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Context-Consistent Generation of Indoor Virtual
Environments based on Geometry Constraints

Yu He, Ying-Tian Liu, Yi-Han Jin, Song-Hai Zhang∗, Yu-Kun Lai, and Shi-Min Hu

Abstract—In this paper, we propose a system that can automatically generate immersive and interactive virtual reality (VR) scenes by
taking real-world geometric constraints into account. Our system can not only help users avoid real-world obstacles in virtual reality
experiences, but also provide context-consistent contents to preserve their sense of presence. To do so, our system first identifies the
positions and bounding boxes of scene objects as well as a set of interactive planes from 3D scans. Then context-consistent virtual
objects that have similar geometric properties to the real ones can be automatically selected and placed into the virtual scene, based on
learned object association relations and layout patterns from large amounts of indoor scene configurations. We regard virtual object
replacement as a combinatorial optimization problem, considering both geometric and contextual consistency constraints. Quantitative
and qualitative results show that our system can generate plausible interactive virtual scenes that highly resemble real environments, and
have the ability to keep the sense of presence for users in their VR experiences.

Index Terms—Virtual Reality, Obstacle Awareness, User Interaction, Scene Generation, Geometric Constraints, Contextual Relation,
Layout Patterns
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1 INTRODUCTION

IN virtual reality (VR) systems for head-mounted displays
(HMDs), the sense of presence is mainly affected by visual

and aural cues [1], [2], [3]. However, most of the time, VR users
are in environments containing real-world objects. When users are
wearing HMDs, they can easily collide with real-world objects
since the surrounding physical environments cannot be seen, which
may reduce their sense of presence in the virtual environment, and
make it impossible to interact with real-world objects.

To avoid unintended collisions between users with HMDs and
real-world objects, the easiest and most direct way is to alert the
user of the approaching obstacles with non-visual feedback [4].
Alternatively, visualizing 3D images of real-world objects [5], [6],
and incorporating visual indicators such as wireframes into virtual
environments through mixed reality (MR) or augmented reality
(AR) techniques [7], [8] are also commonly adopted. However,
these methods introduce settings that are different from the real
space into the virtual environment, which may reduce the sense of
presence. To enable interactions with real objects, a basic idea is
to detect the 3D positions and orientations of real-world objects,
and replace them with virtual objects in the virtual environment [9],
[10], [11]. But existing methods mainly consider simple virtual
scenes with specific virtual objects such as rocks and trees, and
perform replacements based on simple rules [12], which cannot
handle complex indoor scenes with various categories of objects.

The methods above are designed for different needs, such as
obstacle awareness and physical interaction, and a fundamental
requirement for these methods is to ensure the sense of presence for
VR systems. In this paper, we propose a method to simultaneously
satisfy the above two needs with a high-level sense of presence.
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Our system creates a virtual scene containing virtual objects of the
same size and position as objects in the real scene. Unlike simple
virtual obstacle replacement [12], the generated scenes of our
system have rich content with context consistency. Meanwhile, by
following the object layout patterns, which include the occurrences
and spatial characteristics of objects extracted from existing scene
configurations, our system ensures plausibility of the generated
virtual scenes, making them highly resemble real environments.

To further support interaction, unlike the work [10] that detects
the position and orientation of interactive objects when the user is
walking, we design an algorithm that detects interactive planes in
the real scene and aligns these planes with interactive surfaces of
virtual objects. In this work, we define interactive planes as support
planes, where the users can place the virtual representation of a
real object. The key contributions of our paper are as follows:

• We present a system that can automatically generate
immersive interactive virtual reality environments with
rich contents by using physical environments as geometric
constraints, which ensures that real-world obstacles can be
avoided.

• We propose an object layout pattern extraction pipeline for
object selection and placement.

• We regard virtual object replacement as a combinatorial op-
timization problem considering both physical environment
geometric constraints and object layout patterns.

The rest of this paper is organized as follows. We first introduce
related work and briefly discuss the characteristics and limitations
of existing methods in Section 2. We give an overview of our
virtual scene generation system in Section 3, and the pipeline of
our approach is summarized in Figure 1. Followed by the technical
details of the proposed approach in Section 3.1 to Section 3.3.
Experimental setups and generation results are presented in
Section 4. We evaluate the proposed system quantitatively and
by user studies in Section 5. In Section 6, we summarize the
proposed system, and discuss limitations and potential future work.
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Fig. 1. Pipeline of the proposed system. (a) An example showing the major steps in our pipeline. We start with voxelizing the 3D scan of the real
environment (left column). Then we detect interactive planes (red boxes at the bottom right) and cluster the voxels (bottom row). Finally, we replace
the clusters with virtual objects based on geometric and context constraints to generate a virtual scene (right column). (b) Workflow of the proposed
system summarizing the major steps involved.

2 RELATED WORK

2.1 3D Reconstruction and Plane Detection

3D reconstruction approaches aided with low-cost sensors have
been very popular. Since the release of the Kinect, many research
works [13], [14], [15], [16] have been conducted with this type of
sensors for fast and stable reconstruction of indoor scenes. Shortly
after that, Google’s Project Tango also provides an opportunity
to facilitate 3D reconstruction and applications [17] in virtual
and augmented reality. In addition to this, stable reconstruction
based solely on RGB images has been extensively studied [18].
The captured 3D scenes can be represented in different forms. To
facilitate analysis of spatial occupancy, volumetric representations
are widely used. Voxelization is a post-processing method for
volume data that simplifies the representation of objects and
scenes while maintaining a reasonable degree of accuracy. Many
well-established works [19], [20], [21] have proposed different
approaches to accelerate this process, both in terms of software and
hardware. Our method also utilizes a volume-based representation
and we adapt the voxelization algorithm to take into account our
needs for collision avoidance.

