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Abstract

Bilayer intelligent omni-surface (BIOS) has recently attracted increasing attention due to its capa-

bility of independent beamforming on both reflection and refraction sides. However, its specific bilayer

structure makes the channel estimation problem more challenging than the conventional intelligent

reflecting surface (IRS) or intelligent omni-surface (IOS). In this paper, we investigate the channel

estimation problem in the BIOS-assisted multi-user multiple-input multiple-output system. We find that

in contrast to the IRS or IOS, where the forms of the cascaded channels of all user equipments (UEs)

are the same, in the BIOS, those of the UEs on the reflection side are different from those on the

refraction side, which is referred to as the heterogeneous channel property. By exploiting it along

with the two-timescale and sparsity properties of channels and applying the manifold optimization

method, we propose an efficient channel estimation scheme to reduce the training overhead in the BIOS-

assisted system. Moreover, we investigate the joint optimization of base station digital beamforming

and BIOS passive analog beamforming. Simulation results show that the proposed estimation scheme

can significantly reduce the training overhead with competitive estimation quality, and thus keeps the

performance advantage of BIOS over IRS and IOS with imperfect channel state information.
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I. INTRODUCTION

Recently, reconfigurable intelligent surface (RIS) has provoked increasing attention in the

evolution towards 6G communication, as it can enhance the cell coverage, provide virtual direct

paths between the base station (BS) and user equipments (UEs), etc., by reconfiguring the radio

propagation environment with limited hardware costs and power consumption [1]. Typically, RIS

is a passive metasurface composed of massive reconfigurable scattering elements that can control

the response of impinging signals by dynamically changing the phase shift of each element so

that the communication channel can be improved with specific design objectives [2][3][4].

Most of the existing works focused on the intelligent reflecting surface (IRS), a type of RIS

which can only reflect the incident signal back to the same side [5], as shown in Fig. 1(a).

To overcome this topological constraint of IRS, a novel RIS named as intelligent omni-surface

(IOS) or simultaneous transmitting and reflecting RIS (STAR-RIS) has been recently proposed

to extend the coverage of the surface to the full-space [6][7]1. Specifically, as shown in Fig.

1(b), the signal impinging on the IOS will be split into two parts, with one part reflected to the

UEs on the same side of the incident signal (referred to as UEfles), and the other part refracted

to the UEs on the opposite side (referred to as UEfras). Due to this unique functionality, IOS can

significantly improve the performance of UEs in the whole space, and thus be employed in various

communication systems such as multiple-input multiple-output (MIMO) communication [8],

non-orthogonal multiple access communication [9][10], unmanned aerial vehicle communication

[11][12], etc. Meanwhile, several IOS prototypes have also been reported recently, verifying the

feasibility of employing IOS in practical communication systems [13][14].

Despite of the dual functionality of reflection and refraction, the beamforming on both sides

of IOS cannot be independently controlled due to the coupled phase shift for reflection and

refraction signals [14][15]. Specifically, in a typical case of IOS, the phase shifts for reflection

and refraction signals are just the same [6]. As shown in Fig. 1(b), this setup implies that the

beamforming on both sides of the metasurface will be symmetric. Thus, if the UEs are randomly

1For the convenience of description, we refer to both IOS and STAR-RIS as IOS in this paper.
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Fig. 1. Examples of beamforming provided by different RIS types. (a) IRS which only serves UEfle. (b) IOS which provides

symmetric beamforming on both sides. (c) BIOS which can flexibly control the beamforming on both sides.

located in the cell, some beams are very likely not to be directed to any UE, so their power is

wasted. To deal with this problem, in [16], we proposed a promising bilayer intelligent omni-

surface (BIOS) structure with two neighbouring IOS layers (referred to as IOS1 and IOS2), which

can flexibly control the beams on both sides of the surface, as shown in Fig. 1(c). Owing to this

unique capability, BIOS can provide higher data rate than IRS and IOS in multi-user systems.

For all of the RIS types mentioned above, the acquisition of accurate channel state information

(CSI) is crucial for the beamforming optimization. However, the channel estimation of RIS

systems is a difficult task in practice, as all of the scattering elements are passive components

without any ability of baseband signal processing. To address this issue, several RIS channel

estimation schemes have been proposed in recent works. For IRS, which is the most popular type

of RIS, a channel estimation scheme based on the least squares (LS) criterion for IRS-assisted

single-user multiple-input single-output (MISO) systems has been proposed in [17], where the

BS is assumed to have no prior knowledge about the channels, and thus requires high training

overhead. To tackle this issue, several channel estimation approaches for reducing the overhead

have been proposed by exploiting the properties of IRS channels. In particular, by utilizing

the channel sparsity, several compressive sensing (CS) methods have been applied in the IRS

channel estimation, e.g., orthogonal matching pursuit (OMP) [18][19], approximate message

passing (AMP) [20], atomic norm minimization (ANM) [21][22], etc. Meanwhile, the property

that all UEs share the same IRS-BS channel has also been exploited in some previous works

to reduce the training overhead of channel estimation in IRS-assisted systems. For example, in

[23], an iterative channel estimation scheme was proposed by exploiting the fact that the sparse

cascaded channels of all UEs have a common row-column-block sparsity. The authors in [24]
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utilized the correlation between UEs’ reflected channels, and proposed a three-phase channel

estimation scheme for an IRS-assisted multi-user MISO system. Furthermore, by reforming

the received pilots as a tensor, two parallel factor based channel estimation algorithms were

developed in [25], where the UE-IRS channels and the common IRS-BS channel are separately

estimated. Another important idea to reduce the training overhead in IRS channel estimation is

to utilize the channel variation property. By exploiting the fact that the coherence time periods

of the IRS-BS and UE-IRS channels are different, the authors in [26] proposed a two-timescale

channel estimation scheme to separately estimate the IRS-BS and UE-IRS channels in different

timescales. In addition, a three-stage estimation scheme was proposed in [27] for an IRS-assisted

multi-user MIMO system, where the angles of departure (AoDs) and angles of arrival (AoAs)

of channels are assumed to remain unchanged for several coherence blocks, so that only the

channel gains need to be updated in these blocks.

Different from the abundant research in IRS-assisted systems, so far there has been very

little research on the channel estimation in IOS-assisted systems. In [28], an LS based channel

estimation scheme was proposed for the IOS-assisted system working in the time switching

and energy splitting model. For the BIOS-assisted system, as there are two IOSs deployed, the

channel estimation problem becomes more challenging than that in the IRS- and IOS-assisted

systems. Taking the downlink transmission for example, for UEfles, the BS signal is directly

reflected by IOS1 to them, while for UEfras, the BS signal is not only refracted by the two IOSs,

but also passes through the near-field channel between the two IOSs.

In this paper, we investigate the uplink channel estimation problem in the BIOS-assisted multi-

user MIMO system, and propose a channel estimation scheme which can reduce the training

overhead by exploiting the BIOS channel properties. To the best of our knowledge, this is the

first attempt to tackle the channel estimation of the BIOS-assisted system. The main contributions

of this work are summarized below:

• We investigate the equivalent baseband signal model of the BIOS-assisted system, and show

that in contrast to the conventional IRS- and IOS-assisted systems, where the cascaded

channels of all UEs have similar forms regardless of their locations, in the BIOS-assisted

system the cascaded channels of UEfles and those of UEfras have different forms, which

we refer to as the unique heterogeneous property. It is this property that makes the channel

estimation in the BIOS-assisted system more difficult to deal with.

• By exploiting the heterogeneous and two-timescale (HTT) properties of the BIOS channels
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and applying the manifold optimization (MO) method, we propose the HTT-MO channel

estimation scheme. Specifically, the common BIOS-BS channel among UEs is firstly esti-

mated over a large timescale according to the uplink pilots from a UEfra rather than a UEfle.

With the estimated BIOS-BS channel, the UE-BIOS channels of all UEs are then estimated

in each small timescale separately. In either the large or small timescale estimation, an

MO channel estimation (MO-CE) algorithm is proposed to reduce the training overhead by

exploiting the low-rank property and angle sparsity of channels.

• With the estimated CSI, we propose a joint BS digital and BIOS analog passive beamforming

optimization algorithm aiming at maximizing the downlink sum rate of the BIOS-assisted

system. The original sum rate maximization problem is first converted to an equivalent

weighted mean square error minimization (WMMSE) problem, and then solved by using

the alternating optimization and the coordinate descent (CD) algorithm.

