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Abstract

This paper presents a method of estimating the geome-
try of a room and the 3D pose of objects from a single 360◦

panorama image. Assuming Manhattan World geometry, we
formulate the task as a Bayesian inference problem in which
we estimate positions and orientations of walls and objects.
The method combines surface normal estimation, 2D ob-
ject detection and 3D object pose estimation. Quantitative
results are presented on a dataset of synthetically gener-
ated 3D rooms containing objects, as well as on a subset of
hand-labeled images from the public SUN360 dataset.

1. Introduction

3D scene understanding from images has been an active
research topic in computer vision, enabling applications in
navigation, interaction, and robotics. State-of-the-art tech-
niques allow layout estimation from a single image of an
indoor scene [5, 26, 30], which is an underconstrained prob-
lem. Most prior work estimates the layout of a room corner
only or assumes a simple box-shaped geometry. Since a
standard camera lens has a limited field of view, an incre-
mental procedure is usually necessary to recover a whole
scene [2]. A simple alternative is to capture panorama im-
ages of the scene, assuming that objects of interest are vis-
ible. For example, the PanoContext method [40] recovers
the full room layout from one panorama image, while still
assuming a box-shaped room. Walls and floor are used as
context information to recognize object categories and po-
sitions.

In this paper, we build on insights from the PanoContext
work, but no longer assume a rectangular floor plan. In con-
trast to the bottom-up object proposals from edges [40], we
employ more robust top-down methods for object detection
and 3D pose estimation. To accomplish this, we first trans-
form the single panorama image into a set of perspective im-
ages from which we estimate per-pixel surface orientations

∗The work was done while the authors were with Rakuten.

Figure 1: Example output: Indoor scene reconstruction
from a single panorama image. Top: input image with 2D
object detection bounding boxes. Detection is carried out
in perspective images and the bounding box coordinates are
projected into the panorama image. Bottom left: estimated
surface orientations. Bottom right: reconstructed 3D room
geometry and furniture items (top view).

and object detections. From these we obtain a first scene
layout up to an unknown scale. Next, objects are detected
using a trained detector and initial 3D poses are estimated
using a libary of 3D models. Global scale is estimated indi-
rectly by projecting 3D object models of known dimensions
into the scene. We sample room hypotheses and evaluate
their posterior probability. See Fig. 1 for an example output
of our algorithm.

The contributions of this work are: (1) We relax the box-
shape assumption of [40] to a Manhattan World assumption,
reconstructing the complete shape of the room. (2) Object
location and pose is estimated using top-down object detec-
tion and 3D pose estimation using a public library of 3D
models, (3) We introduce a context prior for object and wall
relationships in order to sample plausible room hypotheses.
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We evaluate the accuracy of the method on synthetically
generated data of 3D rooms as well as results on images
from the public SUN360 dataset. Please also see the sup-
plementary video for qualitative results.

2. Related work
We put our work into context by discussing prior work

in the areas of surface estimation from images, 3D object
models, and context priors.

Geometry estimation. Early seminal work in layout es-
timation includes surface estimation from an outdoor im-
age [16] by learning a mapping from an input image to
a coarse geometric description. Similarly, the Make3D
method estimates a 3D planar patch model of the image,
where the training data consists of images and correspond-
ing depth maps [27]. More recently much progress has been
made estimating pixel-wise normals from images [8, 11].
For indoor scenes, assuming a Manhattan World geometry,
vanishing points can be detected and the camera parameters
recovered. For example, Lee et al. [20] proposed a method
to interpret a set of line segments to recover 3D indoor struc-
ture, demonstrating that the full image appearance is not
necessary to solve this problem. Hedau et al. [13] modeled
the whole room as a 3D box and learned to classify walls,
floor, ceiling, and other objects in a room. Work by Schwing
et al. [29, 30] estimates a 3D box-shaped room from a single
image using integral geometry for efficiently evaluating 3D
hypotheses. Earlier work by Yu et al. [39] takes a bottom-up
edge grouping approach to infer set of depth-ordered planes.
The work by Wang et al. [35] has shown improved accuracy
by estimating cluttered areas, including all objects except
the room boundaries. In this paper we estimate surface ori-
entations of the whole scene [13, 20] and treat the orienta-
tions in object regions separately. Other approaches include
Cabral and Furukawa [2], who use multiple input images
to apply 3D reconstruction and estimate a piece-wise pla-
nar 3D model. Building on the work by Ramalingam and
Brand [24], recent work by Yang and Zhang [38] recovers
3D shape from lines and superpixels in a constraint graph.
Complementary to these two methods we estimate the 3D
room geometry together with 3D objects inside.