Plane detection is widely mentioned and used in the study of 3D
scenes. As one of the most commonly used methods, the RANSAC
(Random Sample Consensus) method and its improvements [22],
[23] excel in plane detection problems. The Hough transform [24],
which is used heavily in shape detection, can also be applied to this
task. More recently, a number of data-driven approaches [25], [26]
have significantly increased the upper bound on the effectiveness
of planar detection.

2.2 Supervised Topic Models

In this paper, we expect to generate context-consistent scenes. To
achieve this, the latent associations between scene content and
scene type are essential in the generation process. Supervised
topic models provide a powerful tool for latent data discovery.
Therefore, we treat the virtual scene dataset as a corpus consisting
of multi-label documents. And we utilize a multi-label topic model
to extract the relationships between object categories and room

(a) (b)

Fig. 2. An example of voxelization of a scene. (a) General voxelization
representation for the scene, (b) Tiny-Voxelization representation for the
scene, detected interactive planes are highlighted in red.

types, which facilitate the selection of objects that fit the context
of the room. Supervised Latent Dirichlet Allocation (SLDA) [27]
and its variations are the most popular methods of supervised
topic models. SLDA assumes that the labels are generated based
on a mixture of empirical topics for each document, and limits
each document to have only one label. A similar work named
Discriminatively Trained LDA (DiscLDA) [28] cannot handle
the case of multi-label documents as well. Alternatively, Multi-
Multinomial LDA (MM-LDA) models each document as a bag
of words with a bag of labels [29], and derives the topic for
each observation from a shared topic distribution. MM-LDA is not
constrained to single-label documents, but the learned topics cannot
directly correspond to the labels in the label set. Another multi-label
document topic extraction model is Labeled LDA (L-LDA) [30],
which presents a solution to the credit attribution problem [27]. We
utilize L-LDA in this paper to obtain latent relationships, which are
the association relationships between the specific scene type and
objects appearing in the scene of this type. We define the strength
of a latent relationship by the probability of the object appearing in
the scene of such a type.

2.3 Obstacle Awareness in Virtual Reality
Collision with real-world objects is problematic for users in
experiencing virtual reality. Many methods have been developed
to solve the problem. The most direct obstacle awareness method
is based on non-visual feedback [4]. The authors embed vibration
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Fig. 3. Room type statistics. We show the types of rooms contained in
the virtual scene dataset and their corresponding numbers of rooms.

tactile actuators into the HMD to provide alerts when users
approach obstacles. However, such external signal interference
has a great impact on the sense of presence.

Alternatively, several methods try to display three-dimensional
representations of the real world in the virtual environment. In [5],
3D point cloud data of the real-world objects is displayed in the
virtual world. Users can recognize the information of virtual world
and real world simultaneously through the point cloud display. In
this method, to reduce the loss of presence, the authors filter the
point cloud to only keep the part that is sufficient to guarantee
the understanding of the real scene. Nevertheless, the presence of
a point cloud out of the context of the virtual environment can
still reduce the sense of presence for users. Other visualizations
such as occupancy maps and glass walls can also negatively affect
the feeling of presence [31], [32]. In addition, there are similar
methods that incorporate visual indicators such as wireframes
into the virtual environment to show real-world obstacles [7], [8].
Another recent approach uses the HTC Vive Pro to obtain the color
and stereo information of real-world objects which are embedded
into a virtual environment [33]. However the performance of this
system is limited by latency and low resolution.

Some approaches rebuild the real scene into the virtual
environment to keep the high level presence of users. In [34],
authors proposed an idea that generates a virtual aligned copy of
the real scene inside the virtual environment. The virtual copy
is generated by detecting the 3D orientation and position of the
mannequin. Another approach is described in [10]. An entire virtual
environment is rebuilt based on the real scene where the VR system
is set up. By detecting the walkable area and specific interactive
objects, this approach is guaranteed to avoid collisions and supports
interactions with certain virtual objects, but it is limited by the rigid
virtual scene generation rules.

Valve1 designs the Chaperone system based on their VR
platform including SteamVR2 and HTC Vive3 for real-world
obstacle awareness. When the system is set up, it keeps tracking
the location of the user in the tracked area, and warns the user
when he/she approaches an obstacle that cannot be seen because of
the headset. While there are settings to help Chaperone to be less
intrusive in a virtual environment, it still severely undermines the
sense of presence [4]. In the virtual reality experience, users can
choose different modalities to see the boundaries of the tracked area
or the real objects they are approaching. However, both solutions

1. https://www.valvesoftware.com/
2. https://store.steampowered.com/steamvr
3. https://www.vive.com/us/

produce signals that are completely out of context. [12] proposed an
obstacle awareness method which replaces the real-world obstacles
by virtual obstacles (such as stones, rocks and hills). Although
this method can help users avoid the obstacles in the real world,
its monotonous virtual substitutes usually do not conform to the
context of the virtual scene, thus affecting the sense of presence.
Inspired by this work, our generation pipeline adopts a similar
voxelization method for input RGB-D scans. However a new
combinatorial optimization method is developed in the virtual
object substitution process, which not only allows users to avoid
obstacles, but also maintains a sense of presence in the virtual scene.
[35] and [36] align CAD models to the corresponding parts of

the scene scan, and the aligned scene can avoid collisions without
losing immersion of users. However, the geometric constraints of
both methods are too strong: the retrieved CAD models are very
limited, which makes the scene generated by the replacement have
little diversity.

In this paper, we design an automatic virtual scene generation
system to overcome the limitations of existing methods. The system
can not only preserve the sense of presence of users, while avoiding
collisions with real-world objects, but also allow users to interact
with specific virtual objects. Varied scenes are generated according
to the context of the virtual environment and thus can maintain a
high degree of immersion.

(a) (b)

Fig. 4. (a)The occurrence probabilities calculated by our topic model
of object categories in three example types of rooms (larger font size
indicates higher probability), (b) An example library of object categories
for generating a bedroom virtual scene.

