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Abstract

In current wireless systems, the base-Station (eNode83 to serve its user-equipment (UE) at
the highest possible rate that the UE can reliably decode.eNpdeB obtains this rate information as
a quantized feedback from the UE at timeand uses this, for rate selection till the next feedback is
received at timen + §. The feedback received at can become outdated befonet §, because of a)
Doppler fading, and b) Change in the set of active interef@ra UE. Therefore rate prediction becomes
essential. Since, the rates belong to a discrete set, wogEapdiscrete sequence prediction approach,
wherein, frequency trees for the discrete sequences aleusing source encoding algorithms like

Prediction by Partial Match (PPM). Finding the optimal depf the frequency tree used for prediction

arxXiv:1403.1412v5 [stat.AP] 8 Aug

is cast as a model order selection problem. The rate seqeengaexity is analysed to provide an upper
bound on model order. Information-theoretic criteria drent used to solve the model order problem.
Finally, two prediction algorithms are proposed, using M with optimal model order and system

level simulations demonstrate the improvement in packet bnd throughput due to these algorithms.

I. INTRODUCTION

4G systems, based on standards such as Long Term Evolufid) (ffer peak data rates
of upto 300 Mbps|[1] and rate adaptation through adaptive utatidbn has played a crucial

role in facilitating this. Adaptive modulation techniquesploit the variations in the wireless
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channel by trying to communicate at a rate (bits per chanse),uhat is suited to the current
channel conditions. 4G standards such as LTE supports @othff2rent rates on the downlink.
The transmitter will not know th€INR at the receiver, and hence needs rate feedback from the
receiver. Since we are looking at the downlink of a cellulstem, the transmitter is always the
Base-station/evolved NodeB (eNodeB) and the receiveradber Equipment(UH)[l].

The UE first measures/estimates the post-processing i.e.,, the SINR seen after receive
processing such as, Minimum Mean Squared Error (MMSE) tletecThen, it calculates a
rate metric which reflects the channel capacity based ordatdnlink adaptation/abstraction
techniques([1] . Typically, this rate metric is quantizeddd.TE supports 4 bit quantization.
The quantized feedback is called Channel Quality Indic&@spl), and it is a number between
0 and 15 [[1]. The CQI feedback is done by all UEs in the the systed each UE may
use different techniques f&INR measurements and rate calculations, as, these algorittems a
proprietary to each receiver. The 4 bit CQI value receivethateNodeB is mapped to a 5 bit
value (28 possible states) called the Modulation and Co&icigeme index (MCS). Once the
CQI feedback received at timefrom a useru is mapped to an MCS valu&", it will be used
till the next CQI feedback is received and mapped at timed to X ;. In this work we look
at prediction of the MCS indicex™, ., for timesi = 1,2...6 — 1 using the discrete sequence
of past valued X, X* , X" ,,...}. There are two reasons why prediction of MCS index is
required:

1) The MCS available at time may have been computed from a CQI estimated by a UE
at timen — v, where~ is the reporting delay and this shall be henceforth refetoeds
delayed MCS. A detailed study of the effect of CQI delay isved in [2], [3].

2) The MCS available at (X)) has to be used till time + §. The channel and interference
conditions can change betweerandn + ¢ leading to outdated MCS valug". Our focus

in this work is on the effect of outdated MCS.

While the problem of delayed MCS can be addressed at the @Eprtbblem of outdated MCS
cannot be addressed by the UE alone. This is because, if theddEto predict and feedback the
CQI meant forn 4§ atn, the eNodeB would be left with no knowledge as to what MCS isdo

used for times,n+1...n+ 0 — 1. Therefore, it is necessary that the eNodeB has a prediction
In the uplink the eNodeB knows tH&INR since it is the receiver.
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mechanism to handle the outdated MCS problem. There areugaprediction schemes| [4]-+[7]
that can be implemented at the UE which can correct for ddlay®l and complement the
proposed prediction scheme used at the eNodeB.

The MCS X" can become outdated by—+ i, wherei < §, due to the change IRINR over

time because of the following reasons :

1) The desired signal and interference power changes dhaduneer time due to Doppler
effect, and the change is a function of the mobility of UEs #mel scattering objects.
2) The active set of interfering eNodeBs for a specific UE daange over time due to the

following reasons:

a) The traffic patterns at the different eNodeBs may change tine, and when an
eNodeB does not have enough data to send, it does not traogeniall sub-bands.
For example, a user scheduled in bandlat timen sees eNodeBs indexed as 1,5,9 as
its interferers, however by +§ a couple of eNodeBs from that set may have stopped
transmitting and some other eNodeB which was inactiveray have become active
atn + 0 in band: leading tou seeing a different set of active interferers.
b) In the case of Het-Nets, in order to reduce the interfexesgen by pico eNodeBs, the
macro eNodeBs may not transmit on certain bands on whichiteeig transmitting
[8], [9]. This is called sub-frame blanking and the set ofvecbands for an eNodeB
changes dynamically when dynamic sub-frame blanking isleyeg [8] resulting in a
change in the active set of interferers for UEs attached ighbbeuring eNodeBs. The
transmission power of a macro eNodeB is 46 dBm, while thatia$ s only around
23-30 dBm [9]. Therefore, when the eNodeB does not trangmsbime sub-frames,
it ceases to be an active interferer for UEs attached to tighbering eNodeBs and
the pico power is too low for it to become a dominant intenfere
If the system is such that all eNodeBs transmit data alwaystha change is only due to
Doppler, it is called a fully loaded system. On the other hahdll eNodeBs do not transmit
over all resources, it is referred to as partial loadindypically, the change iIrSINR due to

partial loading is more abrupt, leading to higher variapiln MCS values.

2Note that we are looking at reuse-one LTE system where alfriguency bands are used in all eNodeBs, and in partial

loading some bands may be unoccupied
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There are many CQI prediction methods, proposed in [[4]—[i} ¥he objective of improving
link adaptation. In[[4] the authors perform channel predictusing Jakes and ITU models and
use it for CQI updation. In_[6] also channel prediction is éoypd to estimate the future CQI.
In [5], the authors treat the CQI prediction as a filteringgpction problem, where they treat
the CQI as a real number and use a linear predictor which neesrthe Mean Square Error of
the CQI estimate. It can be seen that, all the above papeet, @QI as a continuous quantity
and use filtering based prediction approaches. Furthernlmeefocus is more on the effect of
delayed CQI/MCS and partial loading has not been considered

These techniques should be applied only at the UE, becausatiauous CQI viz., the actual
value ofSINR is available only at the UE. At each UE, tB&NR-CQI mapping is done based on
the receive algorithms used bB,ithe transmission mode and tRENR estimation itself may be
different for different users [10]. This results in diffeteeceivers computing/predicting the CQI
using different techniques. Since CQI is quantized sther to CQI mapping is non-invertible and
furthermore, theSINR to CQI mapping employed at each UE is unknown to the eNodeBceéle
mapping the MCS back tBINR at the eNodeB will not improve prediction accuracy. Morepve
since the eNodeB selects only a discrete rate, one can apgiyett sequence prediction,
wherein, a temporal distribution of the MCS values can bdt lauid exploited for prediction.
This technique of building the MCS distribution is practigaviable only if the MCS comes
from a discrete set.

