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Abstract
Recent face presentation attack detection (PAD) lever-

ages domain adaptation (DA) and domain generalization
(DG) techniques to address performance degradation on
unknown domains. However, DA-based PAD methods re-
quire access to unlabeled target data, while most DG-based
PAD solutions rely on a priori, i.e., known domain la-
bels. Moreover, most DA-/DG-based methods are computa-
tionally intensive, demanding complex model architectures
and/or multi-stage training processes. This paper proposes
to model face PAD as a compound DG task from a causal
perspective, linking it to model optimization. We exca-
vate the causal factors hidden in the high-level represen-
tation via counterfactual intervention. Moreover, we intro-
duce a class-guided MixStyle to enrich feature-level data
distribution within classes instead of focusing on domain
information. Both class-guided MixStyle and counterfac-
tual intervention components introduce no extra trainable
parameters and negligible computational resources. Ex-
tensive cross-dataset and analytic experiments demonstrate
the effectiveness and efficiency of our method compared to
state-of-the-art PADs. The implementation and the trained
weights are publicly available1.

1. Introduction
Face recognition [2, 3, 9] has become a remarkable tech-

nique for identity authentication and has been widely de-
ployed in our daily lives. However, face recognition is vul-
nerable to presentation attacks (PAs) [1, 13, 55, 56], such as
printed images, replayed videos, and 3D masks. Therefore,
face presentation attack detection (PAD) plays an important
role in securing face recognition from such PAs. Despite the
promising performance in intra-dataset evaluation by deep
learning-based face PAD techniques [10, 51, 52], the PAD
performance significantly degrades under the more realistic
cross-domain scenario.

Recently, a variety of domain adaptation (DA) and do-

1https://github.com/meilfang/CF-PAD

Figure 1. PAD performance vs. Computational complexity. x-axis
indicates the complexity of the model by FLOPs, y-axis indicates
the PAD performance represented by HTER (%), and the radius of
the circle indicates the number of trainable parameters. An ideal
PAD tends to be located in the bottom left corner with a small
circle, as achieved by our CF-PAD solution (in blue).

main generalization (DG) based PAD methods [22, 34, 35,
44,49] are proposed to boost the PAD generalizability. DA-
based PAD methods [23, 41] learn a discriminative feature
space by accessing the labeled source domains and unla-
beled target domains. However, this target data is typically
unavailable in real-world scenarios. In contrast with DA-
based methods leveraging the target testing data, DG-based
PAD methods [5, 22, 34, 35] aim to generalize the knowl-
edge obtained from multiple source datasets to the unseen
target domain and has achieved remarkable progress. How-
ever, these efforts only attempt to alleviate the problems
caused by different data distributions by modelling the sta-
tistical dependencies between inputs and outputs. They do
not excavate the intrinsic causal mechanisms. In addition,
DG-based PAD methods rely on a priori knowledge that
the domain label of each source dataset is known. This is
challenging to be satisfied in practical situations and it is
hard to define the representation of a domain well enough.
Moreover, most existing DG-based face PAD methods are
computationally intensive due to complex model architec-
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tures [20, 49] or multi-stage/multi-network training [5, 25].
To address the above issues, this work presents a struc-

tural causal model (SCM) to formulate the face PAD prob-
lem, aiming to uncover the causality hidden in the high-
level representative features (as shown in Fig. 2) and en-
hance the PAD generalizability, without requiring complex
architectures. The contributions of our work are as fol-
lows: 1) We model the compound DG-based PAD from a
causality-based view linking it to the model optimization.
Our method relaxes the need for a priori domain knowl-
edge compared to most DA/DG based PADs, which rely on
domain labels or target data. 2) we propose to boost the
PAD generalizability by enriching the feature-level training
data distribution via our proposed class-guided MixStyle
and separating the causal factors from high-level represen-
tation via counterfactual interventions. Both components
require no extra trainable parameters and very little com-
putation complexity, as illustrated in Fig. 1. 3) We conduct
extensive experiments under various cross-dataset scenarios
and the analytical results demonstrate the effectiveness and
efficiency of our method in comparison to existing works.

