

HOW TO BUILD BETTER MODELS:

APPLYING AGILE TECHNIQUES TO SIMULATION

James T. Sawyer
David M. Brann

TranSystems

512 Via de la Valle, Suite 310
Solana Beach, CA 92075, USA

ABSTRACT

For simulation practitioners, the common steps in a simula-
tion modeling engagement are likely familiar: problem as-
sessment, requirements specification, model building, veri-
fication, validation, and delivery of results. And for
industrial engineers, it’s a well-known adage that paying
careful attention to process can help achieve better results.
In this paper, we’ll apply this philosophy to the process of
model building as well. We’ll consider model building
within the framework of a software development exercise,
and discuss how best practices from the broader software
community can be applied for process improvement. In
particular, we’ll focus on the “Milestones Approach” to
simulation development – based on the popular “agile
software” philosophy and our own experiences in real-
world simulation consulting practice. We’ll discuss how
thinking agile can help minimize risk within the model-
building process, and help create a better simulation for
your customers.

1 INTRODUCTION

Several years ago, we were working on a particularly chal-
lenging project for a major U.S. airline. The airline has en-
tered into a recurrent contract negotiation with its pilots to
define the terms of the next contract, focusing on the work
and compensation rules by which the airline and its pilots
would be subject to work together. The airline identified
the need for a simulation-based tool that accounted for the
impacts of varying behavior within the daily staff and
flight activities which were thought to be significant cost
drivers, including human decision making by the pilots in
planning their monthly schedules. The simulation results
were used to quantify the impacts of the negotiated con-
tract work rules, providing important data to support the
negotiating teams.

 This was a large and difficult project, equivalent to
modeling minute details within hundreds of pages of the
pilot-airline contractual agreement, as well as the condi-
tions in which those clauses would be triggered. Although
we had an experienced simulation team in place, we knew
that this project would be a little different. The timeline
was almost unreasonably aggressive. It was impossible to
identify and document a full set of project “requirements”
in advance of the model development. In fact, new or
changing requirements would come up almost daily, as the
simulation team learned more about the project, the cus-
tomer’s team learned more about the capabilities of simula-
tion, and in one or two cases new requirements came from
the negotiating table itself. Parallel development tasks were
mandatory due to the sheer volume of model-building
work that needed to be performed. The scope was con-
stantly changing. And the results had to be not only accu-
rate, but easily explainable and defensible due to the high-
stakes nature of how the results were to be used.
 This story has a happy ending: we completed the mod-
el on time, obtained useful results for the team, and had an
impact on improving the overall result of the negotiations.
However, many projects have not fared so well in such an
environment, with the high frequency of scope change,
demanding timeframe, and management of multiple devel-
opers. Our key to success was to carefully consider the
process of model development before we even started the
project, and create a plan that would minimize risk along
the way. We survived – and you can too.

2 KEYS TO A SUCCESSFUL SIMULATION
PROJECT

A successful simulation modeling project contains many
components, ranging from the initial stages of problem as-
sessment and requirements gathering to model verification,
validation, statistical analysis, and presentation of results.

