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VERAM: View-Enhanced Recurrent Attention
Model for 3D Shape Classification

Songle Chen, Lintao Zheng, Yan Zhang, Zhixin Sun and Kai Xu*

Abstract—Multi-view deep neural network is perhaps the most successful approach in 3D shape classification. However, the fusion of
multi-view features based on max or average pooling lacks a view selection mechanism, limiting its application in, e.g., multi-view active
object recognition by a robot. This paper presents VERAM, a view-enhanced recurrent attention model capable of actively selecting
a sequence of views for highly accurate 3D shape classification. VERAM addresses an important issue commonly found in existing
attention-based models, i.e., the unbalanced training of the subnetworks corresponding to next view estimation and shape classification.
The classification subnetwork is easily overfitted while the view estimation one is usually poorly trained, leading to a suboptimal
classification performance. This is surmounted by three essential view-enhancement strategies: 1) enhancing the information flow
of gradient backpropagation for the view estimation subnetwork, 2) devising a highly informative reward function for the reinforcement
training of view estimation and 3) formulating a novel loss function that explicitly circumvents view duplication. Taking grayscale image
as input and AlexNet as CNN architecture, VERAM with 9 views achieves instance-level and class-level accuracy of 95.5% and 95.3%

on ModelNet10, 93.7% and 92.1% on ModelNet40, both are the state-of-the-art performance under the same number of views.

Index Terms—3D shape classification, multi-view 3D shape recognition, visual attention model, recurrent neural network,
reinforcement learning, convolutional neural network.
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1 INTRODUCTION

3D shape classification is a fundamental problem in the
field of computer graphics and computer vision. It finds

applications from traditional computer aided design and
medical imaging to cutting-edge mixed reality and robot
navigation. The challenge of 3D shape classification stems
from the difficulty of characterizing 3D surface geometry,
the variety of 3D transformation and deformation, and the
imperfection of geometry and/or topology, etc. Hundreds
of hand-crafted 3D shape descriptors have been proposed,
either from 2D rendered views [1], [2], [3], [4], [5] or directly
on 3D models [6], [7], [8], [9]. They are, however, often
carefully designed to characterize only one or a few aspects
of 3D shapes, making them hard to generalize well.

Recently, inspired by the advances in image classifica-
tion using convolutional neural networks (CNN) [10], [11],
multi-view CNN (MVCNN) was presented for 3D shape
classification [12], [13], [14]. By leveraging massive image
databases such as ImageNet [15] to pre-train the CNN and
learn image descriptors for general vision tasks, MVCNN
has significantly advanced the state-of-the-art of 3D shape
classification. The method renders a 3D shape to RGB or
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depth images from different viewpoints, uses advanced
CNN architecture to extract features for each view, and then
aggregates the multi-view features to form the final feature
representation based on max or average pooling. Albeit
being simple yet effective, its best performance is achieved
only when all views are used. In some practical scenarios,
such as robot-operated active recognition, it is desirable to
achieve object recognition with as-few-as-possible views, to
minimize the robot movement cost.

Our key observation is that human is able to recognize
a 3D shape without processing all views. Given the first
view observation of a 3D shape, a human tends to first form
hypotheses about which categories the shape may fall in,
and then switch to the next viewpoint purposely, by moving
himself around the shape or rotating the shape, to quick
narrow down the uncertainty and refine hypotheses. This
process is repeated for a few times until sufficient evidence
are collected to minimize the uncertainty. There are two
most prominent characters of the above procedure. First,
the informative view is quite sparsely selected, far from
being exhaustive. Second, both the next view selection and
the predication making are deduced from the combined
information from the previous observations over time.

Following the above intuition and drawing inspiration
from visual attention model based on recurrent neural net-
works (RNN) [18], [19], we present View-Enhanced Recurrent
Attention Model (VERAM) capable of automatically selecting
an as short as possible sequence of views to classify 3D
shapes. As shown in Fig. 1, our model is formulated as a
goal-directed agent interacting with a 3D shape by using
a camera sensor (Fig. 1(a)). At each time step, the agent
actively selects the next viewpoint l for the camera sensor,
according to the current internal state h. Next, the camera
sensor captures the 3D shape from the new viewpoint to
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Fig. 1: VERAM is a view-enhanced recurrent attention model capable of adaptively selecting a sequence of views to classify
3D shapes. (a) The input is an unknown 3D shape to be rendered with a virtual camera. (b) The sequence of interactions
between VERAM and the 3D shape. At each time step, VERAM actively selects the next view l for rendering according to
current internal state h, which is then updated by the new observation. (c) Based on the aggregated information over time
steps, VERAM makes a classification and outputs the category probabilities of the input 3D shape.

obtain a 2D image and pass it to the agent. The agent then
extracts features for the new input image and updates its
internal state. Such process is repeated for a few steps (4
time steps in Fig. 1(b)). Finally, based on the aggregated
information over time steps, the agent emits the predication
as the probabilities of shape categories (Fig. 1(c)).

On the technical side, our method has two advan-
tages over MVCNN. First, when pooling across all views,
MVCNN discards the location information of each view.
However, recent works reveal that viewpoint location plays
an import role in enhancing the performance of the task
of 3D shape classification [16], [17]. Second, processing all
views involves high computational cost both at training and
testing, although not every view is essential to recognition.

There have been a number of works using RNN-based
visual attention model for image classification [18], [19],
[20], [21], image captioning [22], and even for 3D object
retrieval [23]. However, a common issue with these RNN-
based attention models is the unbalanced training of the
subnetworks corresponding to next view estimation and
shape classification. The classification subnetwork is usually
easier to train than the view estimation one. Consequently,
the model training can be easily trapped in a local min-
ima: the classification subnetwork is overfitted while the
view estimation one poorly trained, which in turn leads to
degraded classification accuracy. In this work, we propose
three key technical contributions with VERAM, aiming to
enhance the view learning and achieve a significant perfor-
mance boost to multi-view 3D shape classification.

• We introduce three schemes to improve the infor-
mation flow of gradient backpropagation from the
view estimation subnetwork to the hidden units,
achieving a balance with the training of the classi-
fication subnetwork. This overcomes the issue that
the estimated views may get stuck at the boundary
in the view parameterization space, which is usually
encountered in previous works [19].

• During the reinforcement learning of our attention
model, we integrate the classification confidence of
the current view into the gradient computation of
the reward against the view. This leads to a highly
efficient guidance to the next view estimation.

• In VERAM, a novel loss function is proposed with a
regularization term that enforces the estimated view
to be distant to any of the previous ones so as to
avoid view duplication.

The hybrid architecture of VERAM is trained for the
subnetworks of shape classification and view estimation
jointly, with the former using SGD [24] and the latter taking
REINFORCE [25]. We empirically evaluate our model on
the ModelNet benchmark [26]. Taking rendered gray-scale
image as input and AlexNet as CNN architecture, without
applying any data augmentation or network ensemble strat-
egy, VERAM with 9 views achieves average instance-level
and class-level accuracy of 95.5% and 95.3% on Model-
Net10, 93.7% and 92.1% on ModelNet40. The high accuracy
and efficiency make our model scalable to large datasets and
applicable to many online applications.

