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Abstract—Electric vehicles (EVs) and unmanned aerial vehicles
(UAVs) show great potential in modern transportation and
communication networks, respectively. However, with growing
demands for such technologies, the limited energy infrastructure
becomes the bottleneck for their future growth. It might be of
high cost and low energy efficiency for all the operators to each
have their own dedicated energy infrastructure, such as charging
stations. In this paper, we analyze a wireless charging infras-
tructure sharing strategy in UAV and EV-involved networks.
We consider a scenario where UAVs can charge in EV charging
stations and pay for the sharing fee. On the EVs’ side, sharing
infrastructure can earn extra profit but their service quality,
such as waiting time, might slightly reduce. On the UAVs’ side,
if renting EV charging stations can achieve an acceptable system
performance, say high coverage probability, while considering the
cost, they may not need to build their dedicated charging stations.
In this case, we use tools from stochastic geometry to model the
locations and propose an optimization problem that captures the
aforementioned trade-offs between cost or profit and quality of
service. Our numerical results show that sharing infrastructure
slightly increases the waiting time of EVs, say within 5 min, but
dramatically decreases the waiting time of drones, say more than
50 min, and deploying more charging stations do achieve better
performances, but all these better performances are expected to
cost more.

Index Terms—Stochastic geometry, Poisson Point Process,
Electric Vehicles, Unmanned Aerial Vehicles, Infrastructure shar-
ing.

I. INTRODUCTION

Electric vehicles (EVs) and unmanned aerial vehicles
(UAVs) have great application potential to achieve green and
efficient future transportation [1]. Compared with traditional
vehicles, EVs cause less impact on the environment and are
more flexible since they can recharge at home during the
night. Hence, in the past few decades, EVs and their related
infrastructures, such as charging stations, have been widely
studied and developed in real life [2].

UAVs have recently increased in the market due to their high
relocation flexibility based on dynamic demands[3], [4]. They
are expected to play an essential rule in next-generation wire-
less networks [5], [6]. UAVs can be very useful in both rural
and urban areas [7], such as improving the quality of service
[8], providing service to remote Internet of Things users [9],
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maintaining connectivity in nature disasters [10] and providing
additional capacity [11]. However, UAVs cannot work without
frequent charging, which highly restricts the performance of
UAV-enabled wireless networks. Since UAVs rely on their
internal batteries, which are energy limited, their services are
likely to be interrupted if the energy runs low. Meanwhile,
compared with EVs, UAV-assisting networks are still new,
and their infrastructures are poor. While researchers mainly
focus on investigating the communication or application parts
of UAV-involved networks, the infrastructures of UAVs, such
as the deployment of charging stations, should catch up [7].

The traditional model of single ownership of all the physical
infrastructures now faces significant challenges: it may be
high cost and waste lots of energy. Take charging stations for
instance, the cost of building new charging stations includes
installation, maintenance, electricity grid distribution, storage
[12], resulting in huge pressure on operators. Meanwhile, it
is not energy-efficient for all operators to each have their
own grid infrastructure. In the current market environment,
infrastructure sharing idea may be a sustainable way to follow.
Instead of building dedicated charging stations, operators can
consider sharing the charging stations while maintaining an
acceptable service quality.

In this paper, we explore an infrastructure sharing strategy
in the EVs and UAVs-involved network: EVs’ operators are
willing to share their charging stations with UAVs as far as
their services are acceptable, and UAVs pay for the sharing. In
other words, UAVs can charge in EV charging stations to avoid
the traffic, hence, to achieve a better system performance.
However, the charging time may be longer in EV charging
stations since they are not designed for UAVs. We would like
to emphasize that we are considering wireless charging in this
work which enable using the charging station by two different
technologies such as the UAVs and the EVs. More details are
presented later in this section and Section II-D.

A. Related Work

Literature related to this work can be categorized into (i)
design of EV charging stations, (ii) UAV-assisted networks,
and (iii) design of infrastructure sharing. We provide a brief
introduction to each of them in the following lines.

EV charging stations placement and charging schedule.
A comprehensive survey on EV transportation was provided
in [13], which was mainly about key technologies, such
as energy storage, for transportation electrification in smart
grid scenarios. EV charging infrastructure deployment was
analyzed in [14]. Optimization of waiting time for EVs is
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studied in [15] using a fuzzy inference system. A Japanese
case study about quick charging of EVs based on waiting time
and cost-benefit analyses is investigated in [16]. The authors
studied the infrastructure placement from the perspective of
the agent and used the road network data of the Chicagoland
area. Authors in [17] presented an optimization of minimum
plug-in electric vehicles (PEV) infrastructure deployment for
highway corridors. Their models allowed for a straightforward
analysis despite uncertain input data such as the uncertainty
of unavailable information on PEV drivers’ behavior and
charging demand data. Besides, much of existing work on
EVs is related to charging scheduling in a vehicle-to-grid
(V2G) system, such as [18], [19]. The authors used queuing
networks to model the dynamics of EVs and investigated the
joint scheduling, which allowed the operators to optimize the
total cost of the system [20].

Stochastic geometry-based UAV-enabled network analysis.
Stochastic geometry is a strong mathematical tool that enables
large-scale wireless networks and has been demonstrated that
it provides a tight approximation to real networks. In-depth
tutorial and survey about modeling base stations (BSs) and
characterizing interference had been provided in [21], [22].
Authors in [23], [24] modeled the locations of UAVs and
charging stations by two independent Poisson point processes
(PPPs) and modified the definition of coverage probability
based on queuing theory by considering the energy limitation
of UAVs. In [25], the authors proposed a laser-powered UAV
system and introduced a new concept of energy coverage prob-
ability, which is a joint probability of harvesting energy and
SNR coverage. Authors in [26] considered renewable energy-
powered UAVs, which can harvest energy from solar or wind
resources, and derived the probability density function (PDF)
and cumulative density function (CDF) of harvest energy
and outage probability. Besides harvesting energy, authors in
[11], [27], [28] studied the tethered UAV, which is physically
connected to a ground station. While the tether provides the
UAV with a stable power supply and reliable data rate, it highly
restricts the mobility and freedom of UAVs.

Economic analysis of wireless network infrastructure shar-
ing. A brief review about infrastructure sharing was provided
in [29], which captured a conflict between high demands of
infrastructures and high cost. They categorized four types of
infrastructure sharing models, analyzed them from the per-
spective of economic dimensions, and provided a practical use
case. Authors in [30] modeled and analyzed an infrastructure
sharing system composed of a single buyer mobile network
operator and multiple sellers. Specifically, they modeled the
locations of BSs by PPPs and found the coverage probability
of downlink signal-to-interference-plus-noise (SINR) under
the sharing environment. Using game theory, authors in [31]
proposed a system with a switching off decision, which
enabled the operators to switch off some BSs during low
traffic time, such as night. Besides BSs, spectrum licenses
can also be shared as mentioned in [32]. Similarly, authors in
[33] studied the spectrum sharing in Millimeter-wave cellular
networks from the perspective of economic.

While most of the existing literature considers the energy

resources separately, none of them analyze the possibility of
energy infrastructure sharing.

B. Contribution
In this paper, our main goal is to explore a charging in-

frastructure sharing strategy among the EV and UAV-involved
network, based on operators’ decisions, high profit, or good
service quality. We tap a new concept which is charging
infrastructure sharing among UAVs and EVs for the first time.
Since it is a totally new idea, it is difficult to find supporting
data, and our system models and analysis are based on some
reasonable assumptions. The main contributions of this work
included the following points.

Modeling of waiting time. While we consider that UAVs
can charge in EV charging stations, the proposed system
combines M/G/c and D/D/c queues, waiting times of both
EVs and UAVs become complex to model. We derive some
tight approximate equations about the waiting time of EVs and
UAVs in continuous time cases using the results from renewal
processes and under some reasonable assumptions. We then
show the waiting time gap between the approximated analysis
and simulations.

