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Abstract—Domain specific languages have successfully been
used in a variety of fields to cleanly express scientific problems as
well as to simplify implementation and performance optimization
on different computer architectures. Although a large number of
stencil languages are available, finite difference domain specific
languages have proved challenging to design because most practi-
cal use cases require additional features that fall outside the finite
difference abstraction. Inspired by the complexity of real-world
seismic imaging problems, we introduce Devito, a domain specific
language in which high level equations are expressed using sym-
bolic expressions from the SymPy package. Complex equations
are automatically manipulated, optimized, and translated into
highly optimized C code that aims to perform comparably or
better than hand-tuned code. All this is transparent to users,
who only see concise symbolic mathematical expressions.

I. INTRODUCTION

It is well-known that the complexity of computer archi-
tectures tends to increase with their power. As a result, the
software needed to obtain the desired performance has become
more sophisticated. Code written for conventional CPUs is
not the same as code written for accelerator platforms such
as the Intel® Xeon Phi™[12] or GPUs [28]. In the past,
new programming paradigms have been introduced to raise
the level of abstraction, with the aim of writing performance
portable software.

While the search for a generic abstraction for high per-
formance on parallel architectures continues, domain specific
languages (DSL) have proven particularly effective for the
rapid development of efficient, maintainable, and portable
scientific simulations. The main idea of this approach is
to decouple the problem specification from its low level
implementation through a stack of abstraction layers. This
creates a separation of concerns between domain scientists and
compiler/architecture specialists, which has a direct payoff in
productivity.

In this paper we present Devito, a new finite difference (FD)
DSL for seismic inversion problems that leverages the power-
ful SymPy Python package to define complex mathematical op-
erators and auto-generates low-level optimized thread-parallel
C code for multiple target architectures. Devito provides
multiple API layers to allow users to fully leverage “pure”
symbolic expressions and optimization, as well as a low-level
mechanism to enable non-standard features. After providing a
brief overview of related DSLs, we describe the multi-level

DSL itself along with its key features before demonstrating
the definition of realistic seismic inversion operators.

II. RELATED WORK

Interest in building DSLs for solving partial differential
equations (PDE) is not new with notable work dating as
far back as 1970 [5]. By trying to be too general across
various types of differential equations, this was probably
not able to take advantage of domain specific optimizations.
DEQSOL [24] was an early attempt (1985) at providing a lan-
guage for a high-level mathematical description which would
generate highly vectorizable Fortran code meant to solve a
PDE. Alpal [7] used symbolic techniques to manipulate the
mathematical equation, derive the finite difference formulation,
optimize it using common sub-expression elimination (CSE)
and finally generate Fortran/C code. Ctadel [26] in 1996
was a complete DSL for explicit finite difference schemes
that automatically generated code in Fortran/C for distributed
memory parallel systems. Like Alpal, Ctadel featured CSE, a
technique that we also discuss in later sections of this paper.
Looking at these past works, it seems that it might not be
possible to have a single FD DSL that works for every possible
application domain. This is because each problem domain
requires certain low-level features that are not related to finite
difference. Any rigid FD DSL would then face the problem of
implementation of these low-level features. Recent advances
in computing speed make Just-in-Time (JIT) code generation
and compilation a viable approach that mitigates this risk to
some extent. The approach then is to target a smaller domain of
problems for the DSL - at least initially, to be able to solve real
problems in that domain before moving on to other domains.

Currently, two prominent examples of the DSL paradigm are
the FEniCS [14] and Firedrake [20] projects, which allow the
expression of finite element methods through a mathematical
syntax embedded in Python. One of the fundamental layers
in Firedrake is PyOP2 [16], which exposes a language for
the execution of numerical kernels over unstructured grids.
In particular, PyOP2 generates C code, which is eventually
translated into machine code by the host compiler.

The Simflowny project [1] provides an end-to-end frame-
work for building models of physical systems using PDEs
which employs code generation for high performance. Al-
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though this is targeted towards end-user physicists who will
not be writing nearly any code at all.

