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Abstract—The recent outbreak of a novel coronavirus and its
rapid spread underlines the importance of understanding human
mobility. Enclosed spaces, such as public transport vehicles (e.g.
buses and trains), offer a suitable environment for infections to
spread widely and quickly. Investigating the movement patterns
and the physical encounters of individuals on public transit
systems is thus critical to understand the drivers of infectious
disease outbreaks. For instance, previous work has explored the
impact of recurring patterns inherent in human mobility on
disease spread, but has not considered other dimensions such
as the distance travelled or the number of encounters. Here,
we consider multiple mobility dimensions simultaneously to un-
cover critical information for the design of effective intervention
strategies. We use one month of citywide smart card travel data
collected in Sydney, Australia to classify bus passengers along
three dimensions, namely the degree of exploration, the distance
travelled and the number of encounters. Additionally, we simulate
disease spread on the transport network and trace the infection
paths. We investigate in detail the transmissions between the
classified groups while varying the infection probability and the
suspension time of pathogens. Our results show that charac-
terizing individuals along multiple dimensions simultaneously
uncovers a complex infection interplay between the different
groups of passengers, that would remain hidden when considering
only a single dimension. We also identify groups that are more
influential than others given specific disease characteristics, which
can guide containment and vaccination efforts.

I. INTRODUCTION

Human mobility continues to play a vital role in spread-

ing infectious diseases within a population [1][2]. Ongoing

population growth and the high reliance of individuals on

public transport services in highly populated cities provide a

suitable platform for contagious diseases, such as measles, the

recently emerged coronavirus and influenza, to spread widely

and rapidly [3][4][5]. For example, individuals travelling on

a bus are in close enough proximity to infect each other and

can carry the infection to distant locations across the public

transport network [6][4]. Additionally, some pathogens may

remain in the environment (e.g. a bus) for a prolonged period

and can infect susceptible individuals after the infectious

person has left the area [1][7]. Furthermore, transport services

shorten distances and times and strongly connect different

suburbs, potentially exposing communities to a high infection

risk [4]. The risk of disease spread due to human movement is

evident from the current novel coronavirus outbreak in China

and internationally, with Chinese authorities shutting down

public transportation within the affected area [5].

The recent uptake of smart travel cards and the availability

of this data have created an unprecedented proxy to elicit

different travelling behaviours and to study their effects on

disease spread [8][9]. The analysis of such data is critical

to understand the spreading dynamics of a disease and con-

sequently to develop effective containment strategies [10].

Previous studies investigated several spreading dynamics of

infectious diseases, however, to the best of our knowledge

none of the studies has incorporated different aspects and

dimensions of mobility behaviour simultaneously.

In this paper we study three aspects of mobility behaviour,

i.e. the degree of exploration, the distance travelled and the

number of encounters of passengers using the Sydney bus

network in the context of infectious disease spread. By consid-

ering the three dimensions simultaneously, we identify previ-

ously unknown mobility behaviours. The high spatiotemporal

resolution of the dataset allows us to construct a time resolved

physical human contact network to simulate disease spread.

Specifically, we trace the infection flows between groups

of passengers who display different mobility behaviours to

investigate the change in the spreading dynamics. In addition,

we investigate how changes in the infection probability and

the time pathogens remain suspended in the environment

affect the spreading of the disease. This study identifies the

most influential passenger groups in a disease spread scenario

for different disease characteristics and types. Our simulation

results identify four dominant transmission paths between the

mobility groups that should become a focus of containment

efforts. In addition, we find that highly connected passengers

who regularly visit the same places have the highest spreading

power when pathogens do not remain in the environment.

However, with an increase in the suspension time of pathogens,

highly connected passengers who visit new locations become

the most efficient spreaders. An increase in the infection

probability on the other hand, amplifies the spreading power

of all mobility groups, especially for passengers who regularly
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visit the same places and travel short distances, until reaching

a saturation point at a probability of 0.5.

The remainder of the paper is organised as follows: We

begin by discussing relevant previous work in Section II.

In Section III we present our framework for modelling in-

fectious diseases on human contact networks. We explain

the approach for classifying the individuals based on their

movement behaviour and introduce the dataset that we use for

our case study. In Section IV we run extensive trace driven

simulations to investigate the underlying interactions and

disease transmission dynamics between the different groups

of passengers. Furthermore, we study the effect of changing

the infection probability and the time pathogens remain in

the environment on the transmission dynamics. Finally, we

identify the most influential mobility behaviours for various

disease characteristics, which can guide intervention strategies.

