
Proceedings of the 2011 Winter Simulation Conference 
S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds. 
 

 
ASSESSING OIL SPILL RISK IN PORT TANKER OPERATIONS USING A 

MULTIATTRIBUTE UTILITY APPROACH TO RANKING AND SELECTION 
 

John C. Butler 
 

Center for Energy Management and Innovation 
McCombs School of Business 

The University of Texas at Austin 
Austin, TX 78712-1175, USA 

Jason R. W. Merrick 
 

Statistical Sciences and Operations Research 
Virginia Commonwealth University 

Richmond, VA 23284, USA 

 
Douglas J. Morrice 

Department of Information, Risk and Operations Management 
The University of Texas at Austin 
Austin, Texas 78712-0212, USA 

 
 
ABSTRACT 

In this paper we apply multiattribute ranking and selection to the management of a port facility in the 
environmentally sensitive Prince William Sound area of Alaska.  The approach allows tradeoffs between 
the disparate performance measures associated with the operation of the port and non-linear scoring of the 
attributes, including the notion of satisfying a target level of performance.  The example considered is 
based on real data from a risk analysis of the port that has been simplified for ease of exposition, but the 
methods employed generalize to situations with real data and larger number of performance measures. 

1 INTRODUCTION 

Like many industrial projects, the management of a large commercial port involves the use of multiple, 
conflicting objectives, e.g. minimize cost vs. maximize safety.  In addition there is uncertainty regarding 
the performance of these attributes and often the different system configurations have to be simulated so 
that they can be compared.  In this paper we use multiattribute utility theory (MAU) to convert multiple 
performance measures into a single scalar performance measure and Bayesian ranking and selection 
(R&S) procedures to identify the best of the simulated system configurations.  Our example analysis also 
features the intuitive concept of a target level of performance on one or more of the performance 
attributes. The methodology we develop is quite general and not restricted to port management. In fact, it 
can be used in any logistics application where the objective is to select the best system configuration from 
a finite number of alternatives based on multiple performance measures.  
 In Section 2, we introduce the problem setting for a decision maker attempting to select an optimal 
port configuration. In Section 3 we briefly summarize multiattribute utility theory, and describe how 
performance on multiple criteria can be captured with a single measure and used in an R&S procedure to 
address some of issues associated with the analysis in Section 2. Section 4 describes an analysis of the 
simplified port design problem using a multiattribute utility function and a Bayesian ranking and selection 
procedure. Finally, we conclude and discuss future research in Section 5. 

2 OPTIMIZING THE OPERATION OF A PORT 

The Prince William Sound (PWS) Risk Assessment was performed in 1996 to assess the level of oil spill 
risk in this environmentally important and sensitive area (Merrick et al. 2000; Merrick et al. 2002). The 
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Exxon Valdez had run aground seven years earlier spilling 11 million gallons of crude oil which impacted 
1,500 miles of shoreline. The spill has had long-term effects on fish and wildlife, as well as economic 
effects on industry and local communities. All told, the spill cost Exxon 13.7 billion, not including loss of 
business and brand image effects (Harrald et al. 1990). A simulation model to test the effect of proposed 
policy changes on the level of risk in the sound was developed by Merrick et al. (2000) and Merrick et al. 
(2002). 

Risk was measured in terms of the expected number of accidents involving oil tankers per year and 
the throughput of the system was measured by the number of tanker “calls” (opportunities to load and 
carry crude oil). Six types of accidents were modeled: 

• Collisions: An underway tanker colliding with or striking another underway vessel as a result of 
human error or mechanical failure and lack of vigilance (inter-vessel collision) or striking a 
floating object, for example ice. 

• Drift Groundings: A drifting tanker out of control because of a propulsion or steering failure 
making contact with the shore or bottom. 

• Powered Groundings: An underway tanker under power making contact with the shore or bottom 
because of navigational error or steering failure and lack of vigilance. 

