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Abstract—Software dependencies play a vital role in program
comprehension, change impact analysis and other software main-
tenance activities. Traditionally, these activities are supported
by source code analysis; however, the source code is sometimes
inaccessible, and not all stakeholders have adequate knowledge
to perform such analysis. For example, non-technical domain ex-
perts and consultants raise most maintenance requests; however,
they cannot predict the cost and impact of the requested changes
without the support of the developers.

We propose a novel approach to predict software dependencies
by exploiting coupling present in domain-level information. Our
approach is independent of the software implementation; hence,
it can be used to evaluate architectural dependencies without
access to the source code or the database.

We evaluate our approach with a case study on a large-scale
enterprise system, in which we demonstrate how up to 68% of the
source code dependencies and 77% of the database dependencies
are predicted solely based on domain information.

I. INTRODUCTION

When software maintainers change a software entity, they
have to search for other related entities and update them
accordingly. This is not a trivial task, and many bugs are
introduced by programmers who fail to properly propagate the
change [1]. Knowledge of software dependencies is vital to
many change impact analysis methods [2], [3], [4], [5].

Source code analysis can be used to trace dependencies [6].
However, it is not easy to apply in many situations, one typical
example being projects with heterogeneous source code. In
addition, code analysis is not an appropriate option for all
stakeholders, e.g., support staff, consultants and non-technical
domain experts.

Large majority of enterprise software systems are derived
from domains where requirements are uncertain, and are likely
to change during the software’s lifetime [7]. In these domains,
the domain experts are the primary source of information
for evaluating requirements [8]. These domain experts drive
software evolution by continuously asking for new functionality
or requesting changes to existing ones. Unfortunately, domain
experts are in a poor position to estimate the impact of the
changes they request since they typically do not have inside
knowledge of the internal dependencies of the software system.

Enterprise software systems are constructed to model busi-
ness domains [7]. It is reasonable to expect that real-world
dependencies are therefore reflected in the software itself.
Consequently, we hypothesize that software dependencies can
be predicted by exploiting domain information.

In this paper, we propose a novel approach to predict-
ing software dependencies based on the notion of domain-
based coupling [9] which is derived from the domain-level
relationships between software components. The proposed
approach is independent of the software implementation; hence,
it can assist software maintainers where source code analysis
is not available, or it can be used to evaluate the change
propagation prior to changing the source code. In addition, it
solely relies on domain information, allowing non-technical
domain experts to predict change propagation without the
support of programmers.

We evaluate our approach with a case study of a large-scale
enterprise system, called ADEMPIERE, where we demonstrate
how domain information can be used to identify architectural
dependencies in the source code and database layers.

The contributions of this paper are as follows:
• We refine the previously defined domain-based coupling

[9], and extend the previous method of selecting the
highly coupled components by an automated clustering
technique.

• We formally define architectural dependencies and pro-
pose a model to trace dependencies among source code,
database and user interface components.

• We present an empirical study of one of the biggest open
source enterprise systems, demonstrating how domain-
based coupling can be used to predict the source code
and database dependencies.

The rest of this paper is organised as follows: Section II
introduces the system under analysis. Section III describes
domain-based coupling analysis. Section IV presents the
dependency analysis. Section V demonstrates the evaluation
results. Section VI discusses the threats to the validity of our
findings. Section VII presents the related work, and finally,
Section VIII concludes this paper with a discussion about future
areas of investigation.
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II. CASE STUDY: ADEMPIERE

We scouted the open-source software landscape for a suitable
open-source system to use as a case study for our analysis.
After considering several candidates, we eventually settled on
ADEMPIERE1, an Enterprise Resource Planning (ERP) software.
The qualities that persuaded us to choose ADEMPIERE as our
case study are:

Well defined business domain: An ERP system integrates
internal and external management information across an entire
organisation, embracing accounting, manufacturing, sales and
service, etc. Such a system manifests a strict separation between
the expertise of the stakeholders and developers. This is the
type of software which benefits mostly from domain-based
coupling analysis.

Tiered architecture: The system manifests a clear separation
between the different architectural tiers.

• The system has a rich set of UI components and four
distinct front-ends from which the user can choose
including a Java GUI and three web interfaces.

• The system heavily uses relational database management
systems (e.g., PostgreSQL and Oracle) for data storage
as well as for storing business logic.

