, was 0.25. However, by 

moving all 24 occurrences of mo to the beginning of the 437-word sequence, the error 

associated with mo dropped to 0.15. These results are in line with the well-known primacy 

effects in memory tasks reported by Ebbinghaus (1913). They are also similar to those 

reported in a study by Deliège (2001) that demonstrated improved memory performance for 

first-heard cues in music-recognition tasks.  

 

4.5. Comparisons with other other models 

 

4.5.1. Comparison with First-order Markov Chain (TP) calculations 

Other statistical learning mechanisms have been shown to be able to extract words 

from sequences of syllables, and these mechanisms also apply to other domains (e.g. 

Christiansen et al., 1998; Cleeremans & McClelland, 1991). In most existing models based on 

statistical regularities, chunks and boundaries between chunks are detected by the variation of 

transitional probabilities. For example, word boundaries fall where inter-syllable transitional 

probabilities (TPs) are significantly lower than the preceding and following TPs.  
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For all 2-interval words in the primary set of children’s songs (Set 1), we computed 

the Transitional Probabilities (TPs) from the first interval to the second. If TRACX2's errors 

for these words were closely correlated with these TPs, it would be reasonable to claim that 

the mechanisms instantiated in TRACX2 could have been achieved by simple statistical first-

order Markov chain estimations.  

To investigate that assertion, we computed the Pearson correlation coefficient, r, 

between the TPs and the errors obtained with TRACX2 on the 84 2-interval words making up 

the primary set of children's songs (Set 1).. Large errors (i.e., poor chunks) should correspond 

to low TPs. However, this is not the case. The value of r was 0.13 (i.e., positive and close to 

0). In short, errors calculated by TRACX2 for these words did not depend linearly on the 

associated TPs.  

These results have also been confirmed with analyses on 3-interval words, which 

correspond to words comprising 4 tones. For these words, we replaced simple TPs by average 

transitional probabilities. The Pearson correlation of the average TPs with the errors made by 

TRACX2 (see section 3.7. to see how errors on 3-interval words are calculated) on the 161 3-

interval words in the primary set of children's songs was found to be 0.32.  

In short, TRACX2's errors seem to be capturing not only TPs, but also other types of 

statistical regularities in the songs.  

 

4.5.2. Comparison with PARSER 

      PARSER (Perruchet & Vinter, 1998, 2002) is a largely, if not completely, symbolic 

model of syllable sequence parsing and chunking. A particularly clear description of this 

model can be found in Perruchet & Vinter (1998). It does not maintain anything that is 

equivalent to the internal representations of TRACX2, aside from what is stored explicitly in 

its Working Store. For instance, it has no way of knowing that the two-interval FR contour ay 

(12-note fall, followed by a 12-note rise) should cluster with the much less "severe" FR 

contour ko (2-note fall, followed by a 2-note rise), rather than with ya or ok, both RF 

sequences. In other words, PARSER was not designed to cluster representations of its data, 

and hence there is no clustering of musically similar 2-interval pairs.  

 

4.5.3. Comparison with RAE 

     As mentioned above, an RAE is a special case of the more general TRACX2 

architecture. Given the simplicity of the RAE, it is interesting to contrast its behavior with the 

results obtained with TRACX2, parameterized as described in this paper. With an RAE, the 

projection of the points representing the 2-interval words on the first principal plane after 30 

learning epochs is very different from the one obtained with TRACX2 as shown in Figure 7.    

     We then looked at the correlation between the mean errors over all 84 2-interval words 

for TRACX2 and RAE. This was 0.79. However, the means (of these mean errors) were for 

TRACX2 and RAE 0.17 and 0.50, respectively. In other words, the overall errors-on-output 

(i.e., the fit-to-data) produced by TRACX2 were three times better than those for RAE. (And 

this difference held up for 3 and 4-interval words.)  

    We also calculated the correlation between the errors made by TRACX2 and the 

difference “error RAE – error TRACX”. The value is -0.41 for 2-interval words and goes to -

0.85 for 3-interval words and to -0.92 for 4-interval words. This means that when TRACX2's 

error is small (i.e., for familiar words), the difference with RAE is big, RAE errors being 

larger than TRACX2 errors.  

     Chunking in TRACX2 and RAE works more or less in the same way. Words producing 

large errors (non-familiar words) are basically the same for the 2 systems. This is also the case 

for words with small errors. However, the differences between the errors made by TRACX2 

and those made by RAE increase as the words become less familiar to the two systems. This 
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could be explained as follows. When words are familiar, TRACX2 and RAE work in a 

comparable manner. For familiar words on input, the left part of TRACX2's input is mainly 

the internal representation of the first part of the word. But for RAE, regardless of whether the 

words on input are familiar or not, it always puts their internal representation on input on the 

next time step. For this reason, for non-familiar words the principles of functioning of the two 

systems are different. Consider an unfamiliar 3-interval word. RAE takes as input the internal 

representation of the first 2 intervals, even if they do not constitute a chunk. This will then 

produce a larger error on output than for TRACX2 because, in this case, TRACX2 does not 

use the internal representation of a non-existing chunk. 

 

4.5.4. Comparison with SRN 

     Given its importance in similar studies (see French et al., 2011, for details), we ran a 

vanilla SRN (Elman, 1990) on the primary set of children's songs with 30 learning epochs and 

compared the errors
1
 for each of the 2-interval pairs of this set with those produced by 

TRACX2. Insofar as possible, we set the parameters of the SRN, such as its learning rate, 

momentum, number of hidden units, Fahlman offset (Fahlman, 1988), number of learning 

epochs, and its mean absolute error measure to be the same as those used by TRACX2. In 

spite of these similarities, it is worth mentioning that the tasks of the SRN and of TRACX2 

are fundamentally different -- namely, the SRN tries to predict the upcoming interval and 

TRACX2 tries to reproduce the input. 

      As for TRACX2 and RAE, we looked at the first two components of a principal-

components analysis (PCA) of the internal representations of the SRN for the 84 2-interval 

words in Set 1 of the children's songs. The clusters of the contours of these words closely 

resembled those produced by RAE, in particular, with a great deal of overlap. This is not 

particularly surprising, given that the "context units" at time t of an SRN are a copy of the 

hidden-unit activations of the network at time t-1, which is the same mechanism used on input 

by the RAE.   