• We provide various simulation results to verify the effectiveness of the proposed HTT-

MO channel estimation scheme and the WMMSE-CD beamforming scheme, and show

that although the channel estimation problem in the BIOS-assisted system is much more

complicated than that in the conventional IRS- and IOS-assisted systems, the superiority

in the sum rate performance of BIOS over IRS and IOS still holds for the situation with

estimated CSI, thanks to the efficient utilization of the channel properties via the proposed

HTT-MO scheme.

The rest of this paper is organized as follows. Section II introduces the basic structure of

BIOS. Section III presents the system model and channel model of the BIOS-assisted multi-user

MIMO system. Section IV presents the HTT channel estimation strategy. Section V proposes

the HTT-MO channel estimation scheme, where the detailed estimation algorithms in both the

large and small timescales are discussed. Section VI proposes the WMMSE-CD scheme for

the beamforming optimization in the BIOS-assisted system. Simulation results are provided in

Section VII. Finally, Section VIII draws the conclusions of this paper.

Notations: In this paper, the imaginary unit is denoted by j =
√
−1. the bold lowercase

letter a and bold captital letter A represent a column vector and a matrix, respectively. [a]i

represents the i-th element of a, and [A]ij represents the (i, j)-th element of A. (·)T , (·)H

and (·)∗ denote the transpose, conjugate transpose and conjugate operators, respectively. Tr(·),
rank(·) and vec(·) denote the trace, rank and vectorization of a matrix, respectively. ‖·‖F denotes

the Frobenius norm of a matrix, while ‖ · ‖N denotes the ℓN -norm of a vector. | · | denotes the



6

determinant (module) of a matrix (complex variable). R{·} denotes the real part of a scalar. E(·)
is the expectation operator. ◦, ⊙ and ⊗ denotes Hadamard, Khatri-Rao and Kronecker products,

respectively. diag(a) denotes a diagonal matrix with the elements of a on its main diagonal, and

diag(A) is the extraction of the diagonal of A. blkdiag(A1, . . . ,An) denotes a block diagonal

matrix whose diagonal components are A1, . . . ,An. CN (0,K) denotes the circularly symmetric

complex Gaussian distribution with zero mean and covariance matrix K.

II. BILAYER INTELLIGENT OMNI-SURFACE

As we mentioned in Section I, conventional RISs, like IRS and IOS, have several limitations

in the beamforming design for multi-user systems. To overcome these limitations, we have

proposed a novel RIS, BIOS, in [16], which consists of two neighboring layers of IOSs, as

shown in Fig. 1(c). The IOS1 is set in the simultaneous reflection and refraction mode, while the

IOS2 is set in the full penetration mode, which transmits the signal impinging on one side of it

completely to the other side. Thereby, the incident signal will be split into two parts after passing

through the BIOS. One is directly reflected by IOS1 to UEfles, and the other one is transmitted

by IOS1 to IOS2, and then is refracted by IOS2 to UEfras. This unique property bestows the

BIOS the degree of freedom to flexibly control the beamforming on both sides of the surface.

In this paper, we assume that IOS1 and IOS2 are both uniform square planar arrays (UPAs) with

a size of Mx×My. Then, the effective coefficient matrices of BIOS for the downlink reflection

and refraction signals can be expressed as

Φ̂d,fle =
√
ǫΦd,1, Φ̂d,fra =

√
1− ǫΦd,2L

HΦd,1, (1)

where Φd,1 and Φd,2 ∈ CM×M are the downlink diagonal coefficient matrices of IOS1 and IOS2,

respectively, with M =Mx×My. ǫ is a constant to quantify the ratio of reflection signal power

to the total power of IOS1, while 1 − ǫ is the ratio of the refraction signal power. L ∈ C
M×M

is the near field channel matrix between IOS1 and IOS2, the (m1, m2) element of which can be

denoted by [16][29]

[L]m1m2
=

√
2a2F (θm1,m2

L,t , φ
m1,m2

L,t )F (θm1,m2

L,r , φ
m1,m2

L,r )

πd2m1,m2

exp

(−j2πdm1,m2

λ

)
, (2)

where a is the size of IOS elements and dm1,m2
is the distance between the m1-th element of IOS1

and the m2-th element of IOS2 after deployment. F (θ, φ) = |cos3θ| is the normalized power

radiation pattern of IOS elements [29], and θ
m1,m2

L,t (φ
m1,m2

L,t ), θ
m1,m2

L,r (φ
m1,m2

L,r ) are the elevation
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Fig. 2. System model of the uplink transmission in a BIOS-assisted multi-user MIMO system.

(azimuth) AoD and AoA of the channel between the m1-th element of IOS1 and the m2-th

element of IOS2. Considering that L is determined only by the distance between IOS1 and

IOS2, which remains unchanged after the deployment of BIOS, in this paper we assume that L

is known to the BS.

III. SYSTEM MODEL AND CHANNEL MODEL

A. System Model

As shown in Fig. 2, we consider the uplink channel estimation in a BIOS-assisted narrowband

multi-user MIMO system operating in the time division duplex (TDD) mode, where a BS with

NBS isotropic antennas serves totally K UEs equipped with NUE isotropic antennas. As the direct

links between the BS and UEs are assumed to be blocked, a BIOS is deployed to establish the

virtual line-of-sight (LoS) paths for UEs. As mentioned in Section II, both layers of BIOS are

assumed to be UPAs consisting of M reconfigurable elements. UEs are divided into two groups

based on their positions relative to the BIOS, with Kfle UEs located on the reflection side,

indexed by k = 1, . . . , Kfle, and Kfra = K −Kfle UEs located on the refraction side, indexed by

k = fle + 1, . . . , K. In this work, we assume that the information of whether a UE is a UEfle

or a UEfra is known to the BS. In order to simplify the channel estimation process and avoid

the interference between pilots sent by UEs, it is assumed that the K UEs send their pilots

one-by-one to the BS over consecutive time. Taking the k-th UE for example, the equivalent
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baseband received signal at the BS can be represented by

r[t] = GΦ̂µ(k)[t]Hks[t] + z[t], (3)

where s[t] ∈ CNUE×1 is the t-th pilot vector with the normalized power constraint
∥∥s[t]

∥∥2
= 1

and z[t] ∈ CNBS×1 represents the additive Gaussian noise satisfying z[t] ∼ CN (0, σ2INBS
).

µ(k) = fle when k = 1, . . . , Kfle, and µ(k) = fra when k = Kfle + 1, . . . , K. Φ̂fle[t] =
√
ǫΦ1[t]

and Φ̂fra[t] =
√
1− ǫΦ1[t]LΦ2[t] are the uplink effective coefficient matrices of BIOS, with

Φ1[t], Φ2[t] ∈ CM×M denoting the uplink diagonal coefficient matrices of IOS1 and IOS2 for

the t-th pilot vector. Finally, G ∈ C
NBS×M denotes the IOS1-BS channel, and Hk ∈ C

M×NUE

denotes the k-th UEfle-IOS1 (k-th UEfra-IOS2) channel for k = 1, . . . , Kfle (k = Kfle+1, . . . , K).

B. Cascaded Channel in the BIOS-assisted System

Normally, for the IRS/IOS-assisted systems, the received signal at the BS can be represented

as a function of the cascaded channel of the IRS(IOS)-BS and the UE-IRS(IOS) channels for

the convenience of channel estimation and beamforming design [30]. It can be found that in the

IRS/IOS-assisted systems, the forms of the cascaded channels of all UEs are the same. However,

in the BIOS-assisted system, this is not the case. In particular, for UEfles, as the Φ̂fle[t] =
√
ǫΦ1[t]

is a diagonal matrix, the cascaded channel Jfle,k can be expressed as the Khatri-Rao product of

HT
k and G, which is similar to that in the IRS/IOS-assisted MIMO system [6][21][25]. Then,

(3) can be represented as

r[t] =
√
ǫGΦ1[t]Hks[t] + z[t]

=
√
ǫ(sT [t]⊗ INBS

)(HT
k ⊙G)φ1[t] + z[t],

(4)

for k = 1, . . . , Kfle, where φ1[t] = diag(Φ1[t]), and Jfle,k=(HT
k ⊙G) ∈ C

NUENBS×M . (4) follows

from the facts that vec(ABD) = (DT ⊗ A)vec(B) and vec(ACD) = (DT ⊙ A)c for any

matrices A, B and D, and diagonal matrix C with c = diag(C).