3 SYSTEM OVERVIEW

In this section, we describe the workflow of our virtual content gen-
eration pipeline for creating an interactive virtual scene containing
content with consistent context, which means the objects appearing
in the room are plausible and the placement of objects is in line
with everyday patterns. The main idea is to use the geometric
information of the physical world as constraints, select reasonable
models from the virtual object model library to fill in the restricted
areas, and generate the virtual environment. The top right corner
of Figure 1a shows a virtual scene generated by our system, with
tables and cabinets in the red boxes as interactive virtual objects.

Our system substitutes obstacles in the physical world with
context-consistent virtual objects. Different from existing methods,
we use a topic model and a template extraction method [37] to
extract the association relationships and layout patterns of virtual
objects from virtual scene datasets. Specifically, we utilize two
virtual indoor datasets, namely Strucutred3D [41] and 3D-FRONT4

[42]. They both provide photo-realistic indoor scene data based
on room designs by professional designers. With these indoor

4. https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-dataset
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Fig. 5. Procedures of the layout pattern extraction pipeline proposed in [37]. We first learn a specific spatial strength graph model [37] to obtain the
relative position between two given furniture objects (blue points in the second column), then we utilize tests for complete spatial randomness (CSR)
[38] to get filtered patterns (third column). At last, we utilize density peak clustering (DPC) [39] to refine the layout patterns and use the system of
hue, saturation and value (HSV) to visualize the refined patterns [40].

design datasets, the selection of virtual objects for replacement
in our work is not limited to some specific obstacle types [12],
and the generation of virtual scenes does not need to rely on
complex rules [10]. As shown in Figure 1b, the workflow of our
system includes: (i) reconstructing the 3D scene of the HMD
user’s surrounding environment and detecting the objects in the
active area, (ii) detecting the interactive surfaces in the scene and
identifying the areas occupied by different objects, (iii) extracting
the association relations and layout patterns between different
objects from the virtual scene dataset, and (iv) substituting the real
scene with virtual objects under the constraints of geometry and
contextual consistency.

(a) (b)

(c) (d)

Fig. 6. An example of pillar-based representation and height map. (a) A
model of a staircase, (b) General voxelization representation, (c) Tiny-
Voxelization representation, (d) Height map of the model.

3.1 3D Scene Rebuilding and Plane Detection
Our system begins with a 3D representation of the real-world
environment. In practice, a wide range of methods can be used to
obtain 3D point cloud data from RGBD or RGB sensors [13], [43].
In our implementation, we select some 3D scenes as point clouds
from the ScanNet [44] dataset as experimental environments.

3.1.1 Voxelization
In the following two subsections, we will describe how to convert
point cloud data to individual objects with a simple representation.
At this stage of the workflow, the 3D representation of the room is
in the form of a point cloud. In order to reduce the complexity of
calculations and representations, we perform voxelization on the
points.

Before voxelization, we need to make corrections to the
horizontal orientations of the scene, which is equivalent to floor
detection, so that all objects are placed approximately horizontally.
In our implementation, we use Hough transform [24] for floor
detection. Let S = {si(xi,yi,zi)}N

i=1 denote the positions of all the
points in the point cloud data and N is the number of points. In
order to make the parameter space of planes bounded, we use the
polar coordinate parameter equations to represent each plane. In
polar coordinates, a plane can be uniquely represented by a triplet
(θ ,ϕ,r), with the corresponding plane equation as follows:

xsinθ cosϕ + ysinθ sinϕ + zcosθ = r (1)

where θ ∈ [0, π

2 ],ϕ ∈ [−π,π],r ∈ [−max‖si‖2,max‖si‖2], z-axis
points up, and x and y are in the horizontal plane. Since the
parameter space is bounded, which is a cuboid in R3, we can
discretize the space into blocks. After performing 3D Hough
transform on the point set S, we select the parameter triplet
(θv,ϕv,rv) corresponding to the most voted block, i.e. the block
with the highest Hough value, as the floor. In more detail, since θ

here indicates how much the plane slopes, and the floor is usually
close to horizontal, we can limit it to a much smaller range, e.g.
[0, π

8 ]. This will reduce the calculation time by a large amount.
Upon detecting the floor, the overall point cloud will be adjusted
to make the floor parallel to the x-y plane, so that all the obstacles
are placed horizontally.

In the general process of voxelization, a cube is slid along the
axis orientations through the point cloud and instantiates a copy
every time it collides with one or more points. The quality of
voxelization depends on the side length of the sliding cube.

In our workflow, we use the same method as Tiny-Voxelization
in [12] (see Figure 2 for an example). Each time the cube collides
with the point cloud, we instantiate a pillar from the position
of collision to the ground, which is different from the standard
voxelization method, in which a single cube is instantiated. In our
implementation, the bottom of each pillar is a square of 0.05m
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side length. This method reduces the accuracy of voxelization, as
it fills some of the holes in the scene. However, it also reduces
scene complexity and eliminates the impact of holes on interactive
surface detection and scene filling. It is thus more suitable for our
purpose of object replacement and collision avoidance.

Fig. 7. Similarity of patterns. The layout of two objects that make up the
pattern in the scene (in the red dashed box on the left), and the layout in
the pattern library (in the red dashed box on the right).

3.1.2 Clustering
Since we consider the relative position relationships between
objects and the virtual object layout patterns, we need to cluster
the pillars from the previous step into individual objects. We
consider each pillar as a whole, which is represented by its topmost
point, rather than independent cubes. This greatly simplifies the
processing and is sufficient for our purpose.

The clustering method performed is based on the distance.
We define the distance between two pillars as the 3D Euclidean
distance between their topmost points. In our implementation, we
use the DBSCAN [45] clustering method, which is designed to
fit the non-convex data structure. All the clusters must contain a
minimum number of pillars (set as 50 pillars). In addition, in order
to exclude the floor and walls in subsequent stages, only clusters
with heights between 0.2m and 2m are retained; these parameters
are determined by the height and volume of some common objects.
We have tried several parameter settings and selected the setting
with the most reasonable results. Since when the parameters change
in a reasonable range, the results are not very different, the setting
does not need to be adjusted for different datasets and we do not
show comparative results with different settings. Let C = {Li}NC

i=1
denote the clustered objects, and NC denote the number of objects.
The object Li consists of a group of pillars {hi j(xi j,yi j,zi j)}Ki

j=1,
where Ki is the number of pillars and each pillar is denoted by its
topmost cube.