655 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Sawyer and Brann

Previous articles at this conference and others (Banks &
Gibson 2001) have described these steps in detail and em-
phasized the importance of each step in this process. For
instance, if the context of the problem is not thoroughly
understood, how do you know you are simulating the right
part of the system in question? If there has been no formal
verification that the model is functioning as designed, how
do you know the analysis of results is meaningful? If the
model results have not been validated against real-world
data, how do you know the model is a sufficient represen-
tation of the system being simulated?
 Other tutorials and papers (Standridge et al., 2007)
have and will continue to cover these critical topics. How-
ever, it is easy to skim over the fact that one of the un-
avoidable steps is to build the simulation model! It is often
assumed that we are just inherently experts at the “model
building” part of this – after all, isn’t that what our college
courses taught us? Building any old model may be easy,
but building a good model isn’t necessarily so.
 Consider the staffing approach of a typical modeling
engagement. The “senior” staff member generally works
with the client to determine the scope of the problem and
identify what needs to be modeled. Subsequently, the prob-
lem is handed off to the “junior” staff members to con-
struct the simulation model, under the direction and tute-
lage of the wise seniors. After the model is completed (and
hopefully tested, verified, and validated), the senior staff
member re-enters the scene to assist with the analysis and
discuss the results with the customer. While it is certainly
true that experience is critical to successful simulation pro-
ject management and execution, note that this staffing ap-
proach implicitly suggests that building the model is the
“easy” part of the project – the part that can be handled by
the less-experienced junior staff.
 Building a good model is not usually easy. Granted,
there are many simulation software packages commercially
available that advertise ease of use for the casual business
user. If you can draw a flowchart, they say, you can build a
simulation model. No programming required! Perhaps
there are problem domains where this holds true. However,
in the hundreds and hundreds of projects our firm has
completed over the last twenty years, it is rarely the case
that a system to be modeled is so simple and straightfor-
ward. It would be a breath of fresh air if one of our cus-
tomer’s problems could be naturally and sufficiently repre-
sented as the classic “bank teller” queuing problem!
 Real-world systems are complex. Entities and objects
and people move around. They interact with each other.
They don’t always behave in the exact same way. They
break down. The actions or decisions of different objects
may have intended or unintended effects on others. To
adequately represent this complexity in a simulation model
is not an easy task. Our approach to managing complexity
has been to treat the simulation model construction effort
as a software development exercise, and look to the broad-

er software community for guidelines and recommenda-
tions for process improvement.

3 MODEL BUILDING AS SOFTWARE
DEVELOPMENT

In its barest form, a simulation model is a compiled soft-
ware program that executes on a computer and produces
output results. This is easy to forget with the proliferation
of graphically-oriented simulation software applications
like Arena, ProModel, Witness, AnyLogic, and many oth-
ers. In the past, constructing a simulation model was the
exclusive domain of computer programmers; in fact, what
is commonly referred to as the first object-oriented pro-
gramming language, Simula, was itself a simulation lan-
guage. However, user-friendly features have been designed
to make it easier and faster for the business user to design,
develop, and work with simulation models. You don’t have
to be a computer programmer in order to create a model.
This evolution has been positive for our community as a
whole, opening up the possibilities of simulation technol-
ogy to a much broader range of users with a broader range
of technical skillsets.
 But under the hood, software source code is still being
generated, compiled, and executed – this is the heart of a
simulation. Focusing on how the model is developed and
constructed – in the same way as any software is developed
– can provide insights and benefits that can make projects
more successful. For industrial engineers, it’s a common
tenet that focusing on the quality of the process can di-
rectly impact the quality of the product. In this, case we are
looking to improve the quality of the simulation construc-
tion process – how the software is being built.
 But why focus on software construction at all? There
are many steps in software engineering, just as there are
many steps in a simulation project. Steve McConnell, au-
thor of the classic and seminal book Code Complete
(2004), explains:

The ideal software project goes through careful re-
quirements development and architectural design be-
fore construction begins. The ideal project undergoes
comprehensive, statistically controlled system testing
after construction. Imperfect, real-world projects,
however, often skip requirements and design to jump
into construction. They drop testing because they have
too many errors to fix and they’ve run out of time. But
no matter how rushed or poorly planned a project is,
you can’t drop construction; it’s where the rubber
meets the road. Improving construction is thus a way
of improving any software-development effort, no mat-
ter how abbreviated.