Section V concludes the paper.

II. RELATED WORK

Studies of epidemiology have long recognized that human

mobility plays a key role in fostering severe disease epidemics

that may result in high rates of morbidity and mortality [4].

Furthermore, these studies have acknowledged the importance

of identifying the most influential individuals, as it can aid

to predict outbreaks before their occurrence [10][11]. Health

related datasets and detailed patient mobility profiles present

informative data that may be used to reflect the status of a

disease and its progression [8][12]. However, accessing such

information is challenging due to privacy concerns and other

related issues [10][12].

In the absence of health related data, previous work has

studied alternative data sources. An important body of re-

search has explored the use of call detail records (CDRs)

and data from the global positioning system (GPS) to build

epidemiological models and to study the spatial transmission

of various diseases in a population at both city and country

levels [13][14][15][16][17][18][19][20].

In [20] CDR and GPS datasets were exploited to extract two

types of mobility behaviours. The authors used the recurrent

mobility and the total mobility characteristics to group indi-

viduals into returners and explorers. Returners are individuals

who can be characterized by their most visited locations as

these dominate their movement behaviour, whereas explorers

are individuals who often visit new places and cannot be

characterized by their most frequently visited locations. The

statistical measure used to compute the total mobility of an

individual is the total radius of gyration rg , defined as [20]:

rg =

√
1

N

∑
i∈L

ni(ri − rcm)2, (1)

where L is the set of all visited locations by the individual, ri
is the coordinates of the visited location i, ni is the individual’s

visitation frequency of location i, rcm is the centre of mass

of all visited locations and N is the total number of visited

locations. The authors also defined the k-radius of gyration,

denoted rg
(k), which is similar to the overall mobility formula,

with the difference that the set of locations L is reduced to the
k most visited locations. The value of rg

(k) represents the re-

current mobility of the individual. The correlation between the

recurrent and the total mobility values distinguishes between

the two mobility patterns, namely returners and explorers. If

the recurrent mobility of an individual dominates the total

mobility, that is rg
(k) > rg/2, the individual is classified as a

returner. Otherwise, the individual is an explorer.

The authors of [20] found that explorers have more impact

on disease spread than returners. Their experiments consisted

of 10,000 individuals chosen randomly from a pool of 46,000

individuals. To study the impact of each mobility behaviour on

the spreading, different proportions of returners and explorers

were used. The extent of disease spread is computed through

the global invasion diffusion threshold R∗. This experimental
setup presents three main limitations. First, changing the

proportion of the mobility groups alters the topology and

the characteristics of the network being studied. Second, the

contact links connect geographical areas rather then actual

human physical encounters. Third, their study of spreading

power was performed on a static network in which if a link

existed at any point in time that link is considered present

during the entire period of study. These limitations make the

experiments theoretical as they study a snapshot of a possibly

unrealistic contact network.

Several other limitations emerge when CDR and GPS

datasets are used in the context of disease spread [17][21].

Most importantly, these datasets lack accurate localization of

the individuals due to the distant positioning of cellular towers

and poor satellite signals [22]. Hence, these datasets do not

guarantee the existence of real physical encounters between

the individuals [22]. In addition, individuals who are tracked

via GPS may be driving a car and hence are not in physical

contact with other individuals [22].

Recent studies of epidemiology showed an increasing inter-

est in dynamic networks that guarantee the existence of real

physical human contact when studying disease spread [23]. A

well suited source of data to study the spreading dynamics of

diseases in dense cities are public transit records [4]. Several

studies have confirmed the presence of a risk factor between

the use of bus transportation services and the spreading of

many airborne diseases such as tuberculosis, measles and

influenza [24][4]. The authors of [24] stated that bus routes

“are veins connecting even the most diverse of populations”

and showed that individuals who reported regular use of buses

are more likely to be infected by tuberculosis. In fact, the

congregated and enclosed setting of buses presents a suitable

environment for any contagious respiratory disease to spread

widely. The infectious pathogens can easily be transmitted

onward among passengers through coughing and sneezing [4].

In addition, natural and artificial air flow can move suspended

pathogens through space. This makes all individuals in an

enclosed space like a bus susceptible.