• Foundering: A tanker sinking because of water ingress or loss of stability. 
• Fire/Explosion: A fire occurring in the machinery, hotel, navigational, or cargo space of a tanker 

or an explosion occurring in the machinery or cargo spaces. 
• Structural Failure: The hull or frame cracking or eroding seriously enough to affect the structural 

integrity of the tanker.   
The simulation model (shown in Figure 1) represents oil tanker arrivals, other traffic arrivals, wind speed, 
visibility, and the presence of icebergs with probability distributions. On the left is a display of the 
dynamic behavior of the Prince William Sound marine transportation system including traffic patterns 
and environmental conditions, such as wind speed and direction. On the right, the analysis shown is 
broken into seven locations, with estimates of the probability of an opportunity for an incident, the 
probability of an accident given such an opportunity and finally the dynamic variation in the expected 
frequency of accidents for the whole region. Both the number of accidents and the number of tanker calls 
vary for each iteration of a simulated year of operation. 

The simulation model counted situations where an accident could occur and then the probability that a 
specific situation would lead to an accident was estimated using accident data and expert judgment 
(Merrick et al. 2000, 2002). Clearly, an oil tanker passing a fleet of fishing boats has a higher potential for 
an accident if there is low visibility or high wind. Data is collected on vessel arrivals and environmental 
conditions, but the combinations of these events are not. Traffic rules, such as a one-way zone, mean that 
the movements of vessels are dependent, while weather-based closure restrictions cause dependence 
between vessel movements and environmental conditions. A simulation of the system captures the 
complex dynamic nature of the system and accurately models the interactions between the vessels and 
their environment.   

The simulation model was created using data on the movement of various types of vessels obtained 
from the Coast Guard’s Vessel Traffic Service and data on the movements and specifications of oil 
tankers from the Ship Escort/Response Vessel System. Environmental data is publicly available from the 
National Oceanographic and Atmospheric Administration weather buoys. It is more difficult to obtain 
data on small vessels that are not required to log in with the Vessel Traffic Service, so community surveys 
were used to model the movements of such vessels. Based on the data, traffic arrival models and weather 
models were developed. In addition, as deep-draft vessels participate in the Vessel Traffic Service and 
they must follow defined traffic rules, such as weather-based closure restrictions, one-way zones, the tug 
escort scheme, and docking procedures. So these rules were programmed into the simulation. 

In this paper, we will consider a hypothetical but realistic decision. At the time of the study, oil 
tankers used four docks in the Port of Valdez to unload ballast water and load crude oil for transportation. 
We consider a “Faster” alternative that adds a dock and a “Slower” alternative that removes a dock. 
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Renewal processes modeled the tanker arrivals with inter-arrival time distributions fitted to historical 
data. The Slower alternative also increases the average inter-arrival times for tankers by 1% while the 
Faster alternative decreases them by 1% relative to the Status Quo. Table 1 shows the three alternatives 
considered. 

 

 

Figure 1: The Prince William Sound Risk Assessment Simulation Model 

Table 1: The three systems considered in the example 

System Nos. Docks Inter-arrival 
Times 

Faster 5 (+1) –1% 
Status Quo 4       no change 

Slower 3 (–1) +1% 
 

For the purposes of this paper we simulated a hypothetical year of data 1000 times so that we would 
have a sense of the true distribution of performance for each alternative on each performance measure and 
we will use the data from this simulation analysis to determine the true best alternative when working 
with the R&S approaches. As shown in Figure 2, the average number of accidents for 1000 simulated 
years was 0.0828 and the average number of tanker calls per simulated year was 641.89 under the Status 
Quo.  Figure 2 also shows the average performance of each system on each performance measure, as well 
as boxplots of the performance for each system on each performance measure.  The boxplot diagrams are 
constructed so that the preference for each attribute is increasing as one moves up the y-axis.  The average 
of each measure under the base case (Status Quo) is represented with the dashed line in each panel of 
Figure 2. The “box” of the boxplots represents the 25th and 75th percentiles while the whiskers represent 
the 5th and 95th percentiles.  The mean of each distribution is represented with a diamond in the box. As 
evident in Figure 2 this situation requires a tradeoff: Faster processing leads to more Calls but increases 
the Accident Risk while the opposite is true for the Slower configuration. 