2 RELATED WORK

3D shape classification via hand-craft descriptors. There
is a long history of work in 3D shape analysis and a large
variety of hand-craft shape descriptors have been presented.
The representative view-based descriptors cover Light Field
descriptor [1], Elevation descriptor [2], Aspect Graph based
descriptor [3], [4] and DFT/DTW panoramic descriptor [5],
etc. Popular shape descriptors include Shape Histogram
descriptor [6], Spherical Harmonic descriptor [7], 3D SURF
[8], Heat Kernel Signatures [9], etc. These descriptors are
largely hand-engineered and usually do not have enough
generalization ability to adapt to the diversity of numerous
3D shapes in different categories. As a result, their perfor-
mance has an obvious gap compared with the current dom-
inant methods based on deep learning technology, which
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have achieved state-of-the-art performance in many tasks of
computer graphics and computer vision. Our method falls
into the deep learning class.
3D shape classification via deep CNN. A number of meth-
ods based on deep CNN have achieved state-of-the-art per-
formance in 3D shape classification on public benchmarks.
There are two categories. Shape-based methods [13], [26],
[27], [28], [29], [30], [31], [32], [33] perform convolutions
with 3D filters on the voxels or point clouds in continuous
3D space, and the volumetric representation makes them
have the ability of exploiting complete structure informa-
tion. View-based methods [12], [13], [14], [16], [17], [34],
[35], [36], [37] first render the 3D shape into 2D images from
different viewpoints, and then apply 2D filters to carry out
convolution for each view.

Compared with shape-based methods, the advantage of
view-based methods is that the massive image databases
can be used to pre-train the deep neural network and
advanced network architectures succeeded in image recog-
nition tasks can be employed. Partly for these reasons,
to data, view-based methods shows better or comparable
performance to shape-based methods. Moreover, convolu-
tion on 2D images is more efficient than on 3D volumetric
space. View-based methods naturally need to fuse clues
from different 2D views, and max or average pooling is
the most common strategy to perform the task [12], [13],
[14] , which lacks a view selection mechanism. Our method
is view-based and also employs deep CNN to extract the
descriptors for the rendered views. However, we adopt
RNN-based visual attention model to learn attention policy
of adaptively selecting a few number discriminative views,
which is more effective and efficient.
3D shape recognition via active view selection. Our method
fits into the realm of active recognition. Indeed, active
recognition through next view planning has been studied
for quite a long time in computer vision [38]. For 3D object
recognition and pose estimation, next-best-view selection
based on information rich model was proposed in [39]. In
each step, the next-best-view is selected as the voxels of
which has the highest number of matches that have not been
detected before. In 3DShapeNets framework [26], next-best-
view for 2.5D recognition is selected according to which can
maximize the mutual information to reduce the potential
uncertainty. In contrast to these local optimum next-best-
view selection methods, an approximately global optimum
approach was proposed by using undirected graph search
[16]. However, the next-best-view selection is isolated from
the neural network, and it is not a completely global opti-
mum method. By contrast, the next-best-view predication of
our method is embedded in deep RNN and is a global op-
timum approach. Recently, MV-RNN [23] combines RNN-
based visual attention model with MVCNN [12] for 3D
object retrieval. The view confidence and view location con-
strains are implicitly handled in the layer of feature repre-
sentation. In contrast, VERAM does not combine MVCNN,
and explicitly integrates view confidence and view location
constrains into reward gradient and classification loss.
Visual attention model based on RNN. We draw inspira-
tion from recent approaches that used RNN-based visual
attention model to learn task-specific policies in various
applications. The vision tasks include image classification

[18], [19], [20], [21] , image caption generation [22], action
with its boundary detection [40], and 3D object retrieval
[23]. The attention model is also used in non-visual task,
such as learning policies for a Neural Turing machine [41].
Our method builds on these directions and learns policies
addressing the task for 3D shape classification. It extends
the RNN-based visual attention models to be more robust
to the common issue of the unbalanced training of the
subnetworks, and provides a paradigm of how RNN-based
attention model to support learning with view confidence
and view location constrains integrally.

3 METHOD

The proposed VERAM is a RNN-based visual attention
model for 3D shape classification, and is formulated as a
goal-directed agent interacting with a 3D shape. A graphical
representation of VERAM is shown in Fig. 2.

Fig. 2: Architecture of VERAM. Its sub-components include
a virtual camera sensor, observation subnetwork, recurrent
subnetwork, view estimation subnetwork and classification
subnetwork.

The model sequentially processes a 3D shape x within T
time steps. At each step t, based on the internal state ht−1,
the model actively selects a viewpoint lt and obtains an
observation xt of 2D image rendered by the camera sensor
from lt, and then, the model uses xt with lt to updates its
internal state. This process is repeated until the predication
is emitted at step T . The architecture of the model will be
described in subsection 3.1 and later in subsection 3.2, we
explain how to use a combination of SGD and REINFORCE
to train the model in end-to-end fashion.

3.1 Architecture
The architecture of VERAM can be broken down into a
number of sub-components including camera sensor, obser-
vation subnetwork, recurrent subnetwork, view estimation
subnetwork and classification subnetwork. Each component
maps the input into a matrix or vector output.

3.1.1 Camera sensor
As shown in Fig. 2, the input to camera sensor is a 3D
shape x and viewpoint location lt, the output of the camera
sensor is the 2D image xt of the rendered view. 3D shape
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x represented as polygon mesh is located at the center of
the viewing sphere, as shown in Fig. 3 (a). The camera
sensor can move on the surface of the viewing sphere and
its location is indicated by the latitude and longitude. The
camera sensor always points towards the centroid of the
shape, and its upright vector is the tangent line of the
latitude along clockwise direction. Phong reflection model
is used to render the 3D shape into 2D images (224 × 224).
Under a perspective projection, the pixel color is determined
by the reflected intensity of the polygon vertices. Example
rendered images are shown in Fig. 3 (b).

Fig. 3: 3D shape located in the center of the viewing sphere
is rendered into 2D images by the camera sensor.

Data preparation is necessary for efficient training, and
we sample discrete views at every 30 degrees both in
latitude and longitude. If all views of a shape are rendered,
they can be arranged in 12 × 12 grid, as shown in Fig. 4.
The ordinal number 1 to 12 in the grid along vertical and
horizontal direction is corresponding to the latitude and
longitude of the sampled viewpoint location, which defines
the view parameterization space for VERAM.

Fig. 4: Sample space of the viewpoint locations on viewing
sphere is mapped to 12×12 grid for camera sensor, which
defines the view parameterization space for VERAM.

There are two advantages of our sample strategy. First,
the entire sphere is uniformly sampled both on latitude and
longitude. Second, along the horizontal or vertical direction,
the 12 images are consecutively connected and form a circle.
As a result, it provides a contiguous space for the agent
to deploy the camera sensor in an absolute or relative
coordinate. In the following sections, the absolute viewpoint
location in the view parameterization space is represented
as l = (r, c), and both r, c are in the range of [1, 12]. The

magnified images of (3, 1), (6, 11) and (8, 11) in Fig. 4 are
shown in Fig. 3 (b). The function of the camera sensor can
be formulated as

xt = fs(x, lt). (1)

3.1.2 Observation subnetwork
The job of the observation subnetwork is to encode the
information about both where the observation is taken as
well as what has been seen. As Fig. 2 illustrates, at each
time step t, the observation subnetwork takes the rendered
image xt and location tuple lt = (rt, ct) as input and output
a vector ot.

