
Proceedings of the 2011 Winter Simulation Conference

S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

P4-SIMSAAS: POLICY SPECIFICATION FOR MULTI-TENDENCY SIMULATION

SOFTWARE-AS-A-SERVICE MODEL

Wei-Tek Tsai

Wu Li

Xiaoying Bai

School of Computing, Informatics and Decision

Systems Engineering, Arizona State University

Tempe Arizona 85281 USA

Department of Computer Science and Technology,

Tsinghua University

Beijing, CHINA

Jay Elston

School of Computing, Informatics and Decision

Systems Engineering, Arizona State University

Tempe Arizona 85281 USA

ABSTRACT

Simulation can benefit from cloud computing that often comes with thousands of processors and its soft-

ware is structured as Software-as-a-Service (SaaS) with its Multi-Tenancy Architecture (MTA). To sup-

port multiple tenants, simulation SaaS models need be modeled and customized to fulfill the various func-

tional and quality requirements of individual tenants. The multitude options of tenant-specific data have

made the simulation models and execution processes rather complicated. This paper presents P4-SimSaaS

that comes with an new ontology system and an innovative tenant related policy specification for Simula-

tion SaaS. P4-SimSaaS can reduce the complexity in the MTA simulation models and consequently in-

crease the flexibility in MTA simulation execution environment. A case study is offered to demonstrate

the entire framework.

1 INTRODUCTION

Cloud computing receives significant attentions as it can enable the rapid delivery of computing resources

as utilities in a dynamic, scalable, and virtualized manner. A lot efforts have been devoted to build cloud

platform and cloud-based enterprise solutions, from both industry and research communities. Typical

cloud products include Amazon’EC2 (Palankar, Iamnitchi, Ripeanu, and Garfinkel 2008), Google’GAE

(Google 2010), Microsoft’s Azure (Microsoft 2010), Salesforce.com’s Force.com (Salesforce 2010),

VMware (VMWare 2010), Eucalyptus (Eucalyptus 2010), Citrix (Citrix 2010).

Cloud-based simulation is an active research area. Simulation can benefit from cloud computing with

its vast computing resources, scaling abilities, and an infrastructure support for MTA (Multi-tenancy Ar-

chitecture). For examples, Lanner group (LanerGroup 2010) designed a simulator L-SIM 2.0 to simulate

the business process management systems through RESTful Web Services deployed in the cloud plat-

form. Thomas (Thomas Paviot 2010) used open-source software to develop a CAD simulator in a cloud

platform to reduce the needs for expensive hardware and costly licensing scheme. Malik, Park and Fu-

jimoto (Malik, Park, and Fujimoto 2009) discusses about executing parallel and distributed simulation us-

ing a master/worker design for parallel discrete event simulation.

Simulation Software-as-a-Service (SimSaaS) (Tsai, Li, Sarjoughian, and Shao 2011) was proposed as

a new approach to simulate service-oriented software in a cloud infrastructure. It can simulate a family of

application using the same code base running in a PaaS (Platform as a Service) such as Google’s GAE

(Google App Engine), Amazon’s EC2, and Microsoft’s Azure. These PaaSs often supports tenant identi-

fication, isolation, addressing, and resource sharing. Sometimes a SaaS platform can also use a distributed

database running on a clusters of processors. Often the SaaS infrastructure is fully integrated with the

PaaS; for example, Salesforce.com CRM SaaS runs in a fully integrated environment Force.com. While

3072978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Tsai, Li, Bai and Elston

full integration has significant advantages of performance, separating the SaaS from a PaaS has other ad-

vantages. Specifically, a platform-independent SaaS infrastructure can generate code to be run in different

PaaS environments as shown in Figure 1. As each PaaS has its own unique design structure, dividing the

SaaS application into this platform-independent SaaS development, followed by platform-dependent PaaS

code generation and execution support reusability, portability, and vendor-neutrality. In this way, simula-

tion also plays a critical role, as SaaS applications are developed, they can be simulated in a virtualized

system, rather the target PaaS for testing and evaluation before deployment and execution in a PaaS. For

example, one can develop a SaaS application, perform simulation, and once the application is considered

successful, it will then be deployed to GAE for execution. Deriving from PaaS dependent to PaaS inde-

pendent simulation models requires the model to be designed in a succinct and configurable way for the

different cloud PaaSs.

SaaS Application Models

Data Base GAE EC2 Azure...