2. Related Work

Face Presentation Attack Detection Many face PAD
solutions [7, 11, 12, 26, 51, 52] have been proposed and
shown good performance with the recent advances of deep-
learning techniques, especially in intra-dataset evaluations.
Recently, a number of PAD works [22,34,35,44,49] turned
to leverage DA and DG techniques to target the challenging
cross-domain scenario. DA transfers the knowledge from
the source domain to the target domain, where the unlabeled
target data is accessed in the training process. DA-based
face PAD methods align the feature space between source
and target domains by minimizing the maximum mean dis-
crepancy (MMD) [23] and adversarial training [41]. How-
ever, collecting unlabeled target domain data is very diffi-
cult and laborious. Moreover, in real-world scenarios, there
is usually no information available for the target domain
during training. In comparison with DA-based methods,
DG-based PAD methods are more practical for real-world
deployment because they do not require the acquisition of
target data. DG-based PAD methods learn a model from
multiple datasets to obtain a generalized feature representa-
tion that allows generalizing well to the unseen target do-
main. There are various types of DG-based PAD methods:
1) adversarial training [22, 34], 2) meta-learning [5, 35],
simulating the domain shift by dividing source data into
meta-train and meta-test sets. Most existing DA- or DG-
based PAD solutions are computationally intensive because
of the use of large model architectures such as ViT [20],
DADN-CDS [49] and MADDG [34] consisting of multi-
ple feature extractors and discriminators. Different from the
above-mentioned face PAD methods, we approach the face

PAD from a causal perspective and focus on learning the
causal representations by analyzing the contribution of fea-
tures to PAD decisions. Our method is an efficient model
that boosts the generalizability of a simple single network
for face PAD by incorporating two components. These two
components require no extra parameters during training and
thus eliminating the need for multiple networks and/or com-
putationally costly components (e.g., attention blocks). In
addition, these two components are removed during the in-
ference.

Causal Inference Causal inference [16,30], analyzing the
correlation between the variables and the final results, has
gained increasing attention in recent years. The causal in-
ference has been successfully applied in many computer vi-
sion tasks to enhance the generalizability of models. For
example, Rao et al. [32] proposed to learn the attention with
counterfactual causality by measuring the attention quality
and encouraging the model to generate high-quality atten-
tion for fine-grained image recognition. Chen et al. [4] pro-
posed a counterfactual analysis approach for human trajec-
tory prediction. They investigated the causality between the
predicted trajectories and inputs and mitigated the negative
effect brought by the environment bias.

A recent work, Causal Intervention for Face Anti-
spoofing (CIFAS) method [25], was proposed to target the
generalizability of face PAD. CIFAS [25], as DG PAD so-
lution, was facilitated based on a priori that domain labels
are known and assumed that data from various domains ef-
fecting the PAD performance. Therefore, the PAD perfor-
mance was improved by the preconceived domain-specific
features in CIFAS, i.e., the pre-learned domain features are
used for backdoor adjustment. In contrast, our goal is to au-
tomatically discover the intrinsic causality from the learned
high-level features without any priori knowledge, i.e. as a
compound DG PAD task. Moreover, CIFAS [25] is a three-
stage face PAD framework including two networks and an
additional domain feature extraction process. Compared to
the computationally intensive CIFAS, our proposed solution
is an end-to-end model containing two components without
additional trainable parameters other than a lightweight fea-
ture extractor and a classifier.

3. Methodology
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Figure 2. SCM with variables X (face input), Y (prediction), and
Z (high-level feature), representing the PAD task (X,Z) → Y .
Performing CI on feature Z, cutting the link between X → Z,
can force the Z independent of its causal parent X . The detailed
CI is presented in Sec. 3.3.



3.1. PAD in the view of contextual reasoning

We provide a background on causal inference [16, 30]
and model optimization [39] that will form the basis for un-
derstanding the rest of this paper.

We first introduce the SCM M to help formulate the un-
derlying causal structure of the PAD task. A convention
SCM consists of a set of causal variables and causal links.
As shown in Fig. 2, X is the input (i.e. face images), Y is
the final prediction (i.e. bona fide or attack), and Z is the in-
termediate high-level features. The PAD task here is to pre-
dict Y from X , relying on the high-level features Z hidden
in the inputs, presented as (X,Z) → Y . The PAD mod-
els are commonly optimized by supervising the final pre-
diction Y , overlooking the effect of Z on Y . Causal infer-
ence [16], the analysis of causal correlation between these
variables, facilitates thinking outside the box. In practice,
we can analyze the causalities by manipulating the values
of variables and observing the caused effect. This manip-
ulation is termed intervention in causal inference [16] and
represented by an idiomatic symbol do(·).