For UEfras, however, Φfra[t] =
√
1− ǫΦ1[t]LΦ2[t] is a matrix without any zero element. Thus,

(3) can be rewritten as

r[t] =
√
1− ǫGΦ1[t]LΦ2[t]Hks[t] + z[t]

=
√
1− ǫ(sT [t]⊗ INBS

)(HT
k ⊗G)vec(Φ1[t]LΦ2[t]) + z[t],

(5)

for k = Kfle + 1, . . . , K, where the cascaded channel Jfra,k=(HT
k ⊗ G) ∈ CNUENBS×M2

. By

comparing (4) and (5), it can be found that the forms of cascaded channels in the BS received
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signals are different for UEfles and UEfras in the BIOS-assisted system, i.e., Jfle,k=HT
k ⊙G for

UEfles and Jfra,k=HT
k ⊗ G and UEfras. This characteristic is referred to as the heterogeneous

property, which makes the channel estimation in the BIOS-assisted system more challenging. It

should also be noticed that due to the heterogeneous property, the number of matrix elements

in Jfra,k (k = Kfle + 1, . . . , K) is M times of that in Jfle,k (k = 1, . . . , Kfle), which implies that

more training overhead is required for the estimation of Jfra,k.

C. Channel Model

We assume that both the BS and UEs are equipped with uniform linear array (ULA) antennas.

By utilizing the Saleh-Valenzuela model [23] to characterize the propagation environment, for

the k-th UE, the BIOS-BS and UE-BIOS channel matrices can be expressed as

G =
√

NBSM

P

∑P

p=1

√
F (θpt , ϕ

p
t )αpaBS(θ

p
r )a

H
I (θ

p
t , ϕ

p
t ),

Hk =
√

NUEM

Q

∑Q

q=1

√
F (ψq

r,k, υ
q
r,k)βq,kaI(ψ

q
r,k, υ

q
r,k)a

H
UE(ψ

q
t,k),

(6)

where P and Q denote the number of the paths of the BIOS-BS and UE-BIOS channels,

respectively, which are assumed to be known by the BS. For the BIOS-BS channel, αp, θpr

and θ
p
t (ϕp

t ) represent the complex gain, the AoA and the elevation (azimuth) AoD of the p-th

path. For the UE-BIOS channel, similarly, βq,k, ψ
q
r,k (υqr,k) and ψ

q
t,k represent the complex gain,

the elevation (azimuth) AoA and the AoD of the q-th path. F (θpt , ϕ
p
t )

(
F (ψq

r,k, υ
q
r,k)

)
denotes

the IOS normalized power radiation pattern of the p-th (q-th) path of the BIOS-BS (UE-BIOS)

channel. In addition, aBS, aI and aUE denote the array response vectors of the BS, BIOS and UE,

respectively. Specifically, by assuming that the arrays at the BS and UEs are half-wavelength

spaced ULAs and defining

a(N, x) =
1√
N

[
1, ejπx, . . . , ejπ(N−1)x

]T
, (7)

the corresponding array response vectors of the BS and UEs can be expressed as [23]

aBS(θ
p
r ) = a

(
NBS, cos(θ

p
r )
)
, aUE(ψ

q
t,k) = a

(
NUE, cos(ψ

q
t,k)

)
. (8)

For the half-wavelength spaced UPAs at BIOS, the array response vector can be given as follows

aI(θ, ϕ) = a
(
Mx,−sin(θ)sin(ϕ)

)
⊗ a

(
My,−sin(θ)cos(ϕ)

)
, (9)

where θ and ϕ denote the elevation and azimuth AoD or AoA of the BIOS, respectively.
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D. Sparsity of Channels in the Angle Domain

As mentioned in Section III-C, there are only a few propagation paths along the UE-BIOS-BS

links due to the severe path loss and blocking effects. Thus, the BIOS-BS and UE-BIOS channels

can be further transformed into an angular sparse representation as follows [23]:

G = ABSΛGA
H
I , Hk = AIΛH,kA

H
UE, (10)

where ABS ∈ CNBS×GBS , AI ∈ CM×GI and AUE ∈ CNUE×GUE are the overcomplete angular

domain dictionaries with the angle resolutions of GBS, GI and GUE, respectively. Each column

of the dictionaries corresponds to one specific AoA/AoD at the BS, BIOS or the k-th UE.

ΛG ∈ CGBS×GI and ΛH,k ∈ CGI×GUE are the angular domain sparse matrices of G and Hk,

which consist of P and Q non-zero elements respectively corresponding to the channel path

gains. By selecting the codewords from the uniform grid, ABS and AUE can be expressed as

ABS =
[
a
(
NBS, x

1
BS

)
, . . . , a

(
NBS, x

GBS

BS

)]
, AUE =

[
a
(
NUE, x

1
UE

)
, . . . , a

(
NUE, x

GUE

UE

)]
, (11)

where xiBS = −1 + (i − 1) 2
GBS

and xiUE = −1 + (i − 1) 2
GUE

. By setting Gx and Gy to be the

angular resolutions of the BIOS along the x-axis and y-axis, AI can be exhibited in a similar

way as AI = Ax ⊗Ay, where

Ax =
[
a
(
Mx, x

1
x

)
, . . . , a

(
Mx, x

Gx

x

)]
,Ay =

[
a
(
My, x

1
y

)
, . . . , a

(
My, x

Gy

y

)]
(12)

with xix = −1 + (i− 1) 2
Gx

, xiy = −1 + (i− 1) 2
Gy

and GxGy = GI.

IV. HETEROGENEOUS TWO-TIMESCALE CHANNEL ESTIMATION STRATEGY

As we mentioned in Section III, the number of coefficients in the cascaded channels is huge,

especially for Jfra,k, which leads to prohibitive training overhead if we directly estimate the

cascaded channels of all UEs. In this section, we propose an HTT channel estimation strategy to

reduce the requested training overhead by exploiting the channel properties in the BIOS-assisted

system.

A. The Two-timescale Property

It can be observed that in a BIOS-assisted system, the time variation of the BIOS-BS channel

and that of the UE-BIOS channel are in different scales. In particular, on one hand, as the BS

and BIOS are rarely moved after deployment, the BIOS-BS channel G, which is shared by all
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UEs, can be regarded as unchanged for a long period of time. On the other hand, the UE-BIOS

channel Hk varies in a much smaller timescale, since the movement of UEs frequently changes

the propagation geometry between UEs and BIOS [26]. This two-timescale property allows the

BS to only estimate G once in the large timescale, and with the estimated G, then Hk can be

further estimated in the small timescale. Thus, the training overhead can be significantly reduced.

However, the main difficulty is how to estimate G, as the scattering elements in the BIOS-

assisted system (and also the conventional RIS systems) are passive components without any

capability of baseband processing. To deal with this difficulty, the authors in [26] proposed

a dual-link pilot transmission scheme for the IRS-assisted system, where the full-duplex BS

estimates the BS-IRS channel by firstly sending pilots to the IRS through the downlink channel,

and then receiving the reflected signals from the IRS via the uplink channel. Although this

scheme provides a way to estimate the BS-IRS channel matrix, the requirement of full duplex

mode places high demands on the BS hardware. In this paper, we show that it is possible to

estimate the BIOS-BS channel G without taking the full-duplex assumption, but based on the

uplink pilots sent by a UE in the large timescale, and the estimated G can be used for the

estimation of the UE-BIOS channels of all UEs. However, to make it workable, we need to deal

with the challenge of the heterogeneous property of the BIOS channels.

B. The Challenge of the Heterogeneous Property

As we have pointed out in Section III-B that, from (4) and (5), the signals received by the

BS from the UEfles and the UEfras have different expressions of the cascaded channels, where

the former is a function of Jfle,k=HT
k ⊙G and the latter is a function of Jfra,k=HT

k ⊗G. This

channel heterogeneous property makes the channel estimation in the BIOS-assisted system more

challenging, especially when taking the two-timescale property to reduce the training overhead.

Taking a UEfle for example and even assuming that there is no noise effect in the channel

estimation, the best channel estimates the BS can obtain, denoted by G̃ and H̃k, are not exactly

G and Hk, but belong to a set satisfying the condition of Jfle,k=HT
k ⊙G = H̃T

k ⊙ G̃. Similarly,

for a UEfra, the best channel estimates belong to a set satisfying Jfra,k=HT
k ⊗G = H̃T

k ⊗ G̃.

Obviously due to the heterogeneous property, these two sets are different. However, in the two-

timescale strategy, G needs to be estimated first and used for the estimation of HT
k of all UEs.