In our previous work [25] we confirmed the existence of

explorers and returners in the public bus transit dataset of
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Sydney, Australia. Furthermore, through extensive simulations,

we showed that explorers are generally more influential in

spreading a disease through the network in comparison to

returners. Also, long distance travellers were found to be

more influential than short distance travellers. However, when

only long distance travellers are considered returners showed

a greater propensity in spreading the disease over explorers.

The work proved the presence of a deeper and more complex

interplay between various mobility aspects when it comes

to spreading a disease on a public transport system. In our

previous work we did not consider the connectivity aspect

of the individuals, which holds critical information in con-

tact based spreading scenarios. Further, our simulations only

considered direct encounters between passengers and assumed

an infection probability of 1. While disease transmission is

possible through direct encounters (i.e. the infected and the

susceptible individual are present in the same place at the

same time), pathogens can remain in the environment for

an extended period of time [1][7]. Therefore, an infectious

person can infect susceptible individuals without a direct

encounter. Contact networks where only direct encounters

are considered are commonly called SPST (same place same

time) networks. Networks that in addition to direct contacts

capture indirect encounters caused by suspended pathogen are

called SPDT (same place different time) networks. Previous

studies have shown that considering the suspension time of

pathogens changes the underlying topology of the contact

network and alters the spreading dynamics of contagious

diseases significantly [1][7].

This paper addresses the limitations of our previous work

through the addition of the connectivity dimension and by

considering different suspension times of particles and in-

fection probabilities. We identify groups of passengers that

have a high potential to spread a disease through a public bus

network. Although there are several studies that recognized

the importance of human mobility data to identify the most

influential individuals in a network, none of the studies tried

to use a comprehensive mobility dataset to extract patterns

along different movement aspects simultaneously and study

the detailed interaction between the different patterns. In

particular, we consider the passengers’ total mobility, recurrent

mobility and connectivity. The impact of each group on the

spreading will be evaluated as all the infectious activities

occurring in the background of the simulations are traced.

III. DISEASE SPREAD MODELLING

To understand the disease spread dynamics on a public

transport network we construct SPST and SPDT contact

networks from the smart card data and run a Susceptible-

Infected-Recovered (S-I-R) disease spread model on top. At

the beginning of the simulation all bus passengers, except

a given number of randomly chosen seed nodes, are sus-

ceptible. The seed nodes are infectious and able to transmit

the disease to susceptible individuals. When a susceptible

individual encounters an infectious individual or, in the case

of SPDT networks, comes in contact with pathogens that

remain in the environment, the susceptible individual moves

to the infectious state with a given probability. The individual

remains infectious for a given period of time before recovering

from the disease. Once in the recovered state the individual

is no longer susceptible and remains in the recovered state

until the end of the simulation. Figure 1 exemplifies the S-I-R

disease spread simulation on the bus network.

We demonstrate how the spreading dynamics are affected

by changing two key parameters, namely the probability of

infection, denoted β and the suspension time of pathogens,
denoted dt. The case dt = 0 corresponds to an SPST disease
spread scenario and hence a susceptible passenger will be

infected only if both individuals meet on the same bus at the

same time. When dt > 0 the infectious particles remain on the
bus for an additional time dt, allowing the infectious passenger
to infect susceptible individuals after disembarking.

While simulating the empirical movements of individuals,

we track all encounters and infection transmissions. At every

encounter the identification number of the two passengers

in contact are recorded. Similarly, when an infection is

transmitted the identification numbers of the infectious and

the susceptible individuals are recorded. To understand how

different mobility behaviours influence the transmission paths

of the simulated disease we classify the bus passengers into

different mobility groups.

We modified the Opportunistic Network Environment

(ONE) simulator [26] to carry out our trace driven simulations

and spread a disease on a large scale real-world transport

network.

A. Classification of bus passengers

Before running the disease simulations on the constructed

networks, we cluster the bus passengers into different groups,

based on their mobility behaviour. To do so, we simultaneously

consider the degree of exploration, the distance travelled and

the number of encounters during the period of study. First, we

plot passengers’ mobility profiles in three-dimensional space,

with the x-axis corresponding to the passenger’s total radius of
gyration, the y-axis corresponding to the k-radius of gyration
(i.e. the recurrent mobility) and the z-axis corresponding to
the number of encounters.

Next, we cluster the individuals into two groups along each

dimension. The degree of exploration is divided into return-

ers and explorers, the distance travelled into short distances

and long distances and the number of encounters into low

connected and highly connected individuals. Classifying our

passengers along the three dimensions results in 23 = 8
different types of movement behaviours. In order to identify

each of the groups, we normalize the values of the three

dimensions between [0,1] and use the approaches detailed in

the following subsections.