 Designing software is itself an exercise in managing
complexity (Reeves 1992). Throughout the history of soft-
ware development, formal and informal techniques have

656

Sawyer and Brann

been tried, tested, and endlessly debated to help the soft-
ware practitioner create more effective applications. The
historical benchmark of best practices is known as the “wa-
terfall approach” to software projects.
 The waterfall approach was originally described by
Winston Royce in a 1970 paper (Royce 1970) on managing
the development of large software systems. Its recommen-
dations would be familiar to most simulation practitioners
as it features the more-or-less traditional steps of Require-
ments, Design, Construction, Integration, Testing, Installa-
tion and Maintenance. This organized and methodical ap-
proach has been successful in the construction of complex,
mission-critical software applications in many industries.
However, the waterfall approach has been criticized over
the years (Parnas & Clements 1986; Weisert 2003) for be-
ing inflexible, and other development methodologies have
emerged as a response.
 The recognition of the fact that requirements can and
do change during the development process ultimately led
to the development of a variety of approaches falling under
the general description of “agile software development”.
Emerging in the mid-1990s, agile development realizes
that change is inevitable and focuses on an iterative ap-
proach, with each iteration essentially being a small devel-
opment project unto itself. The end product of each itera-
tion may not be something for final release to the
customer, but the goal is to continually have working, and
tested, versions of the software through the course of the
development project. Agile processes and practices focus
on the ability of a development team to respond to change,
and the ability of software to accommodate change yet still
remain working software (Knoernschild 2006).
 In 2001, the principles of agile software development
were summarized by a set of champions within the soft-
ware engineering community in what is known as the Agile
Manifesto (Beck et al. 2001). Some of the key principles
can be summarized as:

• Achieve customer satisfaction through rapid, con-
tinuous delivery of useful software

• Working software is delivered frequently (weeks
rather than months)

• Working software is the principal measure of pro-
gress

• Even late changes in requirements are welcomed
• Close, frequent cooperation between customers

and developers
 One key distinction that must be made regarding agile
development (and related methodologies, such as “extreme
programming”) is that it is absolutely not the same thing as
having no process at all, or “cowboy coding”. While in
both cases, there may be a relative lack of documentation,
there are still important processes to be followed within ag-
ile development, as we describe in the following sections.

4 AGILE SIMULATION: THE “MILESTONES
APPROACH”

What makes the agile software development approach ap-
propriate for a simulation development project? Why not
use the waterfall approach, or a modified waterfall to allow
for some iteration? Because in the real world, the require-
ments for a simulation can and do change during the course
of the project, and agile approaches are designed to help
manage that change. The customer’s priorities may change.
You may learn something during the simulation develop-
ment that changes certain assumptions. Something you
may have thought was absolutely critical before the project
began may turn out to have minimal meaningful impact on
the results. No matter how thorough the requirements gath-
ering phase of a project, it is very rare that a functional
specification can be created that is completely set in stone.
 This doesn’t mean that a requirements specification is
a bad idea! It helps both the simulation practitioner and the
customer understand and limit the scope of a project –
which is important, assuming there are limits to the avail-
able time and budget to spend on a problem. It helps to
think of a specification as a starting point for this continu-
ally evolving development process.
 The agile philosophy suggests that changes to project
requirements should be expected, and accounted for as a
natural part of the software project process. In our consult-
ing practice, this philosophy has been embraced in what we
call the “Milestones Approach” to simulation development.
The Milestones Approach is intended to divide a large and
complicated project into smaller phases with clear objec-
tives that can be a) successfully navigated and managed by
the development team, and b) quickly demonstrated to
communicate progress to the customer. The objective is to
improve the quality of the end product by separating the
project into more manageable pieces, and provide an op-
portunity to evaluate the development process at every
step.
 Each milestone is a self-contained, work-in-progress
version of the overall project. Each milestone adds detail to
what has been accomplished in previous phases. Each mi-
lestone serves as a review point where the team can step
back and reexamine the development schedule, methods,
testing, and usability of the model. Each milestone results
in a working deliverable so that progress can be demon-
strated and communicated to the customer. Documentation
of each milestone can be delivered to the customer to joint-
ly track project progress. Inevitably, each milestone review
with the customer leads to new or modified requirements.
 For example, if processes A, B, C, and D all need to
be modeled for a system representation, it might be tempt-
ing to start by implementing all of the minute intricacies
within process A. Instead, using the Milestones Approach,
a basic model is constructed that includes some high-level
but complete representation of A, B, C, and D. This Mile-