Thus, a workable channel estimation scheme must be the one that can make G̃ belong to both

sets or at least their subsets. The following lemmas provide detailed mathematical proofs.
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Lemma 1 If there is no noise effect in the channel estimation, the channel estimates G̃ and H̃k

should belong to one of the following two sets depending on whether the UE is a UEfle or a

UEfra

(H̃T
k , G̃) ∈ Sfle,k =

{
(A,B) | A⊙B = HT

k ⊙G
}
, k = 1, . . . , Kfle, (13)

(H̃T
k , G̃) ∈ Sfra,k =

{
(A,B) | A⊗B = HT

k ⊗G
}
, k = Kfle + 1, . . . , K, (14)

which can be further proved to be equal to the following forms respectively

Sfle,k =
{
(A,B)

∣∣∣ ∃ a1, . . . , aM 6= 0,A = [a1h1, . . . , aMhM ],B =
[ 1

a1
g1, . . . ,

1

aM
gM

]}
, (15)

Sfra,k =
{
(A,B)

∣∣∣ ∃ a 6= 0, A = aHT
k , B =

1

a
G
}
, (16)

where HT
k = [h1, . . . ,hM ], G = [g1, . . . , gM ].

Proof : (13) and (14) can be directly proved from the definitions of the cascaded channels in (4)

and (5), and the proofs of (15) and (16) can be found in Appendix A. �

As can be observed in the Lemma 1, for UEfles, each column of the channel estimate G̃

can differ from the corresponding column of the true channel matrix G with a distinct non-

zero coefficient. However, for UEfras, these non-zero coefficients should be identical for all

columns, which means the feasible set of G̃ for UEfras is a subset of that for UEfles. Thus,

it can be shown in the following lemma that, to implement the two-timescale strategy in the

BIOS-assisted system, if a UE is selected to send pilots for the BS to estimate G in the large

timescale and then use the result to estimate HT
k of all UEs in the small timescale, such a UE

should be a UEfra rather than a UEfle due to the heterogeneous property.

Lemma 2 If a UEfra is chosen to send pilots to the BS for the estimation of G in the large

timescale and Ĝ is defined as the estimation result with no noise effect, then for UEfras, (ĤT
k , Ĝ)

belongs to Sfra,k, while for UEfles, (ĤT
k , Ĝ) belongs to a subset of Sfle,k with a1 = · · · = aM ,

where Ĥk is the estimation result in the small timescale with no noise effect.

However, if a UEfle is chosen to send pilots in the large timescale, then for UEfras, the resulting

(ĤT
k , Ĝ) does not belong to Sfra,k, which means that the accurate CSI for UEfras cannot be

achieved even when there is no noise effect.

Proof : To prove the first part of this lemma, if a UEfra is chosen to send pilots to the BS for the

estimation of the true channel G in the large timescale, then Ĝ can be expressed as Ĝ = 1
a
G
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according to (16). With Ĝ, the BS can estimate Hk UE-by-UE in the small timescale, based

on its received pilots sent from UEs, and the estimation result Ĥk for all UEs should satisfy

Ĥk = aHk according to (15) and (16). Then, it can be seen that for UEfras, (ĤT
k , Ĝ) belongs

to Sfra,k, while for UEfles, (ĤT
k , Ĝ) is in a subset of Sfle,k with a1 = · · · = aM .

To prove the second part, if a UEfle is chosen to send pilots for the estimation of G in the

large timescale, the resulting Ĝ can be represented as Ĝ =
[

1
a1
g1, . . . ,

1
aM

gM

]
according to

(15), where ai is a distinct coefficient for each column. However, based on this Ĝ, in the small

timescale, for UEfras, the BS cannot find a channel estimate Ĥk so that (ĤT
k , Ĝ) ∈ Sfra,k, i.e.,

ĤT
k ⊗ Ĝ 6= HT

k ⊗G, since ĤT
k = aĤk according to (16) but Ĝ =

[
1
a1
g1, . . . ,

1
aM

gM

]
. �

C. HTT Channel Estimation Strategy

With the two-timescale and heterogeneous properties of the BIOS channels discussed above,

we come up to the HTT channel estimation strategy, which is also depicted in Fig. 3. At first, the

BS estimates the BIOS-BS channel over a large timescale based on the TG uplink pilots sent by

a selected UEfra, e.g., the kc-th UE. Then, in the small timescale, the BS estimates the UE-BIOS

channel for each UE based on the received TH uplink pilots and its estimated channel matrix Ĝ in

the large timescale. It can be found that in the large timescale, there are a total of MNUE+MNBS

coefficients need to be estimated for G and Hkc , while in the small timescale, there are a total

of KMNUE coefficients in Hk for all UEs. In comparison, in the conventional cascaded channel

estimation strategy, the BS needs to estimate the cascaded channel for each UE, and thus the total

number of coefficients need to be estimated is KfleMNUENBS + KfraM
2NUENBS. Comparing

these two numbers, it can be seen that the HTT channel estimation strategy can significantly

reduce the number of coefficients to be estimated and in turn the training overhead.

V. HTT-MO CHANNEL ESTIMATION SCHEME

In this section, based on the proposed HTT channel estimation strategy, we exploit the channel

sparsity to further reduce the pilot overhead, and design the HTT-MO scheme for the channel

estimation in the BIOS-assisted system.

A. Channel Sparsity

Although the proposed HTT strategy can significantly reduce the training overhead, the channel

estimation is still challenging due to the large number of antennas at both the BS and UEs, and the
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Fig. 3. The proposed HTT channel estimation strategy.

large number of scattering elements at the BIOS as well, which result in much training overhead.

Fortunately, it can be further reduced by exploiting the channel sparsity in the angle domain

shown in (10). The following two lemmas illustrate the channel sparsity of the BIOS-assisted

system in detail.

Lemma 3 If min{NBS,M} ≥ P and min{NUE,M} ≥ Q, where P and Q denote the number

of paths of the BIOS-BS and UE-BIOS channels, respectively, as defined in (6), we have

rank(G) = P, rank(Hk) = Q. (17)

Proof : We take the proof of rank(G) = P as an example. The proof of rank(Hk) = Q can be

completed in a similar way. According to (6), the BIOS-BS channel G can be rewritten as

G = ABSΛGA
H

I , (18)

where ABS = [aBS(θ
1
r ), . . . , aBS(θ

P
r )], ΛG =

√
NBSM

P
diag(α1, . . . , αP ) and AI = Ax⊙Ay, with

Ax = [a
(
Mx,−sin(θ1t )sin(ϕ1

t )
)
, . . . , a

(
Mx,−sin(θPt )sin(ϕP

t )
)
] and Ay = [a

(
My,−sin(θ1t )

×cos(ϕ1
t )
)
, . . . , a

(
My,−sin(θPt )cos(ϕP

t )
)
]. As all of the column vectors of ABS are linearly

independent, we have rank(ABS) = P . Similarly, we can also obtain that rank(Ax) = P and

rank(Ay) = P . According to the properties of Kronecker product and Khatri-Rao matrix product,

we can transform AI into the following form

AI = Ax ⊙Ay =
(
Ax ⊗Ay

)
(IP ⊙ IP ) , (19)

where rank(Ax⊗Ay) = rank(Ax)rank(Ay) = P 2 and rank(IP ⊙ IP ) = P . Then, according to

the rank properties of matrix [31], for arbitrary A ∈ Cm×k and B ∈ Ck×n, we have

rank (AB) ≤ min{rank (A) , rank (B)}, rank (AB) ≥ rank (A) + rank (B)− k. (20)
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By substituting (19) into (20), we have rank(AI) = P . Finally, as the rank of ΛG is also P , we

can further substitute (18) into (20) and obtain that rank(G) = P . �

Lemma 4 If GUE = NUE, GBS = NBS and GI = M , we have ‖λG‖0 = P , ‖λHk
‖0 = Q, with

λG = vec(AH
BSGAI) and λHk

= vec(AH
I HkAUE).

Proof : We take the proof of ‖λG‖0 = P as an example. According to Section III-D, ABS and

AI are both unitary matrices as GBS = NBS and GI = M . Therefore, λG can be rewritten in

the form λG = vec(AH
BSGAI) = vec(AH

BSABSΛGA
H
I AI) = vec(ΛG). As ΛG only consists of

P non-zero elements, we have ‖λG‖0 = ‖vec(ΛG)‖0 = P . �

Lemma 3 and Lemma 4 reveal the channel low-rank and angle sparse properties, respectively.

Although these properties correspond to the true channel matrices G and Hk, it can be also

proved that for any UE, Lemma 3 and Lemma 4 still hold for any estimated Ĝ and Ĥk, as

according to Lemma 2, there is only a scalar difference between Ĝ(Ĥk) and G(Hk).