Next, we link the intervention with the model optimiza-
tion by recalling the conventional empirical risk minimiza-
tion (ERM) [39]. Assume a model h, accessing training
data from a distribution p(X,Y ) ∈ P , is trained to mini-
mize the empirical risk R̂:

R̂p(X,Y )(h) = Êp(X,Y )[L(Y, h(X))] (1)

where L refers to loss function. The objective of interven-
tion risk minimization associating to an intervention I is:

R̂M
p(X,Y |I)

(h) = ÊM
p(X,Y |I)

[L(Y, h(X))] (2)

where p(X,Y |I) indicates the intervened data distribution.
When a set of intervention operations I ∈ I are performed
over the SCM, the worst-case intervened data distribution
is:

R̂M
p(X,Y |I)

(h) = max
I∈I

ÊM
p(X,Y |I)

[L(Y, h(X))] (3)

Finally, a generalized model can be obtained by solving

h∗ = argmin
h

max
I∈I

ÊM
p(X,Y |I)

[L(Y, h(X))] (4)

As the min-max optimization problem is very challeng-
ing, Equation 4 can be approximated by 1) enriching the di-
versity of the training data distribution and 2) increasing the
diversity of interventions [54]. This theoretical basis moti-
vates us to develop a generalized PAD by solving this ap-
proximation problem from both perspectives. The pipeline
of the proposed CF-PAD solution is shown in Fig. 3, con-
taining the two components we proposed in this work, class-
guided MixStyle (CGMixStyle) and Counterfactual Inter-
vention (CI). CGMixStyle aims to enrich the diversity of
training data (on the feature-level), while CI mines causal

related features by performing a set of counterfactual in-
terventions. The details are presented in Sec. 3.2 and 3.3,
respectively.

3.2. Class-guided MixStyle
Due to the privacy concerns and the labor-intensive na-

ture of data collection, most existing face PAD datasets are
limited in identity, capture environment, and attack type.
Therefore, increasing the training data diversity by incor-
porating more training data is the less realistic option. In-
spired by the recently introduced MixStyle [57], we propose
a class-guided MixStyle to increase the distribution of the
available limited training data by mixing the feature statis-
tics within the same class. The MixStyle [57] is formulated
as the following:

γ = λσ(x) + (1− λ)σ(x̃)

β = λµ(x) + (1− λ)µ(x̃)
(5)

Where x ∈ RB×C×H×W refers to the input batch feature
and x̃ indicates the corresponding reference batch from x.
σ(.), µ(.) ∈ RB×C are mean and standard deviation com-
puted across the spatial dimension within each channel of
each sample. λ ∈ RB are weights sampled from the Beta
distribution. The final mixed feature statistic is applied to
the styled normalized x as:

MixStyle(x) = γ
x− µ(x)

σ(x)
+ β (6)

In MixStyle [57], two shuffle operations are considered
to generate x̃ from x, domain label guided and random shuf-
fle, as shown in Fig. 4 (a) and (b). After shuffling, data
can be produced in new stylized domains by following the
equations 5 and 6. Meanwhile, the discriminative features,
such as outline and shape, for general computer vision clas-
sification task, is unchanged. However, face PAD relies
on the subtle intrinsic attack clues that are assumed to be
part of the image style. Therefore, both shuffle operations
pose a potential risk of degradation in PAD performance, as
the style transfer may be performed between bona fide and
attack samples. Consequently, we propose to modify the
MixStyle concept by restricting the shuffle operation within
the same class, as illustrated in Fig. 4 (c). Specifically, in
Eq. 5, each sample in x̄, generated by class-guided shuffle,
belongs to the same class as each sample in x. This ”class-
guided” MixStyle is designed to produce more diverse fea-
tures without a confusion of bona fide and attack features,
and thus resulting in a better generalized representations.
The effectiveness of class-guided shuffling is demonstrated
in later in Tab. 1.
3.3. Counterfactual Intervention

In an optimal situation, a well-generalized PAD should
be independent of some factors, such as sensor type, envi-
ronment, and identity, as represented by the dashed rectan-
gular box in Fig. 3. However, PAD solutions suffer from the



Figure 3. The workflow of the proposed CF-PAD solution. During the training process, CGMixStyle enriches the diversity of feature-level
training data distribution and three CIs guides the model to uncover the causal factors that truly contributes to the PAD decision. Both
CGMixStyle and CI are removed in the inference phase.

Figure 4. The comparison of shuffling operation between
MixStyle (a,b) and our CGMixStyle (c). Color and shape refer
to domain and class, respectively. Class-guided shuffle restrict the
shuffling within the same class (bona fide or attack in PAD) with-
out the prior domain information.

low generalization on unknown data [14,31,48,55]. There-
fore, we build an assumption regarding the high-level fea-
ture Z that each feature, representing for input images X ,
is constructed from a mix of different factors: 1) The class-
dependent information encoded in Z is causal factors, asso-
ciated with a universal and invariant patterns of bona fide or
attack. 2) The information independent of class in Z is con-
sidered as non-causal factors, such as identity information
and capture environments. 3) Capture sensors is considered
to be the spurious factor as several existing cross-domain
PADs [25, 49, 55] stated that the PAD performance is af-
fected by the capture devices.

