
Learning to Denoise and Decode: A Novel Residual
Neural Network Decoder for Polar Codes

Zhiwei Cao, Hongfei Zhu, Yuping Zhao, Dou Li
School of Electronics Engineering and Computer Science

Peking University, Beijing, 100871, China
Email:{cao zhiwei, zhuhongfei, yuping.zhao, lidou}@pku.edu.cn

Abstract—Polar codes have been adopted as the control chan-
nel coding scheme in the fifth generation new radio (5G NR)
standard due to its capacity-achievable property. Traditional
polar decoding algorithms such as successive cancellation (SC)
suffer from high latency problem because of their sequential
decoding nature. Neural network decoder (NND) has been proved
to be a candidate for polar decoder since it is capable of one-
shot decoding and parallel computing. Whereas, the bit-error-
rate (BER) performance of NND is still inferior to that of SC
algorithm. In this paper, we propose a residual neural network
decoder (RNND) for polar codes. Different from previous works
which directly use neural network for decoding symbols received
from the channel, the proposed RNND introduces a denoising
module based on residual learning before NND. The proposed
residual learning denoiser is able to remove remarkable amount
of noise from received signals. Numerical results show that our
proposed RNND outperforms traditional NND with regard to the
BER performance under comparable latency.

I. INTRODUCTION

Polar codes proposed by Erdal Arikan are the first provable
capacity achieving codes for symmetric binary-input discrete
memoryless channels (B-DMCs) [1]. Although successive
cancellation (SC) decoding algorithm proposed by Arikan
initially has a lower complexity O(NlogN) in terms of the
code length N , its performance for finite block lengths is
not satisfactory. Later successive cancellation list [2], [3],
successive cancellation stack [4] and CRC-aided SCL/SCS
decoders [5] were introduced to improve the decoding per-
formance of polar codes. However, they still suffer from high
latency as well as limited throughput due to their sequential
decoding property, which is disadvantageous to the practical
wireless communication systems requiring high reliability and
low latency.

Recently deep learning (DL) has attracted worldwide atten-
tions because of its powerful capabilities to solve complicated
tasks. With the help of deep learning, significant improvements
have been achieved in many fields, such as computer vision
[6], natural language processing [7], autonomous vehicles
[8] and many other areas. In the field of communication,
the general channel decoding problems can also be solved
with deep learning, since they can be regarded as a type of
classification problem. The channel decoder based on deep
neural network is called the neural network decoder (NND)

This work is financially supported by The National Key Research and
Development Program of China under the Grant No. 2018YFB1801403.

consisting of two stages: NND training and NND testing. Non-
iterative and consequently low-latency decoding are two main
advantages of NND, because NND calculates the estimated
value of information bits by passing each layer only once
with the pre-trained neural network, which is referred to as
one-shot decoding. What’s more, the current deep learning
platforms, such as Pytorch [9], and the powerful hardwares
like graphical processing units (GPUs) can enable the efficient
implementation of NND.

NND for polar codes was proposed in [10], where the
authors found that structured codes are indeed easier to learn
than random codes, and the bit-error-rate (BER) performance
of NND is close to that of maximum a posteriori (MAP)
decoding. In [11] the authors considered a deep feed-forward
neural network for polar codes and investigated its decoding
performances with respect to numerous configurations: the
number of hidden layers, the number of nodes for each
layer, and activation functions. Later, more discussion on the
activation function of the neural network for decoding polar
codes and decoding under Reighlay fading channels using
NND can be found in [12] and [13], respectively. In [14],
the authors compared the decoding performance of three types
of neural network, i.e., multi-layer perceptron (MLP), convo-
lutional neural network (CNN) and recurrent neural network
(RNN) with the same parameter magnitude. The authors found
that the neural network is capable of learning the complete
encoding structure with noiseless codewords as training data.
The comparison of the three types of neural network was also
discussed in [15], where the authors proposed a unified polar-
LDPC NND by concatenating an indicator section.