Models

Platforms

Figure 1: PaaS Independent SaaS Application Development

The MTA SimSaaS needs to meet several goals: First, SaaS providers need to support tenants with a

configurable code base, such that each tenant can configure its own version based on the same code base;

Second, SaaS providers need to support various of tenants with a multitude of options of tenant-specific

data, domain data and application metadata. SimSaaS provides two-level multi-tenancy support for SaaS

simulation. At the data level, tenants can share domain data and service metadata while maintain tenant-

specific data. At the application level, tenants can create their over versions based on the same configura-

ble code base. However, MTA simulation is complicated due to diversified tenant-specific requirements

and discrepant runtime behavior. The design of reconfigurable database and code base is usually hard.

This paper proposes P4-SimSaaS in the SimSaaS project. P4-SimSaaS introduces an ontology system

for tenant specification with a policy system for tenants regulation. As each tenant may have its unique

configuration, it is difficult to check all the issues at the design time, and thus some constraints will be en-

forced at runtime by the policy mechanism. In this way, the SaaS maintainers allow tenant to have free-

dom in composing their applications using services in the SaaS infrastructure, but enforce various con-

straints including security constraints at runtime or simulation time. This approach will simplify the

design process for tenants while maintaining high integrity of SaaS applications. The ontology system can

be used to specify the vocabulary, classification and relationships in different simulation domains, thus to

facilitate simulation modeling including domain knowledge sharing, logical reasoning, policy specifica-

tion, and simulation model discovery.

 Tenants policies are designed and associated to tenants execution. A Policy system often consists a

set of rules to regulate the related actions. Many policy languages are available, such as Rei (Kagal 2002)

as a formal and executable language to enforce constraints over allowable and obligated actions on re-

sources. Pi4-SOA (Zhou, Tsai, Wei, Chen, and Xiaoying 2006) is a policy infrastructure for verification

and control of service collaboration based on service metadata and collaboration patterns stored in the

service registry. In P4-SimSaaS, MTA policies are constructed for the shared tenant model as well as ten-

ant specific requirements. They are defined at three levels: global policies for shared code base, regional

policies for groups of tenants, and local policies for individual tenant. Figure 2 shows an MTA simula-

tion architecture. In the architecture, PaaS is the supporting environment for the SimSaaS Execution Envi-

3073

Tsai, Li, Bai and Elston

ronment, which is built at SaaS layer. SimSaaS supports the MTA simulations which are built from the

MTA-Based Models.

Figure 2: MTA Simulation Architecture

 This contributions of this paper are as follows:

 An ontology system for MTA simulation SaaS modeling and policy definition.

 A MTA policy specification for the shared tenant model and the multitude of tenant require-

ments.

 A modeling process that designs the information from the ontology system and associates the

global, regional and local policies for the desired MTA simulation model.

This paper is structured as follows: Section 2 discusses ontology system design for MTA SaaS simu-

lation. Section 3 describes the policy specifications related to the MTA SaaS simulation. Section 4 de-

scribes the consumer centric ontology based modeling process guided by the policies specified. Section 5

illustrates a case study for the proposed solution. Section 6 concludes the paper.

2 ONTOLOGY SYSTEMS

2.1 Ontology

The SimSaaS modeling and policy definition process discovers and reuses the data from the ontology sys-

tem. The ontology system for SimSaaS has three major ontologies: Domain, MTA and Application ontol-

ogy. Domain ontology stores the information related to the different categorization of the domains; MTA

ontology contains tenant-related information, e.g., identities, sharing strategies, and access control strate-

gies; Application ontology stores the metadata for composing the simulation model, e.g., participants,

GUIs, services, workflows, and data.(Tsai, Shao, and Li) Domain ontology defines the knowledge in a

specific domain; MTA ontology helps to configure the existing model with the tenant-specific infor-

mation; Application ontology can be used to facilitate code generation for simulation. See Figure 3.

Platform-as-a-Service (PaaS)

Shared Data Shared Services

Tenant-Specific Data Tenant-Specific Services

T
en

a
n

t

G
ro

u
p

Simulation

Application

Tenant

Configuration

Local

Policy

Domain Model

SaaS

Platform

MTA

Simulation

MTA-Based

Models

Global

/Regional

Policy

SimSaaS Execution Environment

Application Model MTA Model

3074

Tsai, Li, Bai and Elston

MTA Ontology: contains the related information for supporting MTA. Earlier paper (Tsai, Li,

Sarjoughian, and Shao 2011) explained in details about the essential elements in supporting MTA, e.g.,

the identity, accessibility, sharing strategies of MTA. Other than that, scalability, security issues can be

also included if required by the MTA design.

Domain

Tenant AccessControl Resource

InstanceOf …
…

…

Read Write Delete

MTA Ontology Application Domain Ontology

Weather Banking
Building

Control

InstanceOf

usesInformationIn

Figure 3: Sample MTA Ontology and Domain Ontology

Table 1 shows some classes that are defined in the MTA ontology, and Table 2 shows some key

properties and relationships.