Evolving and active system: The ADEMPIERE project traces
its evolution back more than a decade. Created in September
2006 as a fork of the Compiere open-source ERP, itself
founded in 1999, ADEMPIERE soon reached the top five of
the SourceForge.net enterprise software rankings. At the time
of this publication, it is the first system among that top five.
This is a measure of both the size of its developer community
and its impact on the ERP software market.

Large-scale and complex design: The system represents
cutting edge open-source software technology. It is a multi-
language system that aggregates more than 6 million lines of
code2. The core part is written in Java and contains more than
3,531 classes with more than half a million lines of code3.

Figure 1 presents a high-level architectural view of the Java
core of ADEMPIERE. The view is obtained by aggregating
the direct relationships in the system along the package
hierarchy [10]. The area of every visible module is proportional
to its number of lines of code. Every visible dependency
is directed and has its width proportional to the number of
abstracted low-level dependencies. Every module is represented
as a modified treemap, with the sizes of the contained classes
and modules proportional to their size in lines of code.

Active developers and users communities: The system has a
very active associated community: often the mailing list has
more than 800 messages per month, and the SourceForge.net
page shows that ADEMPIERE is downloaded more than 15,000
times per month. The system is used by a large number of
companies around the world.

1http://www.adempiere.com
2Based on the public open source software directory at Ohloh.net
3Measured by ourselves, based on the Java code in the SVN repository at:

https://adempiere.svn.sourceforge.net/svnroot/adempiere/tags/trunk_last/

ADempiere

Compiere

Fig. 1: A high level architectural analysis reveals that ADEM-
PIERE is a highly complex Java system built and dependent
on the older Compiere core.

For all these reasons, we deem ADEMPIERE to be relevant
and representative for enterprise systems and for the state of
the art in open-source software at the moment of writing this
article, and appropriate for our analysis.

III. DOMAIN-BASED COUPLING ANALYSIS

Domain information can reveal relationships among user
interface components (UICs) [11]. In this section, we describe
how the domain-based coupling [9] derived from software
domain information; can be used to predict dependencies
between the user interface components.

We use the following terminology when we talk about the
domain model of a system:

• A domain variable is a variable unit of data which has a
clear identity at the domain level.

• A domain function provides proactive or reactive domain-
level behaviour of the system which includes at least one
domain variable as an input or output.

• A user interface component (UIC) is a system component
which directly interacts with users, and contains one or
more domain functions.

For example, in a business software system, a data entry
form is considered a UIC, the entry and editing of business

http://www.adempiere.com
https://adempiere.svn.sourceforge.net/svnroot/adempiere/tags/trunk_last/


information are domain functions, and the data fields visible
on the form are domain variables.

A. Notations and Definitions

Most of this section quotes our earlier works [9], [11] with
the exception of new definitions of the number of common
variables (Definition 2), and revised definitions of the domain-
based coupling graph (Definition 3).

We adopt the following conventions in this work. For R,Q ⊆
A×A, we denote by R.Q their composition, i.e., x.R.Q.y iff
∃z : x.R.z ∧ z.Q.y. We also denote by R−1 the inverse of R
and by ID the identity relation.

Moreover we abbreviate x.R = {y|x.R.y}. We visualise
relations as graphs, denoting by G = (V,E, l) the graph G
with vertices V , edges E ⊆ V × V and labels l : E → L for
some label set L.

If L is a finite set of relation labels and lR ∈ L the name
of R for any R ∈ X , then we define REL(A,X) to be the
labelled directed graph REL(A,X) = (V,E, l) with V =
A,E =

⋃
R∈X R such that: (v, v′) ∈ E and l(v, v′) = lR iff

v.R.v′ for some R ∈ X .
The three key element types are modelled as follows:
• Domain variables are modelled by a finite set V , called

variable symbols.
• Domain functions are modelled by a finite set F , called

function symbols, and the binary relation USE ⊆ F × V
represents the relation between functions and variables as
the input-output of the functions.

• UICs are modelled by a finite set C called the component
symbols, and HAS ⊆ C × F represents the relation
between components and functions.

For the rest of the paper, and without loss of generality, we
assume that the system under analysis (SUA) is fixed, that is,
V , F and C are fixed and so are their REF , USE and HAS
relations.