Our goal is to identify the factors in Z that truly con-
tribute to the class Y . As mentioned in Sec. 3.1 and illus-
trated in Fig. 2, we can perform intervention on the learned
feature Z to measure its contribution and encourage model
to produce more generalized features. Specifically, We pro-
pose to adopt counterfactual intervention [19,45] to analyse
the effect of high-level features. Counterfactual interven-
tion (do(Z = Z̄)) refers to generate a counterfactual sam-
ple where the causal factors are removed. However, gener-
ating (true) counterfactual features is impractical, because

the causal factors in high-level feature is unobservable and
unformulated.

In our work, we present three simple interventions, ran-
dom zero, random shuffle, and random replace, to encour-
age the model to uncover the causal factors from the con-
founding feature Z. This uncovering is facilitated by com-
paring the effect of the original features Z and counterfac-
tual features Z̄, as shown in Fig. 3. The causal effect is then
formulated based on the difference of the original prediction
and its counterfactual alternative prediction:

Yeffect = Y (Z)− Y (Z̄) (7)

where Y (Z̄) = f(do(Z = Z̄), X = X) and f(·) is the final
classifier, catching the changes in final decision caused by
the interventions. The loss function is formulated as:

L = L(Y, y) + λL(Yeffect, y) (8)

where y is the ground-truth label and λ is the loss weight. L
is the cross-entropy loss in our case. The former loss opti-
mizes the model with the actual correct predictions and the
latter loss penalizes the wrong results based on the coun-
terfactual samples, and thus guiding the model to mine the
casual factors.

3.4. Enabling computational efficiency

During the training phase, CGMixStyle and CI both have
no extra trainable parameters. In the case of CGMixStyle,
the gradients of µ and σ in Eq. 5 are blocked in the com-
putation graph, i.e. no back-propagation. In the case of
CI, the introduced extra computational cost is an additional
feed-forward path of the counterfactual features to the final
classifier, which shares the weight of the original features,
i.e., no extra gradient computation. Moreover, during the
inference phase, CGMixStyle and CI are both removed, as



the green flow shown in Fig. 3. Therefore, the whole com-
putation cost of CF-PAD is very low (whether for training
or inference) and minimalistic when compared to other DA-
and DG-based PAD framework which requires the compli-
cated model architectures [20, 34, 49], multi-stage training
process [25], or iterative meta-learning steps [5, 35]. The
comparison results are discussed later in Sec. 5.3 and illus-
trated in Fig. 1.

4. Experiments
4.1. Datasets

Following the [12, 24, 25, 29, 34, 35], we conduct exper-
iments on five publicly available face PAD datasets: MSU-
MFSD [46] (denoted as M), CASIA-FASD [56] (denoted as
C), Idiap Replay-Attack [6] (denoted as I), OULU-NPU [1]
(denoted as O), and CelebA-Spoof [55] (denoted as CA).

The MSU-MFSD [46] dataset is comprised of 440
videos across from 35 subjects and contains two types
of attacks, printed photo attacks and replay attacks. The
CASIA-FASD [56] dataset consists of 600 videos from 50
subjects and includes three types of attacks: warped photo
attack, cut photo attack, and video replay attack. The Idiap
Replay-Attack dataset [6] contains 300 videos from 50
subjects and includes two attack types: print attacks and
replay attacks. The OULU-NPU [1] is a mobile face PAD
dataset, consisting of 5940 videos from 55 subjects using
six different mobile phones. The CelebA-Spoof [55] is a
large-scale face PAD dataset collecting from the web, com-
prising 625,537 images from 10,177 subjects. The dataset
is diverse in terms of subjects, illumination, sensors, and at-
tack types and contains print, replay, 3D mask, and paper
cut attacks.

All the experiments are cross-dataset scenarios and can
be categorized into two groups based on the number of
training datasets: multi-source , limited-source, single-
source scenarios. Multi-source scenario contains five cases
(training dataset(s) → testing dataset) : O&C&I → M,
O&M&I → C, O&C&M → I, I&C&M → O, O&C&M →
CA, and limited-source scenarios contains M&I → C and
M&I → O cases by following works [5,22,25,42]. The first
four cases are widely-used evaluation protocols for cross-
domain PAD [12, 28, 51, 52] and thus utilized for the fol-
lowing analytical experiments in Sec. 5.1. Single-source
scenario includes 12 cases by all the combinations of select-
ing one dataset from O,C,I,and M as the training data and
testing separately on the other three datasets, by following
the protocol in [22, 35, 42, 43].