In this example, there are other attributes that might impact the evaluation of the system 
configurations, particularly the costs associated with constructing and operating the utilized docks.  
Utility theory can easily accommodate more than two attributes; e.g., Butler et al. (2001) used six 
attributes to capture system performance. Even when more than two attributes are used to capture 
performance it is usually possible to group the performance measures into two “super-attributes”: benefits 
and costs. 
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Consider the decision frame of a federal decision maker who is bound by National Environmental 
Protection Act (NEPA) to allow continued operation of the business, but cannot allow changes that would 
increase risk to the environment.  In other words, the Status Quo provides a target level of performance 
for the selected criteria.  It might be tempting to formulate this decision problem as the following 
optimization: Choose system m such that 

 
[ ]

[ ] 0828.0E          s.t.
EArgmax 9...1

≤
=

mA

mCm

X
X

 
    (1) 

 
where XmA and XmC denote the number of accidents and number of tanker calls for a simulated year, 
respectively, when system m is implemented.  This constrained approach is consistent with the two-staged 
formulation of Andradóttir and Kim (2010) and is discussed extensively in Merrick, Butler, and Morrice 
(2011).   

Applying their approach to the averages presented in Figure 2, the Faster configuration would be 
removed in phase I due to a mean accident level above 0.0828.  In phase II, the Status Quo is selected as 
the top performer as it has the highest number of average calls of the systems that meet the accident 
constraint.   
 

  
   System  

  Faster Status Quo Slower 
Accidents Mean 0.0893 0.0828 0.0794 

 Std Dev 0.00307 0.00313 0.00314 
     

Calls Mean 648.32 641.89 635.57 
 Std. Dev 2.17 2.87 2.45 

 
System Performance : Accidents and Calls 

Figure 2: Boxplots of the Number of Accidents and Number of Tanker Calls Across 1000 Simulated 
Years of Each Alternative 

While it is true that the average number of calls for the Slower configuration is about 6.31 less than 
the Status Quo, the Slower configuration has 0.0034 less expected accidents per year which might offset 
the decrease in average number of calls (see Figure 2).  In other words, there is no tradeoff between 
Accident risk and tanker Calls for the systems that satisfy the desired level of performance.  

Rather than impose constraints, we prefer to identify target levels of performance and include that 
information in the scoring of the attributes.  Further, the intent of the constraints is to prevent the decision 
maker from realizing poor performing alternatives and this can achieved by allowing tradeoffs between 
the attributes in the objective function 

( )1... 1 2Argmax E ,m M m mu X X=       
 (2) 

where u() is a multiattribute utility function. 
As discussed in Merrick, Butler, and Morrice (2011), our view is that the tradeoff implied in the 

following argument is likely to capture the views of many decision makers.  Given the size of current 
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tankers, each carries crude oil valued in the tens of millions of dollars. However, the Exxon Valdez 
disaster in 1990 has been estimated to directly cost Exxon $13.7 billion, excluding lost of business, good 
will, and brand image (Harrald and Wallace 1990). A tanker with a dead weight of 125,000 tons can carry 
929,000 barrels of crude oil. At the time of writing, a barrel of crude oil is valued at approximately $80. 
Thus, our hypothetical tanker carries approximately $74 million of crude oil and, based on a 5% profit 
margin, the company can expect $3.7 million in profits from each tanker.  The Exxon-Valdez accident 
cost (at least) $13.7 billion. Using that as a proxy for the cost of an accident there is an implied trade-off 
of 13,700 / 3.7 ≈ 3,703 tanker calls to one accident , or one tanker call is equivalent to 0.00027 accidents. 
This “costing-out” procedure can be generalized to accommodate the decision maker’s preferences via the 
weights of a multiattribute utility theory as outlined in Section 3. 