We assume that the feedback is periodic with time pesigms), thus the eNodeB by time
n will have received a sequendeX, X“, ,...X",} from the useruH Our aim is to predict
X' s given this discrete sequence. If the joint distributionwetn the future and the past, i.e.,
P(X",..X¢ X2 5) is known, we would be able to optimally prediat?, ; from the previously
observed sequence. However, as this distribution is nowknaeve propose to build the joint
distribution, for each usei.

We initially propose to use algorithms from source encodingstimate the distribution of the
MCS sequence of each UE, since estimating the distributican source transmitting symbols,

is a problem that has been studied extensively in sourcedamg.oCertain issues in practically

3For the samesINR different receive schemes say MRC,MMSE or ML can suppofedifit rates.

“However, the approach proposed in this work can be modifidcuaad even if the feedback is non-periodic or event trigtjere
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applying these algorithms are discussed, and appropriatdifications are proposed. In this
paper, two source encoding algorithms namely Active LenZpelActive LeZi) and Prediction
by Partial Match (PPM) [11]/[12] are discussed. These dligmis build frequency trees and use
these trees for prediction. The Active LeZi algorithm cages to the optimal tree depth if one
has an asymptotically long MCS sequerice [11]] [13]. Howeserasymptotically long sequence
may not be available in a practical system. Two major reagonshis are a)UE sleep cycles
due to Discontinuous Reception(DRX) and b)the fact thatMi&S sequence may not remain
stationary over very long time periods. Both are discussedeitail in Section_IlI-A. In other
words, one cannot assume very long sequence lengths anaitaastjuence of MCS values at the
eNodeB may not be enough, for Active LeZi to converge to thenogd tree depth. Furthermore,
it is also difficult to implement Active LeZi, because of a ging memory requirement even if
an asymptotically long MCS sequence was available. Thexefee propose to use PPM which
uses a fixed depth frequency treel[12].

However, we need to know the tree depth that must be travdémsearediction using PPM.
The tree depth used must capture the complexity of the sequand at the same time the
distribution built must be accurate to the depth used, gaemmbserved sequence length. These
two requirements represent a trade-off in choosing the deggh and the implications of this
trade-off are discussed in Sectibnl IV. We propose to anallysesequence complexity using
a metric called sub-extensive information [14] and use iaasupper bound on tree depth as
discussed in Sectidn TVAA.

However, as the tree depth increases, the number of panametine distribution required to
be estimated increases. Hence, one has to optimally piclpth deat will reflect the underlying
sequence complexity, and at the same time will not involtamedion of too many parameters.
We propose to use classical model order estimators suchrasmitin Description Length (MDL),
Akaike Information Criterion (AIC) based estimators in 8ewc [\V-BI for finding the optimal
tree depth, with the optimal model order being upper bourlnedhe k; , (tree depth) given
by analyzing the MCS sequence complexity. Since we have affigite length MCS sequence
available in a practical system, we focus on a finite sampteected model order estimator to
find the optimal tree depth for predictid}ypt. Note thatk"

o IS the optimal tree depth when the

distribution is known, Whereaé’gpt is the optimal tree depth when the distribution also has to

be estimated.
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Once the tree depth is estimated, we can build the distabub the desired ordd}gpt and
use that for prediction. For the prediction step, a MAP eatonand a Bayesian Risk Minimizer
are proposed for estimating, ; given the MCS sequence and the estimated distribution.

We compare the performance obtained using the proposedthtgs with a Markov predictor
which uses a fixed model order across all users, the best sopigen in [7] and a naive algorithm
which uses the feedback without any prediction whatso@bex.work in [7], uses order statistics
such as mean, median, auto-correlation etc. to performMICQ&# prediction at the eNodeB while,
we attempt to predict MCS at the eNodeB by building a tempdistribution.

It is possible that the CQI that has been reported may sorastira in error as studied in [15].
In that work, they study the effect of bias in CQI reportinglarorrect it using the ACK/NACK
reportSH from the UE. Note that, while [15] can correct for bias in C@ported, it is not a
prediction technique and cannot efficiently solve the problof outdated MCS. On the other
hand, while we exploit the underlying MCS sequence compjeir efficient prediction, our
techniques are not designed to handle CQI error. Howevernmathod and the method in [15]
can be easily combined in order to handle both CQI reportingr e&nd the effect of outdated
MCS.

TABLE I: List of Symbols used

XY MCS index X for useru received at timen

Sy Sequence of MCS indices received upto time

Ipred(k) | Predictive information in sequence with model order
ku

opt
];:u

opt

Optimal Model order as estimated usifigred(k)

Optimal Model order when the distribution is unknown.

[l. SYSTEM MODEL

A 19 cell, 3 sectors per cell reuse-one LTE system is consitlen the system simulator,
there are 19 cells and 57 sectors with wrap around, to avaleé eiscontinuities [16] and UEs
are distributed uniformly in each sector. LTE systems, uB®RA in the physical layer where

sub-carriers are grouped into sub-bands [17], and usemsllamated a set of sub-bands for data

*These indicate whether a packet has been received sudbessfoot.
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transmission. Each eNodeB transmits over the same setaineeEs, as, it is a reuse-one system.
The OFDMA for the 10MHz LTE system has 1024 sub-carriers wiwerly the 600 in the middle
are used [17]. These 600 sub-carriers are grouped into Gfpgrof 12 sub-carriers (SCs) each
and this is done over 14 OFDM symbols. So this group of 12 S@& & symbols is called
one Physical Resource Block(PRB) and the 14 OFDM symbolstheg constitute a sub-frame
[17]. There are 50 PRBs in a sub-frame and a continuous blb@PRBs are grouped to form
a sub-band. There are 17 sub-bands in LTE for the 10MHz sygt@m and, scheduling and
transmission is done at the sub-band level. The frame sneics provided in[[18]. The set of
sub-bands allocated to a user, is called a transport blodkeaary user will be allocated one
rate for the whole transport block.