We use vt = fv(xt; θv) to denote the output vt from
function fv(.) that takes image xt as input and is parameter-
ized by weights θv . fv(.) typically maps with a sequence of
convolutional, pooling, and fully connected layers, and the
output of which is high level features vt. Advanced network
architectures succeeded in image recognition task can be
used for fv(.), such as AlexNet [10], VGG-16 [11], ResNet
[42], etc. The location tuple lt is mapped into embedding let
by a fully connected layer fle(lt; θle). In our practice, a fully
connected layer is corresponding to a rectified linear unit
ReLU(Wx+ b).

We concatenate the low bandwidth location let with the
high bandwidth view information vt by a fully connected
layer flv([let vt]; θlv) and output the final observation fea-
ture vector ot. The observation subnetwork fo can be repre-
sented as

ot = fo(lt, xt; θo) = flv([fle(lt; θle) fv(xt; θv)]; θlv), (2)

where θo = [θle, θv, θlv], corresponding to the whole param-
eters of the observation subnetwork.

3.1.3 Recurrent subnetwork
The agent maintains an internal state which encodes the
agent’s knowledge of the environment and summarizes
information extracted from the history of past observations.
It is instrumental to deciding how to act and where to
deploy the camera sensor. In VERAM, this internal state
is formed by the hidden units ht of the recurrent neural
network and updated over each time step with the feature
vector ot from the observation subnetwork, as shown in
Fig. 2. The recurrent subnetwork is defined as

ht = fr(ot, ht−1; θr). (3)

linear mapping can be used for its efficiency, but Long-
Short-Term Memory units (LSTM) [43] has the ability to
learn long-range dependencies and stable dynamics.

3.1.4 View estimation subnetwork
The view estimation subnetwork acts as a controller that
directs attention based on the current internal state. In Fig. 2,
the view estimation subnetwork takes the hidden units ht−1
of recurrent subnetwork as input, and outputs lt to make a
prediction on where to deploy the camera sensor to render
the next view. The view estimation subnetwork consists
of fl(ht−1; θl) and fg(ut; θg). fl maps the hidden units
ht−1 into a two-dimensional coordinate tuple ut, formally
defined as

ut = fl(ht−1; θl). (4)
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fl is usually implemented by a Linear layer followed by
a specific transfer function. In the testing phase, ut is directly
used as the next viewpoint location lt. The procedure of
obtaining the image xt from location lt is non-differentiable,
so in the training phase, a stochastic module fg(ut; θg) needs
to be used. It samples lt stochastically from a Gaussian
distribution with a mean ut and a fixed variance δ for
reinforcement learning, defined as

lt = fg(ut; θg) = N(ut, δ
2). (5)

The detail of view estimation subnetwork will be dis-
cussed in subsection 3.2.

3.1.5 Classification subnetwork
The classification subnetwork makes a classification and
outputs the category probabilities y of the input 3D shape
x based on the final internal state hT , which integrates the
information of the interaction history between the agent and
input 3D shape. In VERAM, the classification subnetwork
fc has a fully connected layer followed by LogSoftMax
output layer, namely

P (y|x) = fc(hT ; θc). (6)

3.2 Learning
Given the category label y of shape x, we can formulate
learning as a supervised classification problem. However,
because the architecture of VERAM is hybrid, training it
involves challenges of handling the non-differentiable com-
ponent, of keeping balance between learning subnetworks,
while struggling with the overfitting problem caused by
millions of parameters. In this section, we will describe how
VERAM combines SGD [24] and REINFORCE [25] to solve
these problems.

3.2.1 REINFORCE-based learning
In subsection 3.1.1, the camera sensor is formulated as fs
to map 3D shape x with lt to 2D image xt. However,
fs is not a continuous function. As shown in Fig. 5, the
gradient displayed as green arrow lines from observation
subnetwork cannot back propagate to the view estimation
subnetwork via the camera sensor. As a result, the view
estimation subnetwork cannot be trained with standard
back propagation.

REINFORCE [25] is adopted to solve this problem. Given
a space of action sequences A, p(a) is a distribution over
a ∈ A and parameterized by θ, we wish to learn network
parameters θ that maximize the expected reward of action
sequences. The gradient of the objective is

∇J(θ) =
∑

a∈A
pθ(a)∇log pθ(a)r(a). (7)

Here r(a) is a reward assigned to each possible action
sequence. Obviously, due to the high-dimensional space,
this is a non-trivial optimization problem. REINFORCE
addresses this by learning network parameters using Monte
Carlo sampling. After running an agent’s current policy πθ
in its environment and obtaining K interaction sequences of
length T , the approximation to the gradient equation is

∇J(θ) ≈ 1/K

K∑
i=1

T∑
t=1

∇log πθ(ait|s1:t; θ)(Rit − bt). (8)

Here, policy πθ maps the history of past interactions with
the environment s1:t to a distribution over actions for the
current time step t. Rt is the cumulative future reward from
the current time step to time step T , bt is a baseline reward
to reduce the variance of the gradient estimation. For a detail
RNN-based REINFORCE, we refer to [25] and [44].

In our case, at is to predict the next location ut, s1:t is
summarized in the state of the hidden units ht−1. R = 1
if the shape is classified correctly after T steps and 0
otherwise. Policy π is a fully connected hidden layer that
maps ht−1 to ut as formally defined in formula (4), and
θ is corresponding to θl. Gaussian distribution is adopt to
implement the reinforcement algorithm. Assuming f is the
density function of the Gaussian distribution N as defined
in formula (5), lt is the sampled location, the gradient of R
w.r.t. ut is

dR

dut
= (R− b)× d ln(f(lt, ut))

dut
. (9)

This gradient can easily back propagate to θl, so ∇J(θ)
can then be calculated. The flow direction of this gradient
is shown as red arrow lines in Fig 5. REINFORCE learns
model parameters according to this approximate gradient. It
increases the log-probability of an action with a larger than
expected cumulative reward, and decreases the probability
if the obtained cumulative reward is smaller.

3.2.2 Enhancing the information flow of gradient
As shown in Fig. 5, observation subnetwork, recurrent
subnetwork, and classification subnetwork are with stan-
dard deterministic neural network connections, and can
be trained directly by back propagating gradients from
the classification loss, namely, by SGD. By contrast, view
estimation subnetwork containing stochastic module needs
to be trained using REINFORCE described in subsection
3.2.1.

Fig. 5: Based on the visual attention model presented in [19],
three schemes for enhancing information flow of gradient
backpropagation for the view estimation subnetwork.