Table 1: Classes in the MTA Ontology

Class Properties Description

Tenant hasID, isClientOf,

usesResource,

usesCapability,

providesCapability

Concept that represents individual tenant of the SaaS

Resource hasID, hasCapaci-

ty, hasCost

Represents the resources that are available to tenants

AccessControl Type of access a tenant has for a resource. Instances include

actions such as read, create, write, modify, and delete.

Capability hasID, usesRe-

source

A specific function or feature that a tenant can perform.

Table 2: Relationships and Properties in the MTA Ontology

Properties and Re-

lationships

Relationship type Description

hasID, hasName Identity Provides identification for objects

isClientOf, business Indicate a business relationship between tenants

usesCapability,

usesResource,

providesCapability

Usage Relationships that define when resources are.

hasCapacity, has-

Cost

Resource Relationships that define the magnitude or cost of using a

resource or capability.

Domain Ontology: A collection of information about application domain ontologies. For example, the

Building Control domain has Building, Device, Service, and Room; the bank domain has Accounts and

Securities. Table 3 shows key classes in the domain ontology, and Table 4 shows key properties and rela-

tionships.

3075

Tsai, Li, Bai and Elston

 Figure 3 shows a portion of an MTA ontology and an Application domain ontology. In the MTA on-

tology, the classes Tenant, AccessControl, and Resource are shown. Some instances of AccessControl are

also shown. For the Application Domain Ontology, three application domains are presented, Building

Control Weather, and Banking. A dependency between the Building Control domain and the Weather

domain is shown to represent the fact that some simulations of building control may rely on simulations

of weather.

Table 3: Classes in the Application Domain Ontology

Class Properties Description

Domain hasID, has-

Namespace

Concept that represents an application domain ontology

Table 4: Properties and Relationships in the Application Domain Ontology

Properties and

Relationships

Relationship type Description

hasID, has-

Name

Identity Provides identification for domains

usesInfor-

mationIn

Usage Relationships that define which domains use other domains.

Application Ontology: Contains the metadata for the application model construction. The structure

of Application ontology depends on domain content.

Table 5 shows some classes in the Building Control Ontology, and Table 6 shows some key proper-

ties and relationships. Figure 4 shows a sample building control application domain ontology for a smart

home.

Table 5: Classes in the Building Control Application Domain Ontology

Class Properties Description

Device hasID, isType,

ownedBy

Concept that represents a device or other equipment. Examples

include a light switch, or an A/C control.

Service hasID, isType,

hasSpecification,

hasQoS

Represents a computer-accessible service that provides either a

user service, or access to a device.

Building hasID, isType,

ownedBy

Represents a building.

Room hasID, isType Represents a room

AccessControl hasID, hasPolicy Represents the access policies for a device or other object with-

in the domain.

RoomUser hasID, hasRole Represents people that use a building.

3076

Tsai, Li, Bai and Elston

Table 1 -- Properties and Relationships in the Building Control Ontology

Relationships Relationship type Description

hasID, has-

Type

Identity Provides identification for objects in the domain.

isLocatedIn Location Defines a locational relationship

ownedBy Ownership Defines object ownership.

providesInter-

faceFor

Control Defines what device a service provides an interface to.

affectsCondi-

tionsIn

Control Specifies that a device can affect the conditions of a room or

building.

hasSpecifica-

tion

Usage Defines the protocol for using a service.

specifiesCon-

trolFor

Control Users can control buildings and rooms.

receivedRe-

questFrom

Control Defines where requests are received from

hasPolicy Security Defines conditions for access and permission

hasRole People Defines information about people.

Building Control Domain

AccessControl

Devices

Service

Building

Room

hasID

isType

ownedBy

...

hasID, isType

hasSpecification

hasQoS

...

hasID

isType

ownedBy

...

hasID

isType

ownedBy

...

providesInterfaceFor

isLocatedIn

isLocatedIn
affectsConditionsIn

definesAccessPolicyFor
RoomUser

receivesRequestFrom

specifiedControlFor

hasID

hasRole

...

hasID, isType

hasPolicy

...

Figure 1 Sample Application Ontology in Building Control Domain

 Boxes represent classes, ovals represent properties that can be assigned to objects of a given class,

and arrows show the relationships that objects in different classes can have. For example, an object of

type Room hasID (which defines its identity), isType (which would give the room some usage infor-

mation), and is ownedBy someone. It isLocatedIn a object of type Building,

2.2 Relationships

Relationships express different types of associations among classes and items. Relationships exist within

an ontology and cross different ontology systems. According to the relationships specified, a service pro-

vider can identify the related objects quickly for modeling. Properties are used identify and further classi-

fy individual objects.

