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Abstract

Pulmonary embolism (PE) is a prevalent lung disease
that can lead to right ventricular hypertrophy and failure
in severe cases, ranking second in severity only to myocar-
dial infarction and sudden death. Pulmonary artery CT an-
giography (CTPA) is a widely used diagnostic method for
PE. However, PE detection presents challenges in clinical
practice due to limitations in imaging technology. CTPA
can produce noises similar to PE, making confirmation of
its presence time-consuming and prone to overdiagnosis.
Nevertheless, the traditional segmentation method of PE
can not fully consider the hierarchical structure of fea-
tures, local and global spatial features of PE CT images.
In this paper, we propose an automatic PE segmentation
method called SCUNet++ (Swin Conv UNet++). This
method incorporates multiple fusion dense skip connec-
tions between the encoder and decoder, utilizing the Swin
Transformer as the encoder. And fuses features of differ-
ent scales in the decoder subnetwork to compensate for
spatial information loss caused by the inevitable downsam-
pling in Swin-UNet or other state-of-the-art methods, ef-
fectively solving the above problem. We provide a the-
oretical analysis of this method in detail and validate it
on publicly available PE CT image datasets FUMPE and
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CAD-PE. The experimental results indicate that our pro-
posed method achieved a Dice similarity coefficient (DSC)
0of 83.47% and a Hausdorff distance 95th percentile (HD95)
of 3.83 on the FUMPE dataset, as well as a DSC of 83.42%
and an HD95 of 5.10 on the CAD-PE dataset. These
findings demonstrate that our method exhibits strong per-
formance in PE segmentation tasks, potentially enhancing
the accuracy of automatic segmentation of PE and pro-
viding a powerful diagnostic tool for clinical physicians.
Our source code and new FUMPE dataset are available at
https://github.com/JustlfCO3/SCUNet-plusplus.

1. Introduction

PE is a severe and life-threatening condition caused by
the dislodgment of an embolus within a blood vessel, which
obstructs a pulmonary artery or its branches. The embo-
lus size determines its classification as a central, lobar, seg-
mental, or subsegmental pulmonary artery. Small emboli
may present with minimal symptoms or mild chest tight-
ness, while larger emboli can lead to fainting or sudden
death. This is due to the thrombus obstructing the pul-
monary artery, causing narrowing or blockage of the pa-
tient’s blood vessel, resulting in increased pulmonary vas-
cular resistance and elevated pulmonary artery pressure,
ranking second in severity only to myocardial infarction and
sudden death. The incidence of PE rises with age, and with-
out active treatment, its mortality rate will approach 30%.
However, with timely and appropriate intervention, this rate
can be reduced to 2% to 11% [1]. A significant clinical chal-
lenge is the prompt and accurate diagnosis of PE while min-
imizing the risks associated with false-positive diagnoses.

CTPA is the primary diagnostic method for PE. In CTPA,
a contrast agent dissolves in the blood, causing the blood
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vessels to appear bright, while emboli do not absorb the
contrast agent, resulting in dark areas that represent PE
in CT images. According to radiologists’ experience, the
voxel values of PE typically range from -50 HU to 100 HU
which represents the image brightness level [2]. Radiolo-
gists use this feature to screen for PE by meticulously trac-
ing each artery branch. However, PE diagnosis is a highly
complex task for several reasons. Firstly, a patient may
have hundreds or thousands of CTPA images, with each
image representing a slice of the lungs. Repetitive image
readings can consume significant time and effort for physi-
cians, leading to a higher risk of misdiagnosis. Secondly,
CTPA images can be affected by imaging techniques and
factors such as respiratory motion artifacts, lymph nodes,
and vascular branching, introducing noise interference. Fi-
nally, CTPA requires a high level of expertise, and insuf-
ficient understanding on the part of physicians can lead to
delayed diagnosis and missed cases. To address these chal-
lenges, computer-aided detection (CAD) serves as an im-
portant tool for radiologists. CAD enables accurate detec-
tion and diagnosis of PE while reducing the CTPA reading
time, thereby enhancing overall diagnostic efficiency.