3D Objects. Objects contained within a room have been
modeled at different levels of complexity. For example,
Lee et al. [19] fit 3D cuboid models to image data, demon-
strating that including volumetric reasoning improves the
estimation of the room geometry. Hedau et al. [14, 15]
showed that the scene around an object is useful for building
good object detectors, however it was also limited to cuboid
objects like large pieces of furniture. Del Pero et al. [5] pro-
posed part-based 3D object models, allowing more accurate

modeling of fine structures, such as table legs. Configura-
tions of their detailed models are searched using MCMC
sampling. In their ’Box in the Box’ paper, Schwing et
al. [28] used a branch-and-bound method to jointly infer
3D room layout and objects that are aligned with the dom-
inant orientations. Satkin et al. [26] proposed a top-down
matching approach to align 3D models from a database with
an image. The method employs multiple features to match
3D models to images, including pixel-wise object probabil-
ity, estimated surface normals, and image edges. In recent
work by Su et al., a CNN was trained for pose estimation for
12 object categories (from the PASCAL 3D+ dataset) from
rendered 3D models [32, 36]. Tulsiani et al. [34] combine
object localization and reconstruction from a single image
using CNNs for detection and segmentation, and view point
estimation. This top-down information is fused with shad-
ing cues from the image. While these are viable approaches,
the number of categories is limited and our object shapes of
interest are typically not represented exactly. We therefore
estimate 3D object models from a model database, similar
to the recent work in [17].

Context priors. Pieces of furniture tend not to be uni-
formly distributed within a room but follow certain con-
straints that include physical constraints, such as non-
intersection, or somewhat less rigid functional constraints,
such as aligning a bed with one of the walls or leaving some
space to access all areas of the room. Such prior knowledge
has been employed to improve layout estimation. For ex-
ample, Del Pero et al. [4, 5] introduced constraints to avoid
object overlap and to explicitly search for objects that fre-
quently co-occur, such as tables and chairs. In PanoContext,
Zhang et al. [40] show that context evidence of an entire
room can be captured from panoramic images. They learn
pairwise object displacements to score their bottom-up ob-
ject hypotheses. However, their box-shaped room model
does not take relative orientation or distance to walls into
account. Some insight can be gained from the graphics
literature where generative models have been used for 3D
model search. For example, Fisher and Hanrahan proposed
a method for efficient search of 3D scenes [9]. Pairwise re-
lationships were learned from scene graphs from 3D Ware-
house, but only take relative distances, not orientation, into
account. Merrel et al. [22] proposed a density function for
room layout design that encodes numerous design rules,
such as respecting clearance distance around objects and
the relative alignment of objects with each other. Handa et
al. [10] used geometric constraints to automatically gener-
ate 3D indoor scenes as training data. The method proposed
here scores room layout hypotheses, in a 2D top-down view,
with pairwise energy terms, encoding object-to-object and
object-to-wall constraints, but allows for more flexibility
compared to the generative model in [22].



Figure 2: Algorithm overview. From a single panorama image the proposed method estimates initial 3D room geometry
and 3D object poses. Subsequently we sample a global posterior distribution which includes terms for room layout, object
poses, and a context prior.

3. Generative model
Given an indoor scene S = (W,O), defined by a set of

walls W = {wi}Nw
i=1 and a set of objects O = {oj}No

j=1, we
formulate the room layout estimation in a Bayesian frame-
work, where the model parameters consist of

Φ = (c, λ, pwi , θ
w
i , p

o
j , θ

o
j ), (1)

which includes the camera model c, the absolute room scale
λ, wall center positions and wall orientations {pwi , θwi }, as
well as center positions {poj} and the orientations {θoj} of
objects {oj} in the scene S. We formulate the estimation
task as maximizing the probability P (Φ|I) of the model
parameters Φ given an input image I of the scene S. This is
equivalent to maximizing the posterior P (I|Φ)π(Φ)/P (I)
to obtain the set of optimal parameters:

ΦMAP = argmax
Φ

P (I|Φ)π(Φ) , (2)

where π(Φ) is the prior on the model parameters, and P (I)
is assumed uniform. In what follows, we give details on
the different components of the model and the estimation
process. The overall approach is summarized in Fig. 2.