     Finally, we found a correlation of 0.31 between the errors generated by TRACX2 and 

those produced by the SRN. The reason this correlation is not higher is because of the way in 

which the 2-interval words are learned. This is illustrated by two relatively infrequent 2-

interval words, ay (4 occurrences) and dv (5 occurrences), compared to high-frequency words, 

such as mm (61 occurrences), km (24 occurrences) or ok (17 occurrences). These low-

frequency pairs were close together in the training set (thus, rapid reinforcement during 

learning) and had transitional probabilities of 1. This meant that for SRN ay and dv were 

among the best learned words, whereas TRACX2, which relies on their frequency of 

occurrence rather than their transitional probabilities, they were among the most poorly 

learned words. 

5. Study 2: The effect of prior learning on recognition performance of 

previously unseen words 
      

                                                 
1
To calculate the error produced by an SRN for a particular word means setting the context 

units to 0 and sequentially inputting the items making up the word to the SRN. Setting the 

context units to 0 is justified because of the distribution of intervals in the children's songs. 

Because the ascending  (+) intervals almost exactly balanced out the descending (-) intervals 

in the training corpus (Figure 5a), it is reasonable to start with an activation in the context 

units of 0. The output error is then the average of the prediction errors associated with each of 

the items making up the word.  
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Can TRACX2 generalize its learned representations of musical chunks to new, unobserved 

interval sequences? We will present the results of a number of simulations carried out by 

TRACX2 (Figure 8) and compare the performance of the model with other systems -- namely, 

first-order Markov chains (i.e., transitional probabilities only), PARSER, RAE and an SRN. 

The study is composed of two parts. First, we examined the effect of modifying the 

familiarization corpus and in a second set of simulations, we examined the effect of prior 

learning on three different kinds of test items. 

 

5.1 The effect of modifying the familiarization corpus 
5.1.1. Method 

We trained TRACX2, RAE and an SRN on four different, but related training sets. These 

were the primary set of children's songs and three other sets in which the intervals of these 

children's songs were scrambled in different ways. For each network, we also included a fifth 

simulation where there was no prior learning. After training the networks on these different 

versions of the primary data set (and without training), we selected a set of 3-interval words 

that did not occur in any of the training corpora, but that were found in the Bach sonata. We 

called this set the "Bach test words". Each of the following training/test procedures was run 

20 times, each time reinitializing each network's weights. 

All networks were trained for 30 epochs (with the standard values of learning rate, 

momentum, etc., See Section 3.1) on the primary corpus of children's songs ("songs" in 

Figure 8). We then fixed the weights of the networks and presented the Bach test words to 

each network and recorded the errors obtained.  

To see the role played by the intervals themselves, independently of their order, we then 

randomly permuted the intervals in each of the children's songs ("within-song permute" in 

Figure 8), and, starting with newly initialized, random weights, trained the networks for 30 

epochs on these scrambled children's songs. We fixed the networks' weights and tested their 

recognition performance, as measured by errors on output, on the Bach test words.  

We also created a third training corpus by randomly distributing all of the intervals across 

all ten of the children's songs of the primary set ("global permute" in Figure 8). This was 

intended to test a possible, more general familiarity effect with intervals frequently 

encountered in the children songs. After randomly re-initializing each network's weights, we 

trained them for 30 epochs on this corpus, fixed their weights and tested each network's 

recognition performance on the Bach test words.  

We then randomly chose intervals from the full set of 39 intervals and distributed these 

intervals across all ten of the children's songs ("full random permute" in Figure 8). This last 

simulation was designed to test a possible learning effect on musical intervals, a kind of by-

product of the general learning mechanism used in neural networks. As before, we 

reinitialized all of the networks' weights, trained them on this set, fixed their weights and 

tested their recognition performances on the Bach test words.  

Finally, after once again re-initializing the networks' weights, we tested each network on 

the Bach test words with no prior training.  

In each case, the length of each song (i.e., the number of intervals) was left unchanged. 

We also ran these tests for the RAE and the vanilla SRN, as described above (Figure 8).  

We averaged our results over the 20 runs of the program for each of these training/test 

scenarios. In all cases, we used the standard set of learning parameters for TRACX2, the RAE 

and the SRN.  

 

5.1.2. Results 

The results of the simulations are shown in Figure 8.  
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Figure 8 The effect of prior learning for TRACX2, RAE and an SRN on the recognition of 

words found in the Bach test set but not in the training corpus (SEM error bars) 

 

It is interesting to note that for all three types of networks tested, it is the set of intervals in 

the training set, regardless of their order, that accounts for the recognition advantage of the 

words in the Bach sonata. This result is in agreement with a study (Tillmann & Bigand, 2001) 

that demonstrated that the temporal order of chords in the context sequence did not affect the 

harmonic priming effect on the final target chord.  

 

5.2. The effect of prior learning on three different kinds of test items 

5.2.1. Method 

To further examine the effect of prior learning on previously unseen-word processing, 

and, notably, the potential effect of proximity sensitivity, we investigated the response of 

TRACX2 to different kinds of words that it had never encountered during training on the 

children's songs. For this study, the network was trained on the primary corpus of children's 

songs (as described in Study 1), and then tested on a different set of materials that shared 

similar structural features, but were new and had not been previously encountered by the 

network. This approach mimics a general methodological approach used in music perception 

research, that relies on new (i.e., previously unheard) experimental items to test listener’s 

music perception (e.g., Deliège, 2001; Schellenberg et al., 2002; Marmel et al., 2010). 

Creating specific experimental material that respects the same musical features as real-world 

music allows for investigating listeners’ music perception in a controlled way, whether it tests 

for interval and contour processing (e.g., Schellenberg et al., 2002), tonal function (e.g., 

Marmel et al., 2010) or specific musical patterns or prototype-like cues (e.g., Deliege, 2001). 

In Deliege, 2001’s study, listeners were first exposed to a given musical material and then 

tested for different items that were either old, new or modified on different dimensions and to 

varying degrees, thereby providing evidence for listeners’ memory storage and its influence 

on perception (see also work by Dowling et al., 1995, 2001, 2014 testing short-term memory). 

Here, we adapted a similar approach for TRACX2 -- namely, after a training phase on a set of 

children songs, the model was tested with three types of new words that did not belong to the 

set of children's songs on which it was trained and were intentionally constructed to test the 

proximity sensitivity of the network. Specifically, three types of new words were created, 

notably words that were:  

i)    far from all the words encountered during training,  

ii)  close only to existing, but unfamiliar words,  
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iii)  close to very familiar words. 

  

Each of these three types of unheard words should produce different error profiles -- 

namely, the first category of unheard words will produce the largest errors, the second type of 

unheard words will sound somewhat familiar to TRACX2 and will, therefore, produce smaller 

errors than the unheard words in the first category, and the third type, being close to familiar 

words, will produce the lowest errors. The details of precisely what is meant by these three 

categories of unheard words and the definition of far versus close are as follows. 