Figure 5 shows three intra-ontology relationships (categories, properties, and part-whole), and two

inter-ontology relationship (use, typeof). MTA ontology and Domain ontology are cross-referenced by

use relationship. Application Ontology are cross-referenced by typeof relationships. The cross-

3077

Tsai, Li, Bai and Elston

referencing from Domain Ontology to MTA ontology is unique for MTA simulation since the simulations

desires for the tenant information other than just for application metadata out of Application ontology.

Room

hasOwnerhasName
isInBuildin

g
isType

Properties

MTA Domain

Identity Accessibility Sharing

Part-whole

Banking

Ontology

Room Service Accounts Institution

Categories Categories

… …

…

Read Write Execute

Properties
…

…

Account

hasAccountType=

Credit Card

hasAccountType=

Checking

hasAccountType=

Insurance

Properties

…

Use

Use

(A)

(C.1) (C.2)

(B)

(A) MTA ontology (B) Domain ontology

(C.1) Building Control Application Ontology (C.2) Bank Application Ontology

hasAccountType

=

Loan

InstitutionisConductedBy

Building

Control

Ontology

Service

Properties

Typeof Typeof Typeof

Categories

Figure 5: Cross Referencing Among Ontologies

These relationships can help the tenants to discover and reuse the data for designing and configuring

their desired simulation applications and policies.

3 MTA POLICY SPECIFICATION

Policies can be used to enforce various constraints at simulation time, several policy languages are availa-

ble already such as Rei (Kagal 2002), XACML (Godik, Anderson, Parducci, Humenn, and Vajjhala

2002), Appel (Turner, Reiff-Marganiec, Blair, Cambpell, and Wang 2007), and PSML-P (Zhou, Tsai,

Wei, Chen, Xiao 2009). As these languages have been developed before the development of MTA SaaS,

thus they have not addressed MTA SaaS specific issues.

MTA simulation SaaS modeling process identifies the required model elements from the ontology

system. This modeling process has two steps: tenant-independent modeling, and then configured this

model with tenant-specific modeling. This approach handles the access control in the MTA simulation

model. However, if the application is complex, it is difficult to incorporate all the requirements into the

model, and it is also difficult for the SaaS maintainer to enforce various behaviors of all the tenants at

runtime.

This paper proposes using a policy approach to model constraints, and various policies can be speci-

fied to be enforced at runtime. Policies will be hierarchical such as global, regional, and local policies

where a global policy will be enforced for all SaaS applications, a local policy will be enforced for a spe-

cific tenants, and a regional policy will be enforced for a group of tenants. In this way, each tenant just

needs to model its unique features, while allowing various policies to enforce global, regional and local

constraints. For example, a SaaS infrastructure administrator will maintain those global policies, such as

security and privacy policies that must be enforced for all SaaS applications and tenants, a tenant adminis-

trator will maintain local policies to ensure that its customer applications running the SaaS applications

3078

Tsai, Li, Bai and Elston

are executed in a secure and fair manner; another tenant administrator may maintain a set of regional pol-

icies as it is a part of a business consortium with other tenants. In this way, the simulation model can be

lightweight, flexible and easy to maintain while sophisticated as constraints will be specified and main-

tained by different groups of people for different purposes, making the SaaS application easier as it does

not need to address all these issues at the same time.

A sample global policy is that the SaaS infrastructure may request additional processors if the current

workload of all the tenants has exceeded 50% CPU usage for elastic computing, a key feature of cloud

computing. A sample regional policy can be as shutting down TVs after 9 PM for tenant applications re-

lated to school dormitories, and a local policy can be lowering TV volume by 20% after 10 PM for tenant

related to TV control in a given area.

A policy usually includes three components: a target, a condition set, and an action. In a MTA SaaS

environment, a policy needs to consider two more elements: the application domain and the tenant.

Definition: Range

Let R be a finite set of Ranges, R = { }, a range for a policy is a tuple
 , where

 is the domain ID for the policy, and .

 is the tenant ID for the policy, and .

 is the target, and it represents the target of the policy, and .

Definition: Condition

Let C be a finite set of Conditions, C = { }, a condition where each can be any of the

following three possibilities:

 is an crispy condition expression that the value of ;
 is an fuzzy condition (Kosko 1991)that the value of ;
 is an adaptive condition that the value of , that the adaptive

data structure can be a condition tree in implementation.

In a crispy condition, the value of the condition expression can only be true or false. The bound of

the truth value is firm under this scenario. For instance, the temperature is over 80. And the policy action

is triggered provided that the range and condition factors are both meet .