1) Returners and explorers: To split the population based
on the degree of exploration, we project all the points onto

the xy-plane and use the bisector method to differentiate be-
tween returners and explorers. When plotting the passengers’

total mobility and recurrent mobility values on the Cartesian
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Fig. 1: The model overview: At time t1, infectious person P5 enters a bus that previously has three susceptible and one recovered

individuals embarked. At t2, P1 and P3 get infected through the infectious pathogens disposed by P5 (SPST infection), P2

remains susceptible. At t3, all travellers except P4 have left the bus, however the pathogens disposed by P5 remain inside the

bus. P6 enters the bus later and gets infected (SPDT infection). Note that P4 is in the recovered state and has no role in the

spreading.

plane, points along the x-axis correspond to explorers as their
recurrent mobility does not dominate their total mobility and

points along the y = x line correspond to returners whose total
mobility can be well represented by their recurrent mobility as

rg
(k) ≈ rg . Our clustering approach results in 35.4% explorers

and 64.7% returners.

2) Short distances and long distances: In this work we
are not interested in defining the optimal number of clusters

for each dimension, but rather in highlighting the effect of

different behaviours in each dimension on the spreading. For

simplicity, we choose a standard K-means clustering algo-
rithm [27] with K=2 to differentiate between the dichotomy
of each dimension. To cluster the passengers based on their

travelled distance, we project the points onto the x-axis and
apply the K-means. This results in two groups, namely,
passengers who travel short distances and have a relatively

low radius of gyration (87%) and passengers who travel long

distances and have a relatively high radius of gyration (13%).

3) Low connected and highly connected individuals: In

order to cluster the passengers based on their degree centrality

(i.e. the number of encounters) we use a similar approach as in

the previous section. We project the points onto the z-axis and
apply the standard K-means clustering algorithm [27] with

K=2, which splits the population in low connected passengers
(39.3%) and highly connected passengers (60.7%). Specifi-

cally, we differentiate between passengers who encounter a

high number of other passengers and those who experience

fewer encounters with other passengers during the month of

study.

B. Public Transit Traveller Data

The public transport dataset consists of 20,295,908 trips

made by 2 million bus users. The dataset is recorded in the

greater Sydney area of New South Wales, Australia during the

month of April in 2017. Each trip record records the following

information: the passenger’s smart card identification, the bus

number in use and the time and location the passenger entered

and exited the bus.

Figure 2 shows the distribution of the trip frequencies

for April 2017 indicating that a high number of travellers

use Sydney’s bus network infrequently during the month of

April and few travellers commute by bus on a regular basis.

Approximately 700,000 individuals did not travel by bus more

than twice during April. These individuals are likely infrequent

travellers who use the bus occasionally, visitors who stayed in

Sydney for a short time or travellers who lost or damaged their

card. As infrequent travellers cannot be classified accurately

due to the lack of sufficient data records, we remove these

passengers from our analysis. In order to explore how a

threshold on the number of trips affects the total number of

passengers included in our analysis, we plot in Fig. 3 the

population size against varying threshold values between 1

and the maximum number of trips observed in the data. The

population size drops rapidly with the increase of the threshold

especially at low values. This is due to the high number of

passengers who use the bus only occasionally (see Fig. 2).

For our analysis, we set the threshold to 15 trips per month.

That is, individuals who travelled by bus less than 15 times

during April are excluded from the analysis. The final dataset

has 36,013,436 records belonging to 424,290 bus passengers.
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Fig. 2: (a) The full distribution of trip frequencies. (b) The

frequencies for the range [1,2]. (c) The frequencies for the

range [1,15].

Fig. 3: The change in the population size with the change

of the minimum number of trips made. The dotted red line

corresponds to the population size for 15 minimum trips.

(a) (b)

Fig. 4: (a) The frequency distribution of the sizes of connected

components. (b) The degree distribution.

In Fig. 4 we compare some key topological aspects of

the original and the resulting networks. Figure 4.a shows the

distribution of connected component sizes for both networks.

We notice that the two networks have similar structures, with

a giant component and several smaller components. There are

fewer components of size one in the resulting network, which

can be attributed to the fact that the original network contained

many infrequent travellers who were isolated from the rest

of the network. This observation also applies to the isolated

components consisting of less than eleven individuals.