Coverage probability. We consider two association policies
between UAVs and charging stations: (i) biased distance, in
which the association cells form a multiplicatively weighed
Cox-Voronoi tessellation, and (ii) independent thinning, in
which the association regions form two independent Cox-
Voronoi tessellations. Our results show that association based
on independent thinning is slightly worse, however, easier than
biased distance. Building upon these two association policies
and the waiting time we derived, we formulate a more accurate
expression for coverage probability. It captures the queuing of
UAVs and the influence of limited energy resources.

Economic insights based on charging infrastructure sharing.
We consider two scenarios where the operators care more
about their service or profit. The established optimization
problem analyzes the weights of cost, profit, quality of service
from the perspective of EVs and UAVs, respectively. Our
results show that charging infrastructure sharing benefits both
UAVs and EVs operators, especially when the quality of the
charging station is high, say can charge multiple EVs or UAVs.
More details shown in Section VII.

II. SYSTEM MODEL

We consider a network composed of EVs, UAVs, their own
charging stations Φc,ev and Φc,d, and terrestrial base stations
(TBSs) Φt. The system is shown in Fig. 1 and related notations
are explained in Table I. The locations of EV charging stations
and UAV charging stations are modeled as two independent
Poisson line cox processes (PLCPs) Φc,ev and Φc,d with the
same line density λl and different point densities λp,ev and
λp,d. While we consider that EVs are more widely used than
UAVs, λp,ev is higher than λp,d. That is, λc,ev > λc,d, where
λc,ev and λc,d are densities of EV and UAV charging stations,
given by λc = πλlλp.

The locations of UAVs are modeled as a PPP Φu with
density λu. Given that UAVs are hovering at a fixed altitude
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TABLE I
TABLE OF NOTATIONS

Notation Description
Φc,ev , Φc,d; Φt Locations of UAV, EV charging stations; TBSs
λl; λp,ev , λp,d Line density, point density
λc,d, λc,ev UAV, EV charging station density
λt, λu TBS density, UAV density
µ, σ Average and deviation of SOC
Pcha EV charging rate
a, b CV (or MWCV) tessellation fitting parameters

pm, ps Traveling-related, service-related power
h, v UAV altitude, velocity during traveling

Bmax,ev, Bmax EV, UAV battery capacity
Tch,d,ev, Tch,d,d; Ttra, Tser Charging time of EVs, UAVs; service, traveling time of UAVs

Rs,d, Rs,ev Distance to the nearest UAV, EV charging station
rc Radius of MCP disk

c1, c2 N/LoS environment variable
ρu, ρt Transmission power of UAVs, TBSs, respectively
γ, σ2

n SINR threshold, noise power
αn, αl, αt N/LoS and active charging station path-loss exponent

mn,ml, ηn, ηl N/LoS fading gain, additional loss
ALoS(r), ANLoS(r), ATBS(r) Probability of the reference user associating with nearest LoS/NLoS UAVs, or TBS, respectively

Ad(βd), Aev(βd) Probability of the reference UAV associating with EV, UAV charging stations
Nd,ev , Nd,d Number of drones in EV, UAV charging stations

Tw,ev; Tw,d,d, Tw,d,ev Waiting time of EVs, waiting time of UAVs in UAV, EV charging stations, respectively

EV wireless charging station

User cluster

TBS

UAV CS

Fig. 1. Illustration of the system network.

h above user cluster centers to provide service and they
only travel to the charging station to recharge/swap their
battery. To analyze the benefits of infrastructure sharing, we
assume that UAVs can recharge in both types of charging
stations and we analyze two different association policies,
as shown in Fig. 2: (i) independent thinning, in which a
fraction of UAVs recharge in EV charging stations denoted
by the offloading ratio βo, and (ii) biased distance, in which
UAVs associate with the charging station based on the biased
distance, min(Rs,ev, βdRs,d), where Rs,ev and Rs,d are the
distances between the UAV and its nearest EV/UAV charging
station, respectively, and βd is the association weight. In the
first policy, the densities of UAVs recharge in EV charging
stations and UAV charging stations are βoλu and (1− βo)λu,

respectively, and the association regions of the UAVs with two
types of charging stations form two independent Cox-Voronoi
(CV) tessellations. In the second policy, the association regions
form one multiplicatively weighed Cox-Voronoi (MWCV)
tessellation. Notice that βd = 1 is the special case of the
presented model with equal distance: UAVs go to the nearest
charging stations. Without loss of generality, we perform our
analysis in the rest of the paper at a typical UAV located at
the origin and the typical association (CV or MWCV) region
that contains the origin, denoted by association cell.

The arrival process of EVs is considered as a Poisson
process with an average arrival rate µe and the EV charging
stations charge EVs and UAVs depending on different serving
policies. Moreover, we assume that EV charging stations can
serve c customers simultaneously, which is also known as the
capacity of EV charging stations, and m UAVs can be charged
together, due to the size of EVs being larger than UAVs. It
means that while we assume that UAVs can recharge in EV
charging stations, say two or three UAVs can charge within the
same time slot. To be more realistic, our system also includes
TBSs, to serve the users in the clusters, whose locations are
modeled by an independent PPP with density λt.

A. Waiting Time

The remaining state of charging (SOC) of the EV battery
level is a random variable modeled by a truncated lognormal
distribution with average (µ) and typical deviation (σ) [34] as
follows

fSOC(e) =
1

eσ
√

2π

exp(− (ln e−µ)2

2σ2 )

FSOC(100)− FSOC(0)
, (1)
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EV CS

UAV CS

UAVs with density 𝛽𝜊𝜆𝑢

UAVs with density (1 − 𝛽𝜊)𝜆𝑢

(a)

Association region expansion 
(𝛽𝑑,1 < 𝛽𝑑,2)

EV CS

UAV CS

(b)

Fig. 2. Illustration of the system model, two types of UAVs’ association policies. (a) association based on independent thinning: the association cell forms
two independent CV tessellations. (b) association based on biased distance: the association cell forms one MWCV tessellation.

c = 2

c = 2

FIFS:

EV first:

time

time

Queue

m = 2

m = 2

Fig. 3. Illustration of the system model, two types of serving policies: (i)
charge depends on arrival time and (ii) EVs have higher priority.

where FSOC(e) = 1
2

[
1+erf

(
ln e−µ

2σ2

)]
. Assume that the EVs

are fully charged when they leave the charging station, and the
charging time Tch,ev is

Tch,ev =
Bmax,ev

Pcha
(1− SOC

100
), (2)

where Pcha is the charging rate.
As mentioned, UAVs can recharge in both types of charging

stations, Φc,ev and Φc,d with different charging time Tch,d,ev

and Tch,d,d, respectively. We compare the system performance
under two serving policies: first in first serve (FIFS) and EV
first, as shown in Fig. 3.

Recall that EV charging stations have capacity c and can
charge m UAVs simultaneously.

Definition 1 (FIFS). In the case of FIFS, Φc,ev charge EVs
and UAVs based on their arrival time. In this case, the waiting
time of UAVs and EVs are respectively denoted by Tw,ev,fifs

and Tw,d,fifs.

Definition 2 (EV First). In the case of EV first, EVs have
higher priority than UAVs: Φc,ev charge the EVs first and
UAVs can only be charged when no EV waiting. In this case,
the waiting time of UAVs and EVs are respectively denoted by
Tw,ev,evfirst and Tw,d,evfirst.

Assume that the UAV is available when it is hovering above
the cluster center and providing service, and is unavailable
when traveling to the nearest charging station and waiting to
recharge. Hence, the availability probability of a UAV is a time
fraction.