All results shown in the above papers suggest that higher
test-SNR (Signal-to-Noise Ratio) during the NND testing stage
facilitates decoding with NND. Dramatically thinking, if we
can place a denoising neural network before NND to improve
the test-SNR, the modified NND will certainly show a better
decoding performance than the original NND. It is well known
that residual learning has been widely used in image denoising
[16]. Thus, it may shed some lights on the codeword denoising.

Motivated by this, in this paper we propose a residual neural
network decoder (RNND) for polar codes. The proposed
RNND introduces a denoiser based on residual learning before
NND to improve the SNR of received symbols. Simulation
results demonstrate that the proposed RNND has a consider-
able advantage over existing NNDs w.r.t. bit-error-rate (BER)

ar
X

iv
:1

90
8.

00
46

0v
1

 [
ee

ss
.S

P]
 1

 A
ug

 2
01

9

Fig. 1. Diagram of multi-layer perceptron (MLP).

performance under low latency.
The rest of this paper is organized as follows. Section II

provides some preliminary knowledge of polar codes, three
types of neural network (MLP, CNN, RNN) and the residual
learning. The system model is introduced in Section III. The
architecture of the proposed RNND with a novel multi-task
learning objective and the training and testing strategy are dis-
cussed in Section IV. We provide the experiment configuration
and corresponding numerical results in Section V. Eventually,
concluding remarks are given in Section VI.

II. PRELIMINARIES

A. Polar Codes

To construct an (N,K) polar codes, the K information bits
uA and the other N −K frozen bits uAc are first assigned to
the reliable and unreliable positions of the N -bit message uN1 ,
respectively. A is the information set, while Ac is the frozen
set which is the complementary set of A. The N −K frozen
bits with indices in Ac are always fixed to zeros. Then the N -
bit transmitted codeword xN1 can be obtained by multiplying
uN1 with the generator matrix GN as follows

xN1 = uN1 GN = uN1 BNF
⊗n
2 , n = log2N (1)

where ⊗ denotes the Kronecker product, F2 =

[
1 0
1 1

]
and BN is the bit-reversal permutation matrix.

B. Neural Network

In this paper, we utilize three popular and effective neural
network architectures: 1) MLP; 2) CNN; 3) RNN to con-
struct RNNDs and compare their BER performances. Here,
we briefly describe the general architecture of these neural
networks.

1) MLP: MLP is a kind of feedforward and densely
connected neural network. There is no feedback or loop in
the neural network and each node is connected with all
its ancestors. The input data is processed layer by layer
with affine transformation and nonlinear activation function
between layers and finally reaches the output layer. Fig. 1
illustrates the general architecture of MLP.

Fig. 2. Diagram of convolutional neural network (CNN). The black and blue
arrows represent affine transformation and pooling operators, respectively.
Better view in color.

Fig. 3. Diagram of long short-time memory (LSTM). ht, Ct, Xt and Ot

represent the hidden vector, cell state, input vector and output vector at time
t, respectively.

2) CNN: The hidden layers of classical CNN are either
convolutional layers or pooling layers. It is universally known
that CNN has strong ability of extracting features automati-
cally. Fig. 2 shows the classical diagram for CNN.

3) RNN: RNN is a class of neural network that has re-
current structure, i.e., previous states will influence current
outputs. Therefore, RNN is very powerful for time series
modeling. Traditional RNN suffers from severe vanishing and
exploding gradient problem [17], making it difficult to train.
Hence, in practice, people usually utilize its variants like
LSTM [18] and GRU [19]. In this paper, we use LSTM as our
practical RNN implementation. Fig. 3 presents the classical
structure of the LSTM.

C. Residual Learing

Residual learning of deep neural network was first proposed
in [20] to solve the performance degradation problem, i.e.,
the training accuracy begins to decrease as the depth of the
neural network increases. By assuming the residual mapping
is much easier to learn, the authors in [20] stacked a few
nonlinear layers for explicitly learning the residual mapping.
Residual learning of neural networks is achieved through

Fig. 4. Diagram of the residual learning block. H(x) corresponds to the
stacked weight layers with Relu non-linearity.

shortcut connections. Fig. 4 illustrates the general architecture
of the residual learning block.