3 MULTIATTRIBUTE DECISION ANALYSIS AND RANKING AND SELECTION 

3.1  Multiattribute Utility Theory 

In what follows we assume that there are M > 1 system configurations, each having  two uncertain 
attributes Xm = (Xm1, Xm2). A utility function u(x1, x2) assigns a number capturing preference to each vector 
of consequences x = (x1, x2) where xi is a level of attribute Xi. Each attribute is defined on a range from its 
least preferred level, xi

o, to its most preferred level, xi
*.  Further, the attribute utility functions ui(xi) are 

scaled so that ui(xi
o) = 0 and ui(xi

*) = 1.  We also assume that the worst possible alternative receives a 
score of 0 and the best possible alternative receives a score of 1; i.e. u(x1

o, x2
o) = 0  and u(x1

*, x2
*) = 1.   

Attribute X1 is utility independent of X2 if preference for lotteries (i.e. outcomes of random variables) 
of X1 given X2 = x2 does not depend on the level of x2 (Keeney and Raiffa 1976).   If a more restrictive 
preference condition called additive independence is also satisfied then it is the marginal, not the joint, 
distribution of each performance measure that determines preference.  In this case we can represent the 
decision maker’s preferences with an additive MAU model: 

 
u(x) = w1u1(x1) + w2u2(x2)     (3) 

 
where 0 ≤ wi ≤ 1 and w1 + w2= 1.  

While we focus on two attribute additive models in this paper the reader is encouraged to consult the 
extensive literature on multiattribute utility theory (e.g. Keeney and Raiffa 1976) and multiattribute 
ranking and selection (Butler et al. 2001; Morrice and Butler 2006) for examples with more performance 
attributes and more general forms of multiattribute aggregation functions. 

3.2  Ranking and Selection Procedures  

Let us denote the ordering of the means of the systems’ true performance, µi, from lowest to highest by 
  

     µ[1] ≤ µ[2]  ≤ … ≤ µ[M]       (4) 
 

where [M] = Argmaxm=1,…M  µ1 , µ2, …µm.  If the R&S procedure accurately identifies the true best system 
configuration, we will say that a “correct selection” (CS) is made.  In our setting the mean level of 
performance is the average expected utility and the most preferred configuration has the highest value µ[M] 
= E[u(X[M],1, X[M]2)]. 
 We denote the ordering of the observed sample means of performance by ( ) ( ) ( )Mμ̂...μ̂μ̂ ≤≤≤ 21 ;  thus 
(m) denotes the m-th largest observed sample mean and [m] denotes the m-th largest true mean. At the end 
of any R&S algorithm, we have correctly selected the best simulated system if the system selected based 
on sample means, D, has the true highest mean: D = (M) = [M].  
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 The decision maker is asked to specify some value δ∗ such that E[u(X[M],1, X[M]2)] –   E[u(X[M-1],1, X[M-

1]2)]  ≥ δ∗ is practically significant; i.e., we are willing to consider E[u(x[M-1],1, x[M-1]2)] indistinguishable 
from  E[u(X[M],1, X[M]2, …, X[M]n)] – δ∗.  
 Chick and Inoue (2001) introduce the concept of Bayesian Expected Opportunity Cost (EOCBayes) 
based on the linear loss function (or opportunity cost), LOC(D,µ) = µ[Μ] – µ(Μ).  In our case, this is the 
amount of utility that is given up by making a choice based on the observed sample means; when a 
correct selection is made D = (M) = [M], µ[Μ] = µ(Μ), and LOC(D,µ) = 0.  Let C = { u(xm1k, xm2k, … xmnk), i = 1 
to M, k = 1to km}  be the set of all simulation replicates performed thus far.  We can estimate EOCBayes 
using 
              EOCBayes  = E[LOC(D,µ) | C] 

       = ( ) 





=
)|ˆ-ˆ(maxE

1
CMi,...mi

µµ  

       ≤ 
( )( )

[ ]∑
≠

− Ψ
si

isvis d
si

*1λ , 

where λ-1
is = σ2

(i) /ki + σ2
(s) /ks , d*

is is the standardized difference and Ψv[a] = (v+a2)/(v-1) × φv(a) – aΦv(–
a) and φv() and Φv() are the probability density function and cumulative distribution respectively function 
of the standard t-distribution with v degrees of freedom. 