4.2. Implementation Details

Following [12,15,18], we sampled evenly 25 frames per
video across the duration of each video in O, C, I, and M
datasets. Then, we used MTCNN [53] to detect face for
each frame and resized each face to 256 × 256 × 3 pix-

els. In each mini-batch, we sampled the training data to
keep a bona fide-attack ratio of 1:1 [36]. Our feature ex-
tractor is ResNet-18 initialized by the pre-trained weight
on ImageNet [8]. The initial learning of feature extractor
and classifier were set to 0.001 and 0.01, respectively. The
learning rates were halved at 30 and 45 epochs with a maxi-
mum epoch of 60. During the training process, we used the
Stochastic Gradient Descent (SGD) optimizer with a mo-
mentum of 0.9 and weight decay of 5e-4. The loss weight
λ was empirically set to 2 for balancing two losses. In the
inference phase, a final PAD decision score of a video is
a fused score (mean-rule fusion) of all frames by follow-
ing [12, 18, 51, 52]. The hyper-parameters of CGMixStyle
followed the setting of MixStyle [57] for a fair comparison.
The hyper-parameters of CI was investigated in Sec. 5.1.

4.3. Evaluation Metrics

Following existing cross-domain face PAD methods [12,
24,25,34,35], we report the Half Total Error Rate (HTER),
which is the mean of Bona fide Presentation Classification
Error Rate (BPCER) [21] and Attack Presentation Classi-
fication Error Rate (APCER) [21] and Area under the Re-
ceiver Operating Characteristic (ROC) Curve (AUC) value
for comparison.

5. Results
5.1. Analytical Experiments

Comparison of CGMixStyle and MixStyle: Tab. 1 com-
pares the results of MixStyle with random and corss-domain
shuffling operation and our CGMixStyle with class-guided
shuffle. The results in Tab. 1 show that the random
Mixstyle fails to improve the results in one case. For ex-
ample, in the case O&M&I → C, the HTER value is in-
creased from 14.67% (without MixStyle) to 19.00% (with
random MixStyle). Moreover, CGMixStyle outperform the
MixStyle using random and cross-domain shuffle opera-
tions. The results suggest that the class-guided operation
helps to enrich the style of the training data without confus-
ing bona fide and attack patterns.

Effect of different types of CIs: We investigated the ef-
fect of using three CIs to produce counterfactual features.
The results are presented in Tab. 2, where ’All’ refers
to randomly select one from three interventions (random
zero, random replace, random shuffle) in each training mini-
batch. The results indicate that applying a combination of
different interventions outperform solutions using single in-
tervention. This is consistent with the theoretical basis in
Sec. 3.1 that increasing diversity of counterfactual inter-
ventions can enhance the PAD generalizability.

Effect of Hyperparameter in CIs: In addition to demon-
strate the effectiveness of the different types of CIs, we
conducted a set of experiments to analyze the sensitivity



Method O&C&I → M O&M&I → C O&C&M → I I&C&M → O Average
HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑

w/o MixStyle 15.48 91.50 14.67 93.17 22.70 81.63 16.77 91.03 17.41 89.33
cross-domain 11.67 94.93 14.00 92.20 21.65 83.45 13.61 93.71 15.23 91.07
random 10.71 94.71 19.00 88.41 22.55 83.37 13.64 93.57 16.48 90.02
CGMixStyle (ours) 10.95 95.34 12.56 93.15 20.95 85.88 12.10 95.07 14.14 92.36

Table 1. Comparison results of our CGMixStyle and MixStyle. cross-domain and random shuffle operations are presented by MixStyle [57],
while our CGMixStyle leverages the class-guided shuffle. The CGMixStyle obtains the best average performance, demonstrating the
importance of the class-guided operation.

Method O&C&I → M O&M&I → C O&C&M → I I&C&M → O Average
HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑

Baseline (w/ CGMixStyle) 10.95 95.34 12.56 93.15 20.95 85.88 12.10 95.07 14.14 92.36
+ Random Zero 9.52 94.00 11.89 94.23 18.30 87.90 12.80 94.15 13.13 92.57
+ Random Replace 8.81 96.12 14.56 93.12 18.15 86.05 12.12 93.89 13.41 92.30
+ Random Shuffle 8.33 97.12 12.67 93.25 19.55 89.50 12.39 94.69 13.24 93.64
All 8.11 96.43 11.78 95.64 16.50 91.50 9.87 95.13 11.57 94.68

Table 2. Effect of different types of CIs. All refers to the random execution of one intervention selected from random zero/replace/shuffle in
each training mini-batch. ’All’ outperforms other single CIs, proving that increasing the diversity of interventions helps model optimization.

of hyperparameter of CIs. This hyperparameter control the
feature destruction degree of CIs, i.e., percentage of ran-
dom zeroing or replacing. For example, 0.2 in x-axis in
Fig. 5 indicates that 20% values in the feature Z (of di-
mension 512) are manipulated by either setting it to zero or
replacing it randomly with the value of the previous neigh-
bour. 0.0 indicates no intervention is performed, represent-
ing also as dashed lines. In most cases, performing CI us-
ing any hyperparameters achieved better PAD performance
than no CI (i.e. solid lines underneath dashed lines of the
same colour). Moreover, PAD performance achieves its best
(lowest HTER values) mostly at 0.2. In the following exper-
iments, we therefore set this hyperparamters at 0.2.