B. Estimation of G in the Large Timescale

For the two-timescale strategy and according to Lemma 2, the first step at the BS is to estimate

G based on its received pilots sent from a UEfra, e.g., the kc-th UE for Kfle + 1 ≤ kc ≤ K, in

the large timescale. Based on (5), the channel estimation objective can be established similar to

that of the LS problem. By further utilizing the channel sparsity properties exhibited in Lemmas

3 and 4, the estimation problem of G along with Hkc can be formulated as

minimize
Ĝ,Ĥkc

∑TG

t=1

∥∥∥r[t]−
√
1− ǫĜΦ1[t]LΦ2[t]Ĥkcs[t]

∥∥∥
2

subject to rank(Ĝ) = P, rank(Ĥkc) = Q,
∥∥λ

Ĝ

∥∥
0
= P,

∥∥λ
Ĥkc

∥∥
0
= Q,

(21)

where λ
Ĝ

= vec(AH
BSĜAI), λĤkc

= vec(AH
I ĤkcAUE), and TG is the number of pilot vectors

for the estimation of G in one large timescale. It can be seen that (21) is difficult to solve due

to the multiple coupled variables and the highly non-convex constraints, and thus it may not be

possible to achieve a globally optimal solution. However, with some specific processing, we can
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rewrite the original problem and obtain a locally optimal solution of Ĝ. First to deal with the

ℓ0-norm constraints in (21), we use the ℓ1-norm regularization to relax them and rewrite (21) as

minimize
Ĝ,Ĥkc

∑TG

t=1

∥∥r[t]−
√
1− ǫĜΦ1[t]LΦ2[t]Ĥkcs[t]

∥∥2

+υ
Ĝ

∥∥λ
Ĝ

∥∥
1
+ υ

Ĥkc

∥∥λ
Ĥkc

∥∥
1

subject to rank(Ĝ) = P, rank(Ĥkc) = Q,

(22)

where υ
Ĝ

and υ
Ĥkc

are the tuning parameters which control the contributions of the ℓ1-norm. To

further deal with the multiple coupled variables Ĝ and Ĥkc, we apply the alternating minimization

method and decompose (22) into the following two subproblems

minimize
Ĝ

f
Ĝ

=
∑TG

t=1

∥∥r[t]−
√
1− ǫĜΦ1[t]LΦ2[t]Ĥkcs[t]

∥∥2
+ υ

Ĝ

∥∥λ
Ĝ

∥∥
1

subject to rank(Ĝ) = P,

(23)

minimize
Ĥkc

f
Ĥkc

=
∑TG

t=1

∥∥r[t]−
√
1− ǫĜΦ1[t]LΦ2[t]Ĥkcs[t]

∥∥2
+ υ

Ĥkc

∥∥λ
Ĥkc

∥∥
1

subject to rank(Ĥkc) = Q.

(24)

Finally, to deal with the low-rank constraint in (23) and (24), it can be seen that it actually

corresponds to a Riemannian manifold space, and thus the MO method [32][33] can be applied,

where the optimization variable is iteratively updated in the direction of the Riemannian gradient

and then is retracted back into the complex fixed-rank MO to make the result satisfy the low-rank

constraint.

The crucial step is to derive the Riemannian gradient, which can be deduced from the classic

conjugate gradient in the Euclidean space. By using some properties in matrix derivation such

as d(f) = Tr
(
∇X∗fd(XH)

)
, d(‖r −DXb‖2) = Tr

((
−DHrbH +DHDXbbH

)
d(XH)

)
and

d(‖ λ
Ĝ
‖1) = 1

2
Tr

((
ABSYĜ

AH
I

)
d(XH)

)
, the Euclidean conjugate gradient of the objective

function in (23) can be found to be given by

∇
Ĝ∗fĜ =

∑TG

t=1

(
−
√
1− ǫr[t]sH [t]ĤH

kc
ΦH

2 [t]L
HΦH

1 [t] + (1− ǫ)ĜΦ1[t]LΦ2[t]

×Ĥkcs[t]s
H [t]ĤH

kc
ΦH

2 [t]L
HΦH

1 [t]
)
+

υ
Ĝ

2
ABSYĜ

AH
I ,

(25)

where Y
Ĝ

is computed as
[
Y

Ĝ

]
ij

=
[
AH

BSĜAI

]
ij

/∣∣AH
BSĜAI

]
ij

∣∣. Similarly, the Euclidean

conjugate gradient of the objective function in (24) is given by

∇
Ĥ∗

kc

f
Ĥkc

=
∑TG

t=1

(
−
√
1− ǫΦH

2 [t]L
HΦH

1 [t]Ĝ
Hr[t]sH [t] + (1− ǫ)ΦH

2 [t]L
H

×ΦH
1 [t]Ĝ

HĜΦ1[t]LΦ2[t]Ĥkcs[t]s
H [t]

)
+

υ
Ĥkc

2
AIYĤkc

AH
UE,

(26)

where Y
Ĥkc

is denoted as
[
Y

Ĥkc

]
ij
=

[
AH

I ĤkcAUE

]
ij

/∣∣AH
I ĤkcAUE

]
ij

∣∣.
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Algorithm 1 The MO-CE algorithm in the large timescale estimation

1: Randomly initialize Ĝ(0), Ĥ
(0)
kc

. Set i = 0.

2: repeat

3: Calculate ∇
Ĝ∗fĜ according to (25) with Ĝ(i) and Ĥ

(i)
kc

.

4: Update Ĝ(i+1) via the MO method for given Ĥ
(i)
kc

.

5: Calculate ∇
Ĥ∗

kc

f
Ĥkc

according to (26) with Ĝ(i+1) and Ĥ
(i)
kc

.

6: Update Ĥ
(i+1)
kc

via the MO method for given Ĝ(i+1).

7: i← i+ 1.

8: until the stopping condition is satisfied.

With the derived Euclidean conjugate gradient, we can project it onto the tangent space to

obtain the Riemannian gradient. Then, by iteratively updating the corresponding variable with

the Armijo backtracking step [34] and retracting it back to the complex fixed-rank manifold, Ĝ

and Ĥkc can be alternatively estimated with the other one fixed. The overall algorithm is referred

to as the MO-CE algorithm and is summarized in Algorithm 1.

C. Estimation of Hk for All UEs in the Small Timescale

As the BIOS-BS channel G varies much slower than the UE-BIOS channels, in the small

timescale, the BS can separately estimate them for all UEs over consecutive time based on its

estimated BIOS-BS channel Ĝ in the large timescale. Without loss of generality, we focus on

the estimation of Hk with TH uplink pilot vectors sent by the k-th UE. Considering the channel

sparsity, the estimation problem of Hk with the LS objective similar to that in (24) is formulated

as follows

minimize
Ĥk

g
Ĥk

=
∑TH

t=1

∥∥r[t]− ĜΦ̂µ(k)[t]Ĥks[t]
∥∥2

+ υ
Ĥk

∥∥λ
Ĥk

∥∥
1

subject to rank(Ĥk) = Q,

(27)

where r[t] is given in (3), µ(k) = fle when k = 1, . . . , Kfle, and µ(k) = fra when k = Kfle +

1, . . . , K. It is worth noting that (27) is suitable for both UEfras and UEfles. As (27) has the

same form as (24), it can also be solved by the MO method. It can be derived that the Euclidean

gradients ∇
Ĥ∗

k
g
Ĥk

is given by

∇
Ĥ∗

k
g
Ĥk

=
∑TH

t=1

(
− Φ̂

H

µ(k)[t]Ĝ
Hr[t]sH [t] + Φ̂

H

µ(k)[t]Ĝ
HĜΦ̂µ(k)[t]Ĥks[t]s

H [t]
)

+
υ
Ĥk

2
AIYĤk

AH
UE.

(28)
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The Riemannian gradient can then be obtained by projecting the Euclidean gradient onto the

tangent space. By updating the variable iteratively via the MO method until convergence, Ĥk

can be finally obtained.

D. Analysis of Training Overhead

In this subsection, we analyze the training overhead of the proposed HTT-MO scheme in

terms of the required number of pilot vectors and that of the conventional LS scheme. By

recalling Fig. 3, we can see that the overall training overhead of the HTT-MO scheme is given

by Ttot = TG + τKTH, where τ is the ratio of the length of a large timescale to that of a small

timescale. It is worth noting in the large timescale both G and Hkc need to be estimated while in

the small timescale only Hk needs to be estimated for each UE. Furthermore, as the estimation

result Ĝ in the large timescale must be used for the estimation of Hk in the small timescale,

the estimation accuracy of Ĝ must be higher. Thus, TG should be larger than TH.