III. SYSTEM MODEL

The system model in this paper is shown in Fig. 5. At the
transmitter, K-bit information uA is first encoded into a N -
bit codeword xN1 with a polar encoder. Then xN1 is mapped to
N modulated symbols sN1 through binary phase shift keying
(BPSK) modulation by si = 1 − 2xi for i = 1, 2, ..., N . The
modulated symbol sN1 is subsequently trainsmitted over an
additive white Gaussian noise (AWGN) channel.

The signal model for received symbols can be formulated
as follows

yN1 = sN1 + nN1 (2)

where nN1 ∼ N (0, σ2IN) represents the i.i.d. Gaussian noise
vector.

At the receiver, the received symbol vector yN1 first enters
the residual learning denoiser to reduce the noise. After the
denoising process, the filtered signal vector ŝN1 is then sent to
the neural network decoder. Finally, we obtain the estimated
value of uA, denoted as ûA. The two modules, residual
learning denoiser and neural network decoder, make up the
architecture of the proposed RNND which will be addressed
in Section IV. Addtionally, the three loss function calculation
modules which are denoising loss, decoding loss and multi-
task loss shown in Fig. 5 will be discussed in detail in Section
IV.

IV. PROPOSED RESIDUAL NEURAL NETWORK DECODER

In this section, we first delineate the architecture of the
proposed RNND which contains the residual learning denoiser
and the neural network decoder. The denoiser and decoder will
be jointly trained through a novel multi-task learning objective
which will be discussed in the following. Ultimately, we depict
the training and testing strategy for jointly learning the decoder
and the denoiser.

A. Residual Learning Denoiser

Residual learning has been shown to be a powerful tool
for image denoising [16] and the codeword denoising can

be regarded as the special case of image denoising in one-
dimension input. Residual learning module, i.e., H(x) in Fig.
4, can be directly viewed as a denoising module as we optimize
its parameters, so that the output of it, i.e., H(x) + x in Fig.
4, can be as close as possible to the transmitted symbols. The
residual learning denoiser consists of some stacked layers and
a shortcut connection, as shown in Fig. 4. The weight layers
in Fig. 4 can be any type of neural network. In this work,
we investigate three different types of neural network as the
denoiser, which are MLP, CNN and RNN, respectively.

As shown in Fig. 5, denote the function corresponding to
the stacked weight layers in the denoiser as H(yN1) and the
output of the denoiser is the element-wise summation over the
received signal vector yN1 and H(yN1)

ŝN1 = yN1 +H(yN1) (3)

For the denoising task, we aim to minimize the difference of
ŝN1 and the transmitted symbol sN1 . We take mean squared
error (MSE) to measure the discrepency between ŝN1 and sN1
and it leads to our loss function for the denoising task

Ldenoise =
1

N
||ŝN1 − sN1 ||22 (4)

B. Neural Network Decoder
The neural network decoder is illustrated in Fig. 5, following

the residual learning denoiser. In our work, we regard channel
decoding as a binary classification problem: the decoder
attempts to categorize each received symbol into 0 or 1. For
the classification problem, there are some commonly used loss
functions like binary cross entropy (BCE) and MSE. In [10]
the author has shown via experiments that MSE and BCE have
little difference w.r.t. the BER performance of NNDs. Here,
we utilize MSE as our loss function for decoding task

Ldecode(ûA, uA) =
1

K
||ûA − uA||22 (5)

=
1

K
||G(ŝN1)− uA||22

where, G is the function corresponds to the neural network
decoder.