Definition 3 (Availability Probability). We define the event
A that indicates the availability of the typical UAV, which
denotes that the UAV is available and can provide service.
Conditioned on N UAVs in the typical association cell, the
availability probability of the UAV is

P(A|N) = EΦc

[
Tser(x)

Tser(x) + Tch + Tw,d|N + 2Ttra(x)

]
, (3)

where x annotates the location of the typical UAV, and

Ttra(x) =
Rs,{ev,d}(x)

v
, (4)

Tser(x) =
Bmax − 2pm

Rs,{ev,d}(x)

v

ps
, (5)

in which Bmax, v, pm and ps is the maximum battery size,
velocity, traveling- and serving-related power consumption
of UAVs, and waiting time of UAVs depends on N , either
Tw,d,fifs|N or Tw,d,evfirst|N, and N can be either Nd,ev or Nd,d
, which are explained in Section III. Hence, the unconditional
availability probability is

Pa = EN [P(A|N)]. (6)

B. Power Consumption
We consider the UAV’s power consumption composed of

two parts: (i) service-related power ps, including hovering
and communication-related power, (ii) traveling-related power
pm, which denotes the power consumed in traveling to/from
the EV/UAV charging station through the horizontal distance
Rs,{ev,d}.

Given in [35], pm is a function of the UAV’s velocity v and
given by

pm = P0

(
1 +

3v2

U2
tip

)
+
Piv0

v
+

1

2
d0ρsAv

3, (7)
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where P0 and Pi present the blade profile power and induced
power, Utip is the tip speed of the rotor blade, v0 is the mean
rotor induced velocity in hover, ρ is the air density, A is the
rotor disc area, d0 is fuselage drag ratio, and s is rotor solidity.
In this case, the energy consumed during traveling to or from
the associated charging station is

Et =
Rs,{ev,d}(x)

v
pm

=
Rs,{ev,d}(x)

v

(
P0

(
1 +

3v2

U2
tip

)
+
Piv0

v
+

1

2
d0ρsAv

3

)
.

(8)
In the rest of the paper, we use the optimal value of v that
minimizes Et.

C. User Association

Without loss of generality, we focus on a typical user
randomly selected from the typical user cluster centered at the
origin. From the perspective of the typical user, we denote the
typical UAV as cluster UAV. Assume that the user associates
with the cluster UAV if it is available (hovering and providing
service), if not, associates with a nearby available UAV or
TBS, depending on the average received power. Let Φuo , Φu′

and Φt be the point sets of serving or interference BSs: cluster
UAV, available UAVs and TBSs. Notice that the set Φuo is
composed of only one point, which is the location of the
cluster UAV in case it is available, otherwise, Φuo = ∅. When
the cluster UAV is unavailable, the user associates with a UAV
in Φu′ or the closest TBS in Φt. The point process Φu′ is
constructed by independently thinning Φu with the probability
Pa. Therefore, the density of Φu′ is λ

′

u = Paλu.
When the typical user associates with a UAV, it can be either

line-of-sight (LoS) or non line-of-sight (NLoS), the received
power is

pu =

{
pl = ηlρuGlR

−αl
u , in case of LoS,

pn = ηnρuGnR
−αn
u , in case of NLoS,

where ρu is the transmission power of the UAVs, Ru denotes
the Euclidean distance between the typical user and the serving
UAV, αl and αn present the path-loss exponent, Gl and Gn are
the fading gains that follow gamma distribution with shape and
scale parameters (ml,

1
ml

) and (mn,
1
mn

), ηl and ηn denote
the mean additional losses for LoS and NLoS transmissions,
respectively. Based on [36], the probability of establishing LoS
or NLoS channels between users and UAVs is

Pl(r) =
1

1 + c1 exp

(
− c2

(
180
π arctan

(
h√

r2−h2

)
− c1

)) ,
(9)

where r is the Euclidean distance, c1 and c2 are two
environment-related variables (e.g., urban, dense urban, and
highrise urban), and h is the altitude of the UAV. Consequently,
the probability of NLoS is Pn(r) = 1− Pl(r).

When the user associates with TBS, the received power is
pt = ρtHR

−αt
t ,

in which ρt is the transmission power of TBSs, Rt denotes
the distance between the user and the nearest TBS, H is the

fading gain that follows exponential distribution with unity
mean, and αt presents the path-loss exponent.

Let ANLoS(r), ALoS(r) and ATBS(r) be the probabilities
that the reference user associates with the nearest N/LoS UAV
or TBS, which is at r away, are respectively given by

A{NL,L}oS(r) = P(p{n,l}(r) > pt),

ATBS(r) = P(pt(r) > pu). (10)

We then define the coverage probability as the probability
that the typical user is successfully served, which is the event
that SINR of the related link is above a predefined threshold.

Definition 4 (Coverage Probability). The total coverage prob-
ability is defined as

Pcov =PaPcov,Uo
+ (1− Pa)Pcov,Ûo

=Pa(Pcov,Uo,l + Pcov,Uo,n)

+ (1− Pa)(Pcov,Ûo,l
+ Pcov,Ûo,n

+ Pcov,t), (11)

in which,

Pcov,Uo
=

∑
bs∈{N/LoS}

E[Abs(r)P(SINR ≥ γ|r, bs)],

Pcov,Ûo
=

∑
bs∈{TBS,N/LoS}

E[Abs(r)P(SINR ≥ γ|r, bs)],

where Pcov,Uo and Pcov,Ûo
are the coverage probabilities

when the cluster UAV is available and unavailable, respec-
tively. Pcov,Uo,l and Pcov,Uo,n are the coverage probabilities
when associating with the LoS/NLoS cluster UAV. Pcov,Ûo,l

,
Pcov,Ûo,n

and Pcov,t are the coverage probabilities when
associating with the nearby available LoS/NLoS UAV and the
nearest TBS, respectively.

Φu′ is composed of two subsets Φu′l
and Φu′n , which

denote the locations of available LoS UAVs and NLoS UAVs,
respectively. Conditioning on the serving BS bs, the SINR and
the aggregate interference is defined as

SINR =
max(pu, pt)

I + σ2
,

I =
∑

Ni∈Φ
u
′
n
/bs

ηnρuGnD
−αn
Ni

+
∑

Lj∈Φ
u
′
l

/bs

ηlρuGlD
−αl
Lj

+
∑

Tk∈Φt/bs

ρtHD
−αt
Tk

,

in which DNi , DLj and DTk are the distances between the
typical user and the interfering NLoS, LoS UAVs, and TBSs,
respectively.

D. Infrastructure Sharing

We consider a scenario where EV operators share their
infrastructure (EV charging stations) with UAV operators as far
as their own services are qualified, and UAV operators pay for
the corresponding service. Besides, if the infrastructure shared
by EVs cannot maintain an acceptable network performance,
say coverage probability is too low, UAVs need to install more
dedicated charging stations, of which the density is denoted
by ∆λc,d.

The proposed objective functions are the total profit on the
sides of UAVs’ and EVs’ operators, respectively. Note that
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in these two objective functions, the only constraints are the
values of β{d,o}, from 0 to the optimal values, where 0 denotes
no sharing and optimal values are obtained from the maximal
coverage probability (More details are provided in Section
VII).

Definition 5 (Objective Function). For EVs’ operator, the
formulated function deals with the total extra waiting time
of EVs and the profit paid by UAVs’ operator per charging
station per year:

Ce = wwait∆Tw,ev · 365 · 24µe + winf,evCinf,d(β{d,o}),
(12)

where winf,ev, wwait are objective function coefficients
(weights of objectives), ∆Tw,ev×365×24µe is the total extra
waiting time of EVs per charging station and Cinf,d(β{d,o}) is
the infrastructure sharing fee that UAVs’ operators payed for
EVs’ operators. For example, if wwait is larger than winf,ev,
it means that EVs’ operator care more about the quality of
their own services.

For UAVs’ operator, the formulated function deals with the
improvement of network performance (coverage probability),
cost of installing new charging stations and infrastructure
sharing fee,

Cu = wcov
P
′

cov(∆λc,d)

Pcov,in
+
wc∆λc,d
λc,d

+ winf,dCinf,d(β{d,o}),

(13)
where wc, wcov and winf,d are objective function coefficients,
Pcov,in and P

′

cov(∆λc,d) are the initial performance (without
infrastructure sharing), and performance with infrastructure
sharing and more dedicated charging stations.