3.1.3 Interactive Plane Detection
After obtaining the cubical representations of 3D objects in the
scene, we detect the interactive planes on the objects. Typical
interactive planes include the tops of tables and chairs. So we limit
the direction of the interactive planes to near horizontal.

For efficiency, we reuse the Hough transform results from
Section 3.1.1 and select the parameter triplets with high Hough
values (threshold set as N

100 ) as the detected planes in the room,
denoted by W = {zk}NW

k=1 where NW is the number of planes. Some
of the planes in W correspond to the interactive surfaces of some
objects. In order to identify whether plane zk is indeed voted
by some object’s interactive surface, we make intersection tests
between the objects in C and the planes in W . For an object
Li with Ki pillars and a plane zk, if zk intersects most of the
topmost cubes of pillars of Li, we consider Li’s top surface to be
interactive. Mathematically, we compare the plane’s height and the

pillar’s height at each (xi,yi). After rewriting zk as a function of z
w.r.t. (x,y) in the voxelized coordinates, the number of intersected
topmost cubes will be Ti = ∑

Ki
j=1 t j where

t j =

{
1, 0 < zi j− zk(xi j,yi j)< 1
0, otherwise (2)

The top surface of Li is then marked as interactive if Ti exceeds a
high percentage (set as 50% in our experiments) of Ki. As illustrated
in Figure 8a, two detected interactive planes are marked in red
in the original point cloud of the scene. Figure 2 shows the two
interactive planes marked in the tiny-voxelization representation
for the scene. According to the following workflow, we will select
interactive virtual models for such objects in order to maintain
the semantic consistency of the interactivity during virtual object
substitution. Figure 8b shows two interactive planes marked in the
generated virtual scene.

(a) (b)

Fig. 8. Two interactive planes marked in red in the original point cloud of
the scene (a) and the generated virtual scene (b).

3.2 Contextual Relation and Layout Pattern Extraction
To preserve a high level of presence in the virtual scene, the objects
used to construct the virtual scene should match the theme of the
scene, and the objects should have coherent placements in line
with human intuition. For example, when the user is in a kitchen,
if there is a bathtub or a little hill next to the stove, these objects
are out of the context of the scene and will spoil the user’s sense
of presence [31], [32]. Therefore, we extract associations between
objects and layout patterns from the virtual scene dataset to guide
our system to generate a reasonable virtual scene.

3.2.1 Extraction of Association Relationships
We utilize two virtual indoor scene datasets, namely Struc-
tured3D [41] and 3D-FRONT [42] to extract the correlations and
layout patterns between virtual objects. We select 45,622 designed
house layouts with a total of 303,474 rooms from those datasets.
Figure 3 shows the statistics of room types.

We propose an association relationship extraction method based
on the topic model. Treating the house layouts as a corpus. Each
room r is represented by a tuple consisting of a list of object
category indices O(r) = (o1, · · · ,oNr ) and a list of binary room
type indicators Λ(r) = (l1, · · · , lU ) where each oi ∈ {1, · · · ,V} and
li ∈ {0,1}. Here Nr is the number of object categories in the room,
V is the number of all object categories and U is the total number
of unique room types in the datasets. Following the process in [30],
we draw a multinomial mixture distribution θ r over all U room
types for room r from a Dirichlet prior α , and a multinomial room
type distribution over object category library O for each room type
lu, from a Dirichlet prior β . The constraint is that the room type
prior α(r) is restricted to the set of annotated room types Rr

T . The
joint probability of object and room type p(O,RT |α,β ) can be
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(a) (b) (c)

(d) (e) (f)

(g) Living room (h) Bedroom (i) Office

Fig. 9. The proposed method applied to real-world scenes. The point clouds of the real environments (first row), the matching of tiny-voxelization and
substituted virtual objects (second row). Generated virtual scenes with added walls and floor (bottom row): (g) living room, (h) bedroom and (i) office.

learned from the training set. Figure 4a illustrates two examples of
p(O|RT ) in word clouds, in which the occurrence probability of an
instance category is represented by the size of the corresponding
name tag.

In order to implement the interactivity of the generated scene,
we reorder the categories in the model library according to interac-
tivity. Figure 4b shows an example library of object categories we
used to generate a bedroom virtual scene using the combinatorial
optimizations described in Section 3.3. In the simulated annealing
process, each new object combination is sampled from the library
according to the occurrence probability, and the objects are sampled
from the corresponding library according to their characteristic
(Normal or Interactive), such that the interactive objects are sampled
from the interaction library.

3.2.2 Extraction of Layout Patterns

Layout patterns are a priori knowledge of how we arrange objects
in real life. By incorporating relative transformations, patterns can
naturally avoid irrational situations, such as collisions. In this paper,
we utilize the 3D-FRONT [42] dataset which contains 175 object
categories and 9317 objects to extract the layout patterns between
objects. We follow the prior learning pipeline in [37] as shown in
Figure 5.

We first learn a specific spatial strength graph model indicating
how objects are spatially related with each other. In this graph,
vertices represent objects, and edges are associated with weights to
encode the spatial strengths between objects [37]. The blue points
in the second column of Figure 5 represent the relative positions
between two given furniture objects. Axes are aligned to walls, and
coffee table/chair is centered. In the top subgraph, the sofa and
the coffee table are obviously spatially related, while there is no
obvious spatial relation between the nightstand and the chair. To
measure how obvious certain patterns exist in a set of points, we
utilize tests for complete spatial randomness (CSR) [38] to measure

the strength of spatial relations between objects. The third column
in Figure 5 shows the discrete priors which passed the CSR test.
Then we utilize density peak clustering (DPC) [39] to refine the
layout patterns. The fourth column bottom subgraph in Figure 5
shows the fine layout patterns. Similar to the visualization of dense
optical flows [40], we apply the system of hue, saturation and
value (HSV) to represent orientations as proposed in [37], where
angles are normalized within (0,2π) as hue, probability densities
are represented as saturation, and values are all set to 1. In this
paper, we extract a total of 355 layout patterns. Some of them are
displayed in the supplementary materials.