C. Multi-task Learning
As mentioned above, our goal is to train the entire neural

network so that it can accomplish both denoising and decoding
tasks. One potential way for achieving such goal is multi-task
learning. In our work, we explicitly sum the decoding loss and
denoising loss together as our final loss function

L = Ldenoise + Ldecode (6)

With multi-task learning, we hope the learning process of
the denoiser and that of the decoder reinforce mutually. The
gradient signal from the decoder may lead to better learning
of the denoiser. Meanwhile the proposed denoiser will reduce
noise level of the received signal, which facilitates the decoder
to learn decoding rules. Since Ldenoise and Ldenoise are both
continous and differentiable everywhere, it can be efficiently
optimized with some famous optimizers like SGD [21] and
Adam [22].

Fig. 5. The system model in this paper. Residual learning denoiser and neural network decoder make up the architecture of the proposed RNND. The
denoising loss and decoding loss correspond to (4) and (5), respectively. The multi-task loss is the proposed joint optimization objective (6).

D. Training and Testing Strategy

1) Training data generation: To avoid curse of dimen-
sionality [23], we only take polar codes with code length
N = 16 and rate R = 1/2. With such code setting, there
are 28 = 256 distinct codewords with length N . We use all
of them for training NNDs. During training, these codewords
will be modulated with BPSK and contaminated by the AWGN
channel. We set the train-SNR = 0 dB as [10] suggests.

2) Training procedure: We use batch-based training
method. The batch size is set to be 64 in our experiments.
At each iteration, we first select a batch of codewords from
the codeword set in order. Then we push these codewords into
the model and evaluate the loss function with (6). Finally, we
calculate gradients with backpropagation and update model
parameters with Adam [22] in an end-to-end fashion. Leaning
rate is set to be 0.001 and the momentum is 0.99. After we
traverse the whole codeword set, we call one training epoch
is over. We jointly train our denoiser and decoder with 216

epoches.
3) Testing procedure: After the training stages of different

RNNDs, we start the NND testing stage. In contrast to the
training stage, the modulated symbols are transmitted over the
AWGN channel with different noise levels at the test stage. All
results presented in this paper are obtained with the trained
models during the testing stage.

V. NUMERICAL RESULTS

In this section, we first describe the design of the neural
network architecture. We subsequently calculate the SNR of
yN1 and ŝN1 with different neural network structures as denoiser
for verifying their strong denoising capacity. The probability
density function (PDF) of yN1 and ŝN1 are further calculated to
validate the design. Finally, decoding performance and com-
putation time comparison between NNDs, proposed RNNDs
and the SC algorithm will be discussed.

A. Design of Neural Network Architecture

In this paper, we name the RNNDs with MLP, CNN and
RNN architecture MLP-RNND, CNN-RNND, RNN-RNND,
respectively. The configuration of each RNND is portrayed in
the following.

1) MLP-RNND: The proposed architecture of MLP has 3
layers for denoiser and each layer contains 128, 64, 32 nodes,
respectively. Following the denoiser, there are another 3 layers
MLP for the decoder with 128, 64, 32 nodes in each layer.
The input and output size of the entire system are N and K
with no doubt.

2) CNN-RNND: As CNN is widely used in image pro-
cessing task, most CNN architectures deal with 2-D input
data. In our channel decoding task, we modify the CNN
architecture and set the input of CNN as 1-D received signal
vectors instead of 2-D images. Meanwhile, we also revise the
convolutional layer with 1-D convolution instead of classical
2-D convolution. The denoiser consists of 3 convolutional
layers with 64, 48, 32 channels, while the decoder contains
3 convolutional layers with 64, 32, 32 channels. We set the
convolutional kernel size to 3. In addition, MaxPooling [24]
with kernel size 2 and stride 2 is utilized between the adjacent
convolutional layers.

3) RNN-RNND: In order to make RNN suitable for channel
decoding, we regard the channel decoding task as a time series
classification problem. The RNN runs through the input vector
with one symbol as input and produces an output vector at
each timestep. After the RNN reads the entire input vector, it
produces a sequence of output vectors. Due to the recurrent
nature of RNN, the last vector in the output sequence encodes
the input vector. Thus we select it as the feature vector. It
will be further processed with one affine transformation layer
to produce the denoising or decoding output. We leverage
one layer RNN with output dimension 64 for the denoiser
and another one layer RNN with output dimension 48 for the
decoder.