In the following text, we analyze the system performance
from the perspective of UAVs and EVs. Since UAVs are
for communication, we study the coverage probability, which
is defined as the probability of the reference user being
successfully served, e.g., SINR is greater than the predefined
threshold. To do so, in Section III we compute the waiting time
of UAVs under the aforementioned two association policies
and charging station serving policies. We then in Section IV
obtain the availability probability of UAVs, which is needed
in coverage probability analysis, say (11), and the final results
of coverage probability is given in Section V. For EVs, we
are concerned about the waiting time for charging. Hence, we
in Section III compute the waiting time of EVs in the case of
sharing charging stations.

III. WAITING TIME

This section analyzes the waiting time of both EVs and
UAVs and is the most important technical section of this paper.
Notice that deriving the exact waiting time equations is tricky,
our results are based on some reasonable assumptions and tight
approximations.

Given that Tser is much longer than Ttra, therefore, we
ignore Ttra when we analysis the waiting time and assume that
all the drones have the same service time. Let Nd,ev and Nd,d
be the number of drones recharging in EV charging stations
and UAV charging stations, respectively.

𝑛𝑒𝑣 ത𝑇𝑐ℎ,𝑒𝑣 + (𝑁 − 1)𝑇𝑐ℎ,𝑑,𝑑 = 𝑇𝑠𝑒𝑟 + 𝑇𝑤

arrive

arrive

𝑇𝑤 𝑇𝑐ℎ,𝑑,𝑑 𝑇𝑠𝑒𝑟 𝑇𝑤 𝑇𝑐ℎ,𝑑,𝑑

𝑛𝑒𝑣 = (𝑇𝑤 + 𝑇𝑐ℎ,𝑑,𝑑 + 𝑇𝑠𝑒𝑟)𝜇𝑒

arrive

𝑇𝑤 𝑇𝑐ℎ,𝑑,𝑑 𝑇𝑠𝑒𝑟 𝑇𝑤 𝑇𝑐ℎ,𝑑,𝑑

𝑛𝑒𝑣 = (𝑇𝑤 + 𝑇𝑐ℎ,𝑑,𝑑 + 𝑇𝑠𝑒𝑟)𝜇𝑒

No EVs waiting 

arrive

Waiting new arrived EVs 

FIFS

EV first

𝑐 = 1,𝑚 = 1

Fig. 4. Illustration of the proof of waiting time (FIFS and EV first).

We first derive the waiting time of drones in their dedicated
charging stations.

Lemma 1 (Waiting Time of UAVs in UAV Charging Stations).
In the typical association cell of UAV charging station, con-
ditioned on Nd,d, the waiting time Tw,d,d is given by

Tw,d,d|Nd,d
= Tch,d,d

(
Nd,d −

Tser

Tch,d,d
− 1

)
, (14)

where Tch,d,d is the charging time of UAVs in their dedicated
charging stations.

We then derive the waiting time of drones in EV charging
stations based on the aforementioned serving priorities (Defi-
nition 1 and Definition 2).

Lemma 2 (Waiting Time of UAVs in EV Charging Stations
(FIFS)). When the charging policy in the typical cell of
EV charging station is FIFS, conditioned on the number of
associated drones Nd,ev , the waiting time of UAVs is, in the
case of Nd,ev ≥ mc(1 + Tser

Tch,d,ev
),

Tw,d,ev|Nd,ev
=

Tch,d,ev(
Nd,ev
mc − 1) +

Tch,d,ev+Tser

c µeE[Tch,ev]− Tser

1− µeE[Tch,ev]
c

. (15)

where c is the capacity of EV charging stations (the number
of EVs that can be served together) and m denotes that m
UAVs can charge together within one charging slot.

Proof: Here we provide the proof for c = 1, as shown
in Fig. 4. From the perspective of a typical UAV, the waiting
time can be computed as follows

(Tw,d,ev|Nd,ev
+ Tch,d,ev + Tser)µeE[Tch,ev]

+ (Nd,ev − 1)Tch,d,ev − Tser = Tw,d,ev|Nd,ev
, (16)

where the first term (Tw,d,ev|Nd,ev
+Tch,d,ev+Tser)µeE[Tch,ev]

is the total charging time of EVs coming after the arrival of
the typical UAV, (Nd,ev−1)Tch,d,ev is the total charging time
of other UAVs. The proof completes by simplifying the above
equation.

Lemma 3 (Waiting time of UAVs in EV Charging Stations
(EV First)). When EVs have higher priority while charging in
EV charging stations, conditioned on the number of associated
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drones Nd,ev , the waiting time of UAVs is, in the case of
Nd,ev ≥ mc(1 + Tser

Tch,d,ev
),

Tw,d,ev|Nd,ev
=

Tch,d,ev(
Nd,ev
mc − 1) +

Tch,d,ev+Tser

c µeE[Tch,ev]− Tser

1− µeE[Tch,ev]
c

. (17)

Proof: Similar to the Proof of Lemma 2, as shown in Fig.
4. From the perspective of a typical UAV, the waiting time is

(Tw,d,ev|Nd,ev
+ Tch,d,ev + Tser)µeE[Tch,ev]

+ (Nd,ev − 1)Tch,d,ev − Tser = Tw,d,ev|Nd,ev
. (18)

Here we find that the equations are exactly the same which is
because of the scheduling of UAVs: UAVs visit the charging
stations after a fixed amount of time frequently. If the UAV
let the EVs charge first, there are no accumulated EVs waiting
when the UAV start charging, however, it needs to wait the
later arrival EVs charging during waiting in the charging
stations.

Remark 1. Note that since the arrival processes of UAVs
are correlated in time and scheduled, the equations of wait-
ing time of FIFS and EV first are exactly the same when
Nd,ev ≥ mc(1 + Tser

Tch,d,ev
). Besides, the charging time of UAVs

in EV charging station is very long and the density of UAVs
is much higher than the density of charging stations, hence,
Nd,ev ≥ cm(1 + Tser

Tch,d,ev
) can be be satisfied in the given

system. While the waiting time of Nd,ev < mc(1 + Tser

Tch,d,ev
)

is given in Appendix A, it has a low probability. Therefore, in
these two policies the waiting time of UAVs are approximately
the same.

Lemma 4 (Waiting Time of EVs). The waiting time of EVs
are given by,

Tw,ev,fifs|Nd,ev
= Tw,d,ev|Nd,ev

+ Tw,ev,noDrone + Td|Nd,ev
,

Tw,ev,evfirst|Nd,ev
= Tw,ev,noDrone + Td|Nd,ev

, (19)

where

Tw,ev,noDrone =
µeE2[Tch,ev]

1− µeE2[Tch,ev]

E2[Tch,ev]

2E[T 2
ch,ev]

,

Td|Nd,ev
= min

(
1,

Nd,evTch,d,ev

mc(Tch,d,ev + Tser)

)
∫ Tch,d,ev

0

c

Tch,d,ev
(1− x

Tch,d,ev
)c−1dx. (20)

Proof: In the case of EV first, EVs don’t need to wait
for UAVs charging unless they are already charging. Hence,
the waiting time of an EV is the sum of charging time of EVs
come before it Tw,ev,noDrone and the remaining charging time
of UAVs Td|Nd,ev

.
In the case of FIFS, assume that an EV arrives after the

typical UAV, hence the waiting time of the EV is the sum of
the waiting time of the UAV and the charging time of EVs
before it and the remaining charging time of UAVs.

Remark 2. Based on Remark 1 and Lemma 4, we note that the
waiting time of UAVs are approximately the same in these two
serving policies while waiting time of EVs in the case FIFS
is much longer than that of EV first. Besides, the waiting time

of EVs increases slightly with the increase of Nev and then
stays constant, in the case of EV first. The same results shown
in Section VII. Therefore, in the following analysis, we focus
on analyzing the performance of infrastructure sharing based
on the serving policy: EV first.