Definition 1. The conceptual connection relation CNC ⊆
C × C is defined by

CNC = HAS .USE .USE−1HAS−1

The domain-based coupling between two components is
derived from shared domain variables, based on the following
measurements:

Definition 2. Number of common variables among two UICs
is modelled by the function ϑ : C × C → R where

ϑ(c, c′) = |c.HAS .USE ∩ c′.HAS .USE |

Note that the definition of common domain variables is
symmetric, i.e., ϑ(c, c′) = ϑ(c′, c).

Definition 3. The domain-based coupling graph of a SUA is
the symmetric weighted graph G = (C,CNC\ID, ω) where
coupling weight function ω : C × C → [0..1] is

ω(c, c′) =
ϑ(c, c′)

|c.HAS .USE ∪ c′.HAS .USE |

Fig. 2: ADEMPIERE: Vendor Details

It turns out that it is practically useful to weight domain
relationships by their level of sharing domain variables. A
threshold t can be used to select relevant coupling by their
weight ω ≥ t.

In the following examples, we demonstrate how to derive
domain-based coupling from UICs of ADEMPIERE, and then
how to approximate dependencies from that coupling.

B. Example 1

In ADEMPIERE, Vendor Details (Figure 2) and Import
Product are the UICs which we use in this example. Vendor
Details (c1) has 2 domain functions, and in total 25 domain
variables, as follows:

c1.HAS = { Edit Vendor, Edit ProductDetails }.

c1.HAS .USE = { DeliveryTime, BusinessPartner,
CostPerOrder, Currency, Vendor, Manufacturer, ListPrice,... }.

Import Product (c2) contains one domain function and 42
domain variables as follows:

c2.HAS = { Import Products }.

c2.HAS .USE = { CostPerOrder, PriceEffective, Weight,
BusinessPartner, SKU, UOM, Processed, Royalty,... }.

There are 18 common domain variables between these UICs
as follows:

c1.HAS .USE ∩ c2.HAS .USE = { BusinessPartner,
CostPerOrder, Currency, Discontinued, DiscontinuedAt,
ListPrice, Manufacturer, MinOrderQty, OrderPackQty,
PartnerCategory, PartnerProductKey, POPrice, PriceEffective,
Product, PromisedDeliveryTime, Royalty, UOM, UPC/EAN }.

and in total 49 (42+25-18) variables used by either of these
UICs; thus:

ϑ(c1, c2) = 18

ω(c1, c2) = 18/49 = 0.37

The next section demonstrates how to create a weighted
graph from all CNC relations of Vendor Details.

C. Example 2

Now that we have explained the domain definitions, let’s
demonstrate how to use them for predicting dependencies.
Imagine if a domain expert considers asking for an enhancement
to Vendor Details (c1), then given the domain information of
ADEMPIERE, she can derive common domain variables (ϑ)



among c1 and other UICs similar to what was described in the
previous example.

Figure 3 shows there are 33 UICs for which the coupling
weight with c1 is greater than a given threshold ω ≥ 0.5. The
selected threshold is applied to avoid weak results which do not
likely lead to any architectural dependencies. This also reduces
the density of the resulting domain-based coupling graph and
makes it more readable. The results are illustrated (Figure 3)
as a weighted graph where the edge width is proportional to
ω, and edge length is proportional to 1/ω, i.e., the stronger
the coupling weight, the thicker is the edge and the closer the
node to the center (c1).

3
41

2

Legend: Nodes represent UICs and edges represent domain-based coupling.
The tagged nodes are (1) Vendor Details, (2) Import Products, (3) Spare Parts
and (4) Product Planning. Node size has no implication, but edge width is

proportional to ω and edge length is proportional to 1/ω. For readability, the
graph only contains c1.CNC , excluding edges between other nodes.

Fig. 3: Vendor Details — domain-based coupling graph

The top 3 closest UICs are: Import Products (c2), Spare parts,
(c3) and Product Planning (c4), where the coupling weight
values are 0.37, 0.32 and 0.25 respectively. Investigating the
source code shows that all three UICs are connected to Vendor
Details by source code dependencies.

D. Expectation Maximisation Clustering

In the previous section, we discussed using a threshold
value for domain-based coupling to identify highly coupled
components. Previously, the threshold value has been selected
manually based on the system characteristics like distribution
of the coupling values, or by graph visualisation [11]. However,
the manual approach is subject to human errors and not scalable
for large datasets. In order to address this limitation, in this
work, we use a clustering technique to identify highly coupled
components automatically.