657

Sawyer and Brann

stone 1 version of the model contains a relevant subset of
input parameters and produces output results. By evaluat-
ing these results, further guidance can be gained on which
of the four processes is more important to investigate in
more detail.
 This doesn’t mean the details of process A or any oth-
er process should be ignored. The details are acknowl-
edged and written down, and a conscious decision is made
about which project milestone is the right one for schedul-
ing the implementation. In our experience, we’ve seen
many failed projects where too much attention was paid to
minute details too early in the project timeline.

5 WORKING WITHIN MILESTONES

The typical lesson plans used to introduce a first simulation
package, whether in a college course, research, or simula-
tion practice, also reflect elements of agile development.
For example:

• Lesson 1: Basic Source, Queue, Delay, Sink mod-
el (or maybe flowing from A to B on a conveyor).

• Lesson 2: Add a Resource that needs to be
claimed before starting the Delay.

• Lesson 3: Add branching logic so that there are
two Queue-Delay pairs and the entities chose be-
tween them based on some condition (and so on)

 Simulation training takes that approach to adding
complexity to the model because the student is incremen-
tally acquiring the needed skills and knowledge to model
that complexity in a given tool. That approach follows
many of the same rules as agile development: for each les-
son (milestone) there is a fixed set of functionality to be
added, and there is a working, demonstrable product at the
end of the milestone. Those same principles should guide
the development of the milestones for a much more com-
plex simulation model.
 Important concepts within the Milestones Approach
include:

• Plan the work
• Frequent iterations
• Frequent testing
• Frequent review

 Think of all of the dozens or hundreds of individual
tasks and features that need to be executed in order to say
that the model is complete. The first step is to come up
with a plan of attack. The Milestones Approach encourages
setting the details aside and starting with a broad view of
the architecture. What are the primary functional or logical
components within the system to be represented? List
them. Also list any other elements that may be needed to
complete the simulation project: inputs, outputs, user inter-
face, formal testing plans, creating an installation package
to deliver to the user, and any other relevant work tasks.

 Then, divide the project timeline into a series of indi-
vidual milestones. How many and how frequently depends
on your overall project schedule and scope. We’ve found
that 1- to 2-week milestones generally work fairly well
with our project teams – it’s long enough for significant
development and testing to occur, but short enough that
we’re not waiting too long to establish a review point and
potentially make a course correction.
 At this point, a planning matrix can be created, as il-
lustrated in Error! Reference source not found. below.
Project components represent the rows, and milestones rep-
resent the columns. Starting with Milestone 1, fill in the
individual detailed tasks and features step by step. Priori-
tize the implementation of those details according to their
importance to the overall goals of the model, and organize
the project into sequential milestones over time.
 Each milestone has an objective. In the first milestone,
you are trying to create a basic framework for the rest of
the model development – the “skeleton” of the project if
you will. In subsequent milestones, the objective is to add
in a little more detail to each of the functional components.
One way to think about this is to examine each piece of
logic and ask: does this process occur all of the time, some
of the time, or rarely? Is it a “special case” that happens
only a small percentage of the time? Rare events doesn’t
belong in an early project milestone.
 For instance, it is common in our early project mile-
stones to set processing delay times to be constant values.
This enables easier testing to verify that the correct system
delay times are being executed in aggregate. In later mile-
stones, we can add in variability to processing delays. An-
other example is modeling system failures and breakdowns
– in early milestones, we make the assumption that the
processes will work perfectly with no breakdowns. Once
we have tested and verified that the process flow of the
model works correctly in the base case, we can add in
probabilistic failures.