Figure 5. Effect of Hyperparameter in CIs. x-axis indicates the
degree of counterfactual intervention in features and y-axis is the
HTER (%). Performing CI with any degree enhances the PAD per-
formance in most cases, as solid lines underneath dashed lines of
the same colour. The best overall performance is achieved mostly
at 0.2.

Effect of CGMixStyle and CIs in CF-PAD: After a de-
tailed analysis of CGMixStyle and CI, we discuss the in-
fluence of these two modules in the proposed CF-PAD ap-
proach, as the results presented in Tab. 3. We have the
following observations: 1) both module enhances the face
PAD generalizability, respectively. 2) CF-PAD, combin-
ing the CGMixStyle and CI, achieves the best performance.
The results point out that two modules are mutually comple-

mentary and strengthening, consisting with the theoretical
rationale in Sec. 3.1.
5.2. Comparison with State-of-the-Art methods

The following presents the achieved performances on the
considered evaluations in comparison to the SOTA that re-
ported on each setup to capture the widest range of compar-
isons and the different levels of training data availability.
Multi-source cross-dataset evaluation: Tab. 4 shows re-
sults of the following four evaluation protocols: O&C&I →
M, O&M&I → C, O&C&M → I, I&C&M → O, by com-
paring with several SOTA face PAD solutions. From Tab.
4, we observe that: 1) The proposed CF-PAD approach out-
performs baseline method (without CGMixStyle and CI) by
a drop of 5.84 percentage points on HTER and an enhance-
ment of 5.35 percentage points on AUC. 2) Our proposed
CF-PAD method obtains competitive and even better PAD
performance than SOTA approaches. Under the challenging
case of I&C&M → O, our CF-PAD approach outperforms
the SOTA methods with an HTER value of 9.87% and an
AUC value of 95.13%.

Furthermore, Tab. 5 shows the results of most challeng-
ing case O&C&M → CA, as CA poses a high diversity
in terms of the attack types, identity, and capture environ-
ments. Our CF-PAD solution achieves the best performance
in comparison to the SOTA methods. Both results suggest
that our CF-PAD method can identify the causal and gener-
alized discriminative features for cross-dataset scenarios.

Limited-source cross-dataset evaluation: Tab. 6 shows
the results of models trained on the limited two training
datasets. Our CF-PAD approach outperforms the SOTA
face PAD methods, further proving the generalizability of
CGMixStyle and CI modules.

Single-source cross-dataset evaluation: To further ver-
ify the effectiveness of the proposed method, we evaluate
the CF-PAD under the highly challenging scenario where
only one dataset is available for training. Tab. 7 and Fig.



Method O&C&I → M O&M&I → C O&C&M → I I&C&M → O Average
HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑

Baseline 15.48 91.50 14.67 93.17 22.70 81.63 16.77 91.03 17.41 89.33
+ CGMixStyle 10.95 95.34 12.56 93.15 20.95 85.88 12.10 95.07 14.14 92.36
+ CI 9.29 94.35 12.44 93.89 18.50 85.61 13.74 90.01 13.49 90.97
CF-PAD (all) 8.11 96.43 11.78 95.64 16.50 91.50 9.87 95.13 11.57 94.68

Table 3. Ablation studies on two components, CGMixStyle and CI, in our CF-PAD solution. The bold number indicates the best perfor-
mance for each evaluation protocol, demonstrating the importance of both components in CF-PAD.

Method O&C&I → M O&M&I → C O&C&M → I I&C&M → O Average
HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑ HTER(%) ↓ AUC(%) ↑