We define the Chebyshev distance (Cheb) between two words as the largest distance, 

measured in semitones, between the corresponding intervals of the two words. Consider the 

new word caf, which does not occur in the children's song set. The closest word to caf in the 

children's corpus is jim. Between c (-10 semitones) and j (-3 semitones) there is a difference 

of 7 semitones; between a (-12) and i (-4) there are 8 semitones, and between f (-7) and m (0) 

there are 7 semitones. Consequently, the Chebyshev distance between caf and jim, is 8, which 

we write as Cheb(caf, jim) = 8. 

 

i) When the unheard words are far from all the words encountered during training 

If the Chebyshev distance between two 3-interval words was greater than 5, we 

considered them to be "far apart". We looked at TRACX2's errors over a set of 50 

invented words that were far from all of the words in the primary training corpus. So, for 

example, TRACX2's error-on-output for caf was 0.45. Given that the errors for all of the 

3-interval words in the ten children songs in the primary corpus varied from 0.16 to 0.39 

with an average of 0.22, an error of 0.45 can be considered as rather large.  

 

ii) When the unheard words are only close to unfamiliar words 

The unheard word, osf, for example, is close to the word orf  (Cheb(osf, orf) = 1), 

which exists in the training set. However, orf occurs only once in the training set and, as a 

result, has an error-on-output of 0.26. This explains why the error on output of the very 

similar, but unheard word osf is 0.26, which is slightly more than 1 SD (0.036) above the 

average error value of 0.22 for all words in the training corpus. In other words, osf, a new 

word, is very similar to orf, which exists in the training corpus but was not well learned 

because of its low frequency.  

 

iii) When the unheard words were close to familiar words in the children songs.  

Consider llm, a word that never occurs in the children's songs, but is at a Chebyshev 

distance of 1 from lmm, and mlm in the training set. These two words occur 2 and 4 times, 

respectively, in the children's song set and have errors, 0.17 and 0.16, respectively, that are 

well below the mean error for all existing words.  As expected, the error on the new word, 

llm, is low, with a value of 0.18.  

 

We randomly generated three sets of 50 unheard words, corresponding to the above three 

categories of unheard words:  

 50 unheard words situated at a distance greater than 5 from all the words existing in 

the children's songs; 

 50 unheard words situated at a distance of 1 from existing, unfamiliar words, i.e., 

words with an error that was greater than the mean error + 0.5 SD. In other words, an 

error greater than 0.24 for TRACX2. 

 50 unheard words situated at a distance of 1 from existing, familiar words, i.e., words 

with an error that was less than the mean error – 0.5 SD. This translated as an error 

less than 0.2 for TRACX2. 
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5.2.2. Results 

     The mean errors for these three categories of unheard words were respectively 0.30, 

0.26, and 0.20. (F(2, 147) = 101.9, p<0.001, p
2
 = 0.58). A Tukey post-hoc analysis showed 

that all pairs of means were significantly different from each other (for all pairs, p<0.001). 

 
Figure 9. The effect of prior learning for TRACX2 on words of various distances from 

previously encountered familiar or unfamiliar words in the training corpus.  

 

5.3 Comparison with other models  
 

First-order Markov models 
     In this framework, TPs can only be estimated based on the observed frequencies of 

words present in the training set. For this reason, no generalization to new 2-interval words is 

possible. There is no straightforward means of estimating the corresponding transitional 

probabilities or of making use of a proxy, as is done by TRACX2, based on the proximity 

between intervals, a property that is not part of a simple first-order Markov model using TPs. 

The use of more sophisticated Markov models (e.g., dynamic n-order Markov models, 

Cornelius et al., 2017) is, however, beyond the scope of this paper. 

 

PARSER 
     Perruchet (personal communication) tested PARSER (Perruchet & Vinter, 1998, 2002) 

by training it first on the primary set of children's songs and then testing it on the Bach sonata. 

He found no effect of prior learning on PARSER's chunk-extraction performance on the Bach 

sonata. Because PARSER is not equipped to handle distributed representations on input, it has 

no way of applying what it has learned about one 3-interval word in the training set to a 

similar, but never encountered word that appears in the test set. This is why there is no 

advantage of having been exposed to the children's songs prior to being tested on words in the 

Bach sonata.  

 

RAE 

     An RAE shows a prior-learning effect for unheard words that is very similar to the 

effect for TRACX2. We tested this effect using the same paradigm we used for TRACX2 in 

5.2.. The RAE was first trained on the primary set of children's songs for 30 epochs. We 

created three different sets of unheard words using the same procedure described in 5.2.1. We 

tested these three categories of unheard words with the RAE to determine its error-on-output. 
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The mean errors for the three categories of unheard words were respectively 0.46, 0.42, 0.33 

(F(2, 147) = 332, p<0.001, p
2
 = 0.82). The RAE, therefore, shows a similar prior-learning 

effect as TRACX2.  

 

SRN  
     An SRN shows also a prior-learning effect for unheard words that is very similar to the 

effect for TRACX2. The SRN was tested in the same way as TRACX2 and RAE. The mean 

errors for the three categories of unheard words were respectively 0.39, 0.28, and 0.13 (F(2, 

147) = 69.2; p<0.001, p
2
 = 0.49).  

 

Conclusion 

     In conclusion, TRACX2, RAE and SRN showed a significant effect of prior learning on 

the processing of new items that differed to various degrees from the items found in the 

training set. The finding that both the first-order Markov model and PARSER could not 

simulate these differences suggests the necessity of distributed representations to encode 

input. Further research will need to design new music material to be tested in perception 

experiments along this line in which errors-on-output of TRACX2, RAE and SRN will be 

used to predict listeners’ performance in various recognition tests (e.g., lower errors 

predicting stronger confusion and thus lower accuracy). A similar approach has been 

previously used for the simulation of short-term memory results with the tonal-structure 

network being able to simulate participants’ performance differences between the standard 

melody and four experimental conditions (i.e., exact transposition, tonal answer, atonal 

contour foil, random foil (Tillmann et al., 2000)). The outcome of our simulations here could 

be tested with an implicit learning-type experimental paradigm, notably an exposure phase 

followed by a test phase with targets and different foil types, applied to tone sequence 

material differing in interval use (similarly to the implicit learning experiment on 12-tone-

music reported in Bigand & Poulin-Charronnat, 2006). 

6. Study 3: TRACX2's sensitivity to melodic contours 
 

As previously reported in music cognition research, human listeners are not only sensitive 

to the proximity of intervals (i.e., the distance between the corresponding intervals making up 

two sequences of intervals), but also to melodic contours (i.e., the "shapes" of the two 

sequences of intervals), even in infancy (e.g., Dowling, 1978; Trehub et al., 1985; 

Schellenberg, 1995). In this section, we will examine whether this sensitivity can be simulated 

with TRACX2.  