The field of domain specific languages and libraries for
methods based upon structured grids, or stencils, is wide and
quite heterogeneous. SBLOCK [4] is a Python framework to
express complex stencils arising in real-world computations.
Low-level code for multi-node architectures is automatically
generated from the Python specification. The Mint framework,
based on pragma directives for GPU execution, has been used
to accelerate a 3D earthquake simulation [25]. The OPS [21]
domain specific active library(i.e., looks like as a traditional
library, but code generation is employed) provides a high-level
abstraction similar to that of PyOP2, although it specifically
targets multi-block structured mesh computations. Just like
Devito, OPS targets real-world applications. Other projects use
code generation and auto-tuning to increase the performance
of the generated code [11, 29, 8, 6, 10, 17], although it is not
clear to what extent they might be used for production code.

Polyhedral compilers have become increasingly popular
over the last decade to automatically optimize stencil codes.
These tools attempt to optimize so called affine loop nests
(i.e., all bounds and array indices must be affine expressions
in the enclosing loop indices), typically for parallelism and
data locality. PLUTO [3] is probably the most famous and
commonly used example of such compilers.

Finally, the Halide project (domain specific language, com-
piler, and auto-tuning system), despite originally designed for
image processing pipelines, now provides mechanisms and
optimizations that are of potential interest for generic stencil
computations [19].

III. RAISING THE LEVEL OF ABSTRACTION

When designing DSL-based scientific tools the choice of
abstraction layers and interfaces is crucial, since too narrow
abstractions often hamper future development once the original
features are exhausted, while all-encompassing abstractions
often become too generic, complicated and hard to maintain.
For this reason, Devito relies on SymPy as its symbolic top-
level language to express equations, as well as its internal rep-
resentation of stencil expressions. The original expression is
modified symbolically several times to progressively resemble
C code, thus increasing the stencil’s complexity. Through this
multi-stage process additional user interfaces at lower levels
are created that may be used for the addition of non-standard
model features, and future compatibility with external tools is
simplified.

As discussed in the later sections, the need for a full-scale
symbolic top-level language becomes evident when complex
mathematical models are considered. Some stencils are inher-
ently difficult to express as well as to optimize – a single
expression may involve hundreds of operations.

IV. DEVITO OVERVIEW

One of the guiding design concepts behind Devito is the
Principle of Graceful Degradation that suggests that users
should be able to circumvent limits to the top layer abstraction

by utilising a lower-level API that might be more laborious
but less restrictive. In the context of seismic imaging, a
major restriction that other FD DSLs discussed before have is
that they do not have support for sparse-point interpolation,
an important requirement for source insertion and receiver
sampling. This is one area where the lower-level API of
Devito was used to create a complete representation of the
real problem. A second cornerstone in the design of Devito
is the extensive use of SymPy to express, manipulate and
evolve mathematical expressions from high-level equations
to low-level stencil expressions that easily translate into C
code. Ultimately, since Devito operators consist of purely
symbolic expressions, low-level implementation choices that
aid performance are left to Devito, which enables streamlined
code generation bespoke to the target platform.

A. Symbolic stencil equations

The SymPy Python package provides the basic symbol
objects to represent complete equations in symbolic form.
Devito utilises these expressions as the basis for generating
optimized finite difference stencil operators by providing two
types of objects:
Symbolic Data Objects that associate grid data with SymPy

symbols to form symbolic expressions.
Operator Objects that generate optimized C code to apply a

given stencil expression to the associated data.
Devito’s symbolic data objects decorate user data with the

symbolic behaviour of sympy.Function objects and en-
capsulate time-varying functions as well as field data constant
in time. These objects inherit their symbolic behaviour directly
from SymPy data objects and can be used directly within
SymPy expressions with appropriate behaviour. For example,
the following code shows a simple equation that updates one
spatial grid with the values of another:

from Devito import DenseData, Operator
from sympy import Eq

f = DenseData(name=’f’, shape=(10, 10))
g = DenseData(name=’g’, shape=(10, 10))
h = DenseData(name=’h’, shape=(10, 10))

eqn = Eq(f, h + 2 * g)
op = Operator(stencils=eqn, timesteps=1)

In this code snippet the data objects f and g represent
spatial functions and act as SymPy symbols f(x, y) and
g(x, y), and the sympy.Equation object eqn is equiv-
alent to the mathematical expression:

f(x, y) = h(x, y) + 2g(x, y).