Binary CNN [48] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54 32.05 74.56
Auxiliary [26] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61 28.89 77.08
ResNet50-PS [51] 14.32 94.51 18.23 89.75 18.86 89.63 21.44 87.56 18.21 90.36
NAS-FAS [52] 19.53 88.63 16.54 90.18 14.51 93.84 13.8 93.43 16.10 91.52
LMFD [12] 10.48 94.55 12.50 94.17 18.49 84.72 12.41 94.95 13.47 92.10
ViTransPAD [28] 8.39 - 21.27 - 16.83 - 15.63 - 15.53 -
PatchNet [40] 7.10 98.64 11.33 94.58 14.60 92.51 11.82 95.07 11.21 95.20
MADDG [34] 17.69 88.06 24.50 84.51 22.19 84.99 27.89 80.02 23.07 84.40
RFM [35] 17.30 90.48 13.89 93.98 20.27 88.16 16.45 91.16 16.98 90.95
SSDG-R [22] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54 11.29 95.31
D2AM [5] 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87 16.10 90.83
ViT [20] 4.75 98.59 15.70 92.76 17.68 86.66 16.46 90.37 13.65 92.10
TransFAS [44] 7.08 96.69 9.81 96.13 10.12 95.53 15.52 91.10 10.63 94.86
DADN-CDS [49] 5.24 98.06 6.84 97.95 10.64 95.14 13.77 93.09 9.12 96.06
CIFAS [25] 5.95 96.32 10.66 95.30 8.50 97.24 13.17 93.44 9.57 95.58
Baseline 15.48 91.50 14.67 93.17 22.70 81.63 16.77 91.03 17.41 89.33
CF-PAD (ours) 8.11 96.43 11.78 95.64 16.50 91.50 9.87 95.13 11.57 94.68

Table 4. The results of the four multi-source cross-dataset evaluations comparing our CF-PAD and SOTA PAD solutions. Methods in
the first block are conventional PAD solution (i.e., no domain adaptation), while methods in the second block are explicitly designed to
target the domain shift problem. The bold number indicates the best performance under each protocol. Our CF-PAD demonstrates a very
competitive PAD performance.

Method HTER(%) ↓ AUC(%)
GRL Layer [17] 29.1 76.4
ADDA [37] 33.7 70.3
DA-FAS [33] 27.1 79.2
UCDA-FAS [29] 26.1 80.0
CIFAS [25] 24.6 83.2
Baseline 27.1 80.3
CF-PAD (ours) 23.5 84.2

Table 5. Comparison results of models trained on the O&C&M
and tested on the large-scale CA.

Method
M&I → C M&I → O

HTER(%) ↓ AUC(%) HTER(%) ↓ AUC(%)
MS-LBP [27] 51.16 52.09 43.63 58.07
IDA [47] 45.16 58.80 54.52 42.17
MADDG [34] 41.02 64.33 39.35 65.10
RFM [35] 36.34 67.52 29.12 72.61
SSDG-R [22] 31.89 71.29 36.01 66.88
DR-MD-Net [42] 31.67 75.23 34.02 72.65
D2AM [5] 32.65 72.04 27.70 75.36
CIFAS [25] 22.67 83.39 24.63 81.48
Baseline 25.78 80.56 23.24 84.66
CF-PAD (ours) 22.11 85.06 19.71 89.01

Table 6. Limited-source cross-dataset results in terms of HTER
(%) and AUC (%).

6 presents the results of our method compared to the SOTA
method. Our method improves the PAD generalizability in
most cases and achieves the lowest average error rates. In
addition, CF-PAD improves the worst case, where the high-
est HTER value (worst) among 12 cases is 34.00% obtained
by CF-PAD and 38.50% by DR-UDA [43]. These results

implies that enriching the diversity of feature-level training
data and the diversity of CIs leads to a better causal and rep-
resentative feature learning as rationalized by Eq. 4. Fig.
6 illustrates the mean and standard deviation of the HTER
values of the results showed in Tab. 7. The plot stresses
that CF-PAD performs more consistently (the lowest aver-
age error rates, the lowest deviation, and the lowest errors of
the worst-case) than other PAD solutions in the challenging
scenarios.

B-CNN DR-MD-Net ADA DR-UDA Baseline Ours
PAD solutions
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Figure 6. The Box and Whisker plot of the performance varia-
tion under single-source cross-dataset scenarios reported in Tab.
7. Each box refers to a model evaluated on a total of 12 protocols
(B-CNN is binary CNN method). The red line within the box is
the mean value of 12 testing cases, the box range represents the
standard deviation, and the top straight line extended of the box is
the worst-case. Note the lowest average HTER value of our CF-
PAD, along with its low deviation and the optimal worst-case.