The aim of clustering is to group a given set of objects so
that similar objects are grouped together and dissimilar objects
are kept apart. There are many different multi-dimensional
clustering techniques [12]. In this paper, we have used a
statistical clustering technique called Expectation Maximization
(EM) since it can automatically find the optimum number of
clusters [13].

The main idea behind EM is fitting the parameters of a
distribution model by using training data. The EM algorithm
assigns a probability distribution to each instance of the number

of common variables (ϑ), which indicates the probability of
the instance belonging to each of the generated clusters.

In Section V, we discuss how EM clustering improves the
precision of identifying dependencies.

IV. DEPENDENCY ANALYSIS

ADEMPIERE has been designed in such a way that a
developer can extend the system by touching as little code as
possible. Whenever a new table is added to the database, the
required Java code is automatically generated.

Most domain-level relations are managed at the data layer. As
a consequence, traditional coupling metrics fail to capture the
domain-level relationships between these classes. Moreover, the
database contains important information about the architectural
dependencies in the system. We therefore need to develop a
model which is capable of expressing dependencies both at
the source code and at the database layers.

In this section, we present two general models for repre-
senting a system and its architectural relationships based on
the analysis of the source code and the database. We also
explain how we populated our model in the particular case of
ADEMPIERE.

A. Source Code Dependencies
The main wellspring of architectural relations is the source

code. At the source code level our analysis models three
key entities and their associated relations. These entities are
independent of the programming language, as long as it is
object-oriented:
• Classes are represented by a finite set CLS .
• Attributes are represented by a finite set ATT . The

binary relation F ⊆ CLS × ATT maps attributes to
the containing classes.

• Methods are represented by the finite set MET . The
binary relation M ⊆ CLS ×MET maps methods to the
classes that contain them.

In addition, the relation R ⊆ MET × CLS expresses the
return types of methods (NB: we allow Void ∈ CLS to model
methods that return void), I ⊆ MET×MET represents method
invocations, and A ⊆ MET × ATT represents the accesses
of methods to attributes. These relationships are illustrated in
Figure 4.
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Fig. 4: Source code elements and relations among them.

Two classes cls, cls ′ ∈ CLS can have following relationships:

cls ′.M.R.cls (1)
cls.M.I.M−1.cls ′ (2)
cls.M.A.F−1.cls ′ (3)



Where Equation 1 shows cls is the return type of cls ′,
Equation 2 shows a method of cls invokes a method of cls ′,
and Equation 3 shows a method of cls accesses an attribute of
cls ′.

Definition 4. A direct relation between two classes is de-
fined as D = {M.R,M.I.M−1,M.A.F−1}. For two classes
cls, cls ′ ∈ CLS , we denote cls is directly dependent on cls ′ if
and only if cls.D.cls ′

Definition 5. For two classes cls, cls ′ ∈ CLS , we denote cls
is indirectly dependent on cls ′ if and only if cls.D.D−1cls ′

B. Database Relationships

A significant part of a system’s business logic is incorpo-
rated in the database relationships, and these relationships
complement the ones which are visible at the source code
level.

TBL FK

1

*

Fig. 5: Database table with the foreign key relation

The main type of entity that we model at the database level
is the table, and we denote the set of all the tables with TBL.
The binary relation FK ⊆ TBL×TBL maps tables on tables
based on the foreign keys. Figure 5 illustrates this relationship.

As in the case of source code, we define both direct and
indirect relationships in the database:

Definition 6. Given two tables t , t ′ ∈ TBL, we say that t has
a direct relation to t ′ if and only if t.FK .t′.

Definition 7. Given two tables t , t ′ ∈ TBL, we say that t has
indirect relation to t ′ if and only if t.FK .FK−1.t′

While foreign key relations among tables are there to model a
specific aspect of the domain, indirect relations between tables
should suggest how different concepts are bound together.

C. Architectural dependencies

Two components are considered to be architecturally de-
pendent either by direct or indirect dependencies between the
classes behind them, or by direct or indirect relationships
between the tables accessed by these classes.

Figure 6 shows the relations between the Components (C),
Classes (CLS ) and Tables (TBL) of ADEMPIERE. These
elements are related by DEP ⊆ C × CLS which represents
classes that a UIC depends on, and REF ⊆ CLS × TBL
which represents tables that a class reads or writes to.