5.1 What to Consider When Setting Milestones

A milestone is intended as a stopping point and a review
point. At the end of each milestone, you should have pro-
duced a working model or program that you would feel
comfortable demonstrating to the customer. At this point, it
is beneficial to step back and put yourself in the customer’s
shoes. Can you see satisfactory indication of progress at
this point? What does the tool look like? How easy is it to
use? Do the output results make sense, given the fact that
some details may be missing? When caught up in the hard
work and intricate details of programming models, it is
sometimes easy to forget about the big picture and the cus-
tomer’s perspective.
 Conducting a series of iterative milestones also helps
the soft side of simulation practice – the psychology of the
development team. Completing a milestone reinforces the

658

Sawyer and Brann

attitude that the team is making consistent and real pro-
gress. In big projects, it's easy for a development team to
feel overwhelmed by the sheer quantity of work remaining,
and lose sight of the light at the end of the tunnel. Periodic
endpoints communicate a sense of accomplishment, both to
the customer and to the internal team.
 Within each milestone, it’s important to limit the
scope. Sometimes it may seem tempting to add in new fea-
tures to a milestone while it’s in progress, even if it wasn’t
originally planned for that milestone, particularly if it’s
easy or quick to do. But every new feature implemented is
a new feature that needs to be tested – and a new potential
risk to break some other piece of previously working code.
 Try to focus on coding and thoroughly testing the lim-
ited feature set that was planned within that milestone. A
milestone is small and self-contained for a reason: it re-
duces the number of variables that could affect the end re-
sult, and spreads out the required testing throughout the
project timeline. By putting too many features in at once,
the overall effort required to get it right only increases.

5.2 Quality Control Within the Milestones
Approach

Two key elements of the model building process can sig-
nificantly enhance the quality of the simulation product
within the Milestones Approach: code walkthroughs and
system testing at the end of each milestone. While these
will be discussed more thoroughly in future papers, they
are worth outlining briefly here.
 Code walkthroughs are group meetings where one de-
veloper will walk the rest of the team through key portions
of the code they have been working on, with the overriding
goal being to improve the quality of the code under review.
Ideally, walkthroughs take place at least once per mile-
stone, perhaps more frequently depending on how rapidly
coding is occurring. Team members take responsibility to
review the code in advance of the meeting so that they can
be prepared with helpful ideas. But decorum is advised:

Differences in coding styles can lead to arguments, and so
the discussions should be focused on logical issues or eas-
ily overlooked errors, and a designated moderator can play
a valuable role. The objective is to work together to create
a better product, not to evaluate the individual.
 Frequent testing is also a critical aspect of the Mile-
stones Approach. Effective testing procedures for simula-
tion models could be a subject for an entire paper, but to
sum it up simply: Test early and test often. Iterative mile-
stones provide a natural point in the project’s timeline for
testing the features developed during that milestone.
 As the features in Milestone 1 are completed, the tests
for Milestone 1’s features are created and executed. As the
features in Milestone 2 are completed, not only are Mile-
stone 2’s new features tested, but Milestone 1’s tests are
re-run to ensure that none of the changes have adversely
affected something that was working before. This practice
is called regression testing – the selective retesting of a
system or component to verify that modifications have not
caused unintended effects, and that it still complies with
the specified requirements (Geraci 1991).
 For a complete discussion of how to perform verifica-
tion and validation of simulation models, please refer to
Robert Sargent’s classic papers on the topic (Sargent
2007). This section has suggested when to perform that ve-
rification and validation during the course of a project.

6 PROJECT EXAMPLE

Let’s consider how the Milestones Approach might be used
to plan a simulation project for a partially automated order
fulfillment facility. We might start by outlining the major
functional components within this facility, such as Picking,
Packing, and Shipping. We also know that there must be
some demand for orders to be fulfilled, and that there is
some movement or flow of objects between each of these
components. These become the major elements of our
planning matrix, shown in Table 1.