IV. AVAILABILITY PROBABILITY

This section derives the availability probability of UAVs
based on two UAVs’ association policies: (i) biased distance
and (ii) independent thinning. Based on the association poli-
cies, we use the optimal βd and βo that maximize the coverage
probability.

A. Biased Distance

In this section, we derive the Pa under the biased distance
policy: the typical UAV associates with the charging station
based on min(Rs,ev, βdRs,d). To do so, we first formulate the
distance distribution.

Lemma 5 (Distance Distribution). The cumulative distribution
function of the distances between the typical UAV and the
nearest EV/UAV charging station denoted by Fc,ev(r) and
Fc,d(r), respectively, are given by

Fc,ev = 1− exp

(
− 2πλl

∫ r

0

1− exp(−2λp,ev
√
r2 − ρ2)dρ

)
,

(21)

Fc,d = 1− exp

(
− 2πλl

∫ r

0

1− exp(−2λp,d
√
r2 − ρ2)dρ

)
,

(22)
taking the derivative, their PDF are, respectively, given by

fc,ev(r) = 2πλl

∫ r

0

2λp,evr√
r2 − ρ2

exp(−2λp,ev
√
r2 − ρ2)dρ

exp

(
− 2πλl

∫ r

0

1− exp(−2λp,ev
√
r2 − ρ2)dρ

)
, (23)

fc,d(r) = 2πλl

∫ r

0

2λp,dr√
r2 − ρ2

exp(−2λp,d
√
r2 − ρ2)dρ

exp

(
− 2πλl

∫ r

0

1− exp(−2λp,d
√
r2 − ρ2)dρ

)
. (24)

The probability that the cluster UAV associates with the typ-
ical charging station is a function of distance and association
weights. In the following lemma, we identify the conditional
and unconditional association probability.

Lemma 6 (UAV’s Association Probability). Given that the
nearest serving charging station is at r away, the association
probability is given by,

Aev|r(r, βd) = P(Rs,ev < βdRs,d)

= P(
r

βd
< Rs,d) = F̄c,d(

r

βd
), (25)

Ad|r(r, βd) = P(Rs,ev > βdRs,d)

= P(Rs,ev > βdr) = F̄c,ev(βdr), (26)

taking the expectation over the distance, the probabilities of
associating with EV/UAV charging stations are

Aev(βd) =

∫ ∞
0

F̄c,d(
r

βd
)fc,ev(r)dr,
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Ad(βd) =

∫ ∞
0

F̄c,ev(rβd)fc,d(r)dr. (27)

Note that for a PPP, the probability of the number of
points filling in a certain cell is proportional to the area
of this cell. Hence in the following lemma, we provide
the area approximation. Here we adopt both the fitting and
approximation formulas of cell area based on Poisson Voronoi
(PV) tessellations, however, it shows that they are both tight
for CV and MWCV tessellations, in the case that line density
is large while point density is low.

Lemma 7 (Area Approximation). Using the approximation
mentioned in [37], the association area of EV/UAV charging
stations can be approximated as

fC(c) =
ba

Γ(a)
(

λ

A(βd)
)(

λ

A(βd)
c)a−1 exp(−b λ

A(βd)
c), (28)

where λ and A(βd) are the density of charging stations (λc,ev
or λc,d) and UAV’s association probability defined in Lemma
6 (Ac,ev(βd) or Ac,d(βd)). As a random UAV is more likely
to lie in a larger cell, which is know as biased cell, and the
PDF of the biased cell is

fC′ (c) =
ba

Γ(a)
(

λ

A(βd)
)(

λ

A(βd)
c)a exp(−b λ

A(βd)
c). (29)

Knowing the area of the biased cell, apart from the typical
UAV, the PMF of the number of other UAVs are given in the
following lemma.

Lemma 8 (Average Number of UAVs). The PMF of the other
UAVs associated with the typical EV/UAV charging stations are
given by

P(Nd,ev = n) =
Γ(a+ n+ 1)

Γ(a)

ba

n!
(
λc,ev
Aev(βd)

)a+1

× λnu(
b

λc,ev
Aev(βd) + λu

)a+n+1 ,

P(Nd,d = n) =
Γ(a+ n+ 1)

Γ(a)

ba

n!
(
λc,d
Ad(βd)

)a+1

× λnu(
b

λc,d
Ad(βd) + λu

)a+n+1 . (30)

Proof: The number of UAVs per CV cell is a Poisson
random variable, with parameter cell area, given by

P(N = n) = EC′
[
P
(
N = n | C′

)]
=

∫ ∞
0

P(N = n)fC′(c)dc

=

∫ ∞
0

(λuc)
n e−λuc

n!

ba

Γ(a)
(

λ

A(βd)
)(

λ

A(βd)
c)a exp(−b λ

A(βd)
c)dc

=
Γ(a+ n+ 1)

Γ(a)

ba

n!
(

λ

A(βd)
)a+1 λnu(

b λ
A(βd)

+ λu

)a+n+1 . (31)

Notice that conditioned on associating with the tagged
charging station, the distance distribution is different from the
first contact distance in PLCP, since it is also influenced by
nearby charging stations and association weight.

Lemma 9 (Conditional Distance Distribution). Let Y{ev,d} be
the distance between the typical UAV and its serving EV/UAV

charging station. Conditioned on association, the PDF of
Y{ev,d} is

fYev (y) =
F̄c,d(

y
βd

)fc,ev(y)

Aev(βd)
, (32)

fYd(y) =
F̄c,ev(yβd)fc,d(y)

Ad(βd)
. (33)

Proof: Yev has the same distance distribution as Rs,ev
conditioned on the typical UAV being associated with the EV
charging station,

P(Yev > y)

=
P(Rs,ev > y | associate with EV charging station)

P(associate with EV charging station)

=

∫∞
y
F̄c,d(

r
βd

)fev(r)dr

Aev(βd)
, (34)

proof completes by taking the derivative.
Now we proceed to present the conditional and uncondi-

tional availability probability of UAVs in the case of biased
distance association policy.

Theorem 1 (Availability Probability). Availability probability
under the presented UAVs’ association policy is given by

Pa,bias =

∞∑
n=0

(∫ vBmax
2pm

0

gev(y | n)F̄c,d(
y

βd
)fev(y)dy

× Γ(a+ n+ 1)

Γ(a)

ba

n!
(
λc,ev
Aev(βd)

)a+1 λnu(
b

λc,ev
Aev(βd) + λu

)a+n+1

)

+

∞∑
n=0

(∫ vBmax
2pm

0

gd(y | n)F̄c,ev(yβd)fd(y)dy

× Γ(a+ n+ 1)

Γ(a)

ba

n!
(
λc,d
Ad(βd)

)a+1 λnu(
b

λc,d
Ad(βd) + λu

)a+n+1

)
,

(35)

where gev(y | n) = vBmax−2ypm
vBmax−2y(pm−ps)+vps(Tch,d,ev+Tw,d,ev|Nd,ev

)

and gd(y | n) = vBmax−2ypm
vBmax−2y(pm−ps)+vps(Tch,d,d+Tw,d,d|Nd ) .

Proof: See Appendix B.

B. Independent Thinning

In this section, we derive the Pa under the independent
thinning policy: the typical UAV associates with the charging
station based on the independent thinning.

In this policy, we consider UAVs are divided into two
parts: associating with Φc,ev and associating with Φc,d with
probability βo and 1 − βo, respectively. Following the same
steps in (31) and substituting the UAVs’ density βoλu and
(1 − βo)λu and association probabilities here equal to 1, we
derive the availability probability Pa,th.

Theorem 2 (Availability Probability). Availability probability
under the independent thinning association policy is

Pa,th = βo

vBmax
2pm∑
n=0

(∫ ∞
0

gev(y | n)fc,ev(y)dy
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× Γ(a+ n+ 1)

Γ(a)

ba

n!