TBLCLSC REFDEP
* ** *

C: components, CLS: classes, TBL:tables

Fig. 6: Relationships between software elements

Definition 8. For two components c, c′ ∈ C, we denote c has
an architectural dependency to c′ if and only if they have one
or more of the following relationships:

c.DEP .DEP−1.c′ (4)
c.DEP .D.DEP−1.c′ (5)

c.DEP .D.D−1.DEP−1.c′ (6)
c.DEP .REF .REF−1.DEP−1.c′ (7)

c.DEP .REF .FK .REF−1.DEP−1.c′ (8)
c.DEP .REF .FK .FK−1.REF−1.DEP−1.c′ (9)

This definition describes all direct and indirect dependencies
through classes or tables. Equation 4 defines a connection
between two components based on shared classes. Equation 5
connects two components considering direct dependencies
between their shared classes. Equation 6 considers indirect
dependencies between classes to connect two components.
Equation 7 defines a connection between two components based
on their shared database tables. Equation 8 and Equation 9
consider direct and indirect dependencies between database
tables which connect two components.
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Fig. 7: Extended version of the FAMIX Meta-Model including
a meta-model for relational databases

D. Dependency Analysis in ADEMPIERE

To perform the analysis on ADEMPIERE we first needed to
extend the FAMIX [14] meta-model, which describes the static
structure of object-oriented software systems, with information
about database dependencies. Figure 7 shows the subset of the
extended meta-model where the entities modeling relational
databases are represented with bold. A class that maps a
table is a class that represents a table at the source code
level, e.g., Enterprise Entity beans. The same happens to the
class attributes that map table columns. The architecture of
ADEMPIERE only contains one to one mappings, hence, we
omit alternative mappings such as table-per-hierarchy.

The relation access represents class methods accessing
database tables. The access can be made directly or through
frameworks like Hibernate. The relation reference represents
connections among table columns achieved using a foreign
key constraint. These modifications to the FAMIX meta-model



have been implemented in MooseJEE [15], an extension of the
Moose [16] software analysis platform.

Once the two models were populated, we needed to extract
the mapping between UI components and classes and between
classes and tables. This step is dependent on the technol-
ogy used in the analyzed system. In the particular case of
ADEMPIERE, these mappings can be found in the Application
Dictionary, a database data structure that keeps track of all
these dependencies. Once we had these mappings, we were
able to compute the dependencies between the components
based on architectural relationships.

V. EVALUATION

In this section, we provide empirical evidence on the useful-
ness of domain-based coupling in approximating architectural
dependencies. We examine the following scenarios:
• Searching for source code dependencies: Suppose a

software maintainer has no access to source code analysis
tools. Using software domain information, how accurately
can she predict existence of source code dependencies
between UICs?

• Searching for database relationships: Some business
constraints and relationships are defined and managed at
the data layer. These relationships may or may not be
visible at the source code level [3], [2], or can be difficult
to analyse such as legacy databases. How accurately can a
domain expert predict such relationships without analysing
the database?

• Searching for architectural dependencies: When a
domain expert requires to estimate the impact of a change
to a UIC, how accurately can she identify other connected
UICs by architectural dependencies?

A. Evaluation Setup

For a given UIC, c ∈ C, we test the query AN = q(c, E)
where the expected outcome E ⊆ C is the set of UICs which
have architectural dependencies to c, and the returned answer

AN = {ci|ci ∈ C, ϑ(c, ci) > 0}

is the set of UICs which are coupled with c at the domain
level. We describe the outcome of such a query as follows:
TP =|E ∩ AN | shows the number of correctly identified

dependent components.
TN =|C\{AN ∪E}| shows the number of correctly identified

independent components.
FP =|AN\E| shows the number of incorrectly predicted

dependent components.
FN =|E\AN |, shows the number of incorrectly predicted

independent components.
We use the well-known definitions of precision (Pq) and

recall (Rq) to evaluate the outcomes of a given query:

Pq =
TPq

TPq + FPq
Rq =

TPq

TPq + FNq

Precision and recall only evaluate TP . In order to describe
both TP and TN , we measure accuracy (Aq) which is the

degree of closeness of results to the preferable values where all
dependent and independent components are correctly identified.
Accuracy [17] is defined as follows:

Aq =
TP + TN

TP + FP + FN + TN

The higher the accuracy, the closer the prediction outcomes to
the perfect results where both FP and FN are equal to zero.