Giving deep insight into the architecture as shown
in Fig. 2 and Fig. 5, we can find that there exists two
ways starting from the hidden units ht−1 and ending at
classification subnetwork. Analogous to other RNN-based
visual attention models, VERAM is essentially a parallel
neural network, and suffers from the common issue of the
unbalanced training of the subnetworks corresponding to
next view estimation and shape classification. Specifically,
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as pointed in [21], the full model does not have enough
time to learn a good attention policy before the classification
subnetwork overfits to the data. In our practice, we find
regardless of different initial parameters and different 3D
shapes, the estimated view locations lt tend to get stuck at
the boundary of the view parameterization space, namely
1 or 12. Based on the visual attention model presented in
[19], we propose three critical schemes to solve this issue, as
shown in Fig. 5. It can be summarized as follows:

1) As mentioned in subsection 3.1.4, fl is implemented
by a Linear layer followed by a specific transfer function
to force the estimated location ut into the target range.
HardTanh as well as Sigmoid are commonly used for
their continuous interval can be easily mapped to view
parameterization space. However, we find the problem of
gradient disappearance caused by these transfer functions
[45] is very serious, which means in reinforcement learning,
the gradient from reward cannot back propagate to hidden
units h. VERAM adopts Eula [46] as this specific transfer
function, which can effectively alleviate the vanishing gra-
dient problem via the identity for positive values.

2) Similar to fl, we also need a function for fg to
force the output of Gauss sample to fall into the view
parameterization space. As shown in Fig. 5, the second
HardTanh operation is performed in [19] for this purpose.
However, the gradient of reward bypasses it and directly
applies to Gauss sample function. If the output lt of
Gauss sample is out of the range, the gradient calculated
by formula (9) will be not right for lt is not the actual
viewpoint location. To solve this problem, VERAM performs
Clamp in Gauss sample itself to simulate the output of
Gauss sample is always in the range of view parameteriza-
tion space.

3) In the backward process, formula (9) indicates that if
the shape is misclassified, the learning process will encour-
age ut move away from lt. In the boundary, this also needs
to be refreshed with sign as

sign =

 +1, if lt is not boundary
−1, if ut < lt, lt = 1/12, left boundary
−1, if ut > lt, lt = 1, right boundary

. (10)

Besides, if the shape is classified correctly, sign always
sets to +1. Sign will multiplies to the result of formula (9). It
means, in boundary, we still need to move ut to lt if ut is not
in the range of [1/12, 1], although the shape is misclassified.

These three critical schemes enhance the information
flow of gradient backpropagation from the view estimation
subnetwork to the hidden units, and ensure each module
be sequentially trained without break. As a result, it can
effectively overcome the issue that the estimated views
getting stuck at the boundary of the view parameterization
space.

3.2.3 Learning with view confidence
The schemes for enhancing the information flow of gradient
provides a basis for keeping a balance between the subnet-
works. However, the classification subnetwork is still easier
to train than the view estimation one, making the learned
attention policy be easily trapped in local optimization. In
this subsection, we propose a method of learning with view
confidence for REINFORCE to solve this problem.

As mentioned in subsection 3.1.2, advanced network
architectures succeeded in image recognition tasks can be
used for fv(.) to extract features vt for image xt. Besides,
for all training shapes, we also extract the confidence ct of
image xt. Concretely, first, we extract features vt for each
image xt of all views of the training shapes. Second, each
image xt is also labeled with the same category yt of the 3D
shape. By this means, for each 3D shape in the training set,
we can obtain 144 pairs of (vt, yt). The collection of (vt, yt)
of all the 3D shapes in the training set will be taken as the
input to the following simple network

P (yt|xt) = LogSoftMax(Linear(vt,#categroies)). (11)

We use the negative log likelihood criterion to train
this network. After convergence, the output probability of
LogSoftMax corresponding to its category is extracted as
the confidence ct of image xt. Fig. 6 presents the confidence
of each 2D image shown in Fig. 4. The whiter the viewpoint,
the more confidence the image has. We can see the image
in (3, 1) almost has no confidence for its own category
airplane. According to the output of LogSoftMax, the
highest category probability of this image is monitor.

Fig. 6: Confidence, or category probability of each 2D image
shown in Fig. 4.

If a shape is classified correctly, according to formula (9),
reinforcement learning will encourage all ut+1 to move to
lt. On the contrary, it will encourage all ut+1 to move away
from lt. Intuitively, if a shape is classified correctly, but in
step t, the confidence ct of image xt located at lt is not high,
we should weaken its effects of encouraging ut+1 to move
to lt. On the other hand, if a shape is misclassified, but the
confidence ct of image xt located at lt is high, we should
weaken its effects of encouraging ut+1 to move away from
lt. Based on this inspiration, combining formula (10), we
refresh formula (9) as

dR

dut
= sign


(R− b)× d ln(f(lt, ut))

dut
× ct

(R− b)× d ln(f(lt, ut))

dut
× (1− ct)

. (12)

If a shape is classified correctly, the first line of formula
(12) is used to calculate the gradient, otherwise, the second
line of formula (12) is used. VERAM incorporates view
confidence into reinforcement learning, which leads to a
highly efficient guidance to the next view estimation, and



can effectively prevent the view estimation subnetwork
from trapping into local optimization.

Note that confidence extraction is the preprocess proce-
dure. The trained image classification network is only used
to extract the confidence of image, and it will not be used
anymore.

3.2.4 Learning with view location constrains
In practice, we find the visited view of each time step
may overlap. To solve this problem and make better use
of the complementary capacities of different views. A novel
regular term for view location constrains is supplemented
to loss function and learned at the same time to make
the distribution of the visited view locations much more
reasonable and mutually complementary.

The regular term for the view location constrains is
depend on the prior knowledge of the applications. For 3D
shape classification, there are total 144 view locations for the
camera sensor, but VERAM only needs a few time steps T
to form the judgment, so the visited views at least should
be separated from each other. This weak regular term is
adopted by VERAM.

Particularly, after the agent has moved through T steps,
we add pairwise distance layer for each two view locations
li and lj the agent has visited. We train this part of the
model with the loss of HingeEmbeddingCriterion to force
the visited views to separate from each other. The loss is
formally defined as

Loss(li, lj) = max(0, 1/12− PairDistance(li, lj)). (13)

By integrating this loss function into the learning frame-
work of recurrent attention model, VERAM can explicitly
circumvents view duplication and the performance is fur-
ther improved.

4 EXPERIMENTS AND DISCUSSIONS

4.1 Dataset, criteria and implementation details
Dataset. We evaluate VERAM along with current state-of-
the-arts on ModelNet10 and MondelNet40 [26]. ModelNet10
contains 10 categories with 4899 unique 3D shapes, and
ModelNet40 contains 40 categories with 12311 unique 3D
shapes. The training set and testing set have been split on
the website.
Criteria. We report classification accuracy with two level
criteria. Instance-level accuracy is the ratio of the number
of shapes that are classified correctly to the number of the
total shapes. Class-level accuracy is the average of instance-
level accuracy among all categories. Class-level accuracy is
more objective for there are big difference among different
categories in the number of testing shapes, from 20 to 100,
but instance-level is more intuitive for it directly reflects
how many shapes are misclassified.