3.1. Room layout likelihood

We decompose the likelihood in Eq. 2 as follows, making
a conditional independence assumption:

P (I|Φ) = P (I|λ, poj , pwi , θwi )P (I|θoj ), (3)

obtaining two likelihood terms, one for the scene includ-
ing object positions, and one for object orientations. Both
terms are evaluated by comparing the projected image D
of the predicted 3D scene model (i.e., obtained with esti-
mated model parameters), with the observed orientation im-
age. Our justification for decomposing the likelihood is that
we synthesize only the walls of the scene, not the (occlud-
ing) objects. Object bounding boxes, which are not always

(a)

(b)

(c) (d)

Figure 3: Processing steps: (a) Surface orientations of the
observed input image with detected object regions used for
masking. (b) Surface orientations of rendered image of pre-
dicted models with occluding objects (i.e., silhouettes serve
as masks). (c) Room geometry after surface alignment at
unknown scale. (d) Room geometry after plane fitting.

accurate, serve as masks. Therefore we do not account for
object orientation when evaluating the first term. Note that
like in previous work the camera parameters c are approxi-



mated by placing it at the center of the spherical image at a
known height, e.g. 1.70m for SUN360 dataset [40].

In the following we describe the processing steps to eval-
uate the first likelihood term. We first transform the spheri-
cal panorama input image I into a set of K perspective im-
ages {Ik}Kk=1, which no longer contain strong distortions.
This transformation returns a set of perspective images with
overlapping regions, in our case 6 images with a 90◦ field of
view and 30◦ of overlap between adjacent images. For each
image Ik we estimate surface orientations at each pixel by
combining estimates of their Orientation Map (OM) [20]
and Geometric Context (GC) [13]. We apply GC to the
panorama and combine the OM and GC in the floor region
to obtain wall positions and orientations [40]. We segment
the panorama image into regions of three orthogonal sur-
face normal directions (see Fig. 1, bottom left). The orien-
tation surface image for each Ik is used to recover partial
3D room geometry. The surface normals in each perspec-
tive image are converted to 3D points using vanishing points
and camera-to-floor distance using the method in [6]. Each
image corresponds to a separate 3D point cloud with un-
known scale. We apply the constraint that corresponding
pixels in overlapping regions in the images have the same
depth: We globally align the point clounds by minimizing
the sum of 3D point distances of points corresponding to
the overlapping image regions. This is followed by greedy
plane fitting, starting from the largest segment, using the It-
erative Closest Point algorithm [1], resulting in an initial es-
timate of 3D room geometry, i.e. positions and orientations
of walls {ŵi}, up to scale, see Fig. 3.

We also run object detection in each image {Ik}Kk=1 us-
ing a Faster R-CNN (details in Sect. 4). The coordinates of
object locations are reprojected to the panorama image I,
and non-maximum suppression is applied to eliminate re-
dundant detections. Since the camera c is oriented toward
the center of I, assuming the center position at 0◦, the posi-
tions {pj} of detected objects {oj} can be derived from the
polar coordinates. Absolute distances of objects to the cam-
era remain unknown at this stage. Having estimated a 3D
scene model including walls and object positions, we define
the likelihood term for the room layout as

P (I|λ, {poj}, {pwi , θwi }) ∝ exp
[
−Es(I, {poj}, {pwi , θwi })

]
.

(4)
The cost function Es evaluates a room hypothesis by repro-
jecting the synthesized 3D scene back into the panoramic
view and compare surface normals:

Es(I, {poj}, {pwi , θwi }) = 1− Nc

Npix
, where (5)

Nc =
∑
m∈I

1l(Im)=l(Dm)(m) . (6)