In this paper, from a clinical perspective by learning how
doctors locate PE in CT images based on its features, we
propose a PE segmentation method, called SCUNet++. The
method focuses on CTPA images and combines the ad-
vantages of UNet++, multiple fusion dense skip connec-
tions, Swin-Transformer attention mechanism, and Swin-
UNet method, and we made some improvements to enhance
the segmentation accuracy and stability of the network. The
primary contributions of this paper are as follows:

1. We have curated a CT image dataset annotated for PE.
In collaboration with medical professionals, our team
meticulously analyzed the publicly accessible FUMPE
and CAD-PE datasets. These examinations revealed
substantial inaccuracies and inconsistencies within the
original dataset annotations. As a corrective measure,
we undertook the task of re-annotating these datasets
to guarantee their precision. Furthermore, to facili-
tate accessibility and utility for other users, we have
provided a google drive downloadable link for the
amended FUMPE dataset on our GitHub repository.

2. We investigate the amalgamation of the UNet++ con-
volutional neural network featuring skip connections,
the Transformer attention mechanism, and the Swin-
UNet pure Transformer U-shaped neural network
model. This integrated approach results in an eleva-
tion of segmentation accuracy.

3. A bottleneck module that utilizes CNN blocks is in-
troduced to address the Swin-Transformer blocks’ in-
adequacy in extracting local spatial features from im-

ages. This strategic addition subsequently leads to an
enhancement in the overall performance of the model.

2. Related Work

Traditional medical image segmentation methods pri-
marily rely on computer graphics and machine learning
techniques for segmentation. More mature approaches in-
clude threshold-based image segmentation [3], regional im-
age segmentation utilizing similarity of region features [4],
boundary segmentation employing edge detection operators
[5, 6], and contour segmentation based on curve evolution.
However, traditional medical image segmentation methods
predominantly rely on low-level visual features of image
pixels. Owing to the substantial variation in the shape and
contour of organs, the segmentation results may fluctuate
or even decline as the complexity of the segmented object
increases during practical applications, making it challeng-
ing to ensure adequate accuracy. Consequently, traditional
medical image segmentation methods exhibit limited effec-
tiveness in enhancing segmentation accuracy.

With the widespread application of machine learning,
the application of convolutional neural networks for med-
ical image processing has also expanded, primarily falling
into two categories: classification and segmentation.

For classification tasks, Yang et al. [7] designed a two-
stage model for detecting PE using 3D CTPA images. Ini-
tially, candidate regions are proposed, followed by the ex-
traction of vessel-aligned 3D candidate regions. False posi-
tives are then removed based on the 2D cross-sections of the
vessel-aligned cubes and the ResNet-18 classifier. Huang
et al. [8] presented an end-to-end scalable deep learning
model, PENet, which employs volumetric CT imaging to
automatically diagnose PE. The CNN-LSTM architecture
proposed by Huhtanen et al. [9] comprises an Inception-
ResNet v2 CNN architecture and a long short-term mem-
ory network that processes the entire CTPA stack as a slice
sequence. This architecture demonstrates excellent perfor-
mance in detecting PE from computed tomography pul-
monary angiograms using weakly labeled training data, in-
dicating the potential of deep learning for this task. Shi et
al. [10] proposed an attention-guided model for the auto-
matic detection of PE, which includes two stages. In the
first stage, a 2D convolutional network is trained on a lim-
ited set of pixel-level annotated image slices. Patient-level
PE predictions are obtained in the second stage. Suman et
al. [11] proposed a CNN-LSTM network based on an atten-
tion mechanism, consisting of two parts: a CNN classifier
for capturing image attributes and labels, and a sequence
model for learning inter-slice dependencies. The CNN ex-
tracts features for each slice, and the sequence model with
an attention mechanism combines these spatial features and
captures long-range dependencies to provide global varia-
tion information for each CT slice.



For segmentation tasks, several deep learning-based
computer-aided diagnosis research methods have been pro-
posed for segmenting PE in recent years. Yuan et al. [12]
proposed a ResD-Unet architecture for pulmonary artery
segmentation that achieves high accuracy and efficiency by
combining the UNet network with novel Residual-Dense
blocks and a hybrid loss function, addressing challenges
in estimating the severity of PE. Guo et al. [13] proposed
an artery-aware 3D fully convolutional network, AANet, to
detect PE, which addresses the challenge of detecting PEs
that appear as dark spots among bright regions of blood
arteries in CTPA images. However, due to the complex
structure of pulmonary artery layers, the presence of numer-
ous branches, and the large variability in individual sizes
and growth directions of each layer, segmenting pulmonary
artery embolism detection is more challenging than other le-
sion detections such as pulmonary nodules. Consequently,
selecting a suitable network structure based on the charac-
teristics of the PE CT is a valuable topic that warrants fur-
ther investigation.