In a fuzzy condition, the condition expression is a fuzzy value. For instance, the condition can be de-

fined as temperature around 80. Under this case, the fuzzy value treats both temperature 79 and 81 as

around 80. Thus the policy value could be triggered by both 79 , 80 and 81. More detailed about fuzzy

theories can be followed in (Biacino and Gerla 2002; Zadeh 1965) .

In an adaptive condition, the condition value can be changed by different contexts. For instance, in

the spring, when the temperature is over 82, trigger the action turn on AC. In the summer, when the tem-

perature is over 78, trigger the action turn on AC.

Definition: MTA Policy

Let P be a finite set of policies, P = { }, a MTA policy is a tuple
 , where

 is id for the policy, that is unique to identify each policy and ,if ,

 is the range id for a policy, that that defined above;

 = {

 }is the set of conditions for , that that defined above;

 is the action associated with the policy. It denotes that will be executed provided AND

 == true.

Definition: Global Policy

3079

Tsai, Li, Bai and Elston

Let P be a finite set of policies, P = { }, a global policy where . A global

policy applies to all tenants.

Definition: Regional Policy

Let P be a finite set of policies, P = { }, a regional policy where

 . A global regional applies to a group of tenants.

Definition: Local Policy

Let P be a finite set of policies, P = { }, a local policy where . A local poli-

cy is applicable to a specific tenant.

Definition: Policy Set

Let Pset be a finite set of policy sets, Pset = { }, a policy set where

each Pset = { }, where are policies.

The case study part will demonstrate policies stored in the XML format. Also, it will demonstrate the

usage of global and local policies, and policy sets.

4 MODELING AND SIMULATION PROCESS

This section demonstrates the constructing of the simulation model by identifying and reusing the data

from the associated ontology systems, and specifying policy for different tenants including global, re-

gional, and local policies to be enforced at simulation time.

To make the modeling process efficient, approaches such as Consumer-Centric SOA (CCSOA) (Tsai,

Xiao, Paul, and Chen 2006) can be used. In CCSOA, in addition to publishing simulation services, simu-

lation requirements and simulation workflows can also published, discovered and used. Once these re-

quirements are published, a service provider can submit their software or services to meet the application

requirements. A service consumer can compose the existing service using composition languages such as

PSML and BPEL.

The modeling and simulation process follows a service-oriented approach as characterized in the fol-

lowing cyclical four-step process, as shown in Figure 6:

SOA Modeling

Policy

Construction and

Configuration

Deploy and

Execute

Monitor and Policy

Enforcement

Figure 2 Four-Step Cyclical SimSaaS Modeling and Simulation Process

1) SOA Modeling: In the context of MTA SaaS, each simulation model can be treated as a service

and it can be published, discovered and composed.

a. Publishing: a service can be published so that it can be discovered and used by others, and as

policies can be published and reused by others as well.

b. Discovery: a service can be discovered using various search strategies and algorithms can be

used to select the best services to be used among discovered services, and policies can also be

discovered by others including tenants, end users, and SaaS maintainers;

c. Composition: Selected services can be connected by a workflow to form a new application,

and policies can be composed by reusing several policies;

As a MTA simulation model, abundant simulation model candidates from the ontology system can

offer abundant options for the modeling process. To solve this issue, different service selection and rank-

ing algorithm can be applied, including reputation based ranking, usage based ranking, QoS-based service

selection and ranking with trust and reputation management (Vu, Hauswirth, and Aberer 2005) by EPFL,

3080

Tsai, Li, Bai and Elston

context-sensitive ranking algorithm (Haveliwala 2003), social closeness ranking and even correlation

ranking based on a topology model.

2) Policy construction and tenant configuration: The constructed simulation model can be con-

figured with the MTA properties and also be associated with the MTA policies for the tenant con-

strains.

Policy and tenant information should be specified once the tenant-independent models are created.

Meanwhile, these constructed models can be configured directly using the Tenant Configuration model

specified in SimSaaS. This configuration model includes the information specified in MTA ontology, in-

cluding identity, accessibility, and sharing strategies.

In composing the policy, the ontology system is used. The cross referencing among the ontology can

match the Application ontology from Domain Ontology, then query the associated Application ontology

for the desired conditions and actions.

For instance, in a building control definition, we can construct a global policy P0 for tenant A, if the

CPU usage is over 80%, allocates one more CPU for the application.

One can also define local policies, P1 for tenantA, for instance, if temperature is over 80, then turn on

the AC. However, another policy p2 for tenant B, if the temperature is over 80, turn on the fan.

Global policies are categorized to the PolicySet regarding the associate application. Regional policies

are categorized to the PolicySet regarding the associate tenants. Local Policies are categorized to the Pol-

icySet regarding to the associate tenant.