Devito decorates its custom symbolic objects by allocating
memory to store associated data along with the symbolic form
of the variable. The encapsulated data is made accessible to
users as a wrapped NumPy array object, allowing the initial



values of the function to be set either via direct array access
or by defining a custom initializer function that can be passed
into the object constructor.

Using the above example, the user may set the initial values
of the spatial fields via f.data[:] = 5 and g.data[:]
= 3. The devito.Operator object op now generates the
corresponding C code for the equation eqn and when applied
results in the function f having the final value of 11.

1) Derivative expressions: In addition to associated mem-
ory, Devito data objects also provide shorthand notation for
common finite difference formulations. These consist pri-
marily of automatically expanded symbolic expressions for
first, second and cross derivatives in the time and space
dimensions, where the order of the discretization is defined
on the symbolic data object. For example defining the func-
tion f as f = DenseData(’f’, shape(10, 10),
space_order=2) allows us to take the second derivative
of f in dimension x as:

In [1]: from devito import DenseData

In [2]: f = DenseData(name=’f’,
shape=(10, 10), space_order=2)

In [3]: f.dx2
Out[3]: -2*f(x, y)/h**2 + f(-h + x,

y)/h**2 + f(h + x, y)/h**2

The symbol h has been inserted to represent the grid spacing
in x. It is important to note here that this API allows the
user to change the spatial discretization of the problem by
simply changing one single constructor parameter for the
DenseData object f.

Another utility property of Devito’s symbolic data objects
is the f.laplace operator that expands to (f.dx2 +
f.dy2) for two-dimensional problems and (f.dx2 +
f.dy2 + f.dz) for three-dimensional ones. This allows
the expression of PDEs, such as the acoustic wave equation,
to be defined concisely:

u = TimeData(name=’u’, space_order=6, ...)
m = DenseData(name=’m’, space_order=6,

...)

wave_eqn = Eq(m * u.dt2, u.laplace)

2) Custom stencil API: While PDEs on field variables are
naturally expressible as SymPy equations with Devito stencil
derivatives, other core features required for seismic inver-
sion simulations, such as sparse point interpolation, cannot
be expressed as a single equation on sympy.Function
objects. For this reason Devito offers a secondary API that
allows custom expressions where variable objects are of type
sympy.Indexed, to closely mirror C-style variable index-
ing. It is important to note that the finite difference spacing
variable used for function indexing is replaced with discrete

grid indices in this notation, as shown below.

# High-level expression equivalent to
f.dx2

(-2*f(x, y) + f(x - h, y) + f(x + h, y))
/ h**2

# Low-level expression with explicit
indexing

(-2*f[x, y] + f[x - 1, y] + f[x + 1, y])
/ h**2

A notable detail about the multi-layered expression API
in Devito is that the low-level expanded expression is al-
ways generated within Devito as part of the code generation
process. This is encapulated in the devito.Propagator
class that encapsulates the low-level code generation process,
while most high-level symbolic operations are performed by
devito.Operator objects. The combination of these two
descriptor objects, as well as a set of compiler presets for a
range of common architectures creates an abstraction cascade
that incrementally lowers a high-level problem definition into
native executable C code, as shown in Figure 1. It is important
to note here that custom formulations can be injected at
either level, allowing the user to combine high-level derivative
expressions with custom SymPy expressions that may include
explicit data indexing. This combination of APIs provides
graceful abstraction degradation and enables rapid prototyping
for future features.

B. Automated performance optimization

To generate a performance optimized FD kernel, Devito uses
properties of the target hardware and the dataset at the time of
code generation. Looking at Listing 3, it can be seen that the
code generated by Devito includes hard-coded data-specific
values like the loop limits. Since the data specific properties
are known at the time of code generation, putting this in the
code helps the compiler in further optimising the loops since
the limits are known.

1) Vectorization: The code generated by Devito uses paral-
lelism at multiple levels to fully utilise modern multicore CPU
architectures. At the data level the generated code contains
compiler specific hints that ensure vectorization on different
compilers. Since the allocation of memory is also controlled
by Devito, we ensure that the memory is allocated on aligned
boundaries, depending on the page size of the target platform.
The aligned memory allocation combined with the compiler
hints ensure that the performance of this autogenerated code
is comparable to hand-optimized code [2].