Fig. 10. A virtual living room enriched with associations and layout
patterns.

3.3 Virtual Scene Substitution Generation

The final step of our system is to select appropriate virtual objects
to replace the clusters rebuilt in Section 3.1.2 according to the
context of the prebuilt virtual environment. In order to satisfy the
geometric constraints of the real scene and the context consistency
of virtual scene simultaneously, we cast the substituting process as
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(a) (b) (c)

(d) (e) (f)

(g) λ = 0.2 (h) λ = 0.5 (i) λ = 0.8

Fig. 11. The effect of the energy term of layout pattern constraint Epattern.

a combinatorial optimization. Our optimization objective function
is as follows:

E = Egeometry +λEpattern (3)

which consists of two energy terms: geometric size constraints
from the real scene Egeometry and constraints of layout patterns
between objects Epattern. λ is the corresponding weight to balance
the energy terms. We set λ to 0.5 in implementation.

3.3.1 Geometric Constraint
In order to fit the virtual objects to the physical objects in the scene,
we have to measure the geometric similarity between them. We have
already voxelized the scene and the objects within it to simplify the
representations and computation. So similar voxelization processes
are applied to virtual objects with the same resolution (0.05m per
cube) as described in Section 3.1.1.

After voxelizing both physical and virtual objects, since both of
them are represented as pillars at regular grids, we can compactly
represent them by converting the pillar representation of each
object into a grayscale image representation, called a height map
(see Figure 6 for an example). Looking down on each object from
the positive direction of the z-axis, each pillar corresponds to a
pixel at the same location in the height map, and the height of it
corresponds to the grayscale value of the pixel. After making such
a conversion, all the geometric similarity measurements are cast as
the image similarity measurements as follows:

χ
(
Û ,V̂

)
=

m

∑
i=1

n

∑
j=1

√(
Ûi, j−V̂i, j

)2 (4)

where χ (·) defines the degree of similarity between the two
height maps. (m,n) is the size of the picture, Û , V̂ are two height
maps of the same size, Ûi, j and V̂i, j are the grayscale values of

corresponding pixel (i, j). In addition, we can easily achieve the
geometric matching between physical and virtual objects when the
axes are not aligned, e.g. matching after rotating the virtual object
by a specific angle since rotating an image is easy and efficient.

For each rebuilt cluster, the replaced virtual object should have
a similar geometry to it to ensure there is no collision between the
user and real-world objects during the virtual reality experience.
Egeometry is formulated as follows

Egeometry =
NC

∑
1

Di (5)

where NC is the number of clusters, Di is the degree of geometric
difference between the ith cluster and the corresponding substituted
object.

Di = min
∀k∈KModel

χ(ci,k) (6)

where ci is the height map of the ith cluster.
In terms of the placement of virtual objects, their centers are

set to the bounding box centers of clusters. And to cope with
rotation, the height map of each object is rotated around the center
at intervals of 10◦ to generate 36 copies of different rotation angles,
available in KModel . k is one of the height maps of substituted model.
The size of the models in the library we used for substitution are
consistent with the actual size. There is no size scaling during the
optimization process. However, during the substitution process of
the models with interaction planes, small scaling adjustments are
performed to align with the interaction planes.

3.3.2 Layout and Context Consistency Constraint
Epattern is used to assess the reasonableness of the virtual scene
layout generated through object substitution. As shown in Figure 7,
in the left black wireframe is the top view of the clusters replaced
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by virtual objects. In the red dashed box on the left are two
objects between which the pattern exists. We compute their relative
position in the horizontal orientation and compare it with the
possible relative positions of similar objects in the virtual datasets
we utilize. The pattern matching rate is formulated as follows,

Mi = min
∀p∈Ppattern

‖pi− p‖2 (7)

where p is a layout point in the pattern space Ppattern, and pi is the
relative spatial position of the ith pair of clusters. It is important
to note that here we only consider the relative spatial relationship
between every pair of object categories. The energy term Epattern
is calculated as

Epattern =

{
∑

Np
i Mi Np 6= 0
0 Np = 0

(8)

where Np is the number of patterns that exist in the scene.
To minimize the energy function in Equation 3, which is a

combinatorial optimization problem, we use simulated anneal-
ing [46] to find the best virtual object substituting combination
C that minimizes the cost function in Equation 9. In a typical
simulated annealing process, the initial C0 is generated by sampling
from the category library of corresponding theme as described
in Section 3.2.1. Then in the ith iteration, we sample a new
combination C

′
i , and C

′
i is accepted as Ci+1 with probability

PC′i→Ci+1
= min

[
1,exp

(
−E(C

′
i)−E(Ci)

T0−σT · i

)]
(9)

where T0 is the initial temperature, i is the number of current
iteration and σT is the temperature drop at each iteration. As the
temperature drops, the probability of accepting a worse solution
becomes lower. In this paper, we set T0 =− log(1e−5) and σT =
T0/20N2

C , the maximum number of iterations is 9000.

Fig. 12. Evaluation of generation accuracy in terms of themes using
subject judgment: for each theme, we show the percentage that the
theme selected by the subjects the same as the generated.