Implementation details. VERAM is implemented by Torch
on the platform with NVIDIA GeForce TITAN X. It needs
about 1500 epochs for training. The learning rate is set
to 0.001 in the first 600 epochs, then decreases linearly
to minimum 0.00001 at epoch 1200. Momentum is set to
0.9. Based on grid search, the fixed variance δ of Gaussian
distribution for REINFORCE is set to 0.11.

CNN architecture and recurrent subnetwork are two
main components that affect the performance of VERAM.
CNN is used to encode the rendered image. For CNN
architecture, AlexNet [10] and ResNet [42] are used in our
experiments. For recurrent subnetwork, linear mapping and
LSTM [43] are adopted to update the hidden state in each
time step. We will give the detail settings in each part of the
evaluation.

Theoretically, the parameters of CNN in the observation
subnetwork can be fine-tuned with the recurrent network
at the same time. However, the training progress will be
very slow because the forward and backward propagation
need to proceed at each time step. For efficient training, the
parameters of AlexNet and ResNet pre-trained on ImageNet
are fixed and without further fine-tuning process on Mod-
elNet. However, we can select more previous layer of CNN
to counteract this influence.

The source code as well as the trained model of VERAM
will be released at our project page: www.kevinkaixu.net/
projects/veram.html.

4.2 Comparison with state-of-the-arts
In this subsection, we will compare the performance of
VERAM with state-of-the-art deep neural-based methods,
especially with the view-based methods. The performance
of VERAM is achieved by taking AlexNet as CNN archi-
tecture for fair comparison. LSTM is adopted for recurrent
subnetwork.

Comparison with deep neural-based methods. The perfor-
mance of VERAM is compared with state-of-the-art deep
neural-based methods on 3D shape classification, as sum-
marized in table 1. These methods can be roughly grouped
into two categories: shape-based and view-based. Shape-
based methods cover 3DShapeNets [26], VoxNet [27], Sub-
VolSup [13], AniProbing [13], VRN & VRN-Ensemble [28],
FPNN [29], PointNet [30], PointNet++ [31], O-CNN [32] and
So-Net [33]. The view-based methods include MVCNN [12],
DeepPano [34], PANORAMA-NN [35], PANORAMA-ENN
[36], MVCNN-Alex [13], MVCNN-MultiRes [13], Pairwise
[16], DomSetClust [14], RotationNet [17] and the proposed
VERAM. Besides, FusionNet [48] exploits both volumetric
representation and projective pixel representation.

Among shape-based methods, VRN-Ensemble [28]
achieves the best instance-level accuracy, 97.14% on Mod-
elNet10 and 95.54% on ModelNet40. This result is by sum-
ming predictions from separately trained five VRN models
and one Voxception model. When comparing VERAM with
the single VRN model, VERAM gets the better performance,
95.5% vs. 93.61% on ModelNet10, and 93.7% vs. 91.33% on
ModelNet40.

Among view-based methods, DeepPano [34],
PANORAMA-NN [35] and PANORAMA-ENN [36] are
based on the panoramic image of 3D shape. PANORAMA-
ENN has a clear advantage over VERAM, 96.85% vs.
95.5% on ModelNet10, 95.56% vs. 93.7% on ModelNet
40. PANORAMA-ENN needs to obtain three panoramas
from different principle axes and each panorama needs to
extract SDM, NDM and magnitude of gradient image of
NDM, while VERAM only takes grayscale image as input.
Moreover, these three panoramic methods can be regarded

www.kevinkaixu.net/projects/veram.html
www.kevinkaixu.net/projects/veram.html
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TABLE 1: Comparison of classification accuracy of methods
based on deep neural networks on ModelNet10 & 40.

Method
ModelNet10 ModelNet40
Inst. Class Inst. Class

shape-based

3DShapeNets [26] - 83.5 - 77.3
VoxNet [27] - 92.0 - 83.0

SubVolSup [13] - - 89.2 86.0
AniProbing [13] - - 89.9 85.6

VRN [28] 93.61 - 91.33 -
VRN-Ensemble [28] 97.14 - 95.54 -

FPNN [29] - - 88.4 -
PointNet [30] - - 89.2 86.2

PointNet++ [31] - - 91.9 -
O-CNN [32] - - 90.6 -
So-Net [33] 95.7 95.5 93.4 90.8

view
-based

DeepPano [34] - 88.7 - 82.5
PANORAMA-NN [35] 91.12 - 90.70 -

PANORAMA-ENN [36] 96.85 - 95.56 -
MVCNN [12] - - - 90.1

MVCNN-Alex [13] - - 92.0 89.7
MVCNN-MultiRes [13] - - 93.8 91.4

Pairwise [16] 94.0 - 92.0 -
DomSetClust [14] - - 93.8 92.8
RotationNet [17] 98.46 - 97.37 -

VERAM 95.5 95.3 93.7 92.1
mix FusionNet [48] 93.1 - 90.8 -

as based on continuous views, while VERAM and other
view-based methods are based on discrete views.

Table 2 gives the detail comparison against state-of-the-
art discrete view-based methods with their different pro-
cessing strategies. Apparently, RotationNet, DomSetClust
and MVCNN-MultiRes get the better performance. By aug-
menting the classification task with pose estimation, Rota-
tionNet gets instance-level accuracy 98.46% on ModelNet10
and 97.37% on ModelNet40, both are state-of-the-art per-
formance. They are achieved by alerting 11 different cam-
era system orientations. According to table 7 of [17], with
AlexNet, On ModelNet 40, there are 8 of total 11 camera
system orientations (except 2th, 3th, 4th) under which the
performance of RotionalNet is less than 93.04%, which is
inferior to VERAM (93.7%). Considering VERAM only uses
a single camera system orientation, there is potential for
VERAM to further reduce the gap.

DomSetClust ever gets instance-level accuracy 93.8%
and class-level accuracy 92.8% on ModelNet40, and both
better than the performance of VERAM. However, to obtain
such performance, DomSetClust needs to take grayscale,
depth and surface normals image as input and fine-tune the
CNN network. When DomSetClust and VERAM both use
grayscale image as input, VERAM has an clear advantage,
93.7% vs. 92.2% instance-level accuracy, and 92.1% vs.
91.5% class-level accuracy.

The comparison of VERAM and MVCNN-Alex is more
fair for they both taking grayscale image as input, AlexNet
as CNN, and with single resolution. VERAM has an obvious
advantage over MVCNN-Alex, 93.7% vs. 92.0% instance-
level accuracy and 92.1% vs. 89.7% class-level accuracy.
The performances of VERAM is matchable with MVCNN-
MultiRes, but the latter needs to implement two times of
voxelization and three times of rendering.

Based on the above study, it can be concluded that
under the equivalent conditions of render representation,
resolution, CNN architecture and number of views, VERAM
outperforms all state-of-the-art view-based methods.

Comparison with alternative view-selection methods. VE-
RAM falls into the category of active view selection. Among
the methods in table 1, both 3DShapeNets [26] and Pair-
wise [16] also adopt active view selection for 3D shape
classification. Besides, MV-RNN [23] extends RNN-based
visual attention model by integrating MVCNN [12] into
the architecture for 3D object retrieval. To give a com-
prehensive comparison, we implemented MV-RNN for 3D
shape classification and the input to MV-RNN is 2048
vector for each rendered image extracted from ResNet152.
Both VERAM and MV-RNN take grayscale image as input,
and 3DShapeNets takes depth image as input. In contrast,
Pairwise exploits more information and takes both grayscale
and depth image as input.