Each RNND has its NND counterpart named MLP-NND,
CNN-NND and RNN-NND for performance comparison. For
NNDs, we just cancel the shortcut connection and keep the
number of layers the same as their counterpart. All NNDs
and RNNDs have similar amount of parameters to avoid
the performance difference coming from the difference of
parameter number. The total number of parameters of six types
of neural network is described in detail in Table I.

TABLE I
TOTAL NUMBER OF PARAMETERS OF SIX TYPES OF NEURAL NETWORK

Type of Neural Network Total Number of Parameters
MLP-NND 27336

MLP-RNND 25816
CNN-NND 25576

CNN-RNND 25256
RNN-NND 27208

RNN-RNND 28376

Fig. 6. The SNR comparison of signals before and after denoising with
different RNNDs. Original refers to the SNR of original received signals.

B. Denoising Capacity Comparison

We investigate the denoising performance of different de-
noisers in this section. Fig. 6 shows the denoising performance
of the denoiser of different neural networks with test-SNR
ranging from 0 dB to 7 dB. From Fig. 6, we can see
the great SNR improvement achieved by the denoisers. For
example, MLP-RNND improve the SNR by about 4 dB at
test-SNR = dB and more gain can be achieved when the test-
SNR increases. It can also be observed that MLP-RNND has
similar denoising performance compared with RNN-RNND
and both of them substantially outperform the CNN-RNND. It
is reasonable to conjecture that the BER performance of MLP-
RNND and RNN-RNND will also significantly outperform
CNN-RNND since the MLP and RNN denoiser erase more
noise than the CNN denoiser.

Fig. 7 studies the PDF of yN1 and ŝN1 of the MLP denoiser
under different test-Eb/N0. It is worth noting that the PDF
of ŝN1 is still similar to Gaussian distribution even though
the input Gaussian distributed signals yN1 have gone through
nonlinear operations. What’s more, it can be found that the
variance of the ŝN1 is much smaller than that of yN1 , which
implies considerably amount of Gaussian noise has been
removed from received signals.

C. BER Performance Comparison

After comparing denoising capacity of different denoisers,
we study the BER performance of NNDs, proposed RNNDs
and the SC algorithm, which is shown in Fig. 8. We can
observe that each RNND remarkably outperforms its NND

Fig. 7. The PDF of signals before and after denoising of the MLP-RNND
under different test-Eb/N0. Blue and orange region represent the PDF of
received signals and denoised signals, respectively. Better view in color.

Fig. 8. The BER performance comparison of NNDs, proposed RNNDs and
the SC algorithm.

counterpart. For instance, MLP-RNND obtains a gain of
roughly 0.2dB over MLP-NND at BER 10−4. Meanwhile, the
BER performance of MLP-RNND is very close to the SC
algorithm which is near optimal in our code setting. It should
be pointed out that the BER performances of MLP-RNND and
RNN-RNND exceed those of CNN-RNND by a large margin.
This is consistent with the conjecture we made in V-B. It is
also important to highlight that MLP-RNND outperforms both
CNN-RNND and RNN-RNND, which conforms to previous
research [15]. It implies that MLP may be the optimal structure
for polar NND.

D. Computation Time Comparison

We further study the computational time of NNDs, proposed
RNNDs and the SC algorithm. The results are illustrated in
Fig. 9. It is worthwhile mentioning that although there exists
small gaps between the BER performance of MLP-RNND

Fig. 9. The computation time comparison of NNDs, proposed RNNDs and
the SC algorithm.

and that of the traditional SC algorithm, MLP-RNND runs
more than 100 times faster than the SC algorithm. It implies
that the proposed MLP-RNND may be a strong alternative
for traditional SC algorithm and its variants. It must also
be mentioned that RNNDs run slightly slower than NNDs
whereas such differences are neglectable in practice.