The research methods mentioned above offer valuable
references and insights for this paper, providing avenues
for further exploration. However, current domestic and in-
ternational research on the diagnosis of PE predominantly
focuses on binary detection of the disease’s presence or
absence, with limited research on automatic segmentation
of PE. Deep neural networks based on U-shaped architec-
ture and skip connections are commonly employed in med-
ical image tasks. Despite their utility, convolutional net-
works encounter inherent limitations that hinder their abil-
ity to effectively learn global information, particularly when
dealing with diseases characterized by numerous small le-
sions, such as PE. This problem remains unaddressed in
both UNet [14] and UNet++ [15] network models. Swin-
UNet [16], on the other hand, offers a contrast by enabling
global semantic feature learning; it achieves this by reintro-
ducing tokenized image blocks into the Transformer-based
U-shaped En-Decoder architecture through skip connec-
tions. However, Swin-UNet confronts its own set of chal-
lenges while trying to achieve detailed segmentation results
during the upsampling process. This is due to its exclusive
reliance on a pure Transformer structure, with no incorpo-
ration of convolutional operations. As a result, the model
is prone to interference from other lesions (e.g., nodules),
other components of lung tissue, and noise during the pro-
cess of PE CT image segmentation.

Based on the findings discussed above, this paper pro-
poses the introduction of a multi-fusion dense skip con-
nection, analogous to UNet++, into the Swin-UNet model
structure. This integration enables the effective incorpora-
tion of downsampled feature maps of various depths ob-
tained from the Swin-UNet model structure. Consequently,
the model can concentrate on both contextual information

and spatial visual information. Moreover, feature maps of
different depths can partially share the same encoder and
perform joint feedback learning through depth supervision.
To compensate for the lack of local spatial feature extraction
in the Swin Transformer module at the bottleneck layer, this
paper also proposes replacing the original bottleneck layer
of the Swin-UNet with a convolutional module. The hybrid
architecture model is capable of effectively extracting local
spatial features of the image alongside overall global fea-
tures and combining deep and shallow semantic information
to accurately identify the segmentation of PE, as illustrated
in Fig. 1.

Inputs Outputs Masks

.-
..

Figure 1. The test results are presented in the following order:
from left to right, the input images, the output segmentations, and
the ground truth.

3. Method
3.1. Overview of the Architecture

The overall architecture of the SCUNet++ model pro-
posed in this paper is illustrated in Fig. 2. The model com-
prises four main modules: an encoder module, a CNN Bot-
tleneck module, a decoder module, and a multi-fusion dense
skip connection module. For the encoder module, the image
is transformed into a sequence embedding, and the CT slice
with a size of W xH is divided into non-overlapping blocks
of size 4 x 4. Then, the feature dimension is projected to
the C dimension by a linear embedding layer. The trans-
formed patches are then passed through a series of Swin
Transformer blocks and a patch merging layer to gener-
ate hierarchical feature representations. The patch merg-
ing layer is responsible for downsampling and dimension
increase, while Swin Transformer blocks are responsible
for feature representation learning. After the encoder, the
feature map is input to the CNN bottleneck module, which
employs CNN blocks for alternative construction to com-
pensate for the Swin Transformer blocks’ deficiency in lo-
cal spatial feature extraction in the image. The multi-fusion
dense skip connection module, inspired by the UNet++ skip
connection method, is added between the decoder and the
encoder, based on Swin Transformer blocks. It fuses the



extracted contextual features with multi-scale features from
the encoder through multi-fusion dense skip connections to
compensate for the loss of spatial information caused by
downsampling. The decoder module consists of a Swin
Transformer block and a patch-expanding layer. The patch
expanding layer reshapes feature maps of adjacent dimen-
sions into larger feature maps with a resolution of 2x up-
sampling, while the Swin Transformer block is responsi-
ble for feature representation learning. Finally, the feature
maps’ resolution is restored to the input resolution (W xH)
by 4-fold upsampling using the last patch expanding layer.
A linear projection layer is then applied to this feature map
to perform pixel-level segmentation prediction.