3) Deploy and execute: The composed application can be deployed in a cloud environment to be

executed; Similar to DDSOS (Tsai, Fan, Chen, and Paul 2006), simulation deployment in Sim-

SaaS can support both the on demand and automated way.

Various issues requires to be considered for MTA simulation execution. Including runtime tenant

management, tenant physical and logical addressing, tenant resource allocation, and capability control.

The details about simulation deployment and execution can be followed in earlier paper SimSaaS.

Before the policies are deployed, the policies are configured in different policy sets and with each po-

lice sets, the policies are ranked by the policy editors.

4) Monitor and policy enforcement: The execution of the simulation can be monitored and various

runtime policies can be enforced.

 As shown in Algorithm 1, the service execution and policy enforcement processes are monitored by

SimSaaS infrastructure. While monitoring, the execution processes of simulation services and the polices

are stored through the distributed tracing infrastructure in PaaS. Frameworks such as Dapper from Google

(Sigelman, Barroso, Burrows, Stephenson, Plakal, Beaver, Jaspan, and Shanbhag 2010), Magpie

(Barham, Isaacs, Mortier, and Narayanan 2003) from Microsoft, and X-trace (Fonseca, Porter, Katz,

Shenker, and Stoica 2007) from UC Berkeley can be used as the distributed tracing infrastructure. Later

on, data provenance mechanism can be applied to these tracing data for simulation analysis, simulation

tuning, and policy ranking.

3081

Tsai, Li, Bai and Elston

Policy enforcement can be categorized into three ways (Tsai, Chen, Paul, Zhou, and Fan 2006) in-

cluding:

 For your information (FYI) algorithm: the policy engine does not perform policy checking at runtime.

It simply do the static checking before policy enforcement. In runtime, the policy engine only logs the

relevant information into log file for analysis. It is not suitable for safety –critical processes.

 Conservative algorithm: the simulation engine stops whenever it needs to check the policy enforce-

ment point (PEP). It holds the simulation step until the next step can be confirmed safe. If the PEP

needs to check lots of polices in simulation, this algorithm will consume a large amount of time.

 Greedy algorithm: similar to the conservative algorithm but that the execution and condition checking

are separated to paralleled two threads. The simulation execution thread will execute as far as it can

go however, the condition checking thread will wait for the PEP for the result. A rollback point is

saved before the simulation execution thread. And if the PEP returns out as false, the simulation exe-

cution thread can choose to roll back or do an compensation or proceed depending on the extend of

the system’s compromise for the violation of the policies.

Moreover, policies may conflict with each other. For instance, a local policy can conflict with a glob-

al policy, or two local policies conflict with each other within a tenant’s scope. These cases can be solved

by doing the consistent and completeness checking over the policies (Zhou et al. 2006), or applying poli-

cy combination and integration algorithms such as (Li, Wang, Qardaji, Bertino, Rao, Lobo, and Lin 2009;

Mazzoleni, Bertino, Crispo, and Sivasubramanian 2006) .

A rerank of the policies can be done based on the traced date from the tracking framework. These

ranking can be updated to the existing policy set and it will replace the original policy ranking results.

3082

Tsai, Li, Bai and Elston

5 CASE STUDY

The case study involves two tenants ABCDorm and XYZHome in Building control domain. Both models

are derived from the building control simulation, whereas, configured by different tenant configurations

specified by SimSaaS. The requirements and constrains of both tenants are listed in Table 7.

Table 7: Requirements for ABCDorm and XYXHome Control Simulation

 ABCDorm XYZHome

Simulation Model Dormitory Control Simulation Home Control Simulation

Tenant

Specific

Require-

ments

Logo Yes Yes

of Users 30 3000

Bandwidth Usage 0.1 Gbytes 1 Gbytes

CPU time 0.5 CPU hours 10 CPU hours

Sample Constrains 1. Shut down TV after 10 PM

to TV control in living

room.

2. If temperature is over 80,

then turn on the AC.

1. Lowering TV volume by

20% after 10 PM to TV

control in living room.

2. If the temperature is over

80, turn on the fan.

5.1 SOA Modeling

Following the SOA modeling process (publish, discovery and composition), Dormitory Control Sim-

ulation and Home Control Simulation are constructed separately for the two tenants ABCDorm and

XYZHome. The discovery process uses the ontology system. The cross referencing among the ontologies

can be beneficial to find the desired service in an easier way. For instance, we can first query Domain on-

tology to narrow down the Building Control Application Ontology for designing the simulation model. In

that, it is easier to discover the desired services for composing the functions.

 To simplify the scenario, this case study only involves a few services including TV Control, Temper-

ature Control and Kitchen Control. The overview constructed model can be seen in Table 8. It specified

the related services and required involved data for the two different simulations.