 

6.1 Method 
 

Definition of a contour 
To address this question, we need to consider a rather subtle distinction, that of the 

proximity versus the contour of words. We have shown in §4.2. that TRACX2 is sensitive to 

the proximity of simple, two-interval words to the flat word mm. We have even argued, based 

on our grouping of the various 2-interval words, RR, R=, RF, =F, FF, F=, FR, and =R, and 

==, that it might also be sensitive to contour information. In the following section we will 

tease apart the notions of proximity and contour and show that TRACX2 is sensitive, not only 

to proximity information, but to contour information as well. 

To do this, we needed an operational definition of a contour. A contour can be simply 

defined as the sequence of rises and falls in a particular sequence of intervals. The contour of 
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the word kmo, for instance, is ( - = +, which is read as Falling-Flat-Rising). For 3-interval 

words there are, therefore, 27 different possible contours. 

One way to detect a contour effect would be to examine the internal representations of 

words of the same length. Those words belonging to the same contour should on average be 

closer together than those belonging to different contours. But we have already shown that 

TRACX2 is also sensitive to other factors, such as, the proximity of high-frequency words, 

and the location of the intervals inside a word (the trace of the final interval is stronger in the 

internal representation, see §4.3.). As a result, the study of contour effects can be biased by 

these other factors. To disentangle a potential contour effect from other effects, the pairs of 

words to be compared need to be carefully chosen.  

Consider, for instance, the two words sgm and okm. They both have the same contour -- 

namely, (+ - =). They are composed of the intervals (6 -6 0) for sgm and (2 -2 0) for okm, 

which means that the Chebyshev distance (i.e., the largest distance between the two words 

across dimensions) between them is 4. However, the order of the intervals in the word 

matters, so we need to define a multidimensional distance, which we call mdist, between 

pairs of words. mdist is defined as the triplet of the absolute differences between the three 

intervals that compose the words. In other words, mdist(sgm, okm) = [4 4 0]. We now look at 

a 3-interval word whose mdist from okm is also [4 4 0] but that belongs to another contour, 

for instance, kom [-2,2,0] (Figure 10). If TRACX2 is, indeed, sensitive to contour 

information, we would expect the distance between the internal representations of okm and 

sgm, two words that belong to the same contour, to be smaller than the distance between the 

internal representations of okm and kom, that belong to different contours. This does, in fact, 

turn out to be the case. To show that this is true in general, we proceeded as follows:  

 1000 3-interval words were randomly generated. In order to keep these words 

“plausible”, no interval above 12 or below -12 was considered and no sequence of two 

adjacent intervals with the same sign and adding to more than 12 or less than -12 were 

possible. This means there were no differences of consecutive notes going beyond one 

octave. For example, the following 3-interval words were not included: (0 13 5),  (4 1 

-13),  (2 11 6), (5 -5  -8). But note that (11, 1, 11) would not have been rejected. This 

was done to keep the words “singable”, or at least to avoid overly unusual melodic 

words.  

 For each pair of words, we calculated the mdist between them and we noted the 

contour to which each word belonged.  

 For a given mdist [a, b, c], all pairs of words with an mdist of [a,b,c] were selected. 

 Among those pairs, some shared the same contour. These were put into a subset S1. 

Pairs of words that did not share the same contour were put into a second set, S2.  

 We then calculated the average cityblock distance between the representations of each 

pair belonging to S1. We did the same for each pair of words in S2. 

 We compared the S1 distances to the S2 distances by means of an ANOVA. 
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Figure 10. sgm and kom have the same mdist [4,4,0] from okm, but have different 

contours, (+,- =) and (-,+, =), respectively. 

 

6.2 Results 
In the 10 children songs in the primary familiarization corpus, the maximum cityblock 

distance between the internal representations of two 3-interval words is 44.4 and the average 

distance is 17.5. If we restrict ourselves to the pairs of 3-interval words that share the same 

contour, the average distance drops to 9.2. This average is computed on 165 pairs of words. 

(This was confirmed with the second set of children's songs where the distance dropped from 

15.2 to 7.6.) This decrease would seem to reveal a contour effect. But the effect is not entirely 

convincing until the interval proximity between the words has been fully controlled for, as 

explained above.  

The simulation with 1000 randomly generated 3-words made it possible to entirely 

eliminate the proximity effect. For an mdist of [2, 2, 2], for instance, we found 187 pairs of 

words with the same contour and 146 pairs with different contours. For the pairs of words 

belonging to the same contour, the average cityblock distance between their internal 

representations was 6.6, compared to 7.7 for the other 146 pairs. This difference is highly 

significant (p< 0.001), as revealed by an ANOVA.  

We obtained similar results with other mdist values. We took all the triplets of mdist 

from [0, 0, 0] to [6, 6, 6]. This gave the expected result for 98% of the triplets. An ANOVA 

showed that differences were significant (p<0.05 with a Bonferroni correction) for 79% of all 

cases. Those results were confirmed on the second set of children songs (Set 2) where 

differences of all the triplets were in the expected direction (99%), and 96% of them were 

significant (p<0.05 with Bonferroni correction). As expected, without training there was no 

contour effect (2% of significant differences with p<0.05 with Bonferroni correction). 

 

 

6.3 Comparison with other models 
 

First-order Markov-chain models. 

    To the best of our knowledge, there is no explanation of the contour effect using first-

order Markov-chain models. These models have no internal representations of the data they 

are processing and, as a result, no comparison is possible with the above results for TRACX2. 

 

PARSER 
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     PARSER does not construct internal representations of the data that are processed and 

no comparison is, therefore, possible with the above results for TRACX2.  

 

RAE 

     With RAE we ran a simulation similar to the one carried out with TRACX2. 1000 

randomly 3-words were randomly generated, and all the different triplets of mdist, from [0, 0, 

0] to [6, 6, 6], were considered. This gave the expected result for 97% of the triplets. An 

ANOVA showed that differences were significant (p<0.05 with a Bonferroni correction) for 

91 % of all cases. In other words, RAE was as contour sensitive as TRACX2. 

 

SRN 

     An SRN also produces hidden-unit representations of the words in the training set, but 

the representations that it produces are considerably different from those produced by 

TRACX2, as explained in section §4.5.4. We ran the present contour-proximity simulation 

with the SRN and did not observe a contour effect. The differences were significant (p<0.05 

with a Bonferroni correction) in the expected direction for less than 1% of all the cases. This 

result confirms the one reported in §4.5.4. where we already observed that the SRN clusters 

were far from the relatively disjoint clusters produced by TRACX2.  