B. Macro Evaluation
In order to evaluate the results for all UICs in ADEMPIERE,

we take the mean value of measurements of all queries as

fM =
1

n

n∑
i=1

fqi

where f is one of these measurement functions: TP , TN , FP ,
FN , R, P or A.

C. Likelihood
One application of domain-based coupling might be notifying

software maintainers of possible dependent components when
they browse a list of UICs. To assess the usefulness of such
notifications, we measure the likelihood (L) whether at least one
of the top three, five or ten returned results have architectural
dependencies. More formally if ANc,n shows the top n results
for a component c, then

Ln =
|{c|c ∈ C,ANc,n ∩ Ec 6= ∅}|
|{c|c ∈ C,Ec 6= ∅}|

The likelihood function enables us to distinguish between the
topmost results and the entire returned result set.

D. Results: Searching For Source Code Dependencies
ADEMPIERE contains 347 UICs. The source code analysis

revealed 14, 898 indirect dependencies and no direct depen-
dencies among classes behind these UICs. We compared these
dependencies with the domain-based coupling graph to evaluate
how accurately source code dependencies can be derived from
domain information.

The results are presented in Table I. On average for a given
UIC, 28 connected UICs by source code dependencies identified
correctly whilst 15 UICs with source code dependencies
are incorrectly described as independent components, and
78 independent UICs are falsely called to have source code
dependencies. These results lead to average recall equal to
0.68 and average precision equal to 0.27.

Also the accuracy of the dependency prediction is equal
to 0.73, implying that for more than 7 out of 10 UICs,
our prediction method correctly identified if two UICs are
dependent or independent at the source code level.

The likelihood of discovering source code dependencies in
the top three coupled UICs is 69%, and it will increases to
78% for the top ten UICs.

Summary: On average 68% of UICs connected by source
code dependencies are discovered correctly, while for 78% of
queries the top ten results contains one or more source code
dependencies.



#Dependencies TPM FNM TNM FPM RM PM AM L3 L5 L10

Source Code Dependencies 14,898 28 15 226 78 0.68 0.27 0.73 0.69 0.74 0.78
Direct Database Relationships 8,132 19 4 237 87 0.77 0.20 0.74 0.59 0.66 0.75
Indirect Database Relationships 12,178 22 13 227 85 0.71 0.23 0.72 0.51 0.56 0.62
Architectural Dependencies 16,968 31 18 223 76 0.64 0.30 0.73 0.72 0.78 0.84

TABLE I: Prediction Results

E. Results: Searching For Database Relationships
The database analysis of ADEMPIERE showed that there

are 8,132 direct and 12,178 indirect relationships among data
tables behind UICs.

We queried these relationships using the domain-based
coupling, and the results are presented in Table I. On average
for a given UIC, 19 directly related UICs and 22 indirectly
related UICs are identified correctly. The results show only 4
false negatives for direct relationships which is more than three
times lower than 13 false negatives for indirect relationships.
However, the number of false positives are similar: 87 and 85
for direct and indirect relationships respectively.

Comparing the results between direct and indirect relation-
ships shows that for direct relationships the recall is slightly
higher (0.77 vs 0.71) whilst the precision is slightly lower (0.2
vs 0.23). The accuracy values for both relationship types are
more than 0.7, suggesting that for 7 in 10 UIC pairs, their
relationship state is identified correctly.

In addition, validating the topmost results shows that the
likelihood of database relationships in the top three results is
51% for direct and 59% for indirect relationships. Also the
likelihood of indirect relationships increases to 75% for the
top ten results.

Summary: On average up to 77% of database relationships
can be derived from domain information, and for 75% of
queries, the top ten results contain at least one database
relationship.

F. Results: Searching For Architectural Dependencies
The analysis of the source code and the database of ADEM-

PIERE shows 16, 968 architectural dependencies (Definition 8).
We evaluated how accurately a domain expert can predict if

there is at least one architectural dependency between any given
pair of UICs. The results are presented in Table I. On average
for a given UIC, 31 dependent UICs, and 223 independent UICs
are identified correctly using domain information. However, 18
dependent and 76 independent UICs are incorrectly placed in
the opposite dependency state. These results lead to an average
recall of 0.64 and precision of 0.30. The mean accuracy of
the predictions is 0.73, suggesting that for 7 in 10 UIC pairs,
their dependency state is identified correctly.