(
βoλu

λc,ev

)n
(
b+ βoλu

λc,ev

)a+n+1

)

+ (1− βo)

vBmax
2pm∑
n=0

(∫ ∞
0

gd(y | n)fc,d(y)dy

× Γ(a+ n+ 1)

Γ(a)

ba

n!

(
(1−βo)λu

λc,d

)n
(
b+ (1−βo)λu

λc,d

)a+n+1

)
. (36)

Proof: Similar to Proof of Theorem 1, thus omitted here.

Note that in these two association policies, the expectation
of distance under the biased distance policy is shorter than the
other one. Hence, its performance is expected to be slightly
better than the other one. More details are shown in Section
VII.

In the following part of the paper, we assume that the
optimal value of βo and βd are used to maximize the coverage
probability given in the next part, and to simplify the notation
we use Pa as the optimal value for both Pa,bias and Pa,th.

V. COVERAGE PROBABILITY

In this section, our goal is to analyze the coverage prob-
ability. To do so, the distance between the BSs and users
are required and given in the following lemma. Recall that
Φu′ is the set formed by available UAVs from the original
point process Φu, with thinning probability Pa, the density of
available UAVs is λ

′

u = Paλu.

Lemma 10 (Distance Distribution). The probability density
function of the distances between the typical user and the
cluster UAV, the nearest available NL/LoS UAV, and the nearest
TBS, denoted by fRuo (r), fR

u
′
n

(r), fR
u
′
l

(r) and fRt(r), are
respectively given by

fRuo (r) =
2r

r2
c

, h ≤ r ≤
√
r2
c + h2, (37)

fR
u
′
n

(r) = 2πλ
′

uPn(r)r

× exp

(
− 2πλ

′

u

∫ √r2−h2

0

zPn(
√
z2 + h2)dz

)
, (38)

fR
u
′
l

(r) = 2πλ
′

uPl(r)r

× exp

(
− 2πλ

′

u

∫ √r2−h2

0

zPl(
√
z2 + h2)dz

)
, (39)

fRt(r) = 2πrλt exp(−πλtr2), (40)

where Pn(r) and Pl(r) are defined in (9).

Recall that we assume that the typical user associates with
the cluster UAV if it is available, otherwise, it associates with
a nearby available UAV or TBS based on the average received
power. The following lemma gives the association probability
of the typical user.

Lemma 11 (Association Probability). Given the serving BS
located at r away, the association probabilities of the typical
user are, respectively, given by

ALoS(r) = exp

(
− 2πλ

′

u

∫ √d2n(r)−h2

0

zPn(
√
z2 + h2)dz

)
× exp

(
− 2πλtd

2
lt(r)

)
, (41)

ANLoS(r) = exp

(
− 2πλ

′

u

∫ √d2l (r)−h2

0

zPl(
√
z2 + h2)dz

)
× exp

(
− 2πλtd

2
nt(r)

)
, (42)

ATBS(r) = exp

(
− 2πλ

′

u

∫ √d2tl(r)−h2

0

zPl(
√
z2 + h2)dz

)
× exp

(
− 2πλ

′

u

∫ √d2tn(r)−h2

0

zPn(
√
z2 + h2)dz

)
,

(43)

where dlt(r) = ( ρt
ρuηl

)
1
αt r

αl
αt , dn(r) =

max

(
(ηnηl )

1
αn r

αl
αn , h

)
, dl(r) = max

(
h, ( ηlηn )

1
αl r

αn
αl

)
,

dnt(r) = ( ρt
ρuηn

)
1
αt r

αn
αt , dtl(r) = max

(
h, (ρuηlρt

)
1
αl r

αt
αl

)
and dtn(r) = max

(
h, (ρuηnρt

)
1
αn r

αt
αn

)
.

Proof: See Appendix C.

Laplace transform of the aggregate interference is the final
requirement to the coverage probability.

Lemma 12 (Laplace Transform). Given the serving BS bs, the
Laplace transform of the interference is given by

LI(s, r)

= exp

(
−2πλ

′

u

∫ ∞
a(‖x‖)

[
1−

(
mn

mn + sηnρu(z2 + h2)−
αn
2

)mn]
× zPn(

√
z2 + h2)dz

)
× exp

(
−2πλ

′

u

∫ ∞
b(‖x‖)

[
1−

(
ml

ml + sηlρu(z2 + h2)−
αl
2

)ml]
× zPl(

√
z2 + h2)dz

)
× exp

(
−2πλt

∫ ∞
c(‖x‖)

[
1− (

1

1 + sρtz−αt
)

]
zdz

)
, (44)

in which,

a(‖x‖) =



0, if bs ∈ Φuo ,√
d2
n(‖x‖)− h2, if bs ∈ Φu′l

,√
‖x‖2 − h2, if bs ∈ Φu′n ,√

d2
tn(‖x‖)− h2, if bs ∈ Φt,
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b(‖x‖) =



0, if bs ∈ Φuo ,√
‖x‖2 − h2, if bs ∈ Φu′l

,√
d2
l (‖x‖)− h2, if bs ∈ Φu′n ,√

d2
tl(‖x‖)− h2, if bs ∈ Φt,

c(‖x‖) =


0, if bs ∈ Φuo ,

dlt(‖x‖), if bs ∈ Φu′l
,

dnt(‖x‖), if bs ∈ Φu′n ,

‖x‖, if bs ∈ Φt,

Proof: The Laplace transform is computed using moment
generating function (MGF) of Gamma distribution, probability
generation functional (PGFL) of inhomogeneous PPP. For
more details, please refer to [24].

Using the results derived thus far, the total coverage prob-
ability can be obtained as given in the following theorem.

Theorem 3 (Coverage Probability). When the typical user is
associated with the cluster UAV, conditioned on LoS or NLoS,
the coverage probability is

Pcov,Uo,l
=

∫ √h2+r2c

h

ml−1∑
k=0

(−mlgl(r))
k

k!

× ∂k

∂sk

[
Lσ2+I(s, r)

]
s=mlgl(r)

Pl(r)
2r

r2
c

dr, (45)

Pcov,Uo,n
=

∫ √h2+r2c

h

mn−1∑
k=0

(−mngn(r))k

k!

× ∂k

∂sk

[
Lσ2+I(s, r)

]
s=mngn(r)

Pn(r)
2r

r2
c

dr. (46)

where gl(r) = γ(ηlρu)−1rαl and gn(r) = γ(ηnρu)−1rαn .
When the cluster UAV is unavailable, the coverage proba-

bility when associating with the nearest LoS/NLoS available
UAV Pcov,Ûo,l

and Pcov,Ûo,n
can be given by

Pcov,Ûo,l
=

∫ ∞
h

ALoS(r)

ml−1∑
k=0

(−mlgl(r))
k

k!

× ∂k

∂sk
Lσ2+I(s, r)|s=mlgl(r)

]
fR

u
′
,l

(r)dr, (47)

Pcov,Ûo,n
=

∫ ∞
h

ANLoS(r)

mn−1∑
k=0

(−mngn(r))k

k!

× ∂k

∂sk
Lσ2+I(s, r)|s=mngn(r)

]
fR

u
′
,n

(r)dr, (48)

where fR
u
′
,l

(r) is given in (39).
When the typical UAV is unavailable, the coverage proba-

bility of associating with the nearest TBS Pcov,t can be written
as

Pcov,t =

∫ +∞

0

Lσ2+I(s, r)|s=θρ−1
t rαtATBS(r)fRt(r)dr.