 

7. Study 4: Better recognition of the end of motives 
 

Saffran et al. (1999) showed that participants are better able to recognize the end of 

melodic words than their beginning. Their results replicate a similar finding with speech 

stimuli (Saffran et al., 1996b) and suggest that the ends of words are learned first, whether the 

words are created from syllables or tones. Saffran and collaborators concluded, based on their 

results, that the transitional-probability learning mechanism that was posited to drive syllable-

stream segmentation in infants (e.g., Saffran et al., 1996a; Aslin et al., 1998) could be the 

same learning mechanism as the one underlying tonal domains. 

In this work, they began by defining a set of four tri-syllabic words (abc, def, ghi, jkl) 

made up of 12 distinct syllables (a, b, c, d, e, f, g, h, i, j, k, l). They then randomly 

concatenated these words with no immediate repetitions into a 2-minute familiarization 

sequence of 360 words. By means of a head-turn preference test, they compared infants' 

recognition performance to the original words versus "part-words", defined as the final 

syllable of one word followed by the first two syllables of another word. In general, however, 

the distinction between words and part-words in melody perception is not germane because 

sequences taken from real, pre-existing melodies do not consist of the concatenation of a pre-

defined set of "tone-words" or "interval-words".  That said, in Saffran et al. (1999) tone-

sequences were constructed, exactly mimicking the syllable-sequence construction in Saffran 

et al. (1996b). With respect to pre-existing melodies, they say, "The tone words were not 

constructed in accordance with the rules of standard musical composition and did not 

resemble any paradigmatic melodic fragments." After familiarization on this tone-sequence, 

infants were then tested for word/part-word discrimination as they had been in Saffran et al. 

(1996b).     

We will now examine how well TRACX2 reproduces this asymmetry in the recognition 

of the “melodic” words used Saffran et al. (1999). This study is divided into three separate 

parts.  

 

7.1. Simulating the results of Saffran et al. (1999) 
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7.1.1. Method 

     We began by attempting to reproduce the results observed in Experiment 3 of Saffran et 

al.'s (1999) human infant behavioral study. These authors constructed a tone sequence out of 

eleven pure tones in the same octave. The tones were combined into groups of three, thereby 

forming six "tone words." The tone words were: ADB, DFE. GG#A. FCF#, D#ED, and 

CC#D. The tone words were randomly concatenated with no immediate word repetition or 

acoustic markers, to create six different blocks, each containing 18 tone words. These blocks 

were then concatenated to produce a seven-minute continuous tone stream. There was no 

attempt to make tone words that resembled standard musical composition. In their analysis 

they define a "part-word" as being a three-tone sequence comprised of the two initial tones 

from one word plus a new third tone or the two final tones of a word plus a new initial tone.  

All of our simulations were based, not on tone sequences, as in Saffran et al. (1999), but, 

rather, on interval sequences. Consequently, we replaced the 3-note words (and part-words) 

by 2-interval words (and part-words). Saffran et al. (1999, p.40) discussed at some length "the 

harmonic relations (intervals)" in their tone sequences. They showed the number of words 

containing particular intervals and how they differ. In other words, the authors were aware of 

potential confounds created by the overlapping intervals contained in their words.  

As in Saffran et al., we created a training sequence by concatenating these 2-interval 

words. The problem we encountered, however, was that when we translated the L1 3-note 

words constructed by Saffran et al., into 2-interval words, this gave: fv, un, hs, nl, nn, and pl. 

And their 3-note part-words became our 2-interval part-words: gv, pn, ls, nq, nw, and pn. 

Clearly, the intervals n and l are overrepresented in these L1-words, with 4 repetitions for n 

and 2 repetitions for l. Further, pn was both an end-of-word and a beginning-of-word part-

word. Saffran et al. (p. 41) writes "...we cannot rule out the possibility that interval 

information contributed to the tone segmentation process". Our simulations indeed confirm 

the importance of the interval information in the observed result patterns. 

We, nonetheless, used these 2-interval words to produce a sequence as described in 

Saffran et al. and tested the errors produced when we tested the trained network on end-of-

word (Xb) versus beginning-of-word (aX) part-words. The results of our simulations below 

suggest that interval information in their tone sequence may have indeed been a confound in 

the Saffran et al. experiments.   

 

7.1.2. Results 

      As we pointed out above, pn can be a part-word that functions as either an end-of-word 

(Xb) or a beginning-of-word (aX) part-word. A first analysis considered it as an Xb part-

word. After training TRACX2 for 100 epochs on the interval sequence created as described 

above, we considered the average of the errors-on-output of the three Xb part-words, {gv, pn, 

ls} and the two aX part-words, {nq, nw}. We averaged these errors over 20 runs of TRACX2 

with a new interval sequence on each run. A paired-t test showed that the Xb errors were 

significantly smaller than the aX errors (t(19) = -2.38, p < 0.03, Cohen's d = -0.55, BF10 > 

2.2). In other words, TRACX2 reproduced the end-of-word advantage shown in Saffran et al. 

(1999) using a translation of the Saffran et al.'s 3-tone words into 2-interval words when pn is 

an Xb part-word.    

     However, because pn can be either an Xb or an aX, part-word, we removed it from the 

list of Xb part-words and made it an aX part-word. The new sets of part-words were, 

therefore, Xb = {gv, ls} and aX = {pn, nq, nw}. When this was done and we recalculated the 

average errors for the two types of partwords, the end-of-word advantage of Xb part-words 

over aX part-words disappears (p = 0.29). In other words, when pn was switched to an aX 

part-word, the significantly smaller errors of Xb part-words over aX part-words disappeared.  
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     These seemingly contradictory results can reasonably be explained by the 

overabundance of the interval n in the training sequence. The fact that 25% of all intervals in 

the training set are n means that the error for any part-word containing n will necessarily be 

low. Thus, if pn is included in the Xb part-words, {gv, pn, ls}, its presence decreases the 

overall error for these part-words. Hence, the appearance of an end-of-word advantage. On 

the other hand, if pn is included among the aX part-words, {nq, nw, pn}, this significantly 

decreases the overall error of these part-words, thereby masking any potential end-of-word 

advantage of the Xb part-words.  

    In short, converting the sequence of 3-tone words used by Saffran et al. into an 

equivalent sequence of 2-interval words does not allow TRACX2 to systematically simulate 

their end-of-word part-word recognition advantage. 