In addition, the likelihood of discovering an architecturally
dependent UIC pair in the top three results is 72%. This
likelihood will increase to 84% for the top ten results.

Summary: On average 64% of architecturally dependent
UICs are discovered using domain information, and the
likelihood of discovering a correct architectural dependency
in the top ten predictions is 84%.
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Fig. 8: Improving precision and changes in recall and accuracy

G. Improving Precision

The prediction results for architectural dependencies (Table I)
show that the average precision is 0.30. In order to improve the
precision, we utilised the expectation maximisation technique
(Section III-D) to filter out weakly coupled pairs, with the
assumption that UICs with strong domain-based coupling are
more likely to have architectural dependencies.

RM PM AM

Source Code Dependencies 0.29 0.68 0.88
Direct Database Relationships 0.40 0.57 0.89
Indirect Database Relationships 0.27 0.61 0.93
Architectural Dependencies 0.23 0.70 0.87

TABLE II: Prediction Results Using EM Clustering

Table II shows the improved results. The mean precision for
architectural dependencies is increase from 0.30 to 0.7, and
the mean accuracy is increased from 0.73 to 0.87.

However, these improvements are achieved at the expense
of the reduction in recall. As illustrated in Figure 8, while the
value of precision is more than doubled, the value of recall
decreased almost three times (from 0.64 to 0.23). This implies
that there are a number of architectural dependencies between
UICs which have no strong coupling at the domain level.

Summary: By using expectation maximisation technique,
precision can be improved up to 0.7. However, it is a trade-off
between precision and recall.

H. Visual Comparison

The domain-based coupling graph (Figure 9a) is visualised
using Fruchterman and Reingold’s [18] force-based graph
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Legend: Nodes are the UICs of ADEMPIERE in both graphs. Left: Edges
are domain-based coupling (Definition 3) which are selected by Expectation
Maximisation (Section III-D). Right: Edges are architectural dependencies
(Definition 8). Tags (A, B, C and D) are concentration areas.

Fig. 9: Domain-based coupling vs architectural dependencies

layout in three steps: first, the graph is created based on Defi-
nition 3; second, the exception maximisation (EM) technique
(Section III-D) is applied; third, the derived graph is visualised
by the force-based layout algorithm.

In order to compare the domain-based coupling graph with
the architectural dependencies, the edges from Figure 9a are
replaced with the architectural dependencies without changing
the location of nodes. The resulting graph (Figure 9b) illustrates
the distribution of the architectural dependencies in compare
to the domain-based coupling.

The comparison between Figure 9a and Figure 9b shows
that the most populated cluster (tagged by A) in the domain-
based coupling graph has the biggest number of architectural
dependencies. However, the number of architectural depen-
dencies decreases in the clusters with poor domain-based

coupling (B, C and D). In addition, there are a number of
architectural dependencies where there is no domain-based
coupling, illustrating that not all dependencies can be derived
from the domain-based coupling graph.

I. Discussion

In this evaluation, we reported that on average 64% of
architectural dependencies could be derived from domain-based
coupling graph. The accuracy of the prediction is on average
0.73 while the precision is 0.30. The precision can be increased
up to 0.7 using expectation maximisation technique. Trading
off precision for recall would be a good approach if one would
build a tool that would be used by maintainers: having too
many false positives might deter the users of such a tool.

In addition, we demonstrated how domain-based coupling
could be used to inform software maintainers while they browse
software UICs. The results show the likelihood of discovering
architectural dependencies among the top ten coupled UICs
is 84%. Given that these results are obtained without looking
at the source code or the database, they are quite promising.
On the other hand in the current form, domain-based coupling
analysis cannot completely replace the source code analysis.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our
findings, and how we addressed them.

Threats to external validity are concerned with generalisation
of our findings. Although we performed our evaluation on a
large-scale enterprise system which is representative of the
state of the art enterprise systems developed in Java, we are
aware that more studies are required to be able to generalize
our findings.

Threats to construct validity are concerned with the quality
of the data we analysed, and the degree of manual analysis that
was involved. The domain information typically is provided by
the domain experts using a manual data collection process. To
minimise the risk of human error, we extracted the relationship
between domain variables and UICs from user manuals and
help documents. In ADEMPIERE, this information is stored in
the database. We only used manual inputs from domain experts
to confirm this information and kept the manual additions and
alterations to a minimum.