4 MAKING DECISIONS ABOUT TANKER PRODUCTIVITY AND SAFETY  

4.1  Optimal Port Configurations 

It is important to emphasize that utility functions should be assessed for each unique decision context and 
decision maker.  Here we illustrate the flexibility of multiattribute R&S by selecting a few representative 
utility function combinations.  Our hypothetical analysis of the Prince William Sound simulation focuses 
on the use of two additive utility models displayed in Figure 3. 

The utility function in the left panel of Figure 3 is predisposed to alternatives with good scores on 
Accident Risk as it not only allocates most of the weight to this attribute, it is also risk seeking (convex) 
in Accident Risk and risk averse (concave) with regards to Calls.  Based on the analysis in the left panel 
of Figure 3, and confirmed with  EOCBayes, the Slower was the identified alternative with an initial sample 
(n0) of 50 and δ* = 0.001 without any additional required observations. 

We invoke a binary target-like single attribute utility functions for the Accident Risk (see Figure 4 for 
an example) in the right panel of Figure 3. The quantity b is a binary target. When Accident Risk is less 
than or equal to b, then the utility equals 1, otherwise it equals zero. In Figure 3, b equals 0.0828. Note 
that the weight on Accident Risk is lower (0.4 vs 0.6) but the use of the binary utility function helps to 
avoid alternatives that perform poorly. As shown in right panel of Figure 3, and confirmed with EOC 
Bayes, n0 = 50, δ*= 0.001, the Slower configuration is still preferred.  The weight on Accident risk has to 
decrease to about 0.23 before the Status Quo configuration becomes the most preferred with this set of 
attribute utility functions; if the weight on Accident Risk is below 0.05 then the Faster configuration is 
preferred. 

The boxplots in the right panel of Figure 3 also highlights one important consequence of using hard, 
binary constraints in the evaluations. First the distribution of the Status Quo performance has a “wide” 
boxplot because there is about an equal likelihood that the constraint on Accidents is achieved or not 
which leads to high variance.  Note that Faster and Slower configurations utility distributions are highly 
skewed because  the Faster (Slower) alternative typically does not (does) satisfy the constraint and the 
mean utility is low (high) with a long right (left) tail pulled towards the few times the constraint is met 
(not met) and the configuration utility is high (low).  
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Additive Utility Model, Risk Seeking for Accidents 
wA = 0.6, wC =0.4 

Additive Model :Binary for Accidents  
wA = 0.4, wC =0.6 

 
 

 

  
The Distribution of Utility for the Alternatives 

 
 Faster Status Quo Slower 

Mean 0.5616 0.6193 0.6491 
Std Dev 0.0285 0.0342 0.0369 

 

 Faster 
Status Quo Slower 

Mean 0.4908 0.6695 0.7860 
Std Dev 0.0537 0.1996 0.1405 

 

Statistics for Utility of Alternatives 

Figure 3: u(XmA, XmC) with Target Attribute Utility Functions 

 
Figure 4: Single Attribute Utility Functions for Constrained Attribute (x2) 