 

7.2. Overcoming the problem of interval repetition 

7.2.1. Method 

Because of the potential problem of interval repetitions in our interval encodings of 

Saffran et al.'s tone words, we created an interval-word sequence that satisfied the Saffran et 

al. sequence-creation methodology for tones, but did not have the interval-repetition problem 

described above. The 2-interval words with which we created the training sequence were: fv, 

un, hs, dy, mt, pl, and the associated 2-interval part-words on which we tested the network 

were: gv, wn, rs, db, mo, pq. We created a training sequence as in Saffran et al. (1999) and ran 

the program 20 times with 100 learning epochs, each time on a different training sequence 

constructed from the words. We compared errors on Xb part-words (i.e., {gv, wn, rs}) with 

those of the aX part-words (i.e., {db, mo, pq})
2
.  

 

7.2.2. Results 

     We averaged over the three Xb words and over the three aX words over 20 runs. A 

paired-t test showed that the Xb errors were significantly smaller than the aX errors (t(19) = -

6.9, p < 0.001, Cohen's d = -1.55, BF10 > 100). Saffran et al. reported that 64% of the time Xb 

part-words were recognized better than aX partwords. For TRACX2 in this case, this 

percentage was also 64%. In other words, with a sequence of intervals created with words that 

avoided the interval-repetition and pn part-word problem,TRACX2 reproduced the end-of-

word advantage shown in Saffran et al. (1999). When trained on the above sequence, 

TRACX2 was, indeed, sensitive to the end-of-word advantage reported by Saffran et al. 

(1999). As it might be argued that this result might be overly dependent on the choice of the 

words making up the training sequence and the part-words, we turned to a third analysis based 

on TRACX2's internal representations to demonstrate and explain this advantage. 

 

7.3. Analyzing the end-of-word-advantage using the internal representations of the 3-

interval words in the children songs 

7.3.1. Method 

     As the study of the internal representations built by TRACX2 revealed a similar bias 

towards the end of the words (see Section 2.2.2), we decided to address, in a third set of 

simulations, the end-of-word-advantage issue through the analysis of the internal 

representations of the 3-interval words in the children songs. For each 3-interval word – say 

ayj - we compared the internal representation of the full word (ayi) to the internal 

                                                 
2
Unlike Saffran et al., we did not create a second sequence made from the part-words of 

the first. We created a single sequence and tested the two types of part-words from that 

sequence.
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representations of its two first intervals, ay, and of its last two intervals, yj. The end-of-word 

preference revealed by Saffran et al. implies that the distance between the representation of 

the 2-interval word (yj) at the end of the full word and the representation of the full word, ayj, 

should be smaller than the corresponding distance between the representation of the 2-interval 

word, ay, at the beginning of the full word and the representation of the full word. In other 

words, Dist(H(ayj), H(yj)) < Dist(H(ayj), H(ay)), where H is the hidden-unit representation of 

the input vector of TRACX2 and Dist is the cityblock distance between two vectors. Even 

though other factors impact the way the internal representations are elaborated (frequency of 

occurrences, proximity, contours), the differences should emerge from the comparison of all 

the possible 3-interval words.  

 

7.3.2. Results 

For each of the 161 3-interval words found in the children's songs, we calculated the 

cityblock distances between its internal representation and each of the two sub-words 

constituted by the first two and the last two intervals of the word. The average distance for the 

sub-word beginning the 3-interval words was 0.76 (0.77 for the second set of children songs) 

and for the sub-word ending the 3-interval word was 0.58 (0.60 for the second set of children 

songs). The effect was, in fact, observed on 90% of all 3-interval words (93% for the second 

set of songs). The direction of the mean difference was as announced by Saffran et al.‘s 

observations.  

  

7.4. Discussion 
The sub-word asymmetry at the level of TRACX2's internal representations emerges 

naturally from the architecture of TRACX2, specifically from the fact that word accretion in 

TRACX2 involves adding individual items (whether they are syllables, images, or intervals) 

to the RHS of the input. Once again, consider the word ayj. The representation of the word is 

built in a hierarchical way. The two intervals, ay, are first chunked and the network's 

representation of the chunk, H(ay) is encapsulated in the LHS of the input. This means that 

the individual interval, a, making up ay has "disappeared" into the chunk H(ay). Now, 

consider the sub-word, yj. When y and j are on input, its internal representation, H(vj), will be 

closer to H(ayj) than H(ay) will be to H(ayj) because for both ayj and yj, the final interval, j, 

remains explicitly on the RHS of the input, whereas ayj's initial interval, a, has been 

subsumed into H(ay). This explains the smaller distance between H(ayj) and H(yi) compared 

to H(ayj) and H(ay).  

In other words, we do not need to invoke TPs or an anchor role played by the last note, as 

proposed by Saffran et al., to explain the end-of-word advantage effect. The chunk-accretion 

mechanism used by TRACX2 in which new items are added to the RHS of the input tends to 

better preserve the end of the chunks than their beginning, leading to the end-of-word 

advantage.  

 

7.5. Comparison with other models 

 

First-order Markov-chain models  

      Saffran et al.'s (1999) explanation of their results is in terms of TPs (of notes) which is 

the underlying mechanism of a first-order Markov-chain model explanation. In our simulation 

their explanation would require applying TPs to intervals rather than notes.  

   

PARSER 
     When segmenting streams composed of pre-defined words as in Saffran et al. (1996a,b; 

1999), PARSER, perhaps somewhat surprisingly, does not find part-words or, at least, only 
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finds them extremely rarely (Perruchet, personal communication). For this reason, PARSER 

cannot be used to detect the end-of-word part-word advantage reported in Saffran et al. 

(1999).  

 

RAE 

     We averaged over the three Xb words and over the three aX words over 20 runs using 

the sequence described in §7.2. A paired-t test showed that the Xb errors were significantly 

smaller than the aX errors (t(19) = -6.6, p < 0.001, Cohen's d = -1.48, BF10 > 100). Saffran et 

al. (1999) reported that 64% of the time Xb part-words were recognized better than aX 

partwords. This compared to 72% for RAE. In other words, when trained on the above 

sequence, RAE, like TRACX2, was, indeed, sensitive to the end-of-word advantage reported 

by Saffran et al. (1999).  

    The analysis of the RAE internal representations of the 3-interval words in the children 

songs made it also possible to reproduce the Saffran et al. end-of-word advantage found in 

§7.3. For each of the 161 3-interval words found in the songs, we calculated the cityblock 

distances between its internal representation and the two sub-words constituted by the first 

two and the last two intervals. The average distance for the sub-word beginning the 3-interval 

words was 0.53 (0.77 for the second set of children songs) and for the sub-word ending the 3-

interval word was 0.37 (0.60 for the second set of children songs). 