There are multiple feedback techniques in LTE and here weasfoa periodic feedback, where
the user combines the best five sub-bands’ rates and feekishhs@aggregated CQI index along
with the sub-band location. This estimation of the aggreda@QI is highly UE specifid.e,
different UEs are manufactured by different vendors andsequently, the algorithms used may
vary. At the eNodeB these CQI values are converted into MQ$egaHence, our data comprises
of the MCS sequences for all the users in the system. We udkesg$tem simulator to obtain the
datai.e.,, MCS sequences for each UE used for prediction. Both, pathdeponent and shadow
fading parameters are as specified(in/ [19], [20] for an Urbatid model. The channel model
used in the simulator is the Generic Channel model as givgh9jy [20]. The generic channel
model is a realistic channel model for multipath channelsalular systems. The model is such
that the channel from each UE to each eNodeB is modeled usffegetit parameters such as
Angle of Arrivals and Departures of the multipath rays, anste dependent power delay profile,
Line of Sight parameters and multipath profiles![19],![20gnde, different users see different
delay spreads and even the same user sees different dedémdsgrom different eNodeBse,,
the multipath power delay profile of the channel between tkealdd serving eNodeB can differ
from the power delay profile between the UE and interferingp@®Bs. This makes a simple
statistical characterization of the channel for the puegasf modeling th€INR or rate extremely
difficult. Even if, one were to characterize the channels ita be done for all the users, and the
different links between eNodeBs and UEs, making it an ex¢tgncomplex system to model
mathematically. Note that only the strongest 8 interfetersach user, are modeled explicitly for

ease of computation. The detailed simulation parametergigen in Tablé 1l for completeness.
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TABLE II;: Baseline Simulation Parameters

Deployment scenario Urban macro-cell scenario

Base station antenna height 25 m, above rooftop

Minimum distance between UT and serving celb>= 25m

Layout 19-cell Hexagonal grid with wrap around.
carrier frequency 2 GHz

Inter-site distance 500 m

UT speeds of interest 30 km/h

Total eNodeB transmit power 46 dBm for 10 MHz

Thermal noise level -174 dBm/Hz

User mobility model Fixed and identical speeld| of all UTs,

randomly and uniformly distributed direction

Inter-site interference modeling Explicitly modeled
UT antenna gain 0 dBi
Channel Model Urban Macro model (UMa)
Network synchronization Synchronized
Downlink transmission scheme 1x2 Single Input Multiple Output
Downlink Scheduler Proportional Fair with full bandwidth allocation
Downlink Adaptation sub-band Channel Quality Information (CQI) of best 5 baratsefach user ang
Wideband CQI for all users,at 5 ms CQI feedback periodicity, CQI delaydd
CQI measurement Error: none, MCS based on LTE transportafizrm
Evaluated traffic profile Full Loading and Partial loading with exponential interhaal time.
Simulation bandwidth 10 + 10 MHz (FDD)

The eNodeB requests MCS feedback from each user once in &#tenyes (typicallyy=5ms),
some more details are given in Tablé Il. Since the set of MOBegaare 28, this corresponds
to rates varying from 0.1523 - QPSK with code rate 0.076, §4%7 - 64 QAM code rate 0.93,
bits per symbol[[1] seen in Table 10.1. The sequence recénmd like X, X35, .. X, X" 5.,
where the eNodeB at time instant+ ¢ (i < §) has to use a valu&* which was estimated at
time n. As discussed earlier, there are two main reasonsfar; to vary from X! and they are
a)Mobility in the system and b) The active set of interfergldodeBs will change.

We simulate the following traffic profiles:

« A generalized traffic distribution with exponential intamival rate of 50ms and packet size

3000 bytes. (partial loading)
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« A situation where all eNodeBs transmit continuously. (fokding)

To summarize, we are required to estimate, a time varyingelis value of rate, for partial and
full loading. There are 57 eNodeBs with each eNodeB runnéhggduling algorithms independent
of the other eNodeBs. These users can be scheduled oveedtffeands, at different times, and
the interfering and desired channel also changes over Tireeabove explained model is difficult
to completely characterize mathematically and analyzealse, to do that we have to model
the scheduler behavior under traffic, all the user-interfehannels which are not i.i.d and even
time-varying traffic statistics. However, if one knows tlenf temporal rate distribution of a
user, one could predict the rate from the observed sequ&intee, the sequence to be predicted

is from a discrete set, we propose to use discrete sequeadefn algorithms.

[1l. COMPRESSIONALGORITHMS FORMODEL BUILDING

In the previous sections, we explained how the MCS predigtimblem for each UE could
be mapped to a discrete sequence prediction problem formwahjoint temporal distribution of
the sequence has to be built. This problem of building a discdistribution has been studied
extensively in[[11],[12],[[21],[T22] and we propose to apfigse techniques for MCS prediction
with appropriate modification. We now give algorithms, whiouild frequency trees, and from

which the discrete distribution can be estimated.

A. Active LeZi

The Active LeZi builds a variable order Markov chain as pregabin [11]. This is shown in
Algorithm[1. This algorithm uses a sliding window to updatedontexts as will be explained in
an example. We denote current window By its length byll/;, and maximum allowed window
length by, the dictionary byD and current word as.

This algorithm generates a frequency tree for S'=22,22222,27,27,24,24,22,24,27,24,24,22

as in Fig[1 and we provide an illustrative example on its wagkas follows: (i)

1) Initialization,

a) W, =0;
b) W = 0;
c) D=1
d) w=10
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Algorithm 1 Active LeZi Algorithm

1:

2:

3:

Wr=0W=0,D=0
Assignw = ()

Append incoming character to w and W, i.e., W = (W,v),w = {w,v} W, =W, + 1

If w is part of D do not addw to D.

If w is not part of dictionary adav to the dictionaryD = D, w.
Wy, ..=Maximum word length in dictionary

If W, > W, .. deletel[0]

Update frequency tree based on all contexts inlthe

Repeat from Step 2

2) Getting incoming character= 22

3) From Step 3w = {22}, W = {22}, W, =1 and sinceq ¢ D)
4) From Step 59 = {{22}},

5) From Step6 W, =1

6) Step 7:-Wp # Wy, .

7) Step 8: Update tree based @n as follows:

0

|
22(1)

8) Step 9 - Repeating from Step @:= 0,

9) Getting incoming character= 22

10) From Step 3v = {22}, W ={22,22}, W, =2and w € D)
11) Step6:W,, .. =1
12) Step 7.W, > Wy, ... DeleteW|[0] thus obtainingh” = {22}
13) Step 8: Update tree based @n as follows:

0

|
22(2)

14) Step 9 - Repeating from Step 2:= (),

August 11, 2014
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15) Getting incoming character= 22
16) Step 3w = {22,22}, W ={22,22}, W, =2 and ( ¢ D)
17) From Step 5D = {{22}, {22,22}}
18) From Step 6\, . =2
19) At Step 7W, =W, .
20) In Step 8: Update tree using as follows:
0
|
22(3)
|
22(1)
21) Repeat for whole sequence.