2) Parallelization: The next level of parallelism is to use all
the available cores of the target system. For this, the code can
be generated with OpenMP pragmas inserted at appropriate
locations to ensure parallelism.

After using all available cores, further optimizations are
required for multi-socket or Non-Uniform Memory Access
(NUMA) systems. Here again, having control over the data



Devito Data Objects
TimeData(’u’, shape=())
DenseData(’m’, shape=())

Stencil Equation
eqn = m ∗ u.dt2 − u.laplace

Devito Operator
Operator(eqn)

Devito Propagator

Devito Compiler
GCC — Clang — Intel — Intel® Xeon Phi™

Act as symbols in expression
+

numpy arrays

Expands to symbolic kernel (finite-difference)

Transforms stencil in indexed format

Autogenerates C code

Compiles and loads platform
specific executable function

User Input

Figure 1: An overview of Devito’s architecture

structures and their memory allocation makes this optimization
easy to implement. The generated code in the framework
includes an initialization step which exploits the first-touch
[23] policy to make sure the memory is allocated close to the
physical location of the corresponding thread which will be
accessing it.

3) Loop blocking: Even boosted by vectorization and
parallelization the code will be limited by its memory access.
The next optimization would be to alleviate the memory
traffic by reducing main memory access. By changing a
single parameter, the framework generates code that uses loop
blocking. Loop blocking increases cache reuse by harnessing
data locality [13]. However blocking is only implemented
in the spatial dimensions so far. An important factor that
dictates the performance gain from blocking is the chosen
block size. Apart from a user defined block size, Devito
supports auto-tuning to automatically choose the block size
that provides the most performance improvement. There is
also the option of using a best-guess block size which uses the
size of the stencil in the generated code along with the size
of the cache of the target platform which is all determined at
run-time.

4) Memory mapping: The biggest problem that inversion
related code needs to usually address is checkpointing the
results of wave propagation. This is because the variables
that hold the wave-field(s) in memory quickly reach petabytes
in size when a real problem is to be addressed. It therefore
becomes imperative to save the results to disk since they are
needed for a later step but are too big to sit in memory
[22]. While other forms of checkpointing are under evaluation,

Devito currently uses mmap to make the kernel automatically
spill the arrays to disk when they exceed the available memory.
Combined with a Solid-State Drive, which may be used
exclusively for the purpose of storing the checkpoints, this
approach can support very large problem sizes without any
increase in complexity.

While saving the time history at each time step is important
for the forward wave propagation step in an inversion work-
flow, its more common to not need to store all the history
in memory. This is the case the gradient calculation in the
inversion workflow. This is also preferable since this storage
involving mmap above is quite expensive. In such a case where
all timesteps do not need to be stored, common practice is to
maintain only a certain number of timesteps in memory. This
number depends on the discretization of the equation, i.e. how
many steps backward in time does the stencil access. Devito
allows one to switch between the two forms of time stepping
by changing a single flag as can be seen in Listings 1 and 2.

5) Common sub-expression elimination: Several algebraic
manipulation techniques can be used to reduce the compu-
tational complexity of a non-trivial expression. For example,
suitable sequences of product expansions and factorizations
may reduce the operation count or expose time-independent
sub-expressions. At the moment, however, Devito only applies
a basic technique, implemented using pre-existing SymPy
operators: common sub-expression elimination (CSE). While
it may be argued that CSE is already applied by most modern
general-purpose compilers, there are three fundamental rea-
sons that motivate the application of this technique at a higher
level of abstraction:

Readability of the generated code Complex tensor equa-



tions result in impenetrable scalar expressions in C.
Compilation time It can take more than a few hours to trans-

late a moderately complex equation from C to machine
code if CSE is not used and compiler optimization is
switched to the maximum level.

Fast Algebraic Transformation An effective algebraic
transformation system for complex finite difference
expressions will consist of several steps. For example,
it has been shown in [15] that transformations such
as expansion, factorization, and code motion need to
be composed in a clever way to achieve systematic
reductions in operation count. Without CSE, applying
these transformations would be prohibitively expensive
in terms of code generation time.