659

Sawyer and Brann

Table 1: Sample Milestone Planning Matrix

 Once the overall planning matrix has been developed,
the evolution of each individual component over the
course of the project can be forecasted. For example, fo-
cusing on the Order Generation component, the Milestone
1 version of the model could initially be constructed to
read in a simple set of orders, where each order contains
only a single line. In Milestone 2, the logic could be ex-
tended to allow multiple lines per order. And in the final
Milestone 3, the order generator component could be
completed by adding an algorithm that can create syn-
thetic orders based on user-specified distribution profiles.
 Each functional component is then approached in the
same fashion, carefully analyzing how additional detail
could be added to the component’s model representation
sequentially, in order to arrive at the desired end state. As
each component is evaluated, its interaction with all other
components needs to be considered, so that the end of
each milestone represents a mini-product that is function-
ally complete within the bounds of its own objectives.
A few items to highlight in this hypothetical plan:

• The complete user interface is prototyped during
the first milestone. This facilitates clear commu-
nication with the customer about the system
“switches and dials” that will be available for the
analysis – a common source of change requests
in a project’s lifecycle.

• There are separate components listed for creating
the model inputs and outputs that are relevant to
each milestone, not just the simulation logic that
needs to be coded. This reinforces the recom-
mendation that each milestone should be treated
as a self-contained project in and of itself.

• The level of detail in the simulation inputs mir-
rors the development plan of the functional com-
ponents.

• The level of detail in the output statistics in-
creases along with the level of detail in the mod-
el logic.

• It is recommended to defer lower priority tasks
to future milestones – sometimes they may not
need to be modeled at all. For example, the Pack-

Milestone 1 Milestone 2 Milestone 3

Objective: Basic system
running

Objective: Conveyors and
UI complete, adding detail to
Picking and Shipping

Objective: Model complete and ready
for analysis

Target date: +2 weeks Target date: +4 weeks Target date: +6 weeks

Order genera-
tion

Simple orders with 1 line per
order

Allow multiple lines per or-
der

Create orders based on probability ta-
ble

Picking Continuous Picking of orders Break order Picking down
into waves

Add details of Picking resource

Packing Black box delay Black box delay Add details of Packing resources

Shipping All orders routed to same
dock

Add details of shipping re-
sources, all applied at same
dock

Orders routed to variety of shipping
docks based on destination

Material Flow Basic conveyor system con-
structed and functional

Merge/split logic added to
conveyors

<no additional functionality>

Model Testing Basic "what goes in must
come out" testing

Structured testing for new
outputs, User Interface, and
Picking, Shipping logic

Model passes all structured unit and
system tests

Inputs Read basic parameters for
order generation

Read parameters for wave
Picking, Shipping resources,
and all conveyor-related in-
puts

Add Picking and Packing resource
read routines, and parameters for Or-
der Generation

Outputs High-level statistics: # Or-
ders picked, packed, and
shipped

More detailed statistics: re-
source utilization, orders per
wave

All required outputs implemented

User Interface Majority of user interface
mocked-up

User interface functionally
complete

<no additional functionality>

660

Sawyer and Brann

ing component of this hypothetical model was
not an item of large concern, and so it was left as
a “black box” delay for the first two milestones.

• Some components, as illustrated in the Material
Flow and User Interface components, may be
100% complete prior to the final milestone. This
might be the case with model components that
are critical to the working of the rest of the mod-
el or that it may be important to have extra test-
ing time for (such as the user interface).

7 CONCLUSION

Building a good simulation model is not an easy task. By
focusing on the quality of the model construction process
itself, you can achieve a higher degree of quality in the
end result – not just the simulation that is created, but the
answers and insights that you learn from using the model
to perform analysis. Building simulation models can be
treated as a software development exercise, and best prac-
tices from the software community can be applied to help
improve the model-building process.
 We’ve found that the agile philosophy, an increas-
ingly popular movement within the software development
community, offers many best practices that translate well
to a typical simulation project. Our Milestones Approach
takes the key agile concept of frequent, iterative deliver-
ables and frames it in the context of executing modeling
projects. The advantages of the Milestones Approach
were discussed, and a project example was provided that
indicates how this might be put into practice in modeling
a hypothetical order fulfillment center.
 By applying the Milestones Approach consistently
within our consulting engagements, we’ve found that fo-
cusing on an improved process results in better quality
project deliverables, improved team performance and mo-
rale, and importantly, more satisfied customers.