(49)

Proof: The coverage probability is derived by the fact
that (i) the uniform distribution of the users in the disk
with radius rc and gl(r) = γσ2

ηlr
−αlρu

, (ii) the definition:

F̄G(g) = Γu(m,g)
Γ(m) , where Γu(m, g) =

∫∞
mg

tm−1e−tdt is the
upper incomplete Gamma function, and (iii) the definition
Γu(m,g)

Γ(m) = exp(−g)
∑m−1
k=0

gk

k! .
It can be seen that the above coverage probability equations

require evaluating higher order of derivatives of the Laplace
transform. Using the upper bound of the CDF of the Gamma
distribution [38], the above equations can be approximated in
the following lemma.

Lemma 13 (Approximated Coverage Probability). Following
the steps in [39] and [40], the approximate coverage proba-
bilities are given by,

Pcov,Uo,{l,n} =

m{l,n}∑
k=1

(
m{l,n}
k

)
(−1)k+1

∫ √h2+r2c

h

Lσ2+I(kβ2(m{l,n})m{l,n}g{l,n}(r), r)P{l,n}(r)
2r

r2
c

dr,

(50)

Pcov,Ûo,{l,n}
=

m{l,n}∑
k=1

(
m{l,n}
k

)
(−1)k+1

∫ ∞
h

A{L,NL}oS(r)

× fR
u
′
{l,n}

(r)Lσ2+I(kβ2(m{l,n})m{l,n}g{l,n}(r), r)dr,

(51)
in which β2 = (m{l,n}!)

( − 1
m{l,n}

).

Proof: The approximation is derive by using the definition
of CCDF of Gamma function, upper imcomplete Gamma
function and Binomial theorem.

VI. INFRASTRUCTURE SHARING

In this section, we relate the system performance and the
cost. While we show that infrastructure sharing can improve
the coverage probability of UAVs, however, the operators also
care about the fee they paid for the EV infrastructure sharing
and the cost of extra dedicated charging stations. The same
for EV operators, while they earn extra money from sharing,
their own service quality decreases.

As mentioned in Definition 5, UAVs’ operators pay for the
EV infrastructure, we simply consider this fee is composed of
voltage regulation and maintenance cost,
Cinf,d = Cvol + Cmain

=
365× 24× 60× E[Nd,ev]

E[Tser + Tch + Ttra + Tw]
·Bmax · cvol + c · cmain, (52)

where 24×60
E[Tser+Tch+Ttra+Tw] × Bmax is the total energy UAV

needed in a day, cvol is the price EV operators are paid and
cmain is the maintenance cost per charger [34].

EVs providers solve their optimization problem first: how
many UAVs they can help to offload from UAV charging
stations to maximize the profit from UAVs, given that the
extra waiting time of EVs are tolerable. Then, UAVs operators
solve their problem: based on the charging infrastructure EVs
shared, how to minimize the cost while ensure an acceptable
system performance, pay more for building their charging
stations to achieve a better performance, or pay less for less
dedicated charging stations and a lower system performance.

Observing that the objective functions (12) and (13) are
functions of the electricity price, which is different at each
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TABLE II
TABLE OF PARAMETERS

Parameter Symbol Simulation Value
Line density, point density λl; λp,ev , λp,d 24/π × 10−3; 2.1× 10−5, 1.05× 10−5

Charging station density λc,d, λc,ev 0.5/km2, 0.25/km2

TBS density, UAV density λt, λu 1/km2, 4/km2

Average and deviation of SOC µ, σ 3 to 0.6
EV charging rate Pcha 120 kw

CV (or MWCV) tessellation fitting parameters a, b 3.5
Traveling-related power pm 161.8 W
Service-related power ps 177.5 W

UAV altitude h 100 m
UAV velocity v 18.46 m/s

Battery capacity Bmax 177.6 W·H
Charging time Tch,d,ev, Tch,d,d 30, 5 min

Radius of MCP disk rc 100 m
N/LoS environment variable c1, c2 25.27,0.2

Transmission power ρu, ρt 0.2 W, 10 W
SINR threshold γ 0 dB

Noise power σ2
n 10−9 W

N/LoS and active charging station path-loss exponent αn, αl, αt 4, 2.1, 4
N/LoS fading gain mn,ml 1, 3

N/LoS additional loss ηn, ηl −20, 0 dB
Cost cvol, cmain 0.2 USD/kwh, 1131 USD/year

Weight wwait, winf,ev, wcov, wc (-1/3,2/3) or (-2/3,1/3), (8,1) or (6,1)

hour of the day and varies from the region, and weights of
objectives, it is difficult to obtain an exact value and say it
provides the best performance. However, providing a general
model to analyze this trade-off and considering the particular-
ity of each realistic scenario is the most suitable solution to
follow. Besides, the proposed system model and analysis can
be easily extended to difference scenarios. For instance, given
the electricity price is different of the day, EVs’ operators can
change offloading UAV densities and UAVs’ operators pay
different amounts of fees for infrastructure sharing according
to the electricity price, and then build their dedicated charging
stations by jointly considering multiple offloading ratios. We
do admit that such optimization highly depends on operators’
decision and is parameter-based, our goal here is to capture
the constraint of cost on system performance: deploying more
charging stations do achieve better performances, but all these
better performances are expected to cost more.

VII. NUMERICAL RESULTS

In this section we validate our analytical results with simu-
lations and evaluate the improvement of system performance
using infrastructure sharing. Unless stated otherwise, we use
the simulation parameters as listed herein Table II.

For the simulation of the considered setup, we apply Monte-
Carlo simulations with a large number of iterations to ensure
accuracy. In each iteration, we first generate 104 exponential
distributed random variables to simulate the arrival processes
of EVs. To compute the number of UAVs associate with
EV/UAV charging stations, we generate three independent
PPPs and compute the association cell. The average waiting
time of EVs and UAVs are obtained based on the two
association policies and serving policies. We then generate
another independent PPP realizations to model the locations
of user cluster centers and TBSs and generate the locations of
the reference user. Conditioned on the typical UAVs located

at the origin, we derive the coverage probability. In all the
figures we plot, markers are the simulation results and curves
are the analysis results.

In Fig. 5 and 6, we plot the waiting time of EVs and UAVs
with/without infrastructure sharing: we increase β{d,o} from 0,
which means no infrastructure sharing, till the optimal values,
which maximize the coverage probability, from the perspective
of UAVs. Here we only plot the worst curve of the waiting time
of EVs, under optimal values of β{d,o} (See Fig. 8 for details)
since the waiting time does not change a lot. Interestingly,
while the waiting time of UAVs drops dramatically, the waiting
time of EVs does not increase a lot, as mentioned in Remark 2,
which is because that Tw,ev is only a function of Nd,ev when
Nd,ev is a small value, while it stays constant when Nd,ev is
large, especially when the quality of EV charging station is
high (large capacity and can charge multiple UAVs).

Fig. 7 shows the benefit of infrastructure sharing for UAVs,
as it improves the coverage probability and approaches the
system upper bound where Tw and Tch is 0. However, the
coverage probability in the case of infrastructure sharing can-
not reach the system upper bound, owing to a longer charging
time in EV charging stations. That is, even though the waiting
time is approximately 0 and traveling time is negligible, gap
of availability probability (which is a time fraction denoted
that UAV is available and can provide service) exists between
using infrastructure sharing and deploying more dedicated
charging stations. Hence it requires a trade-off between better
performance and huge cost.

Fig. 8 shows the optimal values for both βd and βo. As
we offloading UAVs to EV charging stations, the waiting
time in UAV charging stations decreases, hence the coverage
probability increases. However, if we offload a large fraction of
UAVs to EV charging stations, UAVs start to have a traffic and
long waiting time in EV charging stations, then the coverage
performance decreases. In both Fig. 7 and Fig. 8, we show that
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Fig. 5. Analysis and simulation results of waiting time of UAVs under different average interarrival time of EVs in the case of sharing and no sharing. c and
m are charging slots and the number of UAVs that can be charged together in EV charging stations. The dash lines are the waiting time of UAVs in their own
charging stations without infrastructure sharing, and the sold lines are with the infrastructure sharing: increasing β{d,o} (the direction of the arrows) until the
optimal value (maximize the coverage probability).

the system performance based on biased distance association
policy is slightly better than independent thinning association
policy, which is because of the traveling distance in the first
association policy is shorter than than the second one.