For comparison, we consider the traditional LS channel estimation scheme for the proposed

BIOS-assisted system. As it does not exploit the heterogeneous, two-timescale and sparsity

properties of channels, the traditional LS channel estimation scheme has to estimate the high-

dimensional cascaded channels for all UEfles and UEfras in each small timescale, and thus results

in prohibitive pilot overhead. To analyze the number of required pilot vectors in this traditional

channel estimation scheme, we rewrite the equivalent baseband received signal of the BIOS-

assisted system in (4) and (5) as follows

r[t] =
√
ǫ(sT [t]⊗ INBS

)Jfle,kφ1[t] + z[t]

=
√
ǫ
(
φ1[t]

T ⊗ (sT [t]⊗ INBS
)
)
vec(Jfle,k) + z[t],

(29)

r[t] =
√
1− ǫ(sT [t]⊗ INBS

)Jfra,kvec(Φ1[t]LΦ2[t]) + z[t]

=
√
1− ǫ(vec(Φ1[t]LΦ2[t]))

T ⊗ (sT [t]⊗ INBS
)
)
vec(Jfra,k) + z[t],

(30)

where (29) corresponds to UEfles, and (30) corresponds to UEfras. In this situation, the traditional

LS channel estimation scheme needs to estimate the high-dimensional cascaded channels, i.e.,

Jfle,k=HT
k ⊙ G for UEfles and Jfra,k=HT

k ⊗ G for UEfras, and the corresponding number of

required pilot vectors is at least MNUE and M2NUE, respectively. As the cascaded channels of

all UEs need to be updated in each small timescale, the total number of pilot vectors in the LS

estimation scheme in a large timescale is at least τ
(
KfleMNUE +KfraM

2NUE

)
, which is more

than 2.3 × 105 if setting τ = 4, Kfle = 2, Kfra = 3, M = 49 and NUE = 8. Such amount of
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overhead cannot be afforded in practical systems. In contrast, simulation results in Section VII

will show that in the BIOS-assisted system with the same setup, only about two thousands of

pilot vectors are required by the HTT-MO scheme in a large timescale.

VI. WMMSE-CD BEAMFORMING OPTIMIZATION

With the estimated CSI by the HTT-MO scheme in Section V, in this section, we focus on

the multi-user downlink beamforming optimization, and propose the WMMSE-CD scheme to

maximize sum data rate of all UEs on both sides of the BIOS.

A. Problem Formulation

Assuming that the uplink and downlink channels are reciprocal, the estimated CSI of the uplink

BIOS-BS and UE-BIOS channels can be utilized in the downlink beamforming optimization.

Assuming that the BS sends Ns data streams to each UE, the received signal at the k-th UE,

yk ∈ CNUE×1, can be represented by

yk = HH
k Φ̂d,µ(k)G

HFsd + nk, (31)

where F = [F1, . . . ,FK ] ∈ CNBS×NsK is the BS precoder, sd = [sHd,1, . . . , s
H
d,K ]

H ∈ CNsK×1 is

the symbol vector with E{sdsHd } = INsK , and nk ∼ CN (0, σ2
dINUE

) ∈ CNUE×1 is the noise at

the k-th UE. Then, the effective data rate (per Hertz) of the k-th UE can be expressed as

Rk =
(
1− Ttot

Υlarge

)
log

∣∣INs
+ FH

k H
H
e,kΛ

−1
k He,kFk

∣∣, (32)

where He,k = HH
k Φ̂d,µ(k)G

H ∈ C
NUE×NBS denotes the efficient channel matrix from the BS

to the k-th UE, and Λk = σ2
dINUE

+
∑K

i 6=k He,kFiF
H
i H

H
e,k ∈ CNUE×NUE denotes covariance of

the noise plus multiuser interference at the k-th UE. Υlarge is the length of a large timescale in

terms of the number of symbols within this period as shown in Fig. 3, and Ttot denotes the total

training overhead in terms of the number of pilot symbols.

According to [35], the sum rate maximization (SRM) problem can be solved via an equivalent

WMMSE problem. It turns out that this optimization approach can also be applied for solving the

joint BS-BIOS beamforming optimization problem with the SRM objective, and the equivalent

WMMSE problem is given by

minimize
F,Φd,1,Φd,2,Wk,Ψk

∑K

k=1Tr(ΨkEk)− log|Ψk|

subject to Tr(FFH) ≤ 1,

|[Φd,1]m1m1
| = 1, |[Φd,2]m2m2

| = 1, ∀m1, m2,

(33)
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where the first constraint represents the normalized transmit power constraint at the BS, and

the second one corresponds to the constant modulus constraint of the BIOS passive scattering

elements. Ek = E

[(
sd,k −WH

k yk

) (
sd,k −WH

k yk

)H] ∈ CNs×Ns is the mean square error (MSE)

matrix of the k-th UE, with Wk ∈ C
NUE×Ns denoting the combining matrix. Ψk ∈ C

Ns×Ns is

an auxiliary variable to establish the equivalence between the SRM problem and the WMMSE

problem.

To deal with the multivariate optimization difficulty, the alternating minimization method is

applied. Firstly, Wk and Ψk are optimized while keeping other variables fixed, which can be

shown to have the following closed-form solutions

W⋆
k =

(
Λk +He,kFkF

H
k H

H
e,k

)−1

He,kFk,

Ψ⋆
k = (Ek)

−1
.

(34)

Then, to optimize the BS precoder and the BIOS passive beamformers while keeping Wk and

Ψk fixed, by expanding the MSE matrix in (33) and removing the terms that are not related to

the optimization variables, problem (33) can be simplified as

minimize
F,Φd,1,Φd,2

f = Tr
(
ΨWHHeFF

HHH
e W −ΨWHHeF−ΨFHHH

e W
)

subject to Tr(FFH) ≤ 1,

|[Φd,1]m1m1
| = 1, |[Φd,2]m2m2

| = 1, ∀m1, m2.

(35)

where Ψ = blkdiag (Ψ1, . . . ,ΨK), W = blkdiag (W1, . . . ,WK), E = blkdiag (E1, . . . ,EK)

and He =
(
HT

e,1, . . . ,H
T
e,K

)T
.

B. Optimization of the BS Precoder

To optimize the BS precoder in (35) while keeping the BIOS passive beamformers Φd,1 and

Φd,2 fixed, it can be shown that the BS precoder F has the following closed-form solution

according to the Karush-Kuhn-Tucker (KKT) conditions [35]

F⋆ = ζF̃−1HH
e WΨ, (36)

where F̃ = HH
e WΨWHHe + σ2

dTr
(
ΨWHW

)
INBS

and ζ = ‖F̃−1HH
e WΨ‖−1

F .

C. Optimization of the IOS1

When optimizing the passive beamformer Φd,1 while keeping other variables fixed in (35), the

difficulty is the non-convex constant modulus constraint of the scattering elements. One way to
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solve this difficulty is to apply the CD algorithm [36], and alternatively optimize each element

of Φd,1. By defining the equivalent IOS1-UEs channel as

HH
Φ
=

[
(
√
ǫHH

1 )
T , . . . , (

√
ǫHH

Kfle
)T , (
√
1− ǫHH

Kfle+1Φd,2L
H)T , . . . , (

√
1− ǫHH

KΦd,2L
H)T

]T
,

the objective function f in (35) can be represented as

f = Tr
(
ΨWHHH

Φ
Φd,1G

HFFHGΦH
d,1HΦW −ΨWHHH

Φ
Φd,1G

HF

−ΨFHGΦH
d,1HΦW

)

(a)
= φH

d,1Ξφd,1 − ρHφd,1 − φH
d,1ρ,

(37)

where Ξ =
(
HΦWΨWHHH

Φ

)
◦
(
GHFFHG

)T
, ρ = diag

(
HΦWΨFHG

)
and φd,1 = diag(Φd,1).