Table 8: Overview of Sample MTA Simulation Models

 Dormitory Control Simulation Home Control Simulation

Services TV Control, Temperature Control TV Control, Temperature Control,

Kitchen Control

Data Samsung TV, GE Air Conditioning LG TV, Vornado Electricity Fan, Haier

Microwave, GE Refrigerator

5.2 Configuration and Policy Construction

Once the simulation model is done, we can start configure these models with the tenant information.

The two models come with their own simulation models.

According to SimSaaS tenant configuration. The following configurations can be done to the two dif-

ferent models.

XYZHome Home Control Simulation

ABCDorm Dormitory Control Simulation

For the different tenants, different policies are constructed by the tenant constrains. These policies as-

sociate with the MTA SimSaaS model in the cloud infrastructure. Note that as a global policy p5 applies

to all the simulation runs at the SimSaaS runtime including Dormitory Control Simulation and Home

3083

Tsai, Li, Bai and Elston

Control Simulation. P1 and P2 only belong to tenant ABCDorm. P3, P4 only apply to XYZHome. Ac-

cording to PThus when a CoolDown functions are invoked in both simulations, ABCDorm will turn on

the AC, while in XYZHome it will turn on the electricity fan. (Table 9)

Table 9: Sample Policies for MTA Simulation Models

Policy ID Policy Description Policy Type Associated Tenant

P1 Within a range ABCDorm in Building control domain;

If condition time after 10PM is meet;

Trigger the action shutting down TV in living room.

Local Policy ABCDorm

P2 Within a range ABCDorm in Building control domain;

If condition temperature over 80 is meet;

Trigger the action turning on the AC.

Local Policy ABCDorm

P3 Within a range XYZHome in Building control domain;

If condition time after 10PM is meet; Trigger the action

of lowing down the volume of TV to 20% in living

room.

Local Policy XYZHome

P4 Within a range ABCDorm in Building control domain;

If condition temperature over 80 is meet;

Trigger the action turning on the Electricity Fan.

Local Policy XYZHome

P5 Within a range Building control domain;

If the CPU usage is over 80%;

Trigger the action of allocating two more CPUs.

Global Poli-

cy

All tenants in

Building Control

Domain

5.3 Deployment and Execution

Figure 7: Deployment OverView of Global, Regional and Local Policies

ABCDorm

Tenant

SaaS

PaaS

Global and Regional

Policies

Local

Policies
P1

P2

P5

…

Shared Data Shared Services

Tenant-Specific Data Tenant-Specific Services

…

GAE

Check

Temperature

CoolDown

>80

SunDevilsStadium

Local

Policies …

…

…

…

Tenant

Configuration

XYZHome

Local

Policies
P3

P4

Check

Temperature

CoolDown

>80

Tenant

Configuration

Tenant

Configuration

JVM Process

Application

Blobstore Capabilites

JDK

JDO/JPA

GFS

Admin Console

Datastore
Channel Monitor

GAE services (Exposed as Java API)

Image Mail ...

3084

Tsai, Li, Bai and Elston

Figure 7 above shows an deployment overview of the whole case study. P1 and P2 are configured for

ABCDorm, and P3 and P4 are configured with XYZHome. P5 is configured at global level. The Figure

also tells that the global and regional policies stay at the global level compare to local policies that stay

with the individual tenants.

Policy offers more flexibility for the simulation details of different tenants although they share the

same service. Moreover, the overhead for the service designs can be dispersed to the different policies of

the tenants. Thus it can both benefit to the service provider and the simulation execution engine.

5.4 Monitoring and Policy Enforcement

The monitoring and execution of the policies follows algorithm in section 4.4. For instance, when

ABCDorm Simulation is put to execution. The SimSaaS simulation engine starts to monitor the whole

process.

The ABCDorm has a simulation temperature control. Before the execution of the temperature control,

it first checks which simulation algorithms it desires to take. For instance taking the greedy algorithm for

temperature control, the simulation engine starts the execution of temperature control service before the

P2 is evaluated. Taking this way, the simulation can save the time in setting up the environment such as

starting the AC. If the policy condition does not meet, a compensation operation of warming up can be

done.

6 CONCLUSION

This paper presented an ontology based framework and the tenant related policies, to support building an

flexible simulation models that can meet the variability of tenant-specific requirements in SimSaaS. MTA

simulation model construction can benefit from the MTA ontology system provided, and this ontology

can also be used for the policy design. The specified policies can be used to meet the different require-

ments of the tenants. The innovative solution can greatly save the time in tenant modeling and execution

of SimSaaS. A case study is offered to demonstrate the entire framework.