 

SRN 
The SRN also reproduced the Saffran et al. end-of-word advantage when run on 

sequences constructed from  the words, fv, un, hs, dy, mt, pl, and tested on the two sets of 

part-words, Xb = {gv, wn, rs}, and aX = {db, mo, pq} (see §7.2.). The effect with the SRN 

was far more pronounced than for TRACX2. Over 20 runs, Xb part-words were recognized 

better than aX part-words 80% of the time, compared to 64% for both Saffran et al. (1999) 

and for TRACX2.  A paired-t test showed that the Xb errors were significantly smaller than 

the aX errors (t(19) = -68.1, p < 0.001, Cohen's d: -15.2, and a BF10 > 100).  

     We also ran for the SRN the simulation described in §7.3, in spite of the fact that the 

internal representation generated by the SRN are substantially different from those generated 

by TRACX2. The average distance for the sub-word beginning the 3-interval words was 0.11 

(0.08 for the second set of children songs) and for the sub-word ending the 3-interval word 

was 0.04 (0.06 for the second set of children songs).  

    These simulations would also seem to support an end-of-word advantage.  

 

8. General discussion  
 

8.1. Overarching issues 
The starting point for our work was TRACX (French et al., 2011) and TRACX2 (French 

& Cottrell, 2014; French & Mareschal, 2017; Mareschal & French, 2017), that have been used 

to successfully simulate a wide range of sequence segmentation and chunking phenomena 

from both the infant and adult literature on sequential verbal and visual materials. Our goal 

was to extend the use of this neural-network architecture in an attempt to capture 

segmentation and chunking of short melodic sequences. 

Even if the model was initially designed to simulate syllable-based word perception 

(where there exists a clear distinction between words and non-words), it does not include a 

mechanism that makes a clear-cut difference between words and non-words. Indeed, the 

chunking mechanism modeled by both TRACX and TRACX2 makes it possible to build 

segments (referred to as "words") of different strengths (measured by their errors-on-output). 
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This made it appealing for simulation in a domain where a clear word/non-word distinction 

does not exist. Musical sequences, in particular melodies, are not built out of a pre-existing set 

of words out of which a melody is built. The boundary between previously-heard words and 

unheard words with very similar motives is decidedly blurry.  

 

8.2 Summary of TRACX2's contributions to melody perception 

The modeling of melody perception reported in this paper was carried out, not with the 

aim of developing a full model of music perception, but rather, to suggest that the type of 

mechanism implemented in the TRACX models -- namely, memory-based segmentation and 

chunking coupled with the re-utilization of the internal representations of the detected chunks 

-- may be a general cognitive mechanism underlying segmentation and chunking in vision, 

language, and music perception.  

We have shown that phenomena observed in simple human melody perception and 

learning can be simulated by means of a recursive autoencoder neural network. It is crucial to 

note that our goal was not simply to devise an efficient algorithm or network to detect 

repeated sequences in a musical piece. That is best left to engineers. LSTM (Hochreiter & 

Schmidhuber, 1997) and other more sophisticated approaches, such as GPT-3 (Heaven, 2020), 

would clearly outperform TRACX2 in a music information retrieval task. Rather, our goal 

was to develop a cognitively plausible, emergent model of melodic sequence perception and 

melodic pattern acquisition. TRACX2 takes an unsupervised approach with no explicit rules 

or prior musical knowledge built into it (i.e., it does not incorporate information from music 

theory or empirical music perception data). Initially, all the connection weights in the network 

are small random numbers centered around 0. During learning, no external supervisor is used 

to train the connection weights and no explicit rules are applied. Segmentation and chunking 

emerge gradually. Internal representations of the input emerge from this bottom-up learning, 

and these representations then influence the perception of subsequent melodic sequences, thus 

simulating the cognitive top-down influences emerging from learned information. Previous 

simulations with TRACX2 have shown that these mechanisms can simulate human data for 

verbal and visual sequence learning, prediction and perception. Here we extend these 

simulations to musical material, thus providing converging evidence for TRACX2 as a 

cognitively plausible model that parsimoniously simulates data across modalities and 

materials. 

The simulations presented here based on the mechanisms instantiated in TRACX2 

provide insight into the way humans might detect and extract regularities from music and then 

use this acquired knowledge for perception, prediction and memory.  

Among the phenomena that TRACX2 is able to simulate in a qualitatively accurate and 

psychologically plausible manner are:  

-  exposure to simple musical patterns on the ability to subsequently learn more complex 

patterns, even if these patterns have not been encountered previously ;  

- the ability to learn a representation of melodic words that is sensitive to their contour; 

- the higher sensitivity of the system to the ends of motives, which are better recognized 

and memorized than their beginnings.  

 

The present simulations used the implementation of TRACX2, as reported in French & 

Cottrell (2014) and Mareschal & French (2017), with the only differences being (i) the type of 

input encoding used (ordinal encoding rather than one-hot encoding) and the use of intervals 

rather than notes, (ii) an error calculation that averages the errors for each of the consecutive 

pairs of intervals making up the word, and (iii) a modified ReLu squashing function, instead 

of the standard tanh function. For the work reported here we focus on relative pitch intervals 

as a simplifying assumption. Regarding melody perception, previous music cognition research 
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has indeed shown that the perceptually relevant information is the relative pitch information 

and the emerging contour information, rather than the absolute pitch information (i.e., the 

encoding of the pitch of each individual element). 

One of the key contributions of our paper is its demonstration of the necessity of 

"ordinal" encoding of the inputs instead of the one-hot encoding previously used by TRACX 

and TRACX2. Aside from the obvious problem of not encoding the amount of rising or 

falling of intervals (nor its size) with one-hot encoding, with ordinal encoding TRACX2's 

internal representations are richer in terms of the amount of information they store. When 

ordinal representations are used on input, the network's internal representations maintain a 

trace of the intervals making up words that it has encountered.  

The simulations reported in Section 5 demonstrate the positive impact of early exposure 

to simple melodies on subsequent learning of more complex musical patterns. Our 

simulations showed that 2-interval words in a Bach sonata that did not appear anywhere in the 

training set of children's songs were, nonetheless, more easily perceived (i.e., had lower errors 

on output) when the network had been previously trained on children songs. This effect was 

also confirmed for another piece of "classical" music, a Chopin fantasy (simulations not 

reported). Additional simulations on words never heard by the system show the existence of 

an inheritance of familiarity by proximity that could explain the effect of exposure to 

melodies. The improved musical abilities of children with enhanced early exposure to music 

have been shown previously with music listening and musical activities (e.g., Hannon & 

Trainor, 2007; Gerry, Unrau & Trainor, 2012). This could also be seen as an example of 

network training that "starts small" (Elman, 1993) or of "incremental novelty exposure" 

during training (Alhama & Zuidema, 2018). 