4.2  The Use of a Target and Its Impact on Variance 

The recent popularity of Constraints and Targets in both decision analysis (e.g. Bordley and Kirkwood 
2004) and ranking and selection (Andradóttir and Kim 2010) suggest that the variance in performance 
exhibited in the right panel of Figure 3 is likely to become more common in the future.  To gain some 
insight into the impact of the use of binary target on the outcome variance we perform some additional 
analysis in our two attribute setting assuming that the Xi are independent and identically distributed N(µi, 
σi) random variables. In practice, the Xi are often statistically dependent. The latter is the subject of future 
research.   
  In our setting, we have u(X1,X2) = w1u1(X1) + w2u2(X2).  For simplicity we will assume that the 
u(X1) = X1 and u(X2) = l(X2 ≤ b), where the indicator function l(∙)  takes the value 1  when its argument is 
true and 0  when it is false.  Under these circumstances,  
  E[u(X1,X2)] = E[w1u1(X1) + w2u2(X2)] =  w1E[u1(X1)] + w2E[u2(X2)] =  w1µ1 + w2E[l(X2 ≤ b)] 
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and 
 Var[u(X1,X2)] = Var[w1u1(X1) + w2u2(X2)] =  w1

2 Var[u1(X1)] + w2
2Var[u2(X2)]  

       =  w1
2σ1

2 + w2
2Var[l(X2 ≤ b)] 

The random variable l(X2 ≤ b) takes the value 1  with probability 

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
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2
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21
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µb , where Φ(∙) is the cdf of the standard normal distribution. 
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Thus, Var[l(X2 ≤ b)] = E[l(X2 ≤ b)2] – E[l(X2 ≤ b)] 2 = 

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Using these quantities we can specify E[u(X1,X2)] = w1µ1 + w2 






 −
Φ

2
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σ
µb , and  

  Var[u(X1,X2)] =  w1
2σ1

2 + w2
2 


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 −
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
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 −
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21
σ

µb .    (5) 

 The Var[u(X1,X2)] in (5) is graphed in Figure 5 assuming that X1 ~ N(1, 1), u(x1) is linear and the 
weight on X1 (w1) is fixed at 0.4.  Further, we assume X2 ~ N(1, σ2) with σ2 varying from 0.25 to 1.75, and 
the target level on X2 varying from zero to two.   As expected, Var[u(X1,X2)] is highest when the standard 
deviation of the variable with a target is high and the target level is close to the mean level of 
performance.  Under these conditions the decision makers’ preferences are the most sensitive to the target 
and, therefore, provide the most interesting case studies.  For example, if the decision maker desires to 
achieve a level of less than 4 for X2 ~ N(1, 1), the target will not be satisfied in about 0.135% of the 
simulated cases and will not have a major impact in determining the top performer.  Another way to 
frame the problem is that a decision maker is likely to include a target on situations where that target is 
less likely to be satisfied. This high variance could compromise the performance of any R&S procedure 
and we test the performance of our example utility functions in the next section. 
 

 
Figure 5: Var[u(X1,X2)] as a Function of the Level of b and σ2 , X1 ~ N(1, 1) , X2 ~ N(1, σ2), and w1 = 0.4 

0.25

0.75

1.25
1.75

0.15

0.17

0.19

0.21

0.23

0.25

0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0

σ2

Var[u(x1),u(x2)]