V. SEISMIC INVERSION EXAMPLE

Modern seismic exploration is heavily based on accurate
solutions of wave equations in two cases: modelling and
inversion. This requires agile software as the code will be
executed millions of times over its life for different grid sizes,
different model sizes and different time interval and sampling.
Explicitly written code is, therefore, not the best approach as
implementing loops and constants with inputs will drastically
impact the efficiency of the solver as the compiler will be
unaware of the grid sizes, for example. Case by case code
generation is the the obvious solution to generate optimized
code here. As modelling is part of the inversion, we will look
directly at the complete picture.

A. Problem definition

The simplest wave equation used is the acoustic case. For
a spatially varying velocity model, c, the equation in the time
domain is given by:





md2u(x,t)
dt2 −∇2u(x, t) = q

u(., 0) = 0
du(x,t)

dt |t=0 = 0

(1)

where u is the wavefield, q is the source, ∇ is the Laplacian
and ∂2u

∂t2 is the second-order time derivative. This equation is
solved explicitly with a time marching scheme. We are then
looking at the following seismic inversion problem [9, 27] :

minimize
~m

Φs(~m) =
1

2

∥∥∥PrA
−1(~m)~q − ~d

∥∥∥
2

2
, (2)

where A is the discrete wave equation operator, ~d is the
field measured data and Pr is the restriction operator to the
measurement locations. To solve this optimization problem
using a gradient-descent method we use the adjoint-state
method to evaluate the gradient ∇Φs(~m) [18, 9]:

∇Φs(~m) =

nt∑

t=1

~u[~t]~vtt[~t] = JT δ~d, (3)

where δ~d =
(
Pr~u− ~d

)
is the data residual, and ~vtt is

the second-order time derivative of the adjoint wave equation
computed backwards in time:

A∗(~m)~v = P∗
rδ
~d. (4)

As we can see, the adjoint-state method requires a wave-
equation solve for both the forward and adjoint wavefields and
the full storage of the forward wavefield ~u in order to compute
the gradient. While this computational cost clearly motivates
the interest in optimizing the performance of the solvers, the
importance of an accurate and consistent adjoint model in the
solution of the optimization problem motivates the requirement
to keep the implementation relatively simple.

B. Testing framework

To ensure the accuracy of the generated code we have built a
testing framework enforcing that our implementation satisfies
the mathematical properties we expect from theory. The first
mandatory property is to ensure that our derivation of the
adjoint of the wave equation, obtained by taking the adjoint
of a coded function, implements the adjoint of the operator.
The mathematical test we use is

for any random ~x ∈ span(AT ), ~y ∈ span(A) (5)
〈A~x, ~y〉 − 〈~x,At~y〉 = 0, (6)

We then need to check that the gradient obtained by the code
implementation of equation 3 satisfies the behaviour defined
by the Taylor expansion of the objective function given in
equation 2. Mathematically, this test is expressed by

Φs(~m+ h ~dm) = Φs(~m) +O(h) (7)

Φs(~m+ h ~dm) = Φs(~m) + h(J[~m]T δ~d) ~dm+O(h2), (8)

and is computed directly by varying the value of h between
10−6 and 100. By plotting the results on a loglog scale we
can check that our implementation of the forward modelling
behaves as a first order approximation and the gradient as a
second order approximation.

C. Implementation in Devito

Listing 1 shows the code required to solve the wave equation
in a forward propagation run. The implementation first creates
the required symbolic data object, spatial grid variables m and
damp to represent the square slowness and spatially varying
absorption coefficients respectively, and the time-dependent
variable u to represent the pressure wavefield. The symbolic
objects are then used to define the wave equation and the
SymPy solve function is used to symbolically reorganize the
resulting stencil. When creating the Operator instance the
grid spacing and timestep size are inserted via a substitution
dictionary subs, and the number of timesteps is defined
before the operator is applied to the data. It is important to
note here that the spatial order is defined by a single input



parameter and thus easily changeable, and that the dimension
of the problem setup is entirely defined by the shape of the
input data array model.