4 EXPERIMENTS

4.1 Implementation Details
We perform the 3D real-scene rebuilding, association relationships
and layout pattern extraction and virtual environment generation
process on a Windows 10 computer with an Intel Core i7-6700HK
@2.7GHz 2.71GHz processor and 16GB RAM. We used the Unity
game engine to generate the virtual scene, the textures, materials,
and other 3D elements of models are obtained from the virtual
scene dataset. In the voxelization stage, we set the cube’s edge

length to 0.05m. The hyper parameters for DBSCAN in clustering
is set as eps = 3.5 and minPts = 10. The time to reconstruct the
real scene varies from 1 to 7 minutes, depending on the fineness
of the input point cloud of real scene. The preprocessing includes
the extraction of association relationships and layout patterns,
which takes 6-10 minutes. Our current code is not parallelized or
running on the GPU, so we believe that with some engineering
optimizations, the running time will be further reduced.

4.2 Virtual Scene Generation
We tested all steps described in the previous section including 3D
rebuilding, voxelization, clustering and virtual object substituting
in multiple real environments. Figure 9 shows three virtual scenes
in different contexts generated by different real scene from the
ScanNet [44] dataset. In all scenes under consideration, our method
is capable of building a virtual reality scene, selecting appropriate
virtual objects to replace the obstacles in the real scene. More
generated scene results are shown in the supplementary materials.
Considering the indoor scene dataset we used, we manually add
walls and floor structure to each generated scene for the sake of
aesthetics. The method presented in this paper cannot generate wall
structures by itself.

The scene we generated takes into account the context consis-
tency and the plausibility of the object placement in the scene. The
optimized virtual object combination is placed according to the
layout patterns. The first row of Figure 9 is input point cloud from
ScanNet. The second row shows the matching of tiny-voxelization
and substituted virtual objects. Due to the geometric constraints of
the real scene, the geometry of the selected virtual object matches
the replaced voxels as much as possible. Although some layouts
will unavoidably deviate from the pattern to some extent, all are
within the acceptable range. The bottom row in Figure 9 shows
the virtual scenes generated by our system. Due to the geometric
constraints of the real scene, we only add the ground and wall
to the optimized object combination. When needed, more real
virtual scenes can be generated on the premise of ensuring obstacle
awareness and interactivity by relaxing geometric constraints.
Figure 10 shows a living room enriched with associations and
layout patterns.

(a) (b)

Fig. 13. Distribution of subjects’ judgment of room type for the sample
scene. (a) A sample living room, (b) the pie chart showing the distribution
of user judgment for the room type.

5 EVALUATION

5.1 Qualitative Evaluation
Figure 11 evaluates the effect of the energy term of layout

pattern constraint (Equation 8). We test 11 values of λ with an
interval of 0.1 from 0 to 1, each test generates five virtual scenes.
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Figure 11 shows three representative test results. The first row
shows the existing layout patterns in the generated scenes, each
red wireframe represents a layout pattern, the second row gives
the generated scenes, and the third row shows the convergence
curve of the energy function (Equation 3). As shown in Figure 11
first column, there are no layout patterns in the scene. Although
the geometry of the replacement virtual objects is consistent with
the geometric constraints (the convergent energy value is low),
the layout of the furniture in the scene is not reasonable, such
as an office desk in front of a sofa and a stand surrounded by
three cabinets. As shown in Figure 11 third column, there are
six layout patterns in the scene. Excessive layout patterns also
lead to unreasonable furniture layouts, such as two coffee tables
in front of a sofa and three office desks around an office chair.
Thus it can be seen that too few or too many layout patterns
can lead to unreasonable furniture layouts. According to our test,
when λ is equal to about 0.5, the layouts of generated scenes are
generally reasonable as shown in Figure 11 second column. The
final experimental results presented in this paper are all generated
when λ = 0.5, and the energy functions always converge in our
experiments.

Fig. 14. The results of the average scores of virtual scenes generated
by our method and [12] on content rationality, layout rationality and
aesthetics.

To evaluate the context consistency of the content in the scene
generated by our method, we invite 20 subjects to participate in
the following user study. We generate four different themed virtual
scenes for each input 3D scan. A total of 7 3D scan inputs are
selected to generate 28 virtual scenes. Each generated scene is in
the form of a rendering for the subjects to view. Subjects are asked
to choose an appropriate theme for each virtual scene based on their
general knowledge. Figure 12 shows the percentage that the theme
selected by the subjects is the same as the generated for each theme.
From the accuracy distribution, it can be seen that the accuracies
of bedroom and kitchen are relatively high, because there are
some exclusive types of furniture which provide strong clues for
subjects to judge, such as beds and stoves. However, due to the
high repetition rate of furniture types for living rooms and offices,
subjects sometimes get confused when judging room types from
the renderings. Figure 13b shows the percentage distribution of
subjects’ judgment of room type for the sample scene (Figure 13a).
The scene is a living room, but 35% of the subjects thought it was
an office.

To evaluate the performance of our method in the scene content
rationality, layout rationality and aesthetics, we perform another
user study. 20 subjects are invited to score 35 virtual scenes

generated by [12] and our method. These scenes are also generated
from the same input scans as in the previous user study. Figure 14
shows a comparison of the average scores for the four themes
of scenes generated by our method (Bedroom, Kitchen, Living
room, Office) and the scenes generated by [12] (Rock). Due to the
rich content collocation and reasonable layout in the scene, the
virtual scenes generated by our method are rated higher than the
monotonous scenes generated by [12] in each score.

TABLE 1
Comparison of geometric errors between the real scenes and the

corresponding generated scenes by different methods.

Method Method in [12] Our Method

Scene Theme Rock Bedroom Living room Kitchen Office

Average Error (cm) 13.2 10.3 12.4 11.7 10.8

5.2 Geometric Accuracy

To evaluate the geometric similarity between the original scene
represented by the point cloud and the generated virtual scene,
we compute the geometric error as follows. For each cubic pillar
instantiated from the point cloud, we find the highest point it
contains. We compute the geometric error as the average distance
between these points and their vertical projections at the generated
scene.