The full tree for the above example is shown in Eig. 1.

22(7) 24(5) 27(3)

T TN

22(3) 27(1) 24(1) 24(2) 22(2) 27(1) 24(2) 27(1)

27(1) 27(1) 27(1) 22(2) 24(1) 24(1) 24(2) 24(1)

Fig. 1: Active LeZi Example Tree

The nodes in the tree in Fig. 1 gives information about the M@fx and the number of
times it has occurred in a certain MCS sub-sequence. For @eanm Fig[1 if one looks at
the left most node in the bottom most generation a value 2g(gen. This implies that the
subsequencé22,22 has been followed by &27} i.e., {22,22,2% has occurred once and from
the parent of that nodé22,22, has occurred thrice , an®2} itself has occurred seven times.

However, this algorithm suffers from certain implemerdatdifficulties. The maximal word
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length in this algorithm grows with sequence length, thgredquiring an ever-increasing mem-
ory to store the words and frequency trees. Since the chammedlations are typically of the
order of only a few milliseconds, the correlations in the M&&juences does not extend much
in time and, it is unnecessary to learn very long contextsréalipt.

Furthermore, this predictor converges to the optimal mauder only asymptotically [13].
However, due to the effect of UE sleep cycle, we would neveraseasymptotically long sequence
to learn the data [1]. In order to save battery, when the us@tlé it stops measuring/sensing
the channel and hence there is no feedback during this tilmereTare two types of sleep cycles
viz. short DRX or long DRX. First, the UE senses the contrarmatel, to know, if there is any
data to be received and if there is no data to be received & guwe a short sleep cycle, where
the UE does not sense the channel or feedback MCS. Then,iit sgases the channel at the
end of the short DRX and if there is still no data it goes fortaero short DRX and afterv
such short DRX, if there is no data the UE goes into long DRXe Téngth and duration of
short and long DRX and are configurable, and are configured according to traffic tipethe
UE is receiving. Furthermore, the assumption of statidpamay not hold over very long time
periods or sequence lengths. Hence in a practical systeenhas to assume that the sequence
length is limited.

Since Active LeZi requires a high amount of memory and alsaasymptotically long se-
guence, both of which are not practical, we propose to us@fi method of a fixed tree depth

with appropriate modifications.

B. Prediction by Partial Match

Most online predictors are based on the short memory piigcip which the recent past is
more important for prediction i.e. prediction is done by etving the previoug symbols. Here,
we plan to build a frequency tree of fixed depth** which may depend on the sequence
length available. The PPM uses the Active LeZi algorithmhwibe 1/,  fixed to some
k™e* . Now using PPM, with fixed tree deptti"®*, one can compute all models of the form
P(XM|X" s XY, ) With B =1,... k™ — 1. Note that, while one can build the tree upto
depthk™*, the depth used for prediction can be different. This deiidufor prediction will
depend on the sequence complexity and the number of pananoeie needs to estimate to learn
the distribution (details given in Sectidn]lV). The exampiee given in Fig.ll hag™** = 3
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and from this tree, the model3(X| X" ,) and P(X}| X", , X" ,5) can be computed and

either of them can be used for prediction.

C. Estimation of P(X"| X" ,..X" .s) usingthe Frequency Trees

Using the techniques presented above, Markov models upler 61* — 1 can be built. In
order to use ath order model to predict, each state needs to be assignedbalplity of
occurrence, given the model and previdustates. This has to be done using the models of
order 1 to k£ which are recursively built. This recursion is because eVen kth order model
returns the probability of a particular state as zero, theight be a lower order context in which
the state could have occurred. For instance, if one lookeeatkample sub-sequence given in
SectionIlI-A and its corresponding tree in Hig. 1, from tleeend order model alone, the next
value being 22 is zero because, 24,22 has never been followad22. However, if one looks
at the first order model, 22 has succeeded a 22, 3 out of 7 tintessefore, the information
upto depthk + 1 must be blended to give the probability of occurrence of testader model
orderk. Typical blending methods are given in [11], [23]. Given theguencies of all contexts
and given that the previous— 1 alphabets wereX™ ... X* _, ., then the probability that the

next state isX!, ; = t; is given by a recursive computation.
PO( tz) — E =1 ( )

n+o n

(1)

o Z?:l 1(Xu(i+k:)67 ---Xuz‘é = tj"tjk>

a E?:l 1(Xu(i+(k—1))57 WX =Ty t)

B D it LX Y g5 X5 = tj"tjk)> @
D i LK i mryys-X s = i)

wherel is the indicator function, indicating the occurence of therg, and) J, 1(X™ ;5. - X";5 =

Pe(Xps =t:) = P(Xoys = Gl X5, XY o5 = ti--tii)

+ Pk;_l(X:Lj/_’_é - tz) . (1

t;..t;. ) is the frequency of occurrence of the sequefigg ¢;, ,...t;,,t;} wheren is the sequence
length that has been observed. As an example let us use ¢hgivemn in Sectioh Il[-A to compute
the probability that the next value of the sequence S’ is 24.

The last seen values are 24,22 . The number of times 24,222%4dcurred given 24,22 has
occurred is 1 and the number of times that 24,22 has occwsizdlihe number of times 24,22 has

occurred with no future stored context is also 1 which is #mosd term in[(R). This is the proba-
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bility by which the lower order model is weighed. Therefdré24|24, 22) = £+ (1—1)P(24/22)
and P(24/22) = 1. Thus, the probability thaP(24]24,22) = 1 + (1 — 1)1 = 4

To summarize this section, we saw three algorithms which fsequency trees and a method
to evaluate théith order probability. It can be seen that, to build'dh order model for useun
viz. P(X2IXY i1, Xopuso, -Xp_1), One must use the data upto depth+- 1 from the tree.
Our next problem is finding out, the optimat that can used for prediction for each user
(different users can have different valuesid) called themodel order selection problem. In
the next section, we shall discuss the model order problewhetail and propose methods to

find the optimal order.

V. M ODEL ORDER SELECTION BASED ONSEQUENCE COMPLEXITY AND AIC

The algorithms which built frequency trees and evaluateababilities using them were
discussed in detail in the previous section, and now we waiiintd out the depth of the tree
upto which one has to traverse, to obtain a reasonable rmodel

A model used for prediction must satisfy two properties:

« The model used must capture the complexity of the sequence.
« The frequency tree built, must be 'reasonably’ accurateht required depth, given an
observed sequence length.