The equality (a) follows from the facts that Tr(AB) = Tr(BA), Tr(A+B) = Tr(A)+Tr(B),

Tr(CHACB) = cH(A ◦ BT )c and Tr(AC) = aTc for arbitrary matrices A, B and diagonal

matrix C, with a = diag(A) and c = diag(C). Without loss of generality, we assume that

the element to be optimized in the current iteration of the CD algorithm is
[
φd,1

]
m1

with other

elements of φd,1 fixed. Then, by omitting the constant terms irrelevant to the optimization of
[
φd,1

]
m1

, the objective function f can be simplified as

f = 2R{(
∑

m′
1 6=m1

[Ξ]m1m
′
1
[φd,1]m′

1
− [ρ]m1

)[φd,1]
∗
m1
}. (38)

It can be shown that the optimal solution of [φd,1]m1
with other elements fixed is given by

[φd,1]m1
= −

∑
m′

1 6=m1
[Ξ]m1m

′
1
[φd,1]m′

1
− [ρ]m1∣∣∑

m′
1 6=m1

[Ξ]m1m
′
1
[φd,1]m′

1
− [ρ]m1

∣∣ . (39)

D. Optimization of the IOS2

As the performance of UEfle is not related to Φd,2, we can divide f in (35) into two terms,

with one corresponding to the UEfras, which is related to Φd,2, and the other to the UEfles, which

can be taken as a constant when optimizing Φd,2. By defining HH
Φ,fra =

((√
1− ǫHH

Kfle+1

)T
, . . . ,

(√
1− ǫHH

K

)T)T

, f can be further reformed as

f = Tr(ΨfraW
H
fraH

H
Φ,fraΦd,2L

HΦd,1G
HFFHGΦH

d,1LΦ
H
d,2HΦ,fraWfra)− Tr(Ψfra×

WH
fraH

H
Φ,fraΦd,2L

HΦd,1G
HFfra)− Tr(ΨfraF

H
fraGΦH

d,1LΦ
H
d,2HΦ,fraWfra) + const

= φH
d,2Ξfraφd,2 − ρH

fraφd,2 − φH
d,2ρfra + const,

(40)

where Ψfra = blkdiag(ΨKfle+1, · · · ,ΨK), Wfra = blkdiag(WKfle+1, · · · ,WK), Ffra = [FKfle+1,

· · · ,FK ], Ξfra =
(
HΦ,fraWfraΨfraW

H
fraH

H
Φ,fra

)
◦
(
LHΦd,1G

HFFHGΦH
d,1L

)T
, ρfra = diag

(
HΦ,fra
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×WfraΨfraF
H
fraGΦH

d,1L
)

and φd,2 = diag(Φd,2). As (40) is similar to (37), Φd,2 can also be

optimized by the CD algorithm.

Finally, the WMMSE-CD algorithm for the BIOS-assisted multi-user MIMO system can be

accomplished by alternatively optimizing Ψ, W, F, Φd,1 and Φd,2. As the objective function

monotonically decreases after the optimization of each variable, the WMMSE-CD algorithm

is guaranteed to converge to a locally optimal solution of problem (33). It is worth noting

that although we use the true channel matrices G and Hk in the derivation of WMMSE-CD

algorithm, the solutions of the variables in (34), (36) and (39) still hold for the estimates Ĝ

and Ĥk obtained by the proposed HTT-MO scheme, as there is only a scalar difference between

Ĝ(Ĥk) and G(Hk) if there is no noise effect in the channel estimation.

VII. SIMULATION RESULTS

A. Simulation Setup

Consider a BIOS-assisted system where the IOS1 is set in the simultaneous reflection and

refraction mode with ǫ = 0.5. The number of UEs is set to K = 5, with 2 on the reflection side

and 3 on the refraction side, i.e., Kfle = 2, Kfra = 3. The number of ULA elements at the BS

and UEs is NBS = NUE = 8, and that of the UPA elements of the BIOS is M =My×Mz = 49

with My = Mz = 7. For all of the ULAs and the two UPAs, the distance between neighboring

units is 1
2
λ, with λ = 0.03m denoting the wavelength of carrier wave. For the BIOS, the

distance between the two IOSs is 0.03m. For the channel model in (6), the path number of

both G and H is set to 5, i.e., P = Q = 5. Similar to that in [21][32], the first path, i.e.,

p = 1 (q = 1), is set as the LoS path of G (H) with its complex path gain distributed as

α1(β1,k) ∼ CN (0, 1), while other paths are NLoS paths with the path gain distribution of

CN (0, 0.1). For the BS and UEs, the AoAs/AoDs are assumed to be uniformly distributed in

[0, π], while for the BIOS, the azimuth and elevation AoAs/AoDs are assumed to satisfy a

uniform distribution in [0, 2π] and [0, π
4
] ∪ [3π

4
, π], respectively2. The elevation range [0, π

4
] is

associated to the UEfles, and [3π
4
, π] is associated to the UEfras. It is assumed that the BIOS-BS

(UE-BIOS) channel is time invariant in a large (small) timescale, as shown in Fig. 3, and is

2With this setup, we can reform (12) by setting xi
x = −

√
2

2
+(i− 1)

√
2

Gx−1
, xi

y = −

√
2

2
+(i− 1)

√
2

Gy−1
, as

(
− sin(θ)sin(φ)

)
,

(
− sin(θ)cos(φ)

)
∈ [−

√
2

2
,
√

2
2
]. In this situation, we still have A

H
I AI ≈ IM due to the orthogonality between columns in AI,

and thus the Lemma 4 still holds.
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independent for different large (small) timescale spans. The length of large (small) timescale

is set to Υlarge = 10000 (Υsmall = 2500), corresponding to a channel coherence time of 20ms

(5ms) with a 500kHz transmission bandwidth. The uplink training pilot-to-noise-ratio (PNR) is

defined as 1
σ2 , while the downlink transmission signal-to-noise-ratio (SNR) is defined as 1

σ2
d

. For

the HTT-MO scheme, all elements of Φ1[t] and Φ2[t] are randomly initialized from the constant

modulus set
{
x
∣∣|x| = 1

}
to ensure a random quasi-omnidirectional beam pattern [37], and the

elements of the pilot vector s[t] are also randomly selected from this set. All simulation results

are averaged over 200 realizations.

B. Performance of the HTT-MO Channel Estimation Scheme

As mentioned in Section IV-B, even when there is no noise effect, the obtained Ĝ and

Ĥk of all UEs by the proposed HTT-MO scheme is still different from the real G and Hk

by a coefficient, i.e., Ĝ = 1
a
G and Ĥk = aHk. Thus, it is not suitable to simply take the

estimation MSE of G or Hk as a performance metric. Instead, we take the normalized MSE

(NMSE) of HT
k ⊗ G to evaluate the performance of channel estimation, which is defined as

E

{∥∥(HT
k ⊗G

)
−
(
ĤT

k ⊗ Ĝ
)∥∥2

F

/∥∥HT
k ⊗G

∥∥2

F

}
.

We first evaluate the performance of the large timescale estimation step in the HTT-MO

scheme. As introduced in Section V, a UEfra is selected for the estimation of G in the large

timescale estimation, and both G and its UE-BIOS channel are estimated via the MO-CE

algorithm. Fig. 4(a) exhibits the NMSE performance of this selected UEfra, which is defined

as NMSEfra, for different values of PNR and training overhead TG. It can be seen that for small

TG, e.g., TG ≤ 300, the proposed MO-CE algorithm suffers from a shortage of training overhead,

resulting in an NMSE larger than 1 regardless of the PNR. However, with the increase of TG,

the performance is rapidly improved, and then reaches the gentle descent region for all PNRs.

Next, Fig. 4(b) demonstrates the average NMSE performance of all UEs in the small timescale,

which is defined as NMSEavg = E

{
1
K

∑K

k=1

(∥∥(HT
k ⊗ G

)
−

(
ĤT

k ⊗ Ĝ
)∥∥2

F

/∥∥HT
k ⊗ G

∥∥2

F

)}
,

based on the Ĝ obtained in the large timescale with TG = 900. The PNR is set the same in

both the large and small timescales. As can be observed from this figure, in this step the NMSE

decreases monotonously with the increase of TH or PNR, which is similar to that in the large

timescale estimation shown in Fig. 4(a). However, the required TH is much smaller than TG to

achieve similar NMSE performance, e.g., TH = 120 and TG = 500 to reach a NMSE of 10dB

when PNR = 20dB. This is mainly because in the small timescale, the BS only needs to estimate
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Fig. 4. (a) NMSEfra versus TG for the selected UEfra in the large timescale. (b) NMSEavg versus TH for all UEs with the Ĝ

estimated in the large timescale and the Ĥk estimated in the small timescale.

the UE-BIOS channel Hk for each UE with the obtained Ĝ, while in the large timescale, both

G and H should be estimated for the selected UEfra. However, even if the TH is sufficient, the

NMSE performance in the small timescale cannot exceed that in the large timescale estimation

shown in Fig. 4(a), since the channel estimation performance of small timescale is limited by

the estimation quality of Ĝ obtained in the large timescale.

C. Sum Rate Performance

To further evaluate the effectiveness of the proposed HTT-MO channel estimation scheme and

the WMMSE-CD beamforming scheme, Fig. 5 exhibits the sum rate performance of the BIOS-

assisted system with or without channel estimation errors, represented by the solid and dashed

lines, respectively. In the case with channel estimation errors, the CSI used for the beamforming

is obtained by the HTT-MO scheme with PNR = SNR + 10dB. In the case without channel

estimation errors, the pilot overhead is still counted and set the same as that in the case with

estimation errors in order to provide a benchmark.