Formally, let {qi(xqi ,yqi ,zqi)}
NQ
i=1 be the highest points of all

the pillars where NQ denotes the number of pillars, and for an
arbitrary 2D position (x0,y0), S(x0,y0) is the height of the highest
intersection of the generated scene and the line that goes through
(x0,y0,0) and is parallel to the z-axis. Then the geometric error is

εgeometric =
1

NQ

NQ

∑
i=1
|S(xqi ,yqi)− zqi | (10)

Table 1 shows the comparison results of geometric errors
between the real scenes and corresponding generated scenes
by different methods. We compare the average errors of stone
theme scenes generated by [12] and the four indoor theme scenes
(Bedroom, Living room, Kitchen and Office) generated by our
method. Each theme contains 15 scenes with different geometric
structures. Figure 15a shows the geometry of one of the scenes.
The input 3D scans we used are basically from ScanNet, in which
a large number of objects have the geometric structures of indoor
furniture, which have a high matching degree with our model
library, so the geometric errors are low in our method. However,
the method of [12] could scale each virtual rock, so the geometric
error is not much larger than our method.

Figure 15a shows the geometric structure of a sample input
scene, and Figure 15b shows the geometric error between each
virtual object in generated scenes in different themes and the
original scene. Scenes in the first four themes are generated by
our method, and the last one is generated by [12]. Both methods
have large geometric matching errors in places with severe point-
cloud absence (Model No.9 and Model No.11). However, for the
interactive objects in the red square section shown in Figure 15a
(Model No.1 and Model No.6), our method detects the interaction
surfaces and makes individual matching, so our method has a
smaller geometric errors on these objects compared with [12].
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(a) (b)

Fig. 15. Geometric errors of an example scene. (a) The voxelization of the sample scene, (b) geometric error of each substituted virtual object.

5.3 User Experience

We conducted a user experience experiment to assess the difference
between the method we proposed and the state-of-the-art Chaperone
method in terms of presence. We compared the Chaperone with the
scene obtained combining the Tiny-Voxelization with the clustering
by height approach [12] and our approach in terms of sense of
presence.

Fig. 16. Experience scene

5.3.1 Experience Environment

Prior to the user experimentation, it is necessary to align virtual
scenes with the real world. Alignment is accomplished by rotation
and translation in 3D. In Section 3.1.1, the floor has been detected
so we align the detected floor with the ground in the HTC Vive.
After aligning the floor, two extra pairs of points in the virtual and
real world are needed to finish the alignment. Since the positions of
the two base stations of the HTC Vive are easily obtained both in
the VR system and the scanned scene, we use them as key points
to align the whole scenes. The rotation is determined by aligning
the normal direction of the ground and the direction of the line
connecting the stations at the same time, while the translation is
determined by aligning the virtual and real midpoints of the line
connecting the two base stations.

We assume that users tend to use VR devices in a familiar
environment. We conduct the experience experiment in a space
that the subjects often use. Figure 16 shows the experimental scene.
The subjects are assumed to know the rough three-dimensional
structure and the target object (Vive Controller) in the real scene.
In the experimental task, subjects roam freely in the green area in

Figure 16. Note that the green area will not be displayed in the
HMD. We use [12] and our method respectively to generate virtual
scenes for this experiment. Figure 17 shows an example pair of
virtual scenes.
5.3.2 Experience Task

We conduct the experimental tasks using each method by the
following procedure:

1) Subjects start the VR roaming.
2) Subjects roam in the walkable area of the virtual scene, and

go to pick up the Vive Controller on the interactive object.
3) Subjects continue to roam with the Vive Controller, then

choose a location on the interactive plane of the virtual
object and lay down the Controller.

4) Subjects roam back to the starting point.

Our goal is that when the users are experiencing virtual reality,
they can perceive the obstacles in real world without reducing the
immersion of the virtual scene, and some interactive properties
(support interaction currently considered in this paper) of real-world
objects can be extended into the virtual scene.

5.3.3 Experience Evaluation

To measure the sense of presence, we use a standard questionnaire
named Igroup Presence Questionnaire (IPQ5) [47], which is
available for measuring presence in a virtual reality scene. There
are 14 10-points Likert scale questions in the questionnaire to
evaluate the three main aspects which are related to the sense of
presence: the sense of geometric presence, the sense of physical
existence in the virtual scene; involvement is regarded as both
attention in the process of interaction and perceptual participation;
sense of reality, the sense of real existence in VR experience.
To evaluate perceiving of the real-world geometry information, a
supplementary questionnaire asking about the sense of distance
to obstacles, the fear while walking in the virtual scene and the
experience of interacting with virtual objects.

After virtual scene generation, we invited 13 users aged
between twenty and twenty-nine with an average of twenty-
four to participate in our experiment session. They all have
normal vision and can perform the VR experience operations
independently. Each subject is randomly selected to complete a
three-part experiment. Participants are asked to explore in the
generated virtual environment containing real-world obstacles and
finish the experience task. Participants need to wander in the virtual

5. http://www.igroup.org/pq/ipq/index.php
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(a) Real Scene (b) Generated by [12] (c) Generated by our method

Fig. 17. The input real scene and the virtual scenes generated by different methods. (a) Real Scene, (b) virtual scene generated by [12], (c) virtual
scene generated by our method.

Fig. 18. Results of the IPQ questionnaire.

environment for five minutes, and fill out the IPQ questionnaire
and supplementary questionnaire after every experiment.