Fig. 9 shows the results of optimal infrastructure sharing
strategy. While we find that the cost of installing extra ded-
icated charging stations is much higher than paying for the
infrastructure sharing, we assume that UAVs’ operators install
extra charging stations (the density is denoted by ∆λd) to im-
prove its system performance based on the decision of βd (here
we use βd to denote both βd and βo, for simplification). With
that being said, since we find infrastructure sharing fee is much
lower than installing new charging stations, UAVs’ operators
deploy their dedicated charging stations based on the sharing
strategy of EVs’ operators. Besides, the sharing fee paid for
EVs’ operators are not function of ∆λd, it is a constant added
up to the total cost. Hence, the optimization problem of EV,
(12), is actually about a trade-off between performance and
cost based on infrastructure sharing. If the operators care more
about their services, less sharing (βd,p < βd,c) and more
dedicated charging stations (∆λd,c < ∆λd,p) deployed for
EVs and UAVs respectively (blue and sold lines with circle
markers).

As shown, when the quality of EV charging stations is poor
(low capacity and cannot charge multiple UAVs), infrastructure
sharing is not a good strategy since the waiting time of EVs
increases dramatically. Hence, UAV operators need to build
more dedicated charging stations to achieve an acceptable
performance. When the quality of EV charging stations is high
(c = 3, r = 2), EV charging stations can help to offload

a larger scale of UAVs while still maintain the performance
compared with low quality case.

VIII. CONCLUSION

In this paper, we presented an optimization problem to
analyze the possibility of sharing charging infrastructure in
EV and UAV-involved networks. We first approximated wait-
ing time for both EVs and UAVs in continuous time, and
derived the availability probability of UAVs in a more accurate
method, compared with existing literature. We then solve our
optimization problem from the perspective of EVs’ and UAVs’
operators and based on weights of service quality and profit
or cost. Our results show some interesting system insights: if
the charging stations are high quality, charging infrastructure
sharing can benefit both UAVs’ and EVs’ operators.

APPENDIX

A. Waiting Time when Nd,ev < mc(1 + Tser

Tch,d,ev
)

In this part, we provide the waiting time equations for
Nd,ev < mc(1 + Tser

Tch,d,ev
). As mentioned in Remark 1,

the probability of Nd,ev < mc(1 + Tser

Tch,d,ev
) happened is

low and it is difficult to compute. Hence, we also present
an approximation here. The following equations derived by
conditioned on the number of EVs arrival during the serving
time interval of the typical UAV, and then take the expectation.

In the case of Nd,ev < mc(1 + Tser

Tch,d,ev
), if n ≥

c(Tser−Tch,d,ev)−Tch,d,ev
Nd,ev
m

E[Tch,ev] ,

Tw,d,ev|Nd,ev
= En

[
nE[Tch,ev]

c
+

(
E[Tch,ev]µe

c
− 1

)
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Fig. 6. Analysis and simulation results of waiting time of EVs under different average interarrival time in the case of sharing and no sharing. c and m are
charging slots and the number of UAVs that can be charged together in EV charging stations. The dash curves are the worst case of EVs, help to offload a
large scale of UAVs to maximize the coverage probability and the solid lines are for the waiting time of EVs without infrastructure sharing.
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×
(
Tser − (

Nd,ev
mc

− 1)Tch,d,ev

)]
,

else,

Tw,d,ev|Nd,ev
= En

[ ∞∑
x=0

(Tgap|nµe)
x exp(−Tgap|nµe)

x!
Tw|x

]
,

where n ∼ Exp
(
Tw,d,ev|Nd,ev

+ Tch,d,ev
Nd,ev
c

)
and

Tgap|n = Tser − (
Nd,ev
mc

− 1)Tch,d −
E[nTch,ev]

c
,

Tw|x =

∫ Tgap|n

0

∫ Tgap|n

t1

· · ·
∫ Tgap|n

tx

1

c
ft1,t2··· ,tx(t1, t2, · · · )

max

(
max(max(t

′

1 + E[Tch,ev], t2) + · · · , tx) + E[Tch,ev]

− Tgap|n, 0

)
dtx · · · dt1, (53)

when x = 1, 2, 3 the above equation Tw|x is,∫ Tgap|n

0

1

c

1

Tgap|n
max(0, t

′
1 + E[Tch,ev]− Tgap|n)dt1, (54)∫ Tgap|n

0

∫ Tgap|n

t1

1

c

2

T 2
gap|n

max(max(t
′
1 + E[Tch,ev], t2)

+ E[Tch,ev]− Tgap|n, 0)dt2dt1, (55)
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∫ Tgap|n

0

∫ Tgap|n

t1

∫ Tgap|n

t2

1

c

6

T 3
gap|n

max(max(max(t
′
1

+ E[Tch,ev], t2) + E[Tch,ev], t3) + E[Tch,ev]− Tgap|n, 0)dt3dt2dt1,
(56)

for x > 3, using the following lower bound approximation,∫ Tgap|n

0

x

Tgap|n

1

c
(1− t1

Tgap|n
)x−1

max(0, t
′

1 +
x

c
E[Tch,ev]− Tgap|n)dt1, (57)

in which,
t
′

1 = (t1 < T )(T + t1) + (t1 > T )t1,

T =
nµeE2[Tch,ev]

c2
. (58)

B. Proof of Theorem 1
Conditioned on N UAVs fill in the typical association cell,

availability probability is given by,
P(A | N)

= Aev(β)EYev
[

Tser(y)

Tser(y) + Tch,d,ev + Tw,d,ev|Nd,ev
+ 2Ttra(y)

]
+Ad(β)EYd

[
Tser(y)

Tse(y) + Tch,d,d + Tw,d,d|Nd,d
+ 2Ttra(y)

]
= Ad(β)EYd

[
vBmax − 2Ydpm

vBmax − 2Yd(pm − ps) + vps(Tch,d,d + Tw,d,d|Nd,d
)

]
+Aev(β)

EYev
[

vBmax − 2Yevpm
vBmax − 2Yev(pm − ps) + vps(Tch,d,ev + Tw,d,ev|Nd,ev

)

]
=

∫ vBmax
2pm

0

[
vBmax − 2ypm

vBmax − 2y(pm − ps) + vps(Tch,d,ev + Tw,d|Nd,ev
)

]
× F̄c,d(

y

β
)fc,ev(y)dy

+

∫ vBmax
2pm

0

[
vBmax − 2ypm

vBmax − 2y(pm − ps) + vps(Tch,d,d + Tw,d,d|Nd,d
)

]
× F̄c,ev(yβ)fc,d(y)dy, (59)
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then the unconditional availability probability is given by

Pa,bias =

∞∑
n=0

P(A | N)P(N = n),

proof completes by taking the expectation over Nd,ev and
Nd,d, respectively.

C. Proof of Lemma 11

When the cluster UAV is not available, users associate
with a nearby available UAV or the nearest TBSs, which
provides the strongest average received power. The probability
of associating with a nearby LoS UAV is,
ALoS(r) = ALoS−NLoS(r)ALoS−TBS(r)

= P(ηlρur
−αl > ηnρuR

−αn
u′n

)P(ρuηlr
−αl > ρtR

−αt
t )

= P
(
Ru′n > (

ηn
ηl

)
1
αn r

αl
αn

)
P
(
Rt > (

ρt
ρuηl

)
1
αt r

αl
αt

)
= exp

(
− 2πλ

′

u

∫ √d2n(r)−h2

0

zPn(
√
z2 + h2)dz

)
× exp

(
− 2πλtd

2
lt(r)

)
, (60)

where dlt(r) and dn(r) are defined in Lemma 11. ANLoS(r)
and ATBS(r) follow the same way, therefore omitted here.
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