3.2. Double Swin-Transformer Block

As illustrated in Fig. 3, the Swin-Transformer block is
constructed based on a shifted window, which sets it apart
from the conventional Multihead Self-Attention (MSA)
module. The Double Swin-Transformer block proposed
in this paper comprises two consecutive Swin-Transformer
blocks. Each Swin-Transformer block includes an LN
layer, an MSA module, a residual connection, and a two-
layer MLP with a GELU nonlinear activation function.
Moreover, we apply the window-based multi-headed self-
attention (W-MSA) module and the shifted-window-based
multi-headed self-attention (SW-MSA) module to these two
consecutive Swin-Transformer blocks, respectively. This
approach enhances the model’s ability to capture long-range
dependencies and learn global and remote semantic infor-
mation interactions.
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Figure 3. Swin-Transformer module. MSA denotes the multi-
headed attention module and MLP represents the multilayer per-
ceptron module.

3.3. Encoder

The encoder is built based on Double Swin-Transformer
blocks. Firstly, the image is transformed into a sequence
embedding, and the patch partition divides the WxHx3
slice into non-overlapping blocks of size 4x4, so the fea-
ture dimension of each block becomes 4 x 4 x 3 = 48.
The linear embedding layer projects the feature dimension

onto C. Then, the feature of size H/4 x W/4 xC is used as the
input for two consecutive Swin-Transform blocks to learn
feature representation. At the last, downsampling by a fac-
tor of 2 is performed via the patch merging layer to reduce
the number of representations and double the feature dimen-
sion. So, the changes in dimension and resolution are com-
pleted at the patch merging layer. This process is repeated
three times in the encoder, each of them comprising two
Swin-Transformer blocks and one patch merging layer.

3.4. Patch Merging Layer

When combining pixel points based on the parity of rows
and columns, there are four possible combinations. So, the
input patch can be divided into four parts, and use the patch
merging layer to merge these four parts. This reduces the
feature resolution to half of the original resolution. Since
the merging operation increases the feature dimension to
four times the original dimension, a linear layer is applied
afterward to reduce the feature dimension to double the
original dimension.

3.5. Bottleneck (CNN Block)

Using only Swin-Transformer blocks to construct the
bottleneck for extracting local spatial features in images
may be insufficient. Therefore, we attempt to use CNN
blocks to replace the original bottleneck to fully learn deep
feature representations, and make up for the deficiency of
the network in extracting local spatial features in images.
The CNN block comprises a network structure that utilizes
alx 1Conv — 3 x 3Conv — 1 x 1Conv sequence, with
a BN-ReLU operation applied before each convolution. In
the bottleneck, the feature size and resolution remain un-
changed to ensure consistency in feature representation.

3.6. Decoder

The structure of the decoder corresponds to the encoder.
In the decoder, the patch expanding layer performs 2x up-
sampling on the extracted deep features and reshapes the
adjacent dimension feature maps into higher-resolution fea-
ture maps. Accordingly, the feature dimension is reduced to
half of the original dimension.

3.7. Patch Expanding Layer

Taking the first patch expansion layer as an exem-
plar, a linear layer is employed on the input features
(W/32xH/32x8C) preceding the upsampling process. This
action aims to amplify the feature dimension, doubling its
original value (W/32xH/32x16C). Subsequent to this, the
resolution of the input features is enhanced to twice the ini-
tial input resolution via the rearrange operation. Conversely,
the feature dimension decreases to a quarter of the initial in-
put feature dimension.
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Figure 2. Overall structure of the network model. This method incorporates multiple fusion dense skip connections between the encoder
and decoder, utilizing the Swin Transformer as the encoder. Additionally, we use CNN in bottleneck and Multi-Fusion Dense Skip
Connections to make up for the Transformer’s shortcomings in local spatial feature extraction.