One other factor that could affect the validity of the results
is the granularity used to look at the selected UICs. We chose
windows as UICs. Each window contains multiple tabs and
each tab provides one or more functions. Different results could
be achieved if the evaluation was performed at the tab level,
or module level.

VII. RELATED WORK

This work is motivated by the application of dependency
analysis in software maintenance and change impact analysis.
In the literature, several formal models of change propagation
have been introduced. Luqi [19] presented a graph model for
software evolution, based on indirect relationship between com-
ponents. Rajlich [4] introduced a model for change propagation



based on graph rewriting which requires an understanding
of the dependencies between software elements. Arnold and
Bohner [20] model change impact analysis as a cycle of
revisions derived from relationships between software elements.
Mirarab et al. [21] introduced a hybrid impact analysis method
based on dependency information and co-change history. The
knowledge of software dependencies is the prerequisite for
these impact analysis models. The other key applications
of dependency analysis are program comprehension, concept
location and reverse engineering [22], [23], [24], [25].

Source code analysis [6] is an established approach for
tracing software dependencies [26], [27] or evaluating the
evolution of code and design [28]. One of the most well-
known code analysis methods is program slicing, which has
been exhaustively explored by many researchers, and extended
to many programming paradigms [29], [30], [31], [32]. Source
code analysis is further enhanced using dynamic analysis [33],
[34] to capture dependencies which might not be traceable
from static relationships between software elements.

Structural coupling metrics have received a lot of attention
in the past years resulting in many different approaches ranging
from dynamic coupling [35], [36] to evolutionary and logical
coupling [37], [38]. In particular, we are interested in structural
coupling metrics, as are comprehensively described by Briand
et al. [39]. Metrics like the Coupling Between Objects (CBO)
or the CBO′ [40] consider the inheritance between classes to
measure the coupling among software elements. Other metrics
like the Response For Class (RFC) [41] and the RFC∞ [40]
consider indirect relations among classes based on a level of
indirection in the invocation chain of the class methods. In our
case, we measure the coupling among classes without relying
on inheritance. Moreover, our definition of indirect relation
is based not only on invocations between methods but also
factors like the method’s return type and attributes accessed
by a method.

More recent research effort has concentrated on defining
coupling metrics based on the concepts specific to software
systems [42], [43], [44], [45]. These approaches attempt to
identify and measure the relation among software entities in
object-oriented software by considering latent topics from the
source code. The domain-based coupling approach presented
in this paper is source code independent so different from the
conceptual coupling metrics.

An alternative approach to source code analysis is mining
dependencies from the software repositories [46], [47], [48],
[49], [24]. It can be argued that these approaches are less
expensive, and require less technical expertise. However, they
are not applicable where maintenance history is not accessible.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how domain information
could be used to predict architectural dependencies, and assist
software maintainers in searching for connected components
at the source code or the database layers. Our proposed
approach for predicting dependencies promises independence
from software implementation and simplicity and usability for

non-technical domain experts. Hence, it can assist managers and
consultants to take decisions about software changes without
the support of the developers.

The proposed dependency analysis method is based on
relationships between software domain information and user
interface components (UIC), modelled as a weighted graph.
We demonstrated how such a model could assist predicting
dependencies with a case study on a large-scale enterprise
system, called ADEMPIERE. We derived architectural depen-
dencies as a set of source code and database dependencies, and
compared them with the domain-based coupling between UICs.
The results show that on average 68% of the source code and
up to 77% of the database dependencies could be derived from
the domain-based coupling. The accuracy of such predictions
is on average more than 70%, implying that for 7 out of 10
component pairs their dependency state is identified correctly.

The results promise that domain information might be used
to predict the existence of architectural dependencies, and
the accuracy of these predictions could support maintenance
activities such as change impact analysis. However, at the
current stage, this approach cannot replace the source code
analysis or the database analysis.

In this work, we have only examined the dependencies
between application windows. We plan studies of finer-grained
UICs (e.g., Tabs) as future work. Some of the research questions
to be answered are: What is the efficient granularity level? What
properties of UICs affect the results (e.g., size and complexity)?

The other area of future investigation is the impact of
different domains on the results. ADEMPIERE contains various
modules which provide functions of different domains like ERP,
CRM and Asset Management. Distinguishing between these
domains and their domain-based coupling graphs might lead to
better understanding of the relationships between domain-based
coupling and architectural dependencies.
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