Fig. 7: Comparison of instance-level accuracy of
3DShapeNets [26], Pairwise [16], MV-RNN [23] and
VERAM with different number of views on ModelNet10
and ModelNet40.

3DShapeNets provides the baseline performance on both
datasets among all methods. With the deep neural networks
pre-trained on ImageNet, Pairwise makes a great progress
on the performance. With 12 views, it gets 94.0% and 92.0%
instance-level accuracy on ModelNet10 and ModelNet40
respectively. MV-RNN adopts CNN2 of max pooling to
perform classification and the accuracy increases with the
number of views. The performance of MV-RNN outper-
forms that of Pairwise with 12 views. VERAM outperforms
3DShapeNets, Pairwise and MV-RNN on both datasets in
every view. Although VERAM also uses the pre-trained
model on ImageNet. However, the next view selection of
VERAM is embedded seamlessly in RNN with view confi-
dence and view location constrains learning.

4.3 Evaluation of the enhancement of VERAM

In this subsection, we will evaluate the three key techni-
cal components of VERAM on conducting to improve the
performance step by step. ResNet is used to encode the ren-
dered image for it is more compact. We use linear mapping
for recurrent network instead of LSTM to stress the ability
of three key components to select more discriminative views
to enhance the view learning. In the end of this subsection,
we will present the results when using LSTM as recurrent
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TABLE 2: Detailed comparison against state-of-the-art discrete view-based methods on ModelNet10 & ModelNet40.

Method Input
Reso-
lution

CNN
Fine
tune

ModelNet10 ModelNet40
View Inst. View Class View Inst. View Class

MVCNN [12] Gray 1 VGG-M
√

- - - - - - 80 90.1
MVCNN-Alex [13] Gray 1 AlexNet

√
- - - - 20 92.0 20 89.7

MVCNN-MulRes [13] Gray 3 AlexNet
√

- - - - 20 93.8 20 91.4
Pairwise [16] Gray+Depth 1 VGG-M

√
12 94.0 - - 12 92.0 - -

DomSetClust [14] Gray 1 VGG-M × - - - - 12 91.9 12 90.4
DomSetClust [14] Gray+Depth+Surf 1 VGG-M × - - - - 12 93.3 12 92.1
DomSetClust [14] Gray 1 VGG-M

√
- - - - 12 92.2 12 91.5

DomSetClust [14] Gray+Depth+Surf 1 VGG-M
√

- - - - 12 93.8 12 92.8
RotationNet [17] Gray 1 AlexNet

√
20 98.46 - - 20 97.37 - -

VERAM Gray 1 AlexNet × 9 95.5 9 95.3 9 93.7 9 92.1
VERAM Gray 1 ResNet × 9 96.3 9 96.1 9 93.2 9 91.5

network. We trained 5 models for each network setting with
the specified super parameters, and use the average class-
level accuracy for comparison.

Enhancing the information flow of gradient. RNN-based
visual attention model suffers from the problem of unbal-
anced training of the subnetworks, and the estimated view
locations tend to get stuck at the boundary in the view
parameterization space. Fig. 8 (left) shows the heat map
of view location frequency of each time step by applying
the visual attention model presented in [19], denoted as
ClassicalRAM, to predict all chairs in the testing set of
ModelNet10, time steps T=4. It can be seen that starting
from the view located at (6, 4), the views of the next three
steps almost all locate at the boundary (1, 1). To solve this
issue, three schemes are proposed for VERAM as described
in subsection 3.2.2 to enhance information flow of gradient
backpropagation. For simplicity, we call it BoundaryRAM.
Fig. 8 (right) shows the heat map of view location frequency
of each time step by applying a trained BoundaryRAM
model to the same chair dataset. There are significant
difference among the heat maps of different time steps.

Fig. 8: Heat maps of view location frequency of predicating
all chairs in the testing set of ModelNet10, time steps
T=4. Left, by using ClassicalRAM [19]. Right, by using
BoundaryRAM.

The comparison of the average class-level accuracy be-
tween ClassicalRAM [19] and BoundaryRAM on Model-
Net10 and ModelNet40 is shown in Fig. 9. The horizontal
axis is time steps T from 1 to 6. Note that T is a super
parameter, and the accuracy of each T is the average value
from 5 trained models with the same network setting. Leav-
ing out T=1, i.e., T=2 ∼ 6, the accuracy of BoundaryRAM
goes up from min 1.80% to max 5.37% on ModelNet10, and
from min 0.65% to max 2.76% on ModelNet40. From Fig. 8
and Fig. 9, it can be seen that the three critical schemes

presented in subsection 3.2.2 can effectively overcome the
issue that the estimated views getting stuck at the boundary,
and achieve a apparent performance enhancement.

Fig. 9: Comparison of average class-level accuracy between
ClassicalRAM [19] and BoundaryRAM. Left, on Model-
Net10. Right, on ModelNet40.

Learning with view confidence. The classification subnet-
work of VERAM is easier to train than the view estimation
one, and learned attention policy can be easily trapped in
local optimization. In practice, with the same network, we
find the accuracy of each category from different trained
BoundaryRAM model fluctuates widely. With the number
of time steps increases, the model trained by BoundaryRAM
will be more unstable. To alleviate this problem, based on
BoundaryRAM, in subsection 3.2.3, we propose a method
of learning with view confidence for REINFORCE to pro-
vide effective guidance to agent on where to deploy the
model’s attention, here called ConfRAM. The comparison
of the average class-level accuracy among ClassicalRAM
[19], BoundaryRAM and ConfRAM on ModelNet10 and
ModelNet40 is shown in Fig. 10.

Fig. 10: Comparison of average class-level accuracy among
ClassicalRAM [19], BoundaryRAM, and ConfRAM. Left, on
ModelNet10. Right, on ModelNet40.

From Fig. 10, it can be seen that, the performance of
ClassicalRAM drops after the number of time steps T=2,
while BoundaryRAM drops after T=4 on ModelNet10 and
after T=3 on ModelNet40. By contrast, ConfRAM can ex-
ploit more views and converge at about T=6 with signif-



JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ××, NO. ××, ×× 2017 10

icant higher performance. Compared with BoundaryRAM,
leaving out T=1, i.e., T=2 ∼ 6, the accuracy of ConfRAM
goes up from min 0.20% to max 4.87% on ModelNet10, and
from min 0.36% to max 5.24% on ModelNet40.

Learning with view location constrains. ConfRAM can
achieve a stable and fairly good performance. However,
the visited view location of each time step may overlap.
In subsection 3.2.4, based on BoundaryRAM and Con-
fRAM, a weak regular term is adopted by VERAM to keep
the visited views separated from each other, here called
LocRAM, equally to the whole VERAM. The comparison of
the average class-level accuracy among ClassicalRAM [19],
BoundaryRAM, ConfRAM and LocRAM on ModelNet10
and ModelNet40 is shown in Fig. 11.