Method C → I C → M C → O I → C I → M I → O M → C M → I M → O O → I O → M O→ C Average Worst
Binary CNN [50] 45.80 25.60 36.40 44.40 48.60 45.40 50.10 49.90 31.40 47.40 30.20 41.20 41.37 ± 8.42 50.01
ADA [41] 17.50 9.30 29.10 41.60 30.50 39.60 17.70 5.10 31.20 26.80 31.50 19.80 24.98 ± 11.28 41.60
DR-MD-Net [42] 26.10 20.20 24.70 39.20 23.20 33.60 34.30 8.70 31.70 27.60 22.00 21.80 26.09 ± 7.70 39.20
DR-UDA [43] 15.60 9.00 28.70 34.20 29.00 38.50 16.80 3.00 30.20 25.40 27.40 19.50 23.11 ± 10.50 38.50
Baseline 38.85 18.10 17.94 42.22 18.81 28.42 27.11 16.30 30.49 23.10 15.71 23.11 25.01 ± 8.74 42.22
CF-PAD (ours) 24.80 17.14 19.43 34.00 24.76 31.70 14.44 15.90 25.34 21.50 15.00 20.33 22.03 ± 6.33 34.00

Table 7. Single-source cross-dataset results in terms of HTER (%). The bold number indicates the lowest error rates, indicating a better
generalizability of our CF-PAD.

Methods Param. (M) FLOPs (G) HTER (%)
Auxiliary [26] 2.20 47.41 28.89
ResNet50-PS [51] 23.54 24.66 18.21
NAS-FAS [52] 2.94 52.67 16.10
LMFD [12] 101.72 36.11 13.47
ViTransPAD [28] 66.00 7.88 15.22
MADDG [34] 17.81 189.61 23.07
RFM [35] 3.87 95.79 16.89
SSDG-R [22] 12.23 14.26 11.29
ViT [20] 86.39 33.69 13.65
DADN-CDS [49] 23.61 56.00 9.12
CF-PAD (ours) 11.18 1.82 11.57

Table 8. Computational complexity vs. PAD Performance. HTER
(%) refers to the average HTER values reported in Tab. 4. The
proposed CF-PAD achieves the lowest complexity (FLOPs) and a
very competitive PAD performance.

5.3. Performance vs. Computational Complexity

To enable the efficiency comparison, we account the
trainable parameters of models and the floating point op-
erations (FLOPs) of our method and the PAD works listed
in Tab. 4 when it is feasible. Tab. 8 and Fig. 1 demonstrate
the efficiency of the propose CF-PAD method by reporting
the performance as the HTER, and computational complex-
ity in terms of the number of trainable parameters and the
FLOPs. Five PAD methods in Tab. 4 were ignored for ef-
ficiency comparison due to no open source implementation
and no detailed model architecture available for accounting.
Fig. 1 presents the number of FLOPs (x-axis) vs. the PAD
performance (y-axis) vs. the trainable parameters (radius of
the circle) of our method and the SOTA PADs. The ideal
solution will tend to be placed on the bottom left corner
(low error rates and low complexity) as well as small circle
(less trainable parameters). The proposed CF-PAD method
achieves the lowest FLOPs and very competitive PAD per-
formance, indicating its relative high efficiency. The de-
tailed values presented in Tab. 8 supports this conclusion.

5.4. Visualization and Analysis

We visualized the feature distribution learned by the
baseline and our CF-PAD model under the protocol
I&C&M → O in Fig. 7. To make a clear observation and
avoid possible overlapping region, we randomly select 300
samples from each dataset and illustrate their distribution
by using t-SNE [38]. Each color in the plots represent the
different datasets (purple is unseen testing dataset OULU-
NPU) and each shape refers to different classes (square and
cross represent bona fide and attack samples, respectively).

(a) Baseline (b) CF-PAD (ours)

Figure 7. Feature visualization of the case I&C&M → O by base-
line (a) and our CF-PAD solution (b), respectively. Different col-
ors indicates the different dataset, where O (purple) is unseen test-
ing data, and different shape represents the different classes, where
square is bona fide and cross is attack. It is clear that CF-PAD of-
fers a more discriminative feature space.

Comparing Fig. 7 (a) and (b), we observe that samples
from the same dataset (same color) are more clustered by
the baseline model and sample from the same classes (same
shape) are more clustered by our CF-PAD, especially for
the unseen O data. This observation proves that our CF-
PAD learns a causal and generalized discriminative feature
space for face PAD instead of focusing on features from dif-
ferent domains. Moreover, this observation implies that the
proposed CF-PAD without accessing the target testing data
is effective and reliable for complex practical scenarios.

6. Conclusion
This paper models the face PAD task from a causal

view, aiming to enhance the generalizability of PAD under
cross-dataset scenarios. The main idea is to approximate
the model optimization from two aspects, 1) enriching the
feature-level training data diversity via CGMixStyle and 2)
performing a set of CIs on high-level features, to learn a
causal and generalized feature representation. In addition,
CGMixStyle and CI components introduce no extra train-
able parameters, negligible computation complexity dur-
ing training, and no computation resources in the inference
phase. A wide set of experiments and comparisons reveal
the effectiveness and efficiency of our proposed method.
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