Listing 1: Example code to solve the wave equation
def forward(model, nt, dt, h,

spc_order=2):
m = DenseData("m", model.shape)
m.data[:] = model
u = TimeData(name=’u’,

shape=model.shape, time_dim=nt,
time_order=2,
space_order=spc_order, save=True)

damp = DenseData("damp", model.shape)

# Derive stencil from symbolic equation
eqn = m * u.dt2 - u.laplace + damp *

u.dt
stencil = solve(eqn, u.forward)[0]

# Add spacing substitutions
subs = {s: dt, h: h}
op = Operator(stencils=Eq(u.forward,

stencil), nt=nt,
shape=model.shape, subs=subs)

op.apply()

The corresponding adjoint operator for the wave equation
is demonstrated in Listing 2. The setup follows the same prin-
ciples as the forward model except for subtracting the damp-
ening term and using u.backward to define the symbolic
stencil reorganization. The shorthand notation u.forward
and u.backward hereby denote the highest and lowest
stencil point in the second-order time discretization stencil,
t + s and t - s respectively. This ensures the alignment
of the final grid indexes after the spacing variables s and h
have been resolved to explicit grid accesses in the final stencil
expression.

Listing 2: Example code to solve the adjoint of the wave
equation
def adjoint(model, nt, dt, h,

spc_order=2):
m = DenseData("m", model.shape)
m.data[:] = model
v = TimeData(name=’v’,

shape=model.shape, time_dim=nt,
time_order=2,
space_order=spc_order, save=True)

damp = DenseData("damp", model.shape)

# Derive stencil from symbolic equation
eqn = m * v.dt2 - v.laplace - damp *

v.dt
stencil = solve(eqn, v.backward)[0]

# Add spacing substitutions
subs = {s: dt, h: h}
op = Operator(stencils=Eq(u.backward,

stencil), nt=nt,
shape=model.shape, subs=subs,
forward=False)

op.apply()

Listing 3 shows the C code generated by Devito when
this function is called with nt = 100, dt = 0.01, h = 0.1
on an initial model of shape (100, 100). A 2D model was
chosen here for brevity of code, however changing the shape
of the initial model to (100, 100, 100) would be the only thing
required to generate a 3D C code.

Listing 3: Generated C code from the forward operator
// #include directives omitted for brevity
extern ”C” int ForwardOperator(double *u vec, double *damp vec, double *m vec, double *src vec, float

*src coords vec , double *rec vec, float *rec coords vec, long i1block , long i2block )
{

double (*u) [130][130][130] = (double (*) [130][130][130]) u vec;
double (*damp)[130][130] = (double (*) [130][130]) damp vec;
double (*m)[130][130] = (double (*) [130][130]) m vec;
double (* src ) [1] = (double (*) [1]) src vec ;
float (*src coords ) [3] = ( float (*) [3]) src coords vec ;
double (*rec )[101] = (double (*) [101]) rec vec ;
float (*rec coords ) [3] = ( float (*) [3]) rec coords vec;
{

#pragma omp parallel
for ( int i4 = 0; i4<149; i4+=1)
{
{

#pragma omp for schedule( static )
for ( int i1b = 1; i1b<129 − (128 % i1block); i1b+=i1block)

for ( int i2b = 1; i2b<129 − (128 % i2block); i2b+=i2block)
for ( int i1 = i1b ; i1<i1b+i1block; i1++)

for ( int i2 = i2b ; i2<i2b+i2block; i2++)
{

#pragma omp simd aligned(damp, m, u:64)
for ( int i3 = 1; i3<129; i3++)
{

double temp1 = damp[i1][i2 ][ i3 ];
double temp2 = m[i1][i2 ][ i3 ];
double temp4 = u[i4 − 1][i1][i2 ][ i3 ];
double temp5 = u[i4 − 2][i1][i2 ][ i3 ];
u[i4 ][ i1 ][ i2 ][ i3 ] = ...
}
}

for ( int i1 = 129 − (128 % i1block); i1<129; i1++)
for ( int i2 = 1; i2<129 − (128 % i2block); i2++)
{

#pragma omp simd aligned(damp, m, u:64)
for ( int i3 = 1; i3<129; i3++)
{

double temp1 = damp[i1][i2 ][ i3 ];
double temp2 = m[i1][i2 ][ i3 ];
double temp4 = u[i4 − 1][i1][i2 ][ i3 ];
double temp5 = u[i4 − 2][i1][i2 ][ i3 ];
u[i4 ][ i1 ][ i2 ][ i3 ] = ...
}
}

for ( int i1 = 1; i1<129; i1++)
for ( int i2 = 129 − (128 % i2block); i2<129; i2++)
{