The first property is intrinsic to the sequence, i.e. a secgienmes from a particular distribution
P(X k)50 X(N_yyse X (v_rris-—XNs) SUCh that given the previous' — 1 values, any
knowledge of values further in the past does not improve tlegliption accuracy. The second
property arises due to the fact that the distribution is @pegstimated, and with increasirig,
the number of parameters to be estimated increase and noa¢sta large number of parameters
a correspondingly large sequence must be observed. In wtires, if the model that best fits a
given sequence i8*, it could be that the number of parameters to be estimateluitding ak*
model might be so large that estimating the required paemnetccurately from a fixed length
MCS sequence may not be possible. Hence, the optimal modet @& that, which achieves the
right balance, in the trade-off between, finding a model Whéccomplex enough to capture the
sequence complexity, but not so complex that it requiresrgel@umber of parameters to be
estimated. These two properties are explained in detateénnext subsections. For the sake of

notational simplicity, we henceforth drapfrom the subscript.e., X*,; = X",
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A. Sub-Extensive Information as a metric for Sequence Complexity

We first focus on a metric which characterizes the underlyiomplexity/ learnability/ pre-
dictability of a sequence called sub-extensive informmafid]. We had mentioned earlier that,
sequence prediction is similar to source encoding and hence only natural that, we study
the model order through complexity and entropy of the segeenThe absolute entropy of
a sequence increases with volume per se because complealgs svith volume([24]. Since,
sequence prediction involves predicting the future, hgnabserved the past, one is more in-
terested in the mutual information between the past and uhed than the absolute entropy.
This mutual information is also called sub-extensive infation or predictive information in
sequence prediction literature in physics![14]. The totdébrimation/entropy in a sequence is
a sum of extensive and sub-extensive information compandifite total entropy at time is

given by:

H(Xora) = H(X", X"y, XY, ., X)) 3)
= H(X | X", . X{")+H(X", X", X, .., X", ) 4)

The first term on the RHS of{4) is the sub-extensive compoaedtthe second term is the
extensive component of entropy. It can be seen that; as+ oo the total entropy and the
extensive component will tend to infinity linearly with, while the sub-extensive component

will grow at a less than linear rate The average sub-extefrantual information is given by:

P(X“n|(X“1, X“2,X“ , ...,X“n_l))
Px"] )> ©)

where, () denotes expectation over the joint distributid?,X;...X,,). Another way of writing

](Xun’ (Xu17Xu27Xu37 "'7Xun—1)) - <l092 (

this is:
IXM (X, XYy, XYy, XY ) = H(XY) + H(X", XY, XYy, XY )
- H(X", X", X", .., X)) (6)
I(X" (X", X", X", .., X", 1) =H(X",) - HX", | X", X", X" s, ... X", 1) (7)

Calculating the sub-extensive part of information recgitke knowledge of joint probability

distributions. This sub-extensive component of informatis also called predictive information
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and is denoted as:

/ P(Xu uure|Xu as)
Ipred(TvT) = <l092 ( P(J;(tu ;D ! >> (8)
future

whereT is the time for which the sequence has been observed in theapdg™” is the future
time for which the sequence is to be predicted. Computingthe(7’,7”) as in [8) requires the
knowledge of the joint distribution of the entire sequeridewever, in practical systems one may
not have the complete joint distribution ¢X* , X"  ..X* } and due to memory constraints,
it will be possible to estimate and use only the joint disttion of { X" 6 X* . X" ,}.

In our problem the focus is on finding the béstth order Markov model for each user to
use in PPM for prediction, and the predictive informatioraisequence while using a model of
order k is denoted byl,,..(k). The value ofk can be varied from to K and/,..(k) can be

obtained as follows:

Ipred(k?) - <l0g2 (P(Xun|(;(<u)ré;1>Xun_k)))> (9)
— H(X" ) — H(X" |(X* _,.X" ) (10)

Since, the sequence that we are studying is a sequence of Mfi&s and the dependence
on the past is of a decreasing nature i¥:, to ‘depends more’ onX*, _, than X* _., .
wherek > 0, we can expect,,..(k) as a function ofk to grow at a rate slower than linear
increase.,...(k) will be monotone non-decreasing inbecause the mutual information is not
going to decrease as the number of observations increas¢gheaumber of observations used
for prediction increases i.e. between usingast values and using one more value in the farther
past can only either increase, or retain the existing in&tiom about the future. Faf,,..q.(k)

to have a linear growth rate it would requi’é”, to ‘depend equally’ onX™, _, and X™, ..
which will not happen, because, both desired and interterehannel correlations decrease over
time and the MCS sequence depends on both. Sub-linear rateredse can mean either a rate
of increase oD (k“) wherea < 1 or a rate of increase @(log(k)). Another possibility is that
the sub-extensive information is constant despite inangathe number of observations. This
can happen when the underlying process is a simple Markasepso While trying to predict a

simple Markov process it is enough that we observe the imatediastj.e., X, [24]-[26].
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1) Sub-Linear O(k®) rate of increase: The generalized fornd,,.q.(k), is [14]:

Lyrea(k) = Co + C1 K~ (11)
L(k) = Iprea(k) = Iprea(k — 1) (12)
L(k) ~ M%Z(k) = aCk*! (13)

where0 < a < 1. The termL(k) is called the learning curve, and is a metric which gives the
rate at which the predictive information increases whenrioglel order is increased, and this
is a decreasing function ik from (13). This implies that increasing k more and more gives
only diminishing returns in prediction performance. A dirkear rate of increase as shown in
(@13), implies that the number of parameters to be learnt fedipting the sequence is infinite
[14]. In the problem studied here, since the sequence todmtiqted itself is discrete, only finite
parameters will be required to be estimated and hence,ise@rlincrease will never be seen.

2) Logarithmic O(log(k)) rate of increase: The generalized fornd,,..(k), is [14]:

Ipmd(k) = C() + Cllog(k) (14)
L(k) = pred(k) - ]pred(k - 1) (15)
L(k) ~ M%Z(k) = % (16)

A log-rate of increase in predictive information impliesatithe number of parameters to be
estimated is finite_[14]. The MCS sequences can at most hdyedagarithmic rate of increase,
since in predicting discrete sequences, it is requiredédipt only a finite number of parameters
to characterize these sequences.