VI. CONCLUTION

In this paper, we propose a novel residual neural network
decoder (RNND), which jointly learns to denoise and decode
with a multi-task training strategy. We present the PDF and
SNR of the signals before and after the trained denoiser, which
demonstrates the significant noise level supression of our
proposed denoiser. Simulation results show that with the aid
of the denoiser, one can obtain considerable BER performance
gain since less noisy signals are advantageous to learning
decoding rules. The computation time results demonstrate
that our proposed MLP-RNND may be a strong competitor
with classical SC algorithm due to its near optimal BER
performance and ultra low latency. Notably, although our
research focuses on polar codes with short code length, it is
also promising to use the proposed RNND to decode polar
codes with longer code length since the residual structure
facilitates training deep neural network [20].

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[3] K. Chen, K. Niu, and J. R. Lin, “List successive cancellation decoding
of polar codes,” Electronics Letters, vol. 48, no. 9, pp. 500–501, April
2012.

[4] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics
Letters, vol. 48, no. 12, pp. 695 –697, June 2012.

[5] ——, “Crc-aided decoding of polar codes,” IEEE Communications
Letters, vol. 16, no. 10, pp. 1668–1671, October 2012.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[7] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning
with Neural Networks,” arXiv e-prints, p. arXiv:1409.3215, Sep 2014.

[8] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in 2015 IEEE
International Conference on Computer Vision (ICCV), Dec 2015, pp.
2722–2730.

[9] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS Autodiff Workshop, 2017.

[10] T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning-
based channel decoding,” in 2017 51st Annual Conference on Informa-
tion Sciences and Systems (CISS), March 2017, pp. 1–6.

[11] J. Seo, J. Lee, and K. Kim, “Decoding of polar code by using deep
feed-forward neural networks,” in 2018 International Conference on
Computing, Networking and Communications (ICNC), March 2018, pp.
238–242.

[12] ——, “Activation functions of deep neural networks for polar decoding
applications,” in 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Oct
2017, pp. 1–5.

[13] A. Irawan, G. Witjaksono, and W. K. Wibowo, “Deep learning for polar
codes over flat fading channels,” in 2019 International Conference on
Artificial Intelligence in Information and Communication (ICAIIC), Feb
2019, pp. 488–491.

[14] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance
evaluation of channel decoding with deep neural networks,” in 2018
IEEE International Conference on Communications (ICC), May 2018,
pp. 1–6.

[15] Y. Wang, Z. Zhang, S. Zhang, S. Cao, and S. Xu, “A unified deep
learning based polar-ldpc decoder for 5g communication systems,” in
2018 10th International Conference on Wireless Communications and
Signal Processing (WCSP), Oct 2018, pp. 1–6.

[16] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, July
2017.

[17] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International conference on machine
learning, 2013, pp. 1310–1318.

[18] J. Schmidhuber and S. Hochreiter, “Long short-term memory,” Neural
Computing, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback
recurrent neural networks,” in International Conference on Machine
Learning, 2015, pp. 2067–2075.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] Xiao-An Wang and S. B. Wicker, “An artificial neural net viterbi
decoder,” IEEE Transactions on Communications, vol. 44, no. 2, pp.
165–171, Feb 1996.

[24] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proceedings of the 27th international
conference on machine learning (ICML-10), 2010, pp. 111–118.

	I Introduction
	II Preliminaries
	II-A Polar Codes
	II-B Neural Network
	II-B1 MLP
	II-B2 CNN
	II-B3 RNN

	II-C Residual Learing

	III System Model
	IV Proposed Residual Neural Network Decoder
	IV-A Residual Learning Denoiser
	IV-B Neural Network Decoder
	IV-C Multi-task Learning
	IV-D Training and Testing Strategy
	IV-D1 Training data generation
	IV-D2 Training procedure
	IV-D3 Testing procedure

	V Numerical Results
	V-A Design of Neural Network Architecture
	V-A1 MLP-RNND
	V-A2 CNN-RNND
	V-A3 RNN-RNND

	V-B Denoising Capacity Comparison
	V-C BER Performance Comparison
	V-D Computation Time Comparison

	VI Conclution
	References