Fig. 5(a) shows the sum rate performance as a function of TG, when TH is fixed at 150. It can

be seen that the sum rate performance is very poor due to the low channel estimation quality

when TG is very insufficient (below 300), and starts to increase rapidly when TG becomes larger.
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Fig. 5. The sum rate performance of BIOS-assisted system with (solid lines) or without (dashed lines) estimation errors. (a)

Sum rate versus TG; (b) sum rate versus TH.

As TG continues to increase, however, the sum rate begins to decrease as the estimation quality

cannot be significantly improved, while according to (32), the sum rate gradually decreases with

more pilot overhead. In general, there is a best choice of TG to balance the sum rate improvement

due to more accurate channel estimation quality and the data rate loss due to more pilot overhead.

Fig. 5(b) also provides the sum rate performance as a function of TH with TG = 900. Similar

to that in Fig. 5(a), the sum rate with estimated CSI first increases and then decreases with

the increase of TH, reaching the maximum sum rate with about TH = 75 due to the trade-off

between the estimation accuracy and the consumption of training overhead.

D. Comparison of the Sum Rate Performance of BIOS-, IRS- and IOS-assisted systems

In this subsection, we compare the sum rate performance of the proposed BIOS-assisted system

to that of the conventional IRS- and IOS-assisted systems with both perfect CSI and estimated

CSI. For the IOS-assisted system, we set ǫ = 0.5 to simultaneously serve UEs on both sides. The

beamforming design of all these three systems are accomplished by the proposed WMMSE-CD

scheme as both IRS and IOS can be regarded as a special case of BIOS.

Fig. 6(a) first depicts the sum rate performance of the BIOS-, IRS- and IOS-assisted systems

versus SNR with perfect CSI, where the BS is assumed to have perfect knowledge of CSI
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Fig. 6. Sum rate versus SNR for BIOS-, IRS- and IOS-assisted systems. (a) With perfect CSI; (b) with estimated CSI.

without any pilot consumption. As can be observed, for all of the three systems, the sum rate

performance increases monotonously with the SNR, while the BIOS always outperforms the IRS

and IOS as it can independently control the beamforming on both sides. Meanwhile, the IRS

performs the worst as it can only serve the UEs on the same side with the BS.

Next, we compare their performance with estimated CSI. For the channel estimation in the

conventional IRS- and IOS-assisted systems, we adopt the following channel estimation schemes.

• TS-LS [28]: The authors of [28] directly estimated the cascaded channels of all UEs one-by-

one over consecutive time slots based on the LS algorithm for the IOS-assisted SISO system.

We extend this scheme to the IOS- and IRS-assisted MIMO systems in our simulation.

• BA-LS [25]: Instead of directly estimating the cascaded channels, the authors of [25]

decoupled the IRS-BS and UE-IRS channels by modeling the received pilots as a tensor, and

then estimated these channels with an alternating LS algorithm for the IRS-assisted MIMO

system. We extend this scheme to the IOS-assisted MIMO system in our simulation.

• CS-EST [32]: A three-stage scheme was proposed in [32] to estimate the cascaded channel

for the IRS-assisted single-user MIMO system. The AoDs at the UE, AoAs at the BS and

the cascaded channel are estimated in each stage by the OMP algorithm. In this paper, we

apply this scheme in the IOS- and IRS-assisted multi-user MIMO systems by separately
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estimating the cascaded channels of all UEs.

Fig. 6(b) depicts the sum rate performance of the BIOS-, IRS- and IOS-assisted systems as

a function of SNR with estimated CSI. The PNR is assumed to be 10dB higher than the SNR.

As more training overhead provides higher estimation accuracy but occupies more transmission

time, we select the best overhead for each estimation scheme and for each SNR in the sense

of maximizing the sum rate of the corresponding system, instead of setting a fixed number of

training pilots.

By comparing Fig. 6(b) with Fig. 6(a), we can see that all of the three systems suffer from rate

reduction due to the consumption of training overhead as well as channel estimation errors. As the

TS-LS scheme does not exploit any property of channels in the IRS- and IOS-assisted systems, it

needs extremely high training overhead, e.g., at least KNUEM pilot vectors in a small timescale,

and thus reaches the smallest sum rate for both IRS- and IOS-assisted systems. For the BA-LS

scheme, although it utilizes the property that all UEs share the same RIS-BS channel, the required

number of training overhead is still high, e.g., at least KNUE(M+1−P ) pilot vectors in a small

timescale, which significantly affects the sum rate performance of IRS- and IOS-assisted systems.

By contrast, the CS-EST scheme can efficiently exploit the angle domain sparsity of channels in

the IRS- and IOS-assisted systems, the required training overhead in a small timescale is only in

the order of O (KPQlog(PQGI)). Thus, the sum rate of both the IRS- and IOS-assisted systems

with the CSI obtained by the CS-EST scheme is much higher than that with the TS-LS and BA-

LS schemes. Finally, although the channel estimation in the BIOS-assisted system is much more

complicated than that in the IRS- and IOS-assisted systems as we discussed in Section III and

Section IV, results in this figure show that the BIOS-assisted system with the CSI obtained by

the proposed HTT-MO scheme significantly outperforms the IRS- and IOS-assisted systems for

medium and high SNRs. This performance advantage not only results from the ability of flexible

beamforming control on both sides bestowed by the BIOS structure, but also results from the

reduction of requested training overhead by efficiently exploiting the channel properties in the

BIOS-assisted system, i.e., the two-timescale, heterogeneous and sparsity properties.

VIII. CONCLUSION

In this paper, we have investigated the channel estimation problem of the uplink BIOS-

assisted multi-user MIMO system. To reduce the large pilot overhead in the channel estimation

of the BIOS-assisted system, we proposed the HTT-MO channel estimation scheme by efficiently



28

exploiting the heterogeneous, two-timescale, and sparsity channel properties, in which the BS

first estimates the common BIOS-BS channel with the pilots sent by a selected UEfra in a large

timescale, and then uses the estimated BIOS-BS channel to estimate the UE-BIOS channels for

all UEs separately in every small timescale. In each step, by exploiting the low rank property

due to the channel sparsity and applying the MO method to deal with the rank constraint, the

requested pilot overhead is further reduced. In addition, we have proposed the WMMSE-CD

scheme for the beamforming optimization of the downlink BIOS-assisted system to maximize

the UEs’ sum rate. We have provided various simulation results to demonstrate the effectiveness

of the proposed channel estimation and beamforming schemes. It has been shown that compared

with the conventional RISs such as IRS and IOS, the BIOS-assisted system with the CSI estimated

by the proposed HTT-MO scheme has remarkable performance advantage in sum rate, not only

resulted from the truth that the BIOS can provide very flexible beamforming on both sides,

but also caused by the efficient utilization of the channel properties in the HTT-MO channel

estimation scheme.

APPENDIX A

PROOFS OF (15) AND (16) IN LEMMA 1

The equivalence between the two forms of Sfra,k in (14) and (16) can be proved by showing

that for any matrices A,C ∈ CM1×N1 , B,D ∈ CM2×N2 without any zero element, the necessary

and sufficient condition of A⊗B = C⊗D is: ∃a 6= 0,A = aC,B = 1
a
D.

Necessity: If there is an a 6= 0, A = aC,B = 1
a
D, we have A⊗B = (a× 1

a
)C⊗D = C⊗D

with the property of Kronecker product: ∀a, b 6= 0, aA⊗ bB = ab(A ⊗B).

Sufficiency: ∀m1, n1, m2, n2, we have:

[A]m1n1
[B]m2n2

= [A⊗B]((m1−1)M2+m2)((n1−1)N2+n2) 6= 0, (41)

[C]m1n1
[D]m2n2

= [C⊗D]((m1−1)M2+m2)((n1−1)N2+n2
6= 0. (42)

As A⊗B = C⊗D, each element of A⊗B should be equal to the corresponding element of

C⊗D, i.e., [A]m1n1
[B]m2n2

= [C]m1n1
[D]m2n2

for any m1, n1, m2 and n2. By setting a = [A]11
[C]11

,

[C]11 and [D]11 can thus be expressed as [C]11 =
1
a
[A]11, [D]11 = a[B]11. Therefore, for all m

and n, [A]11[B]mn = [C]11[D]mn = 1
a
[A]11[D]mn, which means that [B]mn = 1

a
[D]mn holds for

all m and n. Thus, we have B = 1
a
D. Similarly, we can prove that A = aC, which completes

the proof of sufficiency. �
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To show the equivalence between the two forms of Sfle,k in (13) and (15), as the Khatri-Rao

product can be divided into the Kronecker product of each column of the two matrices, the proof

is thus similar to that above.
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