The cost is low when surface orientations of the predicted
3D scene agrees with the orientation image I. The terms

l(Im) and l(Dm) are the discrete surface orientation labels
at pixel location m in the surface orientation maps of im-
ages I and D, respectively, 1 is the indicator function, and
Npix is the number of pixels in I. In previous work [4, 20],
a similar term is used to evaluate wall geometry hypotheses.
However, the presence of objects and occluded walls in the
scene, which add noise to the estimation, were not consid-
ered. Here, we propose to mask detected objects in the sur-
face orientation images as follows: In the observed image,
bounding boxes of detected objects serve as masks, while
in the predicted images, silhouettes of 3D objects serve as
masks, see Fig. 3 (a) and (b). Hence Es is evaluated in im-
age regions of visible wall regions. Since visible wall areas
are directly related to object size, the pixel-wise cost func-
tionEs is sensitive to the global scale λ and object positions
{pj}. For example, if the estimated room scale λ is smaller
than the true scale, objects in the synthetic scene will be
placed closer to the camera, thereby occluding larger wall
regions, which is penalized by the cost function Es.

3.2. Object pose estimation

We define the second factor in the likelihood term in
Eq. 3 as:

P (I|{θoj}) ∝ exp
[
−Eo(I, {θoj})

]
, (7)

where the cost function Eo evaluates object orientation hy-
potheses {θoj} by comparing HOG descriptors [3] of de-
tected objects in I and rendered images from correspond-
ing 3D models. For the initial object pose estimation {θ̂j}
(superscript omitted for clarity in this section), two distinct
sources of data are employed: a set of rendered images R
of 3D models with known pose, and a set of visually similar
web images W found by Google Image search. The aux-
iliary set of images helps to regularize the solution when
jointly estimating object pose, as demonstrated in [17] and
confirmed in initial experiments. We therefore take the
same approach as [17] with two extensions. First, we do not
assume images with clean background and therefore extract
the object in the input image by automatic grab-cut segmen-
tation, assuming that the image center contains the object
and image corners are part of the background. Further, [14]
assumes that a very specific category type is known (e.g.
Windsor chair). Our approach works with just knowing the
abstract category (chair), and uses visual search to find web
images similar to the target object. Therefore our approach
is more robust against cluttered background and generalizes
to a wider range of object categories. The web images are
obtained automatically by retrieving the first 400 results of
Google Image search for visually similar images within the
detected object category. Background is removed from the
web images by co-segmentation, since we assume that this
image set contains a shared common object [7].



Given object bounding boxes, HOG descriptors are com-
puted for each region in a 4× 4 image-grid using unsigned
gradients with `2-normalization, and are concatenated into
a global image descriptor. A CRF model is then employed
to regularize the pose estimation. Let T denote the cropped
input image (or multiple images if the same object appears
more than once in the scene) of objects for which we want
to find the 3D pose θ. Each node in the CRF represents an
image I ∈ T ∪ W , and the label space is the quantized
pose space sampled uniformly from yaw and pitch angles
(360 poses from yaw ∈ [0◦, 360◦] and pitch ∈ [0◦, 45◦],
roll angle is fixed). For image I we search for the K near-
est neighbors among a set of rendered images R in a 3D
database.

The unary potential is defined by the number of near-
est neighbors in the rendered image set with the same dis-
cretized pose:

E(i)
unary = exp

− ∑
{Ik|Ik∈N (K)

i ⊆R}

1θi=θk

 (8)

where 1 is the indicator function and N (K)
i denotes the set

of the K = 6 nearest neighboring images of Ii in terms of
HOG-distance.

The binary potential between two images Ii and Ij in
T ∪W encourages smoothness between the predicted poses
of neighboring images:

E
(i,j)
binary = dγ(θi, θj) d

HOG(Ii, Ij), (9)

where dγ(θi, θj) is the an angle distance function defined as

dγ(θi, θj) = min(d(θi, θj), γ) ,where (10)
d(θi, θj) = |ρi − ρj |+ |ξi − ξj |, (11)

and γ is a threshold, ρ is the yaw angle, and ξ the pitch
angle. The energy function for the CRF is then:

ECRF =
∑

Ii∈T ∪W
E(i)

unary +
∑

{Ii∼Ij |Ii,Ij∈T ∪W}

E
(i,j)
binary, (12)

and CRF inference is performed using the TRW-S al-
gorithm [18]. Qualitative results can be seen in Fig. 4.
3D model retrieval is performed by retrieving the nearest
neighbor in HOG space among the images in R and the
cost function for Eo for object orientation is the Euclidean
distance of the descriptors.