We now compute thé,,.,(k) for all the users and a few users’ behaviour is captured iriZig

P(Xu'rL'(Xunfl"Xunfk))>
P(X,)

as shown in[(9). The results seem to show a logarithmic behaubut, instead of continuously

This computation is performed by empirically averaging téem log, <

diverging thel,,..(k) saturates at a constant value. This can be understood bgtteoking at
(10). The value ofH (X* | X", X", X";, ..., X" _,) is bounded from above by (X" ) and
below by 0 and H(X*,) itself is bounded above bg(p) wherep is the number of possible

states thatX“ can take[[2b]. This is expressed concisely as:

0< H(X",[X", . X", ) < H(X",) < log(p) (17)
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Fig. 2: Plot of I,,,.4(k) as a function of:

From (10) and[(17) it is apparent that:
0 < Lprea(k) < log(p) (18)

It can be argued that, by picking a value/ofor which I,,...(k) achieves its maximum possible
value would give us an optimal prediction performance. Hamvethe distribution is unknown

to us and, a% increases, the number of parameters needed to estimatakhewn distribution

also increase and hence, tlhg.,(k) that has been computed may not be accurate given the
sequence of limited length. For example, in Eig. 2, despi¢esequence of User 4 having only a
slowly increasing value of,,..q(k) when compared to the other users, it is the sequence that has
the best prediction performance. This is because, Useruresgonly a simple Markov model to
predict its sequence, and it is significantly easier to estnthe parameters of a simple Markov
model as compared to estimating a model of ortleHowever, one can use the sub-extensive
information to find out the maximum possible model order wehitre gains are substantiat.,

the maximum model ordet“ , can be found out as:

opt

u
kopt

=maz(k): L(k) > € (19)

wheree is chosen such that, the gains obtained in increasing theehooder beyond:; , is not

significant. For instance the User 4, will hawg, = 2.
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Thek

opt)?

we have to estimate/learn the distribution andfgs of a given user increases, the number of

as calculated here is optimum if the true distribution iswn to us a priori. However,

parameters required to be estimated in order to learn thebdiSon increase. The effect of
estimating a large number of parameters, on model ordersudgsed in the next section. We
use thek®

o, obtained in the current section as an upper bound on the aptimadel order when

the distribution is to be estimated.

B. Optimal Model Order when the distribution is to be estimated

Now, we are to fit a model order given the sequence and theldistm estimated from the
sequence. The model order fitting problem is approached gpathesis testing problem, where
‘H; is the hypothesis that th#h order Markov chain best fits the sequence. Then, the optima
value ofi denoted by%gpt can be found out by maximizing information theoretic cigesuch as
Minimum Description Length (MDL) or Akaike Information Geria (AIC) [13], [27], [28]. In
these methods, the usual technique followed is to maxintieelikelihood of the observations
given the hypothesis, with a penalty on the number of pararaétd be estimated. In the problem
considered, the observation is the MCS sequedjce- {.. X" , X" . ;..X'} observed for each
useru and the number of parameters is the number of distributioarpeters to be estimated. We
are interested in building a discrete probability disttibo of i length sequences. The parameters
required for building such a distribution is denoted @ywherei is the model order and the
cardinality of @, is n}, which is the number of parameters to be estimagds theith order
distrbution itself. For example, in our scheme, to estintheedistributionP (X}, 5), since there
are 28 MCS values one needs to estimate— 1 probabilities. To estimaté’ (X", ;| X}), one
must estimate a transition probability matrix of si8 — 1)28. By induction, this logic can
be extended to arith order model and the number of parameters would(tse— 1)28!.

To generalize, if one had to estimatekth order Markov Model for ann state process, then
(m—1)m*~! parameters would have to be estimated. We use the valumebtbm ourl,,, ., (k)
calculations to determine the maximum possible model okggrfor useru and use it as an
upper bound on the model order to be determined.

The model order problem can be set-up as a multiple hypathesting problem as follows:

« M, : Hypothesis thak?, = 1
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« H, : Hypothesis thak?, = 2

« Hiu, : Hypothesis thak?, = k2,

In usual hypothesis testing problems, the likelihood fiorctof the observations given the
hypothesis is found out and the hypothesis that maximizediklelihood function is taken to
be the true hypothesis. However, when the hypotheses arelsnoflan increasing order, this
technique fails because, the lower order models are alwested within the higher order models
[29]. Since, we know that the error in estimating the paramsetf a higher order model will
also impact the performance of a system, we look at a costitmahich picks a model that
provides a trade-off between maximizing the likelihood anthimizing the error variance of
the parameters to be estimated.

Therefore, we propose to use the Generalized Maximum lh&eli Estimator (GMLE) in

[29] which tries to maximize the following cost function:

€ — In(P(S™ 6;H,)) — %ln(det(l(ei))), l<i<k (20)

opt)?

where the first term in[(20) is the log-likelihood functiondathe second term is the penalty
due to errors in model wherE#,) is the Fisher information matrix d¥;, and its inverse is the
lower bound on the error covariance matrix in estima#ggwhered; is a vector of distribution
parameters which are to be estimated and its cardinality.isThis set of estimates is denoted
by 8; whered; is the ML estimate of);.

When i increases, the first term in_(20)., the log-likelihood function increases while in
the second term, because the number of parameters to beatestiincreases, théet(1(0;))
increases. Therefore, maximizing the above equation veispect toi ensures that, a model is

choosen by optimally trading off, model likelihood with med¢gparameter estimation error.

opt =

kv arg max(&;'). (22)

However, to implement the above solution one must ko). That involves knowing the
probability distribution function a priori. However, in pgase the parameters to be estimated
are the probabilities themselves. Therefore, insteadyirigrto estimatel(6;), the determinant
det(1(6;)) can be approximated asV"™ as in [29]. This is equivalent to MDL as in [13] and
[29].
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U

MDL! = —In(P(S¥; 6;|H,)) + ”2—"zn(N), 1<i<k",. (22)

opt

The optimal model is obtained as:

Koy = argmin(M DL'). (23)

Another option is to use the AIC which is given follows:

AICH = —2In(P(S%; 6;|H,)) + 2n¥, 1<i<k" (24)

opt*

Here again the optimal model order is obtained as:

ko = arg min(AICY). (25)

AIC is an efficient model order estimator, while, MDL is a ctent estimator [30]. However,
both AIC and MDL assume that the number of observations imasytically largei.e., n > n}
[30], [31].

However, we have only finite length data sequences,gndrows nearly exponentially in
Therefore we use a sample corrected AIE€, AIC- which is given as follows [30], [31] :
2ni(ni —1)
N-—n¢—1’
kv arg min(AICE,). (27)

AICE, = —2In(P(SY; 6;|H,)) + 2n" + 1<i< ke (26)

opt?

opt =

The sample corrected AIC is derived in detailed(in| [32]. Ih 8¢ seen that the sample corrected
AIC tends to the asymptotic AIC a& — oo. Also, this criterion ensures that, one does not
pick a higher order model initially when the sequence lengtimall.