7 ACKNOWLEDGMENT

The project is sponsored by U.S. National Science Foundation project DUE 0942453, and the European

Regional Development Fund and the Government of Romania under the grant no. 181 of 18.06.2010.

REFERENCES

Barham, P., R. Isaacs, R. Mortier, and D. Narayanan. 2003. "Magpie: Online modelling and performance-

aware systems." Pp. 15-15: USENIX Association.

Biacino, L. and G. Gerla. 2002. "Fuzzy logic, continuity and effectiveness." Archive for Mathematical

Logic 41:643-667.

Citrix. 2010. vol. 2010.

Eucalyptus. 2010. vol. 2010.

Fonseca, R., G. Porter, R.H. Katz, S. Shenker, and I. Stoica. 2007. "X-trace: A pervasive network tracing

framework." Pp. 20-20: USENIX Association.

Godik, S., A. Anderson, B. Parducci, P. Humenn, and S. Vajjhala. 2002. "OASIS eXtensible access con-

trol 2 markup language (XACML) 3." Tech. rep., OASIS.

Google. 2010. "Google App Engine." vol. 2010.

Haveliwala, T.H. 2003. "Topic-sensitive pagerank: A context-sensitive ranking algorithm for web

search." IEEE Transactions on Knowledge and Data Engineering:784-796.

Kagal, L. 2002. "Rei: A policy language for the me-centric project." HP Labs, accessible online

http://www. hpl. hp. com/techreports/2002/HPL-2002-270. html.

Kosko, B. 1991. Neural networks and fuzzy systems: a dynamical systems approach to machine intelli-

3085

Tsai, Li, Bai and Elston

gence: Prentice-Hall, Inc.

LanerGroup. 2010. "Simulation as a service to business process management (BPM)."

Li, N., Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin. 2009. "Access control policy com-

bining: theory meets practice." Pp. 135-144: ACM.

Malik, A., A. Park, and R. Fujimoto. 2009. "Optimistic Synchronization of Parallel Simulations in Cloud

Computing Environments." Pp. 49-56: IEEE.

Mazzoleni, P., E. Bertino, B. Crispo, and S. Sivasubramanian. 2006. "XACML policy integration algo-

rithms: not to be confused with XACML policy combination algorithms!" Pp. 219-227: ACM.

Microsoft. 2010. "Azure." vol. 2010.

Palankar, MR, A Iamnitchi, M Ripeanu, and S Garfinkel. 2008. "Amazon S3 for science grids: a viable

solution?" Pp. 55-64: ACM.

Salesforce. 2010. "Salesforce." vol. 2010.

Sigelman, B.H., L.A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and C. Shan-

bhag. 2010. "Dapper, a large-scale distributed systems tracing infrastructure." Technical report

dapper-2010-1. Google.

Thomas Paviot and Jelle Feringa. 2010. "Implementation of a SaaS Based Simulation Platform Using

Open Standards and Open Source Software." in 12th NASA-ESA Workshop on Product Data Ex-

change (PDE2010).

Tsai, W.T., Q. Shao, and W. Li. "OIC: Ontology-based intelligent customization framework for SaaS."

Pp. 1-8: IEEE.

Tsai, W.T., B Xiao, RA Paul, and Y Chen. 2006. "Consumer-centric service-oriented architecture: a new

approach." Pp. 6: IEEE.

Tsai, Wei-Tek, Wu Li, Hessam Sarjoughian, and Qihong Shao. 2011. "SimSaaS: Simulation Software as

a Service." in the 44st Annual Simulation Symposium (ANSS). Boston.

Tsai, Wei Tek, Chun Fan, Yinong Chen, and Ray Paul. 2006. "DDSOS: A Dynamic Distributed Service-

Oriented Simulation Framework." Pp. 160-167: IEEE Computer Society.

Tsai, WT, Y. Chen, R. Paul, X. Zhou and C. Fan. 2006. "Simulation verification and validation by dy-

namic policy specification and enforcement." Simulation 82:295.

Turner, K.J., S. Reiff-Marganiec, L. Blair, G.A. Cambpell and F. Wang. 2007. "APPEL: An Adaptable

and Programmable Policy Environment and Language."

VMWare. 2010. vol. 2010.

Vu, LH, M Hauswirth and K Aberer. 2005. "QoS-based service selection and ranking with trust and repu-

tation management." On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and

ODBASE:466-483.

Zadeh, L.A. 1965. "Fuzzy sets*." Information and control 8:338-353.

Zhou, X., W.-T. Tsai, X. Wei, Y. Chen and B. Xiaoying. 2006. "Pi4soa: A policy infrastructure for verifi-

cation and control of service collaboration."

3086