Figure 18 shows the average values of the three methods
we compared in IPQ. After investigating the normality and
homoscedasticity of each distribution of the obtained data, we
use Friedman-test to examine whether each evaluation item is
influenced by the scene generation methods, then we find significant
differences for all the items (p < 0.01). After that, we conduct
Wilcoxon signed rank test to examine how distributions of scores
of the evaluation items are different. In Figure 18, pairwise
connections with black dots indicate different levels of statistical
significance (p < 0.001, p < 0.01 and p < 0.05). It can be seen
that all pairwise differences are statistically significant at least at
p < 0.05. In terms of the sense of presence into the virtual space,
the Chaperone method reduces the sense of presence across all
items in the IPQ compared to [12] and our method. In Chaperone,
we believe that display of extra real-world structure information
that is not needed for roaming and superimposed display that does
not match the virtual scene result in significantly lowered user
presence. [12] seems to meet the user’s demand for presence to
some extent, but according to the feedback of the questionnaire,
this monotonous virtual obstacle display method greatly reduces
the sense of reality of the scene. Using our method, the real-world
obstacles are substituted with diversified scene contents and kept
consistent with the theme of the entire virtual scene. Users could
obtain richer visual information and comfortable sensation when
roaming in the scene we generated than the simplistic obstacle
replacement method. Users feel aware and confident of the position

of real objects in our generated scenes.
Table 2 shows the results of the supplementary questionnaire.

The values for the items are the average that subjects evaluate for
each item at equal intervals of 7 scales (1-7) after each method.
The first four items in the table are to evaluate the understanding of
real-world information and the last three items are to evaluate the
interaction of virtual objects. Values in brackets are the standard
deviations. Focusing on the top four items in Table 1, it shows that
subjects can understand real-world geometry information better
in [12] and our method, compared with Chaperone. The average
number of collision times of the subjects in the experiment is 4
times for Chaperone, and 0 times in [12] and our method. We
believe that the reason for the high number for the Chaperone is
that the subjects find it difficult to understand the distance to the
obstacle because the Chaperone have no distance information. It is
to be expected that by showing enough virtual objects, users will be
able to understand the real space in more detail. According to these
results, we can see that [12] and our method enable interaction with
the real-world objects while walking without reducing immersion
in a better manner than Chaperone. Moreover, our method is much
better than [12] in terms of the virtual-real interaction surface
matching and the realistic sense of interaction, as it detects the
interactive surface and selects virtual objects with more similar
geometric structures for scene replacement. As shown in Figure 19,
representing a specific snapshot where a subject is told to “put the
controller on the table”. More details about the interaction can be
found in the attached video.

Our preliminary results are promising and suggest that it is
possible to help avoid obstacles while experiencing VR in a typical
sized room. Normally, it is difficult to keep an unobstructed space
exclusively for VR. If users try to play a room-scale VR with
obstacles, our method can guarantee them to play safely without
reducing immersion.

6 CONCLUSION AND FUTURE WORK

In this paper, we described a novel VR generation system which
uses the real scene as geometric constraints and allows interaction
with specific virtual objects. The system generates a highly
immersive environment by combining context-consistent scenes
and interaction feedback. Our system allows ordinary users to
quickly and easily create immersive and interactive virtual scenes
that can be experienced in HMD. The generated virtual environment
considers the existence of real obstacles, and the virtual objects
added to the virtual environment have the same position and
occupation as the real obstacles. In this way, users can avoid
colliding with real objects and interact with them.

We implemented a method that obtains the 3D structure data
of the real scene through RGB-D device, and rebuilds it by
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TABLE 2
Result of the supplementary questionnaire, we show the mean scores as well as standard deviations (in brackets).

Items Vive Chaperone Method in [12] Our Method

Accurate perception of distance from obstacles 4.32 (1.32) 5.41 (1.62) 6.14 (1.03)
Understand the direction of view in real space 5.71 (1.75) 4.24 (1.12) 5.12 (1.35)

Wander in real space without fear 4.12 (1.33) 3.92 (1.47) 5.21 (1.13)
Can guess own position in real space 5.62 (1.08) 4.98 (1.25) 5.84 (1.41)

Can estimate the size of the interaction surface - 3.24 (1.51) 5.88 (1.23)
Match accuracy between the virtual and real interaction surfaces - 3.76 (1.17) 5.46 (1.09)

Interactive realism - 5.41 (1.39) 6.52 (1.28)

(a) Virtual View

(b) Real Scene

Fig. 19. A user is asked to interact with the table. (a) The interactive table
in the virtual perspective, (b) Interact with a table in the real world.

voxelization and clustering, so as to obtain the 3D model of
objects in the scene. Meanwhile, the association relations and
layout patterns are extracted from the virtual scene dataset. Then,
the 3D models are substituted with corresponding contextualized
virtual objects through combinatorial optimization. This approach
has been successfully applied to a number of real-world scenes
with different structural complexity, showing the possibility of
using it in any real indoor environment. An experimental user
experience study shows that the system allows a higher level of
presence than the state-of-the-art Chaperone technique. Thus, these
results demonstrate that our system generates a secure space for
interactions in a virtual environment by augmented virtuality.

The main limitation of the devised method is that it relies on
datasets to extract the association relationships and layout patterns
between different categories of virtual objects. In virtual reality,
the virtual scenes we want to experience can be bizarre and even
imaginary, such as outer space. Our method is not yet suitable for
generating this rare fictional scene without corresponding datasets.
Moreover, our system cannot acquire and process the real scene in
real-time yet, but once the scene is reconstructed, the virtual object

selection and replacement can be completed in real time. In terms
of interaction, our system can only deal with scenes containing
static obstacles at present, only supporting interaction is available,
and it is also unable to perceive and substitute dynamic obstacles
in the scenes. The current approach only considers a one-to-one
relationship between clusters and virtual objects. It is perfectly
possible to substitute a set of adjacent real objects with a large
virtual one, but it is not yet possible with our method.

In addition to overcoming the limitations mentioned earlier,
there are several aspects of the system that we can improve in
future work:

• Adopting a more refined voxelization method to comple-
ment the geometry loss of the rebuilt real-world object in
the vertical direction. Making the geometric features of
the substituted virtual objects more consistent with the real
objects.

• Extracting association relationships and layout patterns
from the existing datasets surveyed in [48], and building
more 3D virtual scene datasets with different themes (such
as space, battleground, fantasy), allowing users to generate
more diverse virtual scenes.

• Handling dynamic obstacles in dynamic scenes to achieve
more complex interactions (such as moving, grabbing and
twisting virtual objects).
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