3.8. Multi-Fusion Dense Skip Connection

Inspired by the skip connection concept of UNet++, the
SCUNet++ uses a multi-fusion dense skip connection ap-
proach to attain aggregated semantically scaled and highly
flexible encoder features within the decoder sub-network.
As illustrated in Fig. 4, the proposed model is designed
with dense connections, incorporating both long and short
connections by introducing nested and dense multi-fusion
dense skip connections. Moreover, a convolutional struc-
ture is added to fill the hollow spaces in the center of the
model to compensate for the lack of image feature extrac-
tion detail resulting from the pure Transformer structure of
the Swin-UNet. This strategy effectively reduces the se-
mantic gap between the encoder and decoder while captur-
ing various levels of features and different sizes of percep-
tual fields to obtain richer multi-scale information. Conse-
quently, our model can efficiently extract local spatial fea-
tures and overall global features of CTPA images, integrat-
ing deep and shallow semantic information and performing
stitching processing to minimize the loss of spatial informa-
tion caused by the downsampling process.

4. Experiment

4.1. Dataset

As depicted in Fig. 5, we conducted experiments using
publicly available datasets FUMPE [17] and CAD-PE [18].
We only selected fixed-angle PE images and corresponding
labels for each case. Owing to inaccuracies in the initial

Dense Skip Connection Block

Figure 4. Multi-Fusion Dense Skip Connection module.

annotation results of the FUMPE dataset, we collaborated
with medical professionals to scrutinize and re-annotate the
dataset. Following a thorough review process, we ulti-
mately secured 8,792 CTPA images obtained from 35 pa-
tients, complete with revised annotations provided by the
physicians. The CAD-PE dataset contains 91 computed to-
mography pulmonary angiography images with positive PE,
with all thrombi segmented by experienced radiologists in
each scan. After the screening, the CAD-PE dataset consists
of 8,900 CTPA images of PE. Simultaneously, we standard-
ized the image size of both datasets to 512 x 512 pixels and
divided each PE case into a 9:1 ratio for training and testing.

4.2. Implementation Details

In this study, we utilized the PyTorch framework to con-
struct the SCUNet++ network model and trained it using an



Tnputs Masks Inputs Masks

Figure 5. Original PE dataset. Figures (a-c) present examples from
the CAD-PE dataset, while figures (d-f) showcase examples from
the FUMPE dataset.

NVIDIA GeForce RTX 3090 GPU. Specifically, we set the
batch size to 12 and employed the Adam optimization algo-
rithm to update the model’s gradient. The learning rate was
set at 0.0001, the number of epochs at 150, and the train-
ing time at 23 hours. To evaluate the model’s performance
in image segmentation, we assessed the segmentation accu-
racy using the Dice similarity coefficient (DSC) [19] and
95% Hausdorff distance (HD95) [20], both of which are
widely applied in image segmentation. Given the predicted
segmentation mask as X and the ground-truth label as Y,
the DSC is calculated as:

2XNY|

DSC =221
X[+ Y]

6]

where |X | and |Y| represent the area of the segmented re-
sult and the label while |X N Y| refers to the area of the
overlapping part of the segmented result and the label.

Analogously, the formula for HD95 can be derived as
follows:

dp(X,Y) =max{dxy,dyx}

. . (2)
= max {Izng min d(z,y), max min d(z, y)} ;

where X and Y denote the segmented pixel values and la-
beled pixel values, respectively, and d(z, y) represents the
Euclidean distance between pixel values X, Y.

The HD95 value is obtained by multiplying the final
value by 0.95, with the intention of excluding some unrea-
sonable distances from the cluster points and maintaining
overall distance stability. The HD95 value represents the
relative distance size between two sample boundary values;
a smaller distance value indicates a closer prediction map
and segmentation map boundary, leading to more accurate
segmentation. DSC measures the overlap between the seg-
mentation result and the label, while HD95 quantifies the
maximum distance between the network prediction region
and the label. Consequently, a higher DSC and lower HD95

indicate better performance of the semantic segmentation
model. DSC is more sensitive to the internal and true re-
gions of the segmentation area, whereas HD95 primarily fo-
cuses on the boundary of the segmentation result. By com-
bining these two metrics, we can objectively and quantita-
tively evaluate the segmentation performance of the model.

4.3. Comparison with Typical Segmentation Models

Table 1. Comparison of DSC and HD9S5 for various network mod-
els utilizing the FUMPE dataset.

Methods DSC(%) HD95
UNet [14] 78.13+13.87  6.86 £ 15.81
UNet++ [15] 77.16 + 16.25 5.80 + 4.57
Swin-UNet [16] 60.80 + 28.49  20.20 + 28.93
ResD-UNet [12]  76.48 +20.12  22.25 + 35.42
SCUNet++(Ours)  83.47+ 5.57 3.83+ 1.02

Table 2. Comparison of DSC and HD95 for various network mod-
els utilizing the CAD-PE dataset.