When examining TRACX2’s internal representations after learning on a set of children's 

songs, we have also shown that the model is, indeed, sensitive to contour effects. To show 

this, we were able to factor out the influence of proximity, which is a confound in showing 

contour effects.  

And finally, we have shown that TRACX2 simulates the end-of-word recognition 

advantage that was shown in Saffran et al. (1999). The conclusions drawn from these 

simulations were based both on error data from test sequences that we created according to 

the Saffran et al. word/part-word criteria, and, most importantly, the examination of the 

internal representations of the network. 

Comparisons with other models showed that both first-order Markov chains and 

PARSER, which are both symbolic models, cannot reproduce all the results established with 

TRACX2. In particular, these two models do not generalize to unheard music. The SRN is 

substantially different from TRACX2 in both its architecture and its objective of predicting 

upcoming items in a sequence. We have shown that this leads to lower sensitivity to contours. 

This is arguably due to the fact that the SRN's prediction does not require explicit chunking of 

sub-sequences in the input stream. The comparison with RAE is more instructive. Indeed, 

TRACX2 and RAE differ only in how they chunk information. The chunking mechanism 

implemented in TRACX2 allows it to rapidly form distinct groups of its internal 

representations, which is not the case for RAE. Nonetheless, the performance of TRACX2 

and RAE are similar, although not identical, on tasks involving familiarity judgments, 

priming effects, as well as end-of-word and contour effects. This is not surprising when only 

2-interval words are considered. However, differences between the two systems appear on 

longer words where the chunking mechanism used by TRACX2 impacts the internal 

representations of those words (see §4.5.3). For these longer words, unheard-word familiarity 

is different for the two systems. Finally, the fit to real data with TRACX2 is better than for 

RAE, something that could be attributed to TRACX2's more sophisticated chunking 

mechanism. A more complete understanding of the differences between the two models will 
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require additional studies. Interested readers are encouraged to contact the Corresponding Author to 

obtain the Matlab code for TRACX2 and the familiarization songs. 

 

8.3. Limits of the model and future research 

 

8.3.1. Simplifications 
As with any attempt to model a complex human ability, in this case, melody perception, 

there are limitations to what the TRACX2 model can do. Our simulations have only 

reproduced some well-known features of some simple elements of music perception. The 

levels of melodic-word familiarity, as measured by TRACX2's errors still need to be 

confirmed with new experimental data in future research. Further, the basic chunking 

mechanism of TRACX2 does not allow it to identify "singular motives", i.e., melodic words 

that are not repetitive, but, rather, stand out to human listeners because they are very different 

from what has been previously heard. This suggests that perhaps other basic (predictive) 

mechanisms, i.e., mechanisms more focused on the anticipation of what is coming – need to 

be integrated into TRACX2.  

Our results were established on a simplified version of existing melodies. The next 

challenge for TRACX2 will be to use more complex musical information. In particular, 

information about the duration of the notes making up the intervals needs to be encoded in the 

input patterns. In our present simulations, half-notes, quarter-notes and eighth-notes, for 

instance, are not distinguished. Likewise, timbre, tonal-harmonic information (including 

chords), or even, pauses, were not part of the input encoding to TRACX2. One of the reasons 

that we felt that children's songs were an appropriate testbed for the model was because these 

songs can be recognized even without durational patterns (e.g., Devergie et al., 2010). Finally, 

the model does not take into account phenomena, such as, the role of attention, the musical 

culture of the listener, or memory-refresh mechanisms. 

 

8.3.2. Non-adjacent dependencies 
TRACX2's chunking mechanism relies heavily on the sequential presentation of input 

data. Chunks are used only on the LHS of the input and, at least in the current instantiation of 

the model, the RHS can never contain a chunk, only an interval. This constrains the manner in 

which a chunk can be built: syllables, images, or intervals must be adjacent and chunks are 

formed by progressive accretion of single intervals and never already formed chunks 

identified in the input stream. Non-adjacent dependencies, where they might occur, are not 

chunked explicitly by TRACX2 in the same way that adjacent dependencies are. However, we 

have shown in §4.3 that, by means of a multiple correlational analysis of the network's 

internal representations, within long words non-adjacent dependencies are, indeed, captured 

by TRACX2.  

Further, there are no attentional mechanisms in TRACX2 that would allow it to "focus" 

attention on certain intervals (e.g., m) or sequences of intervals, making them easier to 

remember or faster to learn, or to highlight non-adjacent dependencies (e.g., Creel et al., 

2004). 

 

8.3.3. Future work 

The TRACX2 model is, admittedly, just a starting point in the computational 

connectionist modeling of melody perception, but it provides a basis to generate new 

predictions for melody perception that then can be tested in targeted behavioral studies, 

including cross-cultural experiments. Experiments will need to be designed to compare 

melodic expectations with the results observed with TRACX2, to better understand the impact 

of the distribution of motives in songs, on how they are recognized, to assess the impact of 
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proximity of contours on short-term memory, and to compare our results with those of other 

models of melodic perception and expectancy formation. 

It is clear that purely bottom-up models will not be able to capture the full range of 

human music perception. Ultimately, modeling melody perception and adult music perception 

will necessarily involve an interaction between bottom-up learning (based on sensory input) 

and top-down control or predictions, such as, influences based on prior acquired knowledge, 

which can remain implicit, contain explicit rules and involve attention.  

9. Conclusions 
Our simulations suggest that the segmentation-and-chunking mechanism implemented in 

TRACX2 provides a plausible means of explaining some of the basic mechanisms of early 

music learning and perception. It combines a purely bottom-up approach with an emergent 

top-down mechanism -- namely, chunk-formation and the subsequent influence of these 

chunks on later perception. We believe that something like these learning and representational 

mechanisms could be used by a cognitive system to segment and chunk musical sequences 

during early music learning.  

In addition, our present findings, taken together with previous research (French et al., 

2011; Mareschal & French, 2017), suggest that the recursive autoencoder architecture 

implemented in TRACX2 could be a relatively domain-general mechanism, at least, insofar as 

it applies to domains beyond word segmentation and chunking (Frost et al., 2015). While the 

results presented in this paper have only scratched the surface of music perception, we believe 

that it is a first, fundamental step in the endeavor to understand the general mechanisms 

underlying human sequence processing.  

     To conclude, aside from the advantage of parsimony, the possibility of the existence of 

common mechanisms to explain linguistic, image and musical perception should not be 

underestimated. We believe that the underlying principles on which recursive autoencoders 

are based could lead to new predictions, new comparisons, better understanding and further 

insights into the mechanisms of perception and learning.  
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