3.3. Context prior

The context prior, π(Φ), evaluates the relative positions
and orientations of objects and walls in a 2D top-down view

Figure 4: 3D pose estimation: Two pose estimation results
for a segmented input image (top left) shown with the five
3D models closest in HOG space.

of the scene. The object-to-wall cost Eo,w measures dis-
tance and alignment of an object with its closest wall seg-
ment:

Eo,w(Φ) =

No∑
j=1

‖poj − pwi∗(j)‖+ νn

No∑
j=1

‖noj
>nwi∗(j)‖, (13)

where poj is the position of object oj , i∗(j) =
argmini d(poj , p

w
i ) is the index of the closest wall segment

to object oj , noj and nwi∗(j) are the normals of the object and
its closest wall, respectively, and νn is a weighting factor.
The object-to-object cost Eo,o is a function penalizing the
overlap between objects.

Eo,o(Φ) =

No∑
j,k=1

A (b(oj) ∩ b(ok)) , (14)

where A is the area of intersection between two object
bounding boxes, denoted as b. The prior term combines
the object-to-wall and object-to-object costs and is defined



as
π(Φ) = exp [−(Eo,w(Φ) + µEo,o(Φ))] , (15)

where µ is a weighting factor.

3.4. MAP estimation

We use a sampling strategy to find room layouts with a
maximum posterior solution, as defined in Eq. 2. From an
initial estimate of 3D room geometry and 3D object pose,
we use the context prior term to sample locations and ori-
entations of objects, as well as the global scale parameter λ.
Scale is sampled uniformly within a fixed interval, while
object locations are sampled from a normal distribution that
has large variance in the object-camera direction, account-
ing for distance ambiguity, and small variance normal to
this direction, giving high confidence to the location pre-
dicted by the detector. Object orientation is sampled from
a normal distribution with a mean of the orientation found
in section 3.2. For each of the NS configuration samples
we evaluate the likelihood terms (Eq. 3) and context prior
(Eq. 15) and output the hypothesis with the maximum pos-
terior value. Implementation details are given in the next
section.

4. Results
The algorithm was validated on a subset of the public

SUN360 dataset [37]. The same dataset was used in prior
work [40]. The dataset contains panorama images of in-
door scenes in high resolution (up to 9K) which are rescaled
to 2K to reduce computation time. We obtained reason-
able initial pose estimations when object detection bound-
ing boxes and segmentation were accurate (see Fig. 5(a)).
However, Fig. 5 (b) also shows that directly applying state-
of-the-art techniques is insufficient to obtain correct room
layouts. Even though the alignment of surfaces estimated
from different perspective views estimates the correct room
shape, the absolute scale remains ambiguous. In addition,
the initial object pose estimation {θ̂oj} (e.g., bed orienta-
tion) is not always accurate, and object distances to camera
are unknown. Our proposed method estimates more accu-
rate results as shown in Fig. 5(c). A comparison of room
geometry esitmation with the PanoContext [40] method is
shown in Fig. 6. We use code provided by the authors to
generate 200,000 hypotheses per room as in [40]. These
are ranked by surface normal consistency with the input
panorama. The overall computation time is 11 minutes on
an i7 processor. The top-ranked hypotheses are displayed in
Fig. 6, top row.

4.1. Quantitative evaluation

To evaluate the accuracy of the proposed method, we
manually annotated object positions and orientations in the
panorama input images. 34 bedroom images are selected

(a) (b) (c)

Figure 5: Example results on SUN360 images: (a)
Panorama images with detected objects. (b) Initial lay-
out from estimated surface orientations. (c) Optimized lay-
out of our result. Input images from the SUN360 dataset
are on the left. The center column shows the initial lay-
out estimation from object detection and orientation sur-
face (with unknown global scale), the right column shows
results after use of the context prior. Absolute wall height
equals 2.5m×λ. The dimensions of 3D models from public
datasets are known and remain fixed.

from SUN360 dataset and the results are shown in Table 1.
We measure positional error as distance between object cen-
troids projected onto the 2D ground plane and orientation
error as the angle between ground truth and estimated pose.
As seen in Fig. 7, the estimation error is lower for cer-
tain object classes, e.g., TV, where the pose can typically
be estimated reliably and the object prior helps by favor-
ing alignment with nearby walls. The error for chairs tends
to be higher as there is a large variation and symmetry of
chair shapes and 3D pose estimation is less accurate. Our
method does not attempt to estimate the orientation of pot-
ted plants since they tend to be rotationally symmetric. The
joint estimation of room layout, scale and object pose also
allows us to automatically generate a 2D floor map from



Figure 6: Room geometry comparison with PanoCon-
text [40]. (top) Two examples from the SUN360 dataset
showing the limitation of the box geometry assumption.
(bottom) Our method successfully recovers the room geome-
try in these cases. Images show the edges of walls projected
into panorama images.