b

1703



Butler, Merrick, and Morrice 
 
4.3   Performance of the Multiattribute Ranking and Selection Algorithm 

Merrick, Butler, and Morrice (2011) demonstrate the impact of the use of targets on R&S procedures 
ability to make a correct selection.  Here we change the focus to look at the effect of the target level and 
the variance of the attribute on which we place a target, using the PWS simulation and the three systems 
discussed previously. We performed 1000 runs of the simulation under each system and fitted a bivariate 
log-normal distribution to the two outputs of the simulation, namely the number of calls and the number 
of accidents. In the following testing, we sampled from the fitted distributions, not the original simulation 
as this was not computationally feasible for repeated iterations of the R&S algorithm. 
 We use the target utility function shown in the right pane of Figure 3. The target is specified for the 
number of accidents. The target level is 0.0828 as shown in equation (1). We modify this target by using 
the following multiples of 0.0828: 0.8, 0.9, 1.0, 1.1, and 1.2. We also modified the variance of the 
distribution of the number of accidents. The variances for each of three systems were also modified by  
0.8, 0.9, 1.0, 1.1, and 1.2. 
 Table 2 and Figure 6 are based on 1000 samples from the distribution of the utility of each of the 
three systems under each of the twenty five combinations of target multiplier and variance multiplier. In 
Figure 6, the best system under each combination is circled. One can observe in Figure 6 that the “best” 
system changes as we vary the target level and the variance of the accident distribution. Table 2 illustrates 
the insight gleaned from Section 4.2 that when the target b is near the mean level of performance, the 
variance is the greatest (see columns corresponding to b = 0.07452 and b = 0.0828).   
 To help understand the results in Figure 6, consider any row of graphs (corresponding to a particular 
level of variance). When the level of b is small, all the configurations score poorly on Accident Risk 
because all the observations do not satisfy the target level. Hence, the number of tanker Calls determines 
the configuration with the best utility and Faster wins out. As the level of b increases, certain 
configurations (Slower and Status Quo) start to satisfy the target level of Accident Risk more than Faster. 
Hence, Slower and Status Quo take top spots because they do better on Accident Risk than Faster. 
Finally, when b gets large enough for all configurations satisfy the target level of Accident Risk and the 
determining factor is once again Calls which favors Faster.     

Table 2: Mean and Standard Deviation of the Utility Distributions for Each System as the Target Accident 
Level and Variance of the Accident Distribution are Modified 

   Level of b 
   0.06624 0.07452 0.08280 0.09108 0.09936 
   Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

V
ar

(X
2)

=q
2 σ

2 : L
ev

el
 o

f q
 

0.8 Faster 0.4939 0.0121 0.5021 0.0573 0.8097 0.1554 0.8857 0.0533 0.8937 0.0122 
Status Quo 0.4908 0.0083 0.5000 0.0604 0.8429 0.1272 0.8906 0.0091 0.8905 0.0084 
Slower 0.4891 0.0067 0.4994 0.0636 0.8576 0.1069 0.8890 0.0067 0.8889 0.0067 

0.9 Faster 0.4937 0.0122 0.5093 0.0768 0.8016 0.1615 0.8839 0.0587 0.8938 0.0121 
Status Quo 0.4905 0.0084 0.5076 0.0802 0.8336 0.1379 0.8906 0.0084 0.8906 0.0084 
Slower 0.4889 0.0067 0.5079 0.0847 0.8453 0.1242 0.8889 0.0068 0.8890 0.0067 

1.0 Faster 0.4937 0.0122 0.5163 0.0911 0.7960 0.1653 0.8826 0.0622 0.8937 0.0122 
Status Quo 0.4905 0.0084 0.5153 0.0955 0.8279 0.1435 0.8903 0.0125 0.8905 0.0084 
Slower 0.4889 0.0067 0.5164 0.1007 0.8384 0.1322 0.8889 0.0086 0.8889 0.0067 

1.1 Faster 0.4937 0.0123 0.5209 0.0995 0.7862 0.1710 0.8819 0.0642 0.8936 0.0133 
Status Quo 0.4905 0.0084 0.5209 0.1051 0.8158 0.1539 0.8902 0.0151 0.8904 0.0083 
Slower 0.4889 0.0067 0.5219 0.1094 0.8268 0.1440 0.8890 0.0087 0.8888 0.0067 

1.2 Faster 0.4937 0.0122 0.5263 0.1077 0.7797 0.1745 0.8810 0.0666 0.8935 0.0164 
Status Quo 0.4905 0.0084 0.5269 0.1137 0.8078 0.1601 0.8895 0.0224 0.8908 0.0084 
Slower 0.4888 0.0067 0.5287 0.1188 0.8184 0.1515 0.8882 0.0187 0.8891 0.0067 
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Figure 6: Boxplots of the Utility Distributions for Each System as the Target Accident Level and 
Variance of the Accident Distribution are Modified 