Figure 4.b shows the degree distribution of the original and

the resulting networks. The degree of a passenger is the total

number of direct encounters experienced during the month of

April. We notice that the degree distributions of the original

and the resulting networks increase linearly until reaching

maximum values of 9,726 and 5,521 respectively. Then both

distributions drop exponentially. The drop in the frequencies

of the resulting network is due to the removal of passengers

who travelled less than 15 trips. The difference between the

two distributions is especially clear at low degree values as

passengers with few number of trips are less likely to have

higher number of contacts.

IV. RESULTS AND DISCUSSION

In this section, we present the identified mobility patterns

and discuss the results of our disease spread simulations.

A. Classification results

The different groups resulting from our classification and

clustering tasks are visualized in Fig. 5. All subfigures display

the same plot from a different angle. Each point in Fig. 5

corresponds to one individual in the dataset and its coordinates

represent the values of the three-dimensional movement be-

haviour of the corresponding passenger. In the coming figures

and tables we refer to the groups using the notation {degree
of exploration} {connectivity} {distance travelled}.
The pie chart in Fig. 6 summarizes the percentage of each

of the eight classified groups of passengers in the network.

We notice that highly connected returners who travel short

distances constitute the major portion (36.8%) of the popu-

lation. This group of individuals are regular commuters who

tend to use public transportation to commute between home

and work during peak hours and rarely explore or visit other

places during the month. 20.9% of public transport users

are classified as low connected returners who travel short

distances. We believe that these individuals regularly travel

to specific locations that are less crowded or during off-peak

hours, for example people who go to shopping malls in the

afternoon. On the other hand, explorers are individuals who

in addition to their regular commute visit other places, for

example going to malls to shop or going to touristic attractions

for leisure.

The following subsections present and discuss our sim-

ulation results. For every experiment, we randomly choose

500 individuals who are infectious at the beginning of the
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(a) The view from the x-axis side (b) The view from the diagonal

(c) The view from the y-axis side (d) top view

Fig. 5: Three-dimensional visualization of the clustered groups.

simulation and can transmit the disease to susceptible individ-

uals. Individuals remain infectious for five days (which is the

average infectious period for influenza [28]) before recovering.

Every experiment is simulated 100 times and the results are

averaged.

B. Experiment 1: SPST scenario

In our first experiment we set the infection probability β to
1 and the pathogen suspension time dt to 0, corresponding to
an SPST disease spread scenario. This experiment serves as

a baseline for comparison to other parameter settings that are

explored in further simulations.

In Table I, we present the total number of encounters and the

total number of infections that were transmitted and received

by every mobility group. In addition, we compute the average

number of encounters, the average number of transmissions

and the average number of infections received per individual

for each group. Dividing the total number of infections caused

by a given group by its population size results in the average

number of infections that one individual from that group

causes during the simulation period. This average value of

infections is not constrained to a specific target group but to

all groups in the network. Similarly, dividing the total number

of infections received by a given group by its population

size, results in the average number of infections that one

individual of that group receives during the simulation period.

Interestingly, the averages of received infections per individual

is nearly the same across all the groups with a value � 1.
This indicates that at the end of the simulation almost every

individual is infected. On the other hand, the average number

of infections caused per individual vary from one group to

another. Highly connected explorers who travel long distances

have the greatest spreading power with an average value of 1.7

transmissions per individual, while low connected explorers

who travel short distances have the least spreading power
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Group
Total

number of
encounters

Total
transmitted
infections

Total
received
infections

Average
encounter per
individual

Average
transmission
per individual

Average
reception per
individual

exp high long 4872186 17332 9625 478.415 1.701 0.945

exp high short 33944532 90029 68844 489.685 1.298 0.993

exp low long 1601377 9459 12892 122.457 0.723 0.985

exp low short 10126446 50881 76733 130.465 0.655 0.988

ret high long 11288809 27994 20946 535.801 1.328 0.994

ret high short 80726848 197235 158711 506.248 1.236 0.995

ret low long 1012537 6544 9655 129.912 0.839 0.982

ret low short 16136071 94149 138217 114.791 0.669 0.983

TABLE I: Summary of the simulation results showing total and average values of the number of encounters, infections

transmitted and infections received for each group at the end of the simulation period.

with an average value of 0.6 transmissions per individual.