Methods DSC(%) HD95
UNet 73.794£20.60  6.86 + 24.38
UNet++ 7748 £19.16  13.80 & 33.12
Swin-UNet 67.49 +24.13  16.56 + 36.13
ResD-UNet 73.58 £22.21  27.25 4 47.24
SCUNet++(Ours)  83.42+ 6.12 510+ 9.14

In the experiment, we compared the segmentation per-
formance of SCUNet++ with some traditional or state-of-
the-art segmentation models. Fig. 6 shows the segmenta-
tion results of our proposed SCUNet++ and classical seg-
mentation models. To ensure the reliability of the results,
we have done experiments on both FUNMPE and CAD-PE
datasets and obtained similar results. The results presented
in Table 1 and Table 2 indicate that SCUNet++ achieves the
best performance in segmenting CT images of PE.

In the CAD-PE dataset, when compared to the UNet and
UNet++, the DSC for SCUNet++ improves from 73.79%
and 77.48% to 83.42%, while the HD95 decreases from
6.86 and 13.80 to 5.10. This improvement can be attributed
to the Swin Transformer module within the SCUNet++ net-
work model, which is based on the attention mechanism.
This module can capture global connections in one step
while concentrating on local connections between elements,
thereby enhancing the segmentation performance.

Furthermore, we compared the SCUNet++ with the
Swin-UNet. The results showed that the DSC of SCUNet++
improved from 67.49% to 83.42%, and HD95 decreased
from 16.56 to 5.10 when applied to the CT dataset of PE.
This improvement is due to the SCUNet++ addressing the



Figure 6. Comparison of segmentation performance of different network models on the CAD-PE dataset: (a) input image; (b) ground truth
mask; (c) the proposed SCUNet++ model; (d) UNet++ model; (e) UNet model; (f) Swin-UNet model; and (g) ResD-UNet model.

limitations of a pure Transformer in extracting detailed fea-
tures from medical images. By deepening the network
structure and adding a multi-scale feature fusion module to
each Swin Transformer block, the SCUNet++ model effec-
tively fuses features from multiple scales, thus improving
segmentation performance.

And, we also compared the SCUNet++ with the state-
of-the-art segmentation model ResD-UNet. The results
showed that the DSC of SCUNet++ improved from 73.58%
to 83.42%, and HD95 decreased from 27.25 to 5.10 when
applied to the CT dataset of PE.

At the same time, we repeated comparative experiments
on the FUMPE dataset, and the experimental results were
similar to those on the CAD-PE dataset, further proving
the good generalization. When compared to the UNet and
UNet++, the DSC for SCUNet++ improves from 78.13%
and 77.16% to 83.47%, while the HD95 decreases from
6.86 and 5.80 to 3.83. When compared to the Swin-UNet
and ResD-UNet, the DSC for SCUNet++ improves from
60.80% and 76.48% to 83.47%, while the HD95 decreases
from 20.20 and 22.25 to 3.83.

In conclusion, we compared the model parameters, train-
ing time, and inference time of SCUNet++ with other ad-
vanced methods. As demonstrated in Table 3, our proposed
method exhibits a less significant increase in model param-
eters when tested on the FUMPE dataset (akin to CAD-PE)
while maintaining a notable advantage in terms of train-
ing and inference speed. However, within real-world sce-
narios pertaining to CT image segmentation tasks of pul-
monary embolisms, accuracy is generally prioritized over

speed and computational efficiency. Thus, the superiority
of our proposed model is underscored by its substantial im-
provement in the accuracy of pulmonary embolism CT im-
age segmentation, compared to other contemporary state-
of-the-art models.

Table 3. Comparison of model parameters, training, and inference
time for various network models.

Methods Params Training time Inference
M) (min/epoch) time (s/it)
UNet [14] 32.93  13.4046 0.2045
UNet++ [15] 34.96 13.5667 0.2058
Swin-UNet [16] 25.91 11.5383 0.2016
ResD-UNet [12] 50.83  13.3416 0.2035
SCUNet++ (Ours)  60.11  12.2805 0.2020

4.4. Ablation Study

In this section, as shown in Fig. 7, we assess the impact
of skip connections and CNN blocks on the model’s seg-
mentation performance through ablation experiments. As
illustrated in Table 4 and Table 5, we evaluate each mod-
ule’s influence on the overall model by comparing the Dice
values on the test set for the following configurations: with-
out(w/o) Dense skip connection, w/o CNN block, and the
complete SCUNet++ model.