Object Position error (cm) Orientation error (deg)

Bed 25.0 ± 17.4 1.0 ± 1.4
TV 4.7 ± 6.4 1.4 ± 1.1
Chair 52.3 ± 66.0 10.7 ± 15.0
Plant 8.7 ± 12.0 -

Table 1: Evaluation on SUN360 images: Object position
and orientation errors measured against manually anno-
tated ground truth.

(a) (b)

Figure 7: Reprojection of 3D scene into panorama im-
age: (a) Ground truth. (b) Our result. Comparison of the
estimated layout to manually annotated ground truth. Sur-
face orientation and 3D objects are overlaid onto the in-
put image. Camera parameter approximations and shape
differences between real objects and 3D models can cause
slight misalignment.

one panorama image (see Fig. 9).
To further assess the method’s accuracy, including scale

estimation, we evaluate it by generating 3D scenes as
ground truth. We synthesize 88 rooms of arbitrary shape,
based on existing room templates, and size, containing ob-
jects. See Fig. 8 for examples. Wall heights are sampled
from a normal distribution with mean 2.7m and 0.2m stan-
dard devation. We add an offset to the length of each wall

Figure 8: Synthetic room data. Four example rooms out of
88 that were used in our quantitative evaluation.

(only if longer than 0.7m), uniformly sampled offset from
[-0.3m, 0.3m]. Objects are placed at random, and their posi-
tion and orientation are updated by sampling from the con-
text prior. Experimental results are reported in Table 2 and
show the contributions of each step separately (object pose,
room scale/wall height estimation). Overall estimation us-
ing NS = 3000 samples is accurate to 0.8-8◦ and 2-20cm,
depending on object class.

Note that failure cases can stem both from failed object
detection and from incorrect surface estimation. Two typi-
cal failure cases of surface orientation recovery for thin and
irregular structures are shown in Fig. 10.

Figure 10: Examples of failure cases. The surface orien-
tation estimation currently fails on thin stuctures (top) and
irregular shapes like large plants (bottom), leading to in-
correct estimation of room geometry.

4.2. Implementation details

Object detection. We use the Faster R-CNN from [25]
for object detection and recognition. The MS COCO [21]
dataset is used for training, since it contains a large number
of indoor object categories (e.g., chair, couch, potted
plant, bed, dining table, toilet, tv, laptop, microwave,
oven, refrigerator, clock, vase). The model was trained



Average errors after initialization with context term
bed chair TV plant bed chair TV plant

εobj. orient.(deg) 5.2±0.5 4.1±1.8 2.8±1.5 n/a 0.8±0.6 8.0±6.4 0.8±0.7 n/a

εobj. pos.(cm) 197.6±57.6 186.7±99.6 156.21±73.0 174.7±70.3 21.0±13.0 7.1±7.3 2.0±7.0 6.9±0.5

εwall height(cm) n/a (initialized at 2.5m) 4.9±0.1

Table 2: Evaluation on synthetic dataset of 88 rooms. The table shows the mean error with standard deviation of object
orientations, object positions, and wall height. The benefit of the proposed context prior is shown by comparing the results af-
ter the initialization stage (left) and after including context-based sampling (right). Average chair orientation error increases
slightly. Note that the orientation error of potted plants is omitted, since they do not have a canonical orientation.

Figure 9: Automatic 2D floor map generation with estimated scale. The method estimates the global scale by transferring
the scale of known 3D objects to scene objects. Examples shown were generated from SUN360 images.

on the 80,000 image training set for 240,000 iterations
with VGG16 networks [31], using top-2000-score Region
Proposal Networks (RPN) [25] and Multi-scale Combina-
torial Grouping (MCG) [23] as object proposals. The mean
average precision (mAP) for all 80 object classes is 49.0%,
and 26.5% for the intersection over union (IoU) values of
50% and 95%, respectively. The same metric and validation
set was used for the MS COCO 2014 primary challenge.
Note that our detection performance is competitive with
the current state-of-the-art method by He et al. [12], which
achieved corresponding mAP scores of 48.4% and 27.2%.