Although highly connected explorers who travel long distances

have the highest average infection transmission per individual,

this group ranks 4th in the average number of encounters
per individual. This result shows that it is important to not

just divide individuals into explorers and returners, but to

distinguish them further along other dimensions such as the

distance travelled and the connectivity as their spreading

abilities differ.

Fig. 6: A pie chart showing the percentage of each of the eight

classified groups of passengers in the network.

In order to visualise the disease transmission dynamics

between the groups we use a chord diagram (see Fig. 7). The

diagram shows cumulative disease flows between the different

groups. The eight different groups are represented by circle

segments, with each group being associated to a unique colour.

For example, the red segment corresponds to highly connected

explorers who travel long distances (see label “A” in Fig.

7). The links indicate the volume of disease transmissions

between any two groups and are assigned the same colour as

the source group. The thickness of each link is proportional

to the average number of people that one individual from the

source group infects in the target group. For example, the link

labeled “B” shows the volume of disease flow transmitted from

the group of highly connected explorers who travel long dis-

tances (red segment) to the group of highly connected returners

who travel short distances (blue segment). Links that start

and end at the same segment represent disease transmissions

between individuals of the same mobility group. For scaling

purposes, we multiply all average number of infections caused

per individual by 1000 and show the resulting values in the

chord diagram.

The diagram in Fig. 7 clearly identifies four dominant in-

fection paths. These occur amongst highly connected returners

who travel long distances (cyan segment) with individuals

causing on average 0.52 infections within their own mobil-

ity group and highly connected returners who travel short

distances (blue segment) with individuals causing on aver-

age 0.57 infections within their own mobility group. Highly

connected explorers who travel long distances (red segment)

infect on average 0.5 highly connected returners who travel

short distances (blue segment) during the simulation period.

Highly connected explorers who travel short distances (orange

segment) infect on average 0.47 highly connected returners

who travel short distances (blue segment). Furthermore, low

connected returners who travel short distances form a group

that is prone to receive infections, but less likely to infect

individuals from other groups (see the incoming non-pink links

that occupy the majority (77%) of the pink segment in Fig. 7

and Table I). On the other hand, highly connected explorers

who travel long distances have caused the greatest number

of infections per individual on average. However, this group

is less likely to get infected in comparison to other groups

(see red segment in Fig. 7). We observe that the disease

transmissions from highly connected explorers who travel long

distances dominate this group’s activity as the red outgoing

links going to all other groups constitute the majority of the

segment with more than 90%. That is, even a low number

of infected individuals of this group would be sufficient to

infect other groups and spread the disease through the entire

network. Highly connected explorers who travel long distances

infect 1.7 individuals on average during the simulation period.

Highly connected returners who travel short distances receive a

high number of infections and mostly infect individuals within

their own group (see blue segment in Fig. 7). This behaviour
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Fig. 7: A chord diagram showing the disease flows between the different mobility groups resulting from the simulations with

parameters β = 1 and dt = 0. The mobility groups are represented by differently coloured circle segments (e.g. the red
segment, labelled “A”, corresponds highly connected explorers travelling long distances). Links represent disease flow between

mobility groups and are coloured by the source group. The link with label “B” shows the average number of infections that

highly connected explorers who travel long distances transmit to highly connected returners who travel short distances. “C”

refers to the start of the link coloured by the receiving group. “D” refers to the end of the link coloured by the transmitting

group. “E” refers to the relative infection transmissions, receptions and overall total for each segment.

is expected, as this group consists of regular commuters

who display consisted movement behaviour. Highly connected

returners who travel long distances (see cyan segment in Fig.

7) display a similar behaviour of mostly infecting individuals

within their own group. Highly connected explorers who travel

long distances spread infections to all other groups (see red

segment in Fig. 7), although the average number of encounters

is lower than groups who infect specific target groups.

Our results highlight important interactions between the

eight identified groups and shed light on disease spread dy-

namics that should be given more attention while monitoring a

disease and applying prevention measures. To understand how

different disease types and characteristics change the spreading

dynamics between the eight groups, we perform two additional

experiments.

C. Experiment 2: SPDT scenario

In this experiment, we run the simulations with different

suspension times of pathogens, i.e. dt = 15, 30, 60 and 120

minutes, while keeping β = 1. For each value of dt we con-

struct a matrix that shows the difference in the average number

of infections caused and received by each mobility group in

comparison to experiment 1 (β = 1, dt = 0). Positive values
refer to a gain in disease transmissions, whereas negative

values indicate a loss. The rows of the matrix correspond to the

groups that cause the infections and the columns correspond

to the groups that receive the infections.