REFERENCES

Banks, J. ,and R. R. Gibson. 2001. Simulating in the Real
World. IIE Solutions, 33(4) (April): 38-40.

Beck, K., Beedle, M. and many others. 2001. The Agile
Manifesto. Available via <http://agilemanifesto.org/
principles.html>

Geraci, A. 1991. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries.
New York: The Institute of Electrical and Electronics
Engineers, Inc.

Knoernschild, K. 2006. An Agile Resolution. Agile Jour-
nal, December.

McConnell, S. 2004. Code Complete: A Practical Hand-
book of Software Construction, Microsoft Press.

Parnas, D. L., and P. C. Clements. 1986. A Rational De-
sign Process: How and Why to Fake It. In IEEE

Transactions on Software Engineering, 12: 251-257.
IEEE Press.

Reeves, J. W.. 1992. What is Software Design? In C++
Journal.

Royce, W. 1970. Managing the Development of Large
Software Systems. In Proceedings of IEEE WESCON
26 (August): 1-9.

Sargent, R. 2007. Verification and Validation of Simula-
tion Models. In Proceedings of the 2007 Winter Si-
mulation Conference, ed. S. G. Henderson, B. Biller,
M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton,
124-137. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers, Inc.

Standridge, C. R., D. A. Finke, C. Jurishica, D. M. Ferrin,
and C. M. Harmonosky. 2007. What I Wish They
Would Have Taught Me (Or That I Would Have Bet-
ter Remembered!) In School. In Proceedings of the
2007 Winter Simulation Conference, ed. S. G. Hen-
derson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew,
and R. R. Barton, 2315-2321. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers,
Inc.

Weisert, C. 2003 Available via <http://www.idinews.com/
waterfall.htm> Chicago : Information Disciplines,
Inc. [accessed March 2, 2008]

AUTHOR BIOGRAPHIES

JAMES T. SAWYER is an Assistant Vice President and
Senior Professional partner at TranSystems. He is the
former Chief Technology Officer of Automation Associ-
ates, Inc., a leader in simulation for the global supply
chain, which was acquired by TranSystems in 2005. His
technical specialty is the design and development of simu-
lation-based software solutions for the transportation and
logistics industries. He is the software architect of the
Modeling Studio, TranSystems’ standardized simulation
application and user interface framework enabling rapid
development and deployment of simulation projects
across teams and industries. His current role is to lead de-
velopment teams in simulation modeling and software
projects, and to foster best practices in technical project
execution. Mr. Sawyer received a B.A.S. in Mathematical
& Computational Sciences at Stanford University, and an
M.S. in Industrial & Systems Engineering at the Georgia
Institute of Technology. <jtsawyer@transystems.com>

DAVID M. BRANN joined TranSystems | Automation
Associates in 1999 and has over ten years experience in
designing, developing, and managing the implementation
of simulation-based software solutions across a wide vari-
ety of application domains. He has experience using a va-
riety of simulation languages as well as supporting soft-
ware such as Visual Basic, Java, C/C++, and Microsoft
Applications (Access, Excel, Visio, etc.) Mr. Brann has

661

Sawyer and Brann

prior academic experience that includes software devel-
opment in several languages for the purposes of research
in human-centered intelligent systems and object-oriented
simulation. In addition to his work in managing and de-
veloping custom software solutions, Mr. Brann is also re-
sponsible for providing training courses on a variety of
software tools, including TranSystems’ own custom
packages and AnyLogic simulation software.
<dmbrann@transystems.com>

662

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