Fig. 11: Comparison of average class-level accuracy
among ClassicalRAM [19], BoundaryRAM, ConfRAM and
LocRAM. Left, on ModelNet10. Right, on ModelNet40.

Fig. 11 shows LocRAM learning with the weak regular
term of view location constrains can obtain a clear perfor-
mance improvement. Compared with ConfRAM, leaving
out T=1, i.e., T=2 ∼ 6, the accuracy of LocRAM goes up
from min 0.40% to max 0.94% on ModelNet10, and from
min 0.43% to max 0.91% on ModelNet40. It should be
pointed out that the regular term of VERAM is only a weak
constrain.

The above experiments of this subsection use linear
mapping as recurrent subnetwork, and the previous step
will have less impact when the interval between which and
the last step T increases. When replacing linear mapping
with LSTM, the comparison of the average class-level accu-
racy among ClassicalRAM [19], BoundaryRAM, ConfRAM
and LocRAM on ModelNet10 and ModelNet40 is shown
in Fig. 12. Since LSTM is effective at capturing long-term
temporal dependencies, the already selected discriminative
view prevents the performance from decreasing obviously.
However, VERAM with three key components still achieves
a significant performance boost over ClassicalRAM. When
T=6, the accuracy is improved by 3.23% on ModelNet10
(95.54% vs. 92.31%), and by 3.12% on ModelNet40 (91.44%
vs. 88.32%).

4.4 Affecting factors on the performance of VERAM

Effect of different recurrent subnetworks. The final predi-
cation is based on the hidden state of recurrent subnetwork
which is updated over each time step. Linear mapping and
LSTM are mostly used for this purpose. When using linear
mapping as recurrent subnetwork, formula (3) is specified
as ht= ReLU(Linear(ht−1) + ot)). For LSTM, the total
units is set to 1024 and each of which is composed of
cell, input gate, output gate and forget gate. Fig. 13 gives

Fig. 12: Comparison of average class-level accuracy among
ClassicalRAM [19], BoundaryRAM, ConfRAM and LocRAM
when using LSTM as recurrent cells. Left, on ModelNet10.
Right, on ModelNet40.

the comparison of the performance of VERAM with linear
mapping and with LSTM on ModelNet40 when T=3, 6, 9.
The left uses AlexNet as CNN while the right uses ResNet
as CNN.

From Fig. 13, it can be seen that LSTM achieves the better
performance than linear mapping. When using AlexNet
to encode the visual representation, VERAM with LSTM
has significant advantage over with linear mapping. For
example, the instance-level accuracy increases 3.16% from
90.56% to 93.72% by LSTM when T=9. When using ResNet
as CNN, LSTM still achieves the better performance than
linear mapping. However, the improvement is slight. When
T=9, it only gets instance-level accuracy 0.52% increment
from 92.67% to 93.19%. Besides, for both AlexNet and
ResNet, the performance of linear mapping when T=9 is
slightly lower than when T=6, but the performance of LSTM
is quite the opposite.

Fig. 13: Comparison of the best instance-level accuracy of
VERAM with linear mapping and with LSTM on Model-
Net40 when T=3, 6, 9. Left, using AlexNet as CNN. Right,
using ResNet as CNN.

Effect of different CNN architectures. As described in
subsection 3.1.2, VERAM needs to encode the visual rep-
resentation for the rendered image at each time step. A
number of advanced CNN architectures can be adopted for
implementation. Among them, AlexNet is the first notably
successful CNN architecture on ImageNet while ResNet is
the recently proposed representing the advanced level, and
they are compared in this subsection. For each 2D image
xt of 3D shape, we extract features vt ∈ R4096 from layer
fc6 of the AlexNet pre-trained on ImageNet. Analogously,
we extract features vt ∈ R2048 from layer flatten0 output
of the ResNet152 pre-trained on ImageNet 11K, which is
available on MXNet [47]. For efficient training, we didn’t
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fine-tune AlexNet or ResNet model on ModelNet. Fig. 14
presents the performance of VERAM with AlexNet and with
ResNet on ModelNet40 when T=3, 6, 9. The left uses linear
mapping as recurrent network while the right uses LSTM.

Fig. 14: Comparison of the best instance-level accuracy of
VERAM with AlexNet and ResNet on ModelNet40 when
T=3, 6, 9. Left, using linear mapping as RNN. Right, using
LSTM as RNN.

Fig. 14 indicates that when using linear mapping as
RNN, the performance of ResNet soars about 2 percent
compared with that of AlexNet and has a clear advantage.
However, when using LSTM as RNN, the performance of
AlexNet and ResNet are comparable to each other. At T=9,
the best instance-level accuracy of VERAM with AlexNet
is 93.72%, and with ResNet, it is 93.19% . Theoretically,
the feature extracted from ResNet has more capacity of
discrimination than feature extracted from AlexNet. How-
ever, the features extracted from CNN in each time step
are further merged by LSTM, and acoording to Fig. 13,
the improvement of LSTM on VERAM with AlexNet is
much more significant than on VERAM with ResNet. As
a result, the performance gap between these two CNNs
is reduced. We noticed the performance difference among
different CNN architectures in recent work [17] on 3D shape
recognitions is about 1%.
Effect of time steps T. Time steps T in VERAM is a
super parameter and it determines how many images does
VERAM need to render and observe before emit the clas-
sification predication. Fig. 15 shows the best instance-level
and class-lever accuracy VERAM achieved on ModelNet40
with different time steps T from 1 to 16. AlexNet is used
to encode the visual representation and LSTM is adopt as
recurrent subnetwork. For clarity, we only append T and its
accuracy for 1, 3, 6, 9, 12, 16. In Fig. 15, the rate of accuracy
growth is fast in the first few steps, then becomes slower
and slower with the increase of time step T and converges at
T=9, where VERAM achieves the best performance, 93.7%
instance-level accuracy and 92.1% class-level accuracy. After
that, the performance even slightly decreases. From Fig. 15
it can be concluded as follows:

1) The performance of VERAM can quickly converge
within a few time steps. On ModelNet40, VERAM can get
92.38% instance-level accuracy with only 3 views, which is
as high as 98.6% of the best performance (93.72%).

2) Increasing T would do little to improve the per-
formance after the convergence. VERAM uses the same
parameters and network for each time step, so that the total

number of parameters will not expand with the increase of
T . Although increasing T means VERAM can obtain more
information, but the larger T means VERAM needing to
cope with more views with the same number of parameters.

Fig. 15: Best instance-level and class-lever accuracy of VE-
RAM on ModelNet40 with time steps T from 1 to 16.
AlexNet is used to encode the visual representation and
LSTM is adopt as recurrent network.

Effect of shape alignment. As Pairwise [16] and Rotation-
Net [17], VERAM needs a unified coordinate system to
render shapes and each shape should be rendered from
pre-defined viewpoints, so shape alignment is important
to the proposed method. On the website of ModelNet [26],
all shapes in ModelNet10 are manually cleaned and their
orientations are well aligned. The shapes in ModelNet40 are
also cleaned, but a small part of shapes are needed to align
in the pre-processing stage. The reported performance of
VERAM is based on such aligned orientation.