Summarizing, we have proposed usage of finite sample model a@etermination methods
to find the best model to be used in our PPM algorithm for ptediche sequence for a given
useru. This is to be done for all user sequences as different seqgewill have different
complexity. In a system like LTE there aB8 MCS values that can occur. Therefore, to build
a model of order, it seems that one has to estimate ne&sy probabilities for all possible
sequences. However, a usewill not see all the MCS indices, in the short time frame, tvat
look at for sequence prediction. For instance, a user theg B&CS indexl corresponding to

rate0.15 cannot see MCS 28 corresponding to rateb within a time frame of few seconds or
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even between two sleep cycles. It may be that, a user seesignNMCS indices. The value of
m, is estimated from the frequency tree. For instance, considetree given in Sectidn II[HA.
Since the only values observed in the sequence S for builth@dree was 22,24,27 the value
of m,, will be estimated as 3. Thus for a given userfinally the model order is estimated by

minimizing the cost function given below.

AICc(i") = —2In(P(SY; 0,/ H,)) + 2(my, — 1)(m,) '+

2(my — 1) (ma)' ™ ((my — 1)(ma)' ™" — 1) S
N = (my — D(my)i ' — 1 LS 1S Fopr (28)

and the optimal model order is given by:

l%gpt = arg min AIC¢(i"). (29)

We have observed that whét, is 4, /?;j;‘pt can vary from 1 to 4.

V. PREDICTION ALGORITHMS USING THEESTIMATED DISTRIBUTION

The model order obtained in the previous sections can be inséte PPM algorithm to fix
the tree depth for prediction and the probabilitié&X ", ;|Sy) can be calculated using the (1)and
(2). We now propose two prediction algorithms.

A. MAP Estimator

The Maximum A Posteriori (MAP) estimator is an estimatortthmaximizes the a posteriori
probability of an event given the observatians, it picks that value which is the most likely
given that the past has been observed. The MAP estimator @% Mdex given the sequence

observed is as follows:

Xt = argmax P(X",., = i XX gy ) (30)
where X ., is the next state which we want to predict and are the possible values taken
by the MCS. This technique will result in maximum predictiaccuracy. However, since it is
optimized only for prediction accuracy, it treats all egrequallyi.e., estimating a rate higher than
the the true rate is same as estimating a lower rate. Howevéhe rate prediction problem,
if the predicted rate is lower than the true rate, the trassion at the predicted rate will

still be a success at the cost of a loss in efficiency wherdathei predicted rate is higher
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it will result in a packet loss. The MAP estimator is obliveoto this effect and therefore,
will not be throughput optimal despite its prediction opdiity. For instance, given a sequence
S, if there are3 ratesr; < ry < r3 which are possible future candidates with probabilities
P(ry) = 0.3, P(ry) = 0.3, P(r3) = 0.4, then the MAP estimator will pick;. Now, based on the
observed data, there is approximatéfo probability thatr; was a wrong prediction resulting
in packet loss. If the rates, r, comparable to;3, one could have chosen the lower ratgsor

r9, thus decreasing the risk of packet loss. The next sectiopgses a method of predicting

rate given the issues of packet loss and throughput effigienc

B. Bayesian Risk based Estimator

In this technique, a cost is assigned to the event of predicii state and the state which
has the minimum cost is picked. There are numerous ways @rasg the costs, and the cost
assignment is done in order to enable the picking of the Isighessible rate without resulting
in failed transmission. The cost assignment used is aswsllo

. If predicted rate is greater than the true rate then we losdrtle rate and this is taken to

be the cost of choosing the predicted rate.

« If predicted rate is less than the true rate the differenceate is the cost of using the

predicted rate.

The expected cost of transmitting at a rajedenoted byC; is given by:

opt

p
Oy = CyP(X", 0y =i X0 X", g )
=1
where

Ty Ty < T
T — ’f’j, T 2 ’f’j
Here P(X" , = i|X}. X" _ju t) is the probability of the system being in statgiven that the
sequenceX .. X" ;. , was observed, calculated usiig (1),(2). The predictedevafuX™® | is
given by minimizing the expected cost.
X’fjﬂ = argmin C; (32)

J
It is apparent that this cost function is designed to minermize loss in rate.e.,, when a rate

which is lower than the true rate is picked the packet trassioin will be successful but there is
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an obvious loss in efficiency and this loss is the cost inclr@n the other hand, if a higher rate
is picked then there is a packet loss and we lose the true hatenme could have got, entirely.
This biases the predictor to pick lower values than the MA&dftor, thus leading to a lower

packet loss.

VI. SIMULATIONS, RESULTS AND INFERENCE

Two cases of loading are considered i.e. a) Partial Lo%lm)gFull Loading. For both these
cases, we use the MCS sequences over 5000 sub-frames diftaimethe full System Simulator
as discussed earlier, for 210 users. This results in 210esegs - one for each user, of length
1000, since, CQI feedback happens only once in every 5 suhefs as discussed.

We also analyzed the MCS sequences generated for each UElen tar understand the
behaviour of the sequences, in the case of partial and fallifm. From the sequences"
we generated an absolute difference sequence by comgufing — X| for all » and studied
the statistics of this new sequence for all UEs. For each tisrsequence can indicate the
extent of variability of the MCS value at andn + 0. It was found that35% of the users
exhibited variations greater than 3 between adjacent salif¢, ; = X! £ 3) for atleast 200
times in a 1000 length sequence for partial loading, whilly 6¥¥ of users under full loading
had (X! ; = X' £3) for more than 50 times in a 1000 length sequence. For exarapl®CS
value of 15 could change to 12 or 18 before the next feedbagk, from a bits per symbol
rate of 1.96 one will go down to 1.33. SimilarB0% of the users had variations greater than 4
between adjacent valuex'{, ; = X! & 4) for atleast 200 times in a 1000 length sequence for
partial loading while there was not a single user with moantB5 such events in full loading.
All of this points to a high degree of variability in the MCSgeence for partial loading. Hence
outdated MCS seems to be a critical issue in partial loading.

For each user sequengg' . X",.. X", the following prediction procedure is implemented
on the system simulator

1) We build frequency trees upto depth, which are updated as and when the sechence

arrives. We choose: = 5 since we are looking only at a sequence of length thougand

For more details on partial loading refer to the Seclion ||

"We have restricted the sequence length to 1000 due to a) éisemme of UE sleep cycle and, b) assumption of stationarity

of sequence may not hold over a long sequence length.
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This can be increased te = 8 or higher, if one has access to longer sequences.

2) Then, using the frequency trees the probabilifigsy|X“ ,.X" ) are calculated as
discussed earlier usingl(1),(2) with=1...4.