#pragma omp simd aligned(damp, m, u:64)
for ( int i3 = 1; i3<129; i3++)
{

double temp1 = damp[i1][i2 ][ i3 ];
double temp2 = m[i1][i2 ][ i3 ];
double temp4 = u[i4 − 1][i1][i2 ][ i3 ];
double temp5 = u[i4 − 2][i1][i2 ][ i3 ];
u[i4 ][ i1 ][ i2 ][ i3 ] = ...
}
}
// Source and Receiver code omitted for brevity

}
}
}
return 0;
}

D. Results

We illustrate our API on a 3D model. The model is 201 x
201 x 70 grid points with 40 absorbing boundary grid points
on every side making the full computational size 281 x 281
x 150 grid points. The grid size is 15m and the source term



Figure 2: 3D acoustic modelling.

Figure 3: Gradient test for the acoustic kernel

is a Ricker wavelet at 10Hz. The wavefield is modelled for
1 second with 14th order spatial discretization. A snapshot of
the wavefield is shown in Figure 2.

We validate our workflow by computing the error terms of
Equation 7 for different value of h and comparing it with the
theoretical order.

Figure 3 shows that the gradients calculated by Devito
satisfy the Taylor expansion properties and are therefore exact
for the inversion problem, which guarantees the correctness of
any gradient base method.

Figure 4 depicts the performance of 8 different versions of
the generated code on an Intel® Xeon® E5-2690v2 10C 3GHz
and a Intel® Xeon Phi™in comparison with the maximum
achievable performance on each of the two platforms.

VI. FUTURE WORK

We have two short-term goals for Devito: (i) the extension
and formalization of the mathematical syntax used to express
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Figure 4: Roofline plots showing compute performance on two
target systems

the stencils, and (ii) the improvement of the framework
performance.

The mathematical language provided by Devito still lacks
a proper formalization. At present, the SymPy ’s language,
enriched with a small set of Devito operators, is provided.
New types of operators will be offered out-of-the-box (e.g.,
least square operators). Not only will these be essential for
our driving application, seismic inversion, but also for a large
class of problems arising in the most disparate fields.

We aim to exploit the mathematical layer to optimize
the performance of the generated stencils, in particular to
reduce their operation count through a suitable algebraic
manipulation. Besides CSE, the fundamental transformations
that we are considering at the moment are factorization and
code motion (time-invariant sub-expressions may be exposed
through factorization). Our ambition is to develop a system
capable of optimizing generic stencils given a simple ob-
jective function (e.g., minimize the operation count without
exceeding a certain working set size). A similar approach
has been presented in [15]. Once the mathematical syntax is
formalized and this expression rewriting engine is operative,
domain specialists will not have to worry any more about the



arithmetic complexity of the equations produced.
The current version of Devito implements simple systems

for loop blocking and auto-tuning. We aim to replace these
two components by integrating either a polyhedral compiler
or a complete new abstraction, such as the already mentioned
OPS. We are skeptic about the introduction of complex trans-
formations such as time tiling: in a time loop iteration of
full waveform inversion, for example, not only are multiple
stencils applied, but also point evaluation over irregular grid
regions needs to be performed. This clearly makes time
blocking cumbersome. Nevertheless, these tools may improve
vectorization and blocking over the spatial dimensions, as well
as provide multi-backend support (e.g., GPUs).

VII. CONCLUSIONS

In this article, we introduced Devito, a new framework for
the expression of finite difference methods through a symbolic
language. Its design is inspired and driven by real-world
applications, in particular seismic inversion. Despite being
in its infancy, Devito already provides a prototype DSL as
well as a minimal set of features that make it possible to
solve simple yet realistic models based on wave equations.
The research presented in this work has a multidisciplinary
nature, which is reflected by the multi-layer structure of the
framework. This is perhaps one of the greatest strengths of the
whole project. As explained in Section VI, our ambition is to
create a tool which is actually usable by domain specialists.
In fact, their feedback is already playing a fundamental role
in the formalization and the development of the Devito DSL.
Lastly, we remark that a necessary condition for the success
of the project is the generation of highly optimized stencil
code, as this is a strong requirement for the execution of real-
world seismic inversion problems. A preliminary performance
analysis has been presented in Section V-D.
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