Figures 8.a and 8.b show the matrices for a suspension time

of 15 minutes and 30 minutes, respectively. The matrix in Fig.

8.a shows that the average number of infections caused per

individual increased or remained the same for the four groups

of explorers (top four rows of the matrix). The spreading

potential of the four groups of returners (bottom four rows

of the matrix) generally decreased. As the suspension time

is increased to 30 minutes, we observe further increases in

the average number of infections caused by explorers and

further decreases for returners (see Fig. 8.b). We highlight

that the increase in dt weakens the spread of infections within
(self-loops) the two groups of highly connected returners.

The loss in the infection power of returners coincides with
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(a)

(b)

Fig. 8: Matrix representations showing the difference in the

average number of infections caused when the suspension time

is changed: (a) from 0 to 15 minutes, (b) from 0 to 30 minutes.

an increase in infections caused by explorers, especially for

highly connected explorers who travel long distances. Since

almost every individual of the population is infected at the

end of the simulation period, we conclude that an increase in

the time that pathogens remain in the environment favours the

infection power of explorers. That is, explorers are even more

influential in an SPDT disease spread scenario. We only show

the results for dt = 15 and 30 as no change in the behaviour

was seen for dt = 60 and 120, the values for explorers keep

increasing and those of returners decrease.

D. Experiment 3: impact of the infection probability

In the third experiment, we vary the infection probability

β, while setting the pathogen suspension time dt = 0. The
considered probabilities are 0.05, 0.1, 0.15, 0.25, 0.5, 0.75

and 1.

To understand the effect of the infection probability on the

disease spread we construct matrices that show the differences

in the average number of infections caused per individual

between each two consecutive values of β. The average
number of infections caused per individual increases rapidly

for all groups with an increase of β from 0.05 to 0.25. This

result is visualised in Fig. 9 with all matrix elements being

positive. When β is increased from 0.25 to 0.5 we see only a
slight increase in the spreading power of all groups. Further

increases of β to 0.75 and 1 do not result in significant changes
in spreading powers.

Fig. 9: A matrix representation showing the difference in

the average number of infections caused when the infection

probability is changed from 0.05 to 0.25.

Figure 9 shows that all individuals who travel short dis-

tances experienced the most increase in the number of received

infections, whether they are low or highly connected. This

pattern can be seen through the dark coloured columns of the

short distances groups. The observation is due to these groups

constituting the highest percentages in the network allowing

them to have the highest total number of encounters (see Fig.

6 and Table I). In addition, the increase in the probability of

infection strengthens the self-loops of the groups (infections

within the same group), especially those of the short distance

returners. We conclude that increasing the infection probability

favours the spreading power all mobility groups. The increase

of spreading power is relative to the interaction between each

pair of mobility groups. For increasing infection probabilities

each element in the matrix increases until ultimately reaching

the values presented in Section IV-B in which the probability

is set to 1.

V. CONCLUSION

This is the first study to identify mobility patterns along

three dimensions simultaneously, namely the degree of explo-

ration, the distance travelled and the number of encounters.

We found previously unknown mobility patterns that were

thoroughly investigated to understand the spreading dynamics
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of contagious diseases on a city wide public transport system.

We ran extensive disease spread simulations with varying

values for the infection probability and the suspension time

of pathogens. Our results show that characterizing individuals

along multiple dimensions simultaneously uncovers a complex

infection interplay between the different groups of travellers.

Furthermore, the infection probability and the suspension time

of pathogens play different roles in the spread. Highly con-

nected passengers who regularly return to the same places play

the most important role in the spreading when pathogens do

not remain in the environment. However, with an increase in

the suspension time of pathogens, highly connected passengers

who visit new locations are the most influential. Unlike the

suspension time, increasing the infection probability does not

affect particular mobility groups, but increases the infection

power of all groups especially for returners who travel short

distances. Our simulation experiments are abstractions of the

real-world and flexible to adapt to different contexts. We

presented a framework that can be applied to model any

disease that is spread through a physical contact network. Our

findings are especially beneficial to advise health authorities

on the design of more efficient intervention and containment

strategies depending on the characteristics of the emerging

diseases. We plan to open-source the modified simulator in

order to be used broadly for similar types of datasets and

scenarios.
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