To quantify the effect of the alignment on the perfor-
mance, we conduced an experiment with aligned Model-
Net40 newly released on the website of ModelNet. Taking
AlexNet as CNN and LSTM as RNN, we trained three VE-
RAM models (T=3, T=6 and T=9) with the aligned training
dataset and tested the classification on both aligned and
unaligned (i.e., randomly rotated) shapes. The results are
shown in Fig. 16. The instance-level accuracy of unaligned
shapes only got 71.64%, 75.24% and 78.04% with 3, 6
and 9 views. Moreover, it only increases slightly with the
increment number of views. These indicate that VERAM
is rather sensitive to the pre-defined viewpoints. We notice
that this limitation is generally encountered in several view-
based methods. For instance, RotationNet [17] achieves 38%
on ShapeNetCore55 dataset. In future, we plan to merge
alignment network into VERAM to alleviate this problem.

Complexity. With the extracted features from AlexNet and
using LSTM as RNN, the total number of parameters of
VERAM is about 12.8M, which is lesser than that of VGG16
(14.7M) and ResNet152 (60M). In our single TITAN X GPU
platform and in the testing phase, it takes less than 0.003
second to extract features for an image by AlexNet. Besides
feature extraction, rendering and predication run very fast,
and it only needs about 0.005 second to emit the decision.
As shown in Fig. 15, the performance of VERAM is very
stable with different T after T > 3. In summary, if we set
T=6, which can already obtain high accuracy, it takes about
0.025 second to classify a 3D shape (not including the time
spent on moving the camera).



Fig. 16: Comparison of the instance-level accuracy of VE-
RAM on unaligned and aligned test dataset of ModelNet40.

4.5 Detailed statistics

VERAM achieves the best average class-level accuracy
96.1% on ModelNet10 (with ResNet) and 92.1% on Mod-
elnet40 (with AlexNet). The number of correctly classified
shapes over the total number of shapes of each category
with these two best models are reported in table 3.

On ModelNet10, nightstand and table are the two worst
categories and they achieve 86.05% and 92% class-level
accuracy respectively. 12 out of 86 nightstands in the testing
set are misclassified. One each of them is misclassified as
desk and table, and the other 10 nightstands are misclas-
sified as dresser. A total of 8 tables are misclassified. One
each of them is misclassified as bathhub and dresser and the
others are misclassified as desk. Two misclassified shapes of
nightstand and table are shown in the first row of Fig. 17.

TABLE 3: The number of correctly classified shapes over the
total number of shapes of each category on ModelNet10 and
ModelNet40 with the best class-level accuracy VERAM.

M
odelN

et10

bathtub bed chair desk dresser
48/50 99/100 100/100 83/86 81/86
monitor nightstand sofa table toilet
100/100 74/86 97/100 92/100 100/100

M
odelN

et40

airplane bathtub bed bench bookshelf
100/100 47/50 100/100 16/20 98/100
bottle bowl car chair cone
93/100 17/20 100/100 98/100 19/20
cup curtain desk door dresser
12/20 19/20 81/86 19/20 78/86
flowerpot glassbox guitar keyboard lamp
17/20 94/100 100/100 20/20 18/20
laptop mantel monitor nightstand person
20/20 96/100 100/100 62/86 20/20
piano plant radio rangehood sink
95/100 95/100 19/20 93/100 18/20
Sofa stairs stool table tent
97/100 18/20 18/20 79/100 19/20
toilet tvstand vase wardrobe xbox
100/100 92/100 89/100 18/20 16/20

On ModelNet40, the classification accuracy of cup is
60.0% and is the worst among all categories. nightstand
gets 72.1% accuracy and holds the second worst position.
Total 8 cups among 20 are misclassified. One each of them
is misclassified as bottle, bowl andwardrobe, and the other 5
cups are misclassified as vase. The testing set of ModelNet40

Fig. 17: First row shows the examples of misclassified shapes
of nightstand and table on ModelNet10. Second row shows
the examples of misclassified shapes of cup and nightstand
on ModelNet40. Shape name, probability to its own category
and misclassified category are denoted below the shape.

contains 86 nightstands and 24 are misclassified. Among
them, 15 shapes are misclassified as dresser and the other 9
nightstands are spread to 5 categories including bookshelf ,
glassbox, radio, table, tvstand. Two misclassified shapes of
cup and nightstand are shown in the second row of Fig. 17.

According to our intuition, the shapes shown in Fig. 17
are hard to be correctly classified by only using the visual
representations. At least partly, the mistake dues to a shape
may has diversified functions. We suspect that more struc-
ture information in 3D space is needed to be fully exploited
to meet such challenges.

5 CONCLUSION

We have presented VERAM, a recurrent attention model
capable of actively selecting a sequence of views for highly
accurate 3D shape classification. To address the problem
commonly found in existing RNN-based attention models,
i.e., the unbalanced training of the subnetworks, we propose
to 1) enhance the information flow of gradient backpropaga-
tion for the view estimation subnetwork, 2) design a highly
informative reward function for the reinforcement training
of view estimation, and 3) formulate a novel loss function
that explicitly circumvents view duplication.

When being applied to real scenarios, VERAM has sev-
eral limitations which may spark future research:

Shape alignment. The experiment in subsection 4.4 shows
that the result is sensitive to alignment and this issue is also
reported in [17]. To address this problem, the basic strategy
is by deepening the network and augmenting the training
data to force the network to cover different viewpoint
variants. Inspired by the approaches of learning transform
parameters as [49], we think the more promising approach
is to merge the alignment network into VERAM.

Time steps. VERAM uses the fixed time steps for predi-
cation. To make the model capable of stopping observation
once it has enough information, the reward of MV-RNN [23]
contains the information gain and it terminates the process
when entropy is less than the threshold, while [40] designed
a subnetwork to learn a binary prediction indicator. Both of
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them provide the insight to extend our model with varying
instead of fixed time steps.

Inaccessible views and occlusion. In real scanning scenario,
there are cases where some predicted views are physically
inaccessible. Varying time steps is necessary and the pro-
posed method also needs to be extended to learn the rele-
vance of each view to the task as TAGM [50]. Occlusion also
has severe adverse effect since the feature representation of
each view is by convoluting the entire image. The key to this
problem is to encode the part-based feature as in [23] to spot
informative visible parts of the partially occluded 3d shape.

Moving cost and views passed through. The cost of moving
scanner should be considered carefully in real scanning
scenario. One feasible approach is to model the cost of
moving scanner as the circle distance between adjacent
selected views and add the cost to the reward for reinforce
learning. Another issue is VERAM omits the continuous
images obtained when moving the scanner from the current
selected viewpoint to the next one. Although these views
are not the best for next observation, but they also have the
potential to help the classification to be more efficient.

Visual feature encoding. The pre-trained deep CNN is
adopted by VERAM to extract visual features. For efficiency
reason, such deep network is hard to fine-tuned with the
view estimation subnetwork simultaneously, although what
and where to observe are coupled for each other. It seems
that visual attention model should exploit a more efficient
network to learning what to observe.
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