Object pose estimation. We collected a set of 3D models
from the 3D Warehouse [33] and rendered each in 360
poses. For hotel rooms, we used 9 beds, 16 chairs, 4 plants,
6 TVs, and crawled 300-350 Internet images per class using
Google image search. Note that results in Table 1 are for
detected objects only. The number of nearest neighbors K
is set to 6. The truncation threshold γ is set to 20◦. TRW-S
is run for 100 iterations to estimate object pose.

Context prior and sampling. Scale, object location and
orientation are sampled by evaluating the context prior.

We use 8 sampling epochs of 25 samples each. In every
epoch the sample with largest context prior term is used
as seed sample for the next epoch. The normal sampling
distribution along the camera-to-object-center direction has
the obtain location as mean, and a variance of 0.1 times the
camera-object distance, and a variance of 0.005 times this
distance along the perpendicular direction. Orientation is
sampled from a normal with variance 0.1 rad, and scale
is sampled uniformly, in terms of wall height, from the
interval [2.0m, 3.5m]. The weight νn in Eq. 13 is set to
10.0, and µ in Eq. 15 to 0.25.

Computation time. The layout estimation pipeline was
implemented on a desktop PC with i7 processor and 8GB
RAM. The main bottleneck is currently the object pose
estimation step using CRF optimization, which takes ap-
proximately 1-2min per object class. The object detection
method in the pipeline takes 7s on average for 18 perspec-
tive images using a GRID K520 GPU. One room layout hy-
pothesis evaluation requires about 30s.



5. Conclusions
In this paper we presented a new formulation for indoor

layout estimation. We demonstrated its ability to recover
complex room shape with Manhattan World assumption
from a single panorama image using detected objects, their
pose and their context in the scene. The proposed method
does not rely on video, multiple images, or depth sensors
as input [2] and is not limited to simple box shaped rooms
as in recent work on panoramic reconstructions [40]. Com-
pared to [38], our method takes the class, location, and pose
of objects into account and introduce a context prior to this
underconstrained problem. We evaluated the method quan-
titatively on a synthetic dataset and qualitatively on images
from the SUN360 dataset. One limitation of the proposed
method is that it currently relies on the output of an object
detector. Objects that are not detected are currently not part
of the final 3D model. Recent CNN-based methods for pre-
dicting depth and semantic labels [8] or 3D object pose [32]
from images may be leveraged to improve the results.
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[11] C. Häne, L. Ladický, and M. Pollefeys. Direction matters:
Depth estimation with a surface normal classifier. In CVPR,
June 2015. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 8

[13] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial
layout of cluttered rooms. In ICCV, 2009. 2, 4

[14] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the
box: Using appearance models and context based on room
geometry. In ECCV, 2010. 2

[15] V. Hedau, D. Hoiem, and D. Forsyth. Recovering Free Space
of Indoor Scenes from a Single Image. In CVPR, 2012. 2

[16] D. Hoiem, A. A. Efros, and M. Hebert. Recovering Surface
Layout from an Image. IJCV, 75(1):151–172, 2007. 2

[17] Q. Huang, H. Wang, and V. Koltun. Single-View Recon-
struction via Joint Analysis of Image and Shape Collections.
ACM Transactions on Graphics, 34(4), 2015. 2, 4

[18] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. TPAMI, 28(10):1568–1583,
2006. 5

[19] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating
Spatial Layout of Rooms using Volumetric Reasoning about
Objects and Surfaces. In NIPS, 2010. 2

[20] D. C. Lee, M. Hebert, and T. Kanade. Geometric Reasoning
for Single Image Structure Recovery. In CVPR, 2009. 2, 4

[21] T. Lin, M. Maire, S. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft COCO: Common Objects in Context.
arXiv:1405.0312v3, 2015. 7

[22] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun.
Interactive Furniture Layout Using Interior Design Guide-
lines. ACM Transactions on Graphics, 30(4), 2011. 2
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