 One other interesting feature of Figure 6 is the impact of variance in some situations. For q < 1, the 
top performing alternative changes from Faster to Slower at b = 0.08280. In contrast, for higher variance 
levels (q ≥1) the transition from Faster to Slower occurs at a lower target level 0.07452.  This happens 
because the larger variance allows more of the Slower observations to satisfy the target level for lower 
targets, e.g. p(X2<b | q = 1) > p(X2<b | q = 0.9) for a fixed level of b.  In other words an alternative’s 
score on Accident Risk can improve in one of two ways: (i) the target level of performance can be 
increased so that it is easier to satisfy the target or (ii) the variance of performance when the mean 
performance is far from the target can increase so that the probability of satisfying the target in some 
cases increases. 
 Figure 7 shows the effect on the performance of the R&S algorithm. The left panel of Figure 7 shows 
the empirical probability that the algorithm correctly selected the best system for each combination of 
target multiplier and variance multiplier. To obtain the empirical PCS, we ran the R&S algorithm 1000 
times for each combination and counted the number of times it selected the best system indicated by the 
analysis in Figure 6. The right pane of Figure 7 shows the average number of iterations in the R&S 
algorithm necessary to reach the specified stopping rule. 
 Figure 7 results are quite consistent with Figure 6. As b increases and the determining factor for the 
best configuration starts to switch away from Calls toward Accident Risks, it becomes hard to detect the 
best configuration, especially for higher levels of variation (e.g., q = 1, 1.1, and 1.2 at target level 
b=0.07452). Another factor contributing to the poor correct selection performance, especially for the case 
q=1 and b = 0.07452, is the closeness of the utility values for the three configurations (note that mean 
values for two of the configurations differ only at the fourth decimal place). Not surprisingly, the average 
number of runs increases for these “hard to detect” cases. For low levels of variation and higher values of 
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b, the R&S procedure does reasonably well making the correct selection. It is important to remember that 
in addition to b and the level of variation, the weights and the shapes of the single attribute utility 
functions also play a role in determining the location of a region (or regions) in which the procedure lacks 
robustness. 

The Chick and Inoue (2001) R&S procedure we use is based on certain assumptions that do not hold 
for the data in Figure 7 (e.g., normality of the performance measures – in many cases the results are 
obviously bimodal). We suspect that this could be a contributing factor to the lack of robustness in some 
of the results. Consequently, our point is not to critique the performance of the R&S procedure but to 
illustrate some of the potential problems associated with the use of binary targets in practice.     

  

 
Figure 7: The Empirical Probability of Correct Selection and the Average Number of Runs as a  
Function of the Target Accident Level for Varying Multiples of the Variance of the Accident Distribution 

5 CONCLUSIONS 

Multiattribute utility theory explicitly includes tradeoffs in the objective function and so it avoids the 
shortcomings associated with the other approaches: it will always find the best alternative and it avoids a 
negative value of sample information.  Further, target-oriented utility functions can be used as an 
alternative way to assess or interpret multiattribute utility functions which may be particularly useful 
when there is some desired level of performance.  The ability of utility theory to appropriately capture a 
wide variety of preferences leads to a general approach with appealing implications. 

Our work is consistent with recent advances in decision analysis that develop a theory showing the 
equivalence of utility theory and the achievement of a target (Abbas and Matheson 2005; Bordley and 
Kirkwood 2004; Bordley and LiCalzi 2000).  The natural interpretation of attainment of some level of 
performance as a target will lead to the inclusion of this type of scoring rule in application, but as we have 
demonstrated there can be significant, potentially negative, impacts on R&S procedure performance.  

In future research, we plan to gain a broader understanding of these adverse impacts by, for example, 
considering correlated performance measures. We will also consider ways to mitigate negative impacts by 
considering constraints less stringent than simple binary targets. These constraints will be modeled by 
more general utility functions.   
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