In the CAD-PE dataset, when we added a dense skip con-
nection module on the basis of SCUNet, the DSC increased
from 67.15% to 83.41%, while the HD95 decreased from
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Figure 7. Comparison of segmentation performance of different network models on the CAD-PE dataset: (a) input image; (b) ground truth
mask; (c) the proposed SCUNet++ model; (d) SCUNet(w/o Dense skip connection); (¢) SUNet++(w/o CNN bottleneck block).

22.83 to 5.10. This indicates that by removing the dense
skip connection module, the segmentation effect is unsat-
isfactory due to the semantic gap between the encoder and
decoder. When we added a CNN bottleneck block module
on the basis of SUNet++, the DSC increased from 75.27%
to 83.41%, while the HD95 decreased from 18.01 to 5.10.
This indicates that by removing the CNN bottleneck block,
the extraction of features in the image’s local space is in-
sufficient because only the Swin-Transformer block is used
to construct the bottleneck, which will lead to the lack of
feature extraction in the local space of the image.

At the same time, we also conducted the same ablation
experiment on the FUMPE dataset and obtained similar re-
sults. SCUNet++ achieved the best results in both DSC and
HD95, 83.47 and 3.83. Based on the experimental results
on the two datasets, we can conclude that both individual
modules have a significant impact on the model’s segmen-
tation results.

Table 4. Comparison of ablation experiments utilizing FUMPE
dataset.

Methods DSC(%) HD95
SCUNet(w/o Dense skip connection) 80.52 4.25
SUNet++(w/o CNN bottleneck block)  80.87 3.98
SCUNet++(Ours) 83.47 3.83

The SCUNet++ network model addresses these issues
by strengthening connections through the introduction of
nested multi-fusion dense skip connections, ultimately de-

Table 5. Comparison of ablation experiments utilizing CAD-PE
dataset.

Methods DSC(%) HD95
SCUNet(w/o Dense skip connection) 67.15 22.83
SUNet++(w/o CNN bottleneck block)  75.27 18.01
SCUNet++(Ours) 83.41 5.10

signing dense connections with both long and short connec-
tions. Additionally, it incorporates a convolutional structure
to fill the hollow position in the middle of the model. This
structure enables the capture of features at different lev-
els and perceptual fields of varying sizes, obtaining richer
multi-scale information. Furthermore, SCUNet++ employs
CNN blocks as a bottleneck to fully learn deep feature rep-
resentation, compensating for the network’s deficiency in
extracting local spatial features from images.

Therefore, the ablation experiments confirm our hypoth-
esis that the inclusion of skip connections and CNN blocks
improves the network model’s segmentation Dice values.
The fusion of these modules allows the proposed network
model to effectively utilize local spatial features, overall
global features, and deep and shallow semantic information,
ultimately greatly enhancing the accuracy and stability of
PE segmentation.

5. Conclusion

This paper proposes a novel automatic segmentation net-
work, SCUNet++, for CTPA images. We adjust the net-



work structure based on an analysis of the disease charac-
teristics and the actual segmentation processes. This net-
work introduces multiple fused dense skip connections be-
tween the encoder and decoder, allowing the decoder sub-
network to fuse features of different scales and compen-
sate for the spatial information loss caused by downsam-
pling. Our experimental results on the published FUMPE
and CAD-PE datasets demonstrate that this method outper-
forms other state-of-the-art methods in segmentation accu-
racy, positively impacting the diagnosis of PE.

In the future, we plan to use more reliable annotated PE
data to further improve the network’s accuracy and robust-
ness, ensuring the method’s stability and reliability. Addi-
tionally, we will continue to collaborate with PE special-
ists and include additional patient information, such as age,
gender, surgical history, and other relevant factors, to de-
velop quantifiable and reliable evaluation guidelines. These
guidelines will assist doctors in better assessing patients’
conditions and risk levels, ultimately promoting the provi-
sion of more accurate treatment plans for patients.
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