3) I,..a(k) is then calculated onlinee, as each value is received, we use the probabilities
obtained in Step 2 in{9), to compute the empirical valué,af;(k) using the probabilities
and sequences seen so far. At timehe sequenceX™, _,.X" _, is used to calculate
P(Xp|X*, 1. X", ) and these probabilities are used as follows to find the itest@ous

predictive information of the sequence:

p
Lyrea(k,n) = log(p) — Y P(X3 X", 1.X",_)log(P(Xy|X",_.X", )  (33)

Xp=1
This value of,,..4(k,n) is then empirically averaged over, to get the current online
estimate ofl,,.q(k) as follows:

pred E red k 'l

4) From thel,,..(k) obtained in Step 3, usm@(]lQ) which is the learning curvetatopping

criterion, the value ofc“

o 1S found for each user once the sequence length reaches 100,

and this step is repeated once in every 100 vgloéskhe sequence i.ev = 200, 300 and
so on. It will take time to build a reasonably informativeduency tree for prediction.
Hence, till the sequence length reaches 100 we do predigtimig a simple Markov model
i.e., we do not wait for a training period before startingdacéon.

5) Using £, as an upper bound on the model order, the optimal model ordenvihe

distribution is unknowrk

opt» 1S found out using (28)[(29) once the sequence length esach

100 ,and this is also repeated once in every 100 values ofeiipeesice.

6) Then the tree is virtually truncated at de;iij};t + 1.

7) This tree is used to find the probabilitié%{X;j\X“n_l..X“n_,ggpt) which are now used in
the prediction algorithm.

8) These probabilitie:P(Xg\X“n_l..X“n_,;gpt) obtained from Step 7) are used for prediction.
We compare this with probabilities obtained from a virtydhuncated tree of fixed depth
4. The tree of fixed deptH gives us the probabilitie® (X X", _,, X" ,, X" ). The

n—17 n—2

8The sequence should be of a sufficient length to get a realsoaaerage.
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X 5, X" _,) are hence-

n—1’ n—2°

predictors usingP (X [X", . X", ;. ) and P(X;[X"
forth referred to as Variable Order (VO) predictors and HiMarkov (FM) predictors

respectively.

We use the probabilities computed using PPM with VO and FMhanMAP predictor in[(30)
and in the Bayesian Risk Mimimizer (BRM) presented in SedleBl in (32) and compare the
performance of the four schemes namely, FM-MAP, FM-BRM, M@&P and VO-BRM. In [7]
nine techniques are proposed for prediction and out of thlesemedian technique where the
median of previous: CQI values is taken, performs best for vehicular users. &Sine have
Doppler see Tablelll and partial loading, we compare our eelsewith the median technique
in [7]. A naive algorithm with no predictione., when the previous value is used as it is, is also
compared with the above given techniques.

We compare the various schemes based on the following reetric

. Packet loss fractionK,.): We compute the packet loss fraction for each user and it is
given by:

25:1 1(Xp > X3
P
where P is the total number of packets transmitted. Packet loss recadnenever the

predicted MCS is greater than the actual MCS .

Floss = (34)

- Rate Efficiency Percentag¢(,): The rate obtained due to the a specific prediction scheme

is compared with the rate obtained if there was ideal prediicindry, , for each user is :

Ratecurrentscheme

) Ra'tecurrentscheme < Ra'teideal

Rate;gea (35)

Tefs =
0, Ratecurrentscheme > Rat€ideal
It is well known that one can reduce packet loss by reducireg MCS and transmitting at
increasingly conservative rates. However, our schemeasceethe packet loss and at the same
time improve rate efficiency, since they exploit the facttthae can learn/predict current MCS
value by analyzing the complexity of the MCS sequence. Magecsince MCS sequences of
different UEs have varying complexities, we use indepentnning mechanisms for each UE.
Since there are 210 users, for both partial and full loadihg,empirical Cumulative Distri-

bution Function (CDFs) are plotted for all the above mergsbmetrics and these are discussed

in detail. The packet loss fraction CDF under partial logdiis compared in Fi¢. Ba and here
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Fig. 3: Packet Loss Fraction CDFs

it can be seen that the BRM predictors significantly outpenfall other methods by having
the lowest percentage of failed transmissions.When theBRM method is used90% of the
users have less than3% packet loss, while when FM-BRM is used the correspondinketac
loss is7.6%. In comparison the VO-MAP, FM-MAP, Median and No Predictiwave only35%,
30%, 22% and20% users with packet loss rate less tHaf%. At the 50-percentile poinH in
the packet loss distribution, VO-BRM at8% packet loss, outperforms the FM-BRM 9%
and the VO-MAP and FM-MAP schemes by more th#% and 250% respectively, median
scheme proposed inl[7] b¥00% and the no prediction scheme by neath0%. This gain in
packet loss performance is achieved with no loss in rate.

The rate efficiency CDF under partial loading is comparedig4d and here again it can be
seen that the BRM outperforms all other methods by havinghtgkest rate efficiency. Here,
VO-BRM has76% users achieving a rate efficiency @% or higher, while FM-BRM had only
69% users with this criteria. This implies that while 160 userkiave a high rate efficiency using
VO-BRM, only 146 users achieve the same using FM-BRM. Theesponding percentage of
users with that rate efficiency weB8%, 35%,26% and 23% for VO-MAP, FM-MAP, median
technique and scheme without prediction respectively.

When we look at full loading performance graphs in Eig.3b &igl[4b we can see that

®corresponds to packet loss seen by at 1688t of the users
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Fig. 4: Rate Efficiency CDFs

the trends of MAP versus BRM are similae,, BRM is way better than MAP in packet loss
percentage and in rate efficiency. There is a cross-overdagtvthe MAP and no prediction
CDFs in packet loss percentage as seen in_Flg. 3b. This isibeaH the behavior of the MAP
predictor where all errors are treated equal. EspecialgmMAP predicts an MCS that is higher
than the previous fed-back value and it is also higher thartrie value, a packet loss occurs.
Therefore, for some users the no prediction scheme perfbatisr than MAP prediction. This
effect is seen in the full loading scenario because, the M&®ton itself is likely to be more
gradual and even without prediction, sometimes the fed-B&CS works better than a predicted
MCS. However, on an average the MAP is better than not piedicind BRM is far better
than both.However, when one compares FM to VO, it can be dednthere is little to choose
between them across all the performance metrics considerddr full loading. This implies
that partial loading requires us to adapt the model ordeilewfull loading performance may
not require us to adapt the model order. Since all practigsiesns see partial loading, either
due to traffic or due to sub-frame blanking, VO based methoesexqjuired to fully exploit the
advantages of rate adaptation.

VIlI. CONCLUSIONS

The effect of outdated MCS in the presence of partial loadi@g investigated. Discrete

sequence prediction algorithms such as PPM were proposed@S prediction. The optimal
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tree depth that one needs to traverse for prediction usihy)\R&s cast as a model order problem.

Techniques such as MDL, AIC and Corrected AIC were proposeekstimate the model order

of the sequence for each user with the sequence complexatysas providing an upper bound

on the model order. Finally, the MAP and Bayesian Risk miaation based rate predictors

were proposed and implemented for MCS prediction. Sinaatesults indicates that, using

different model order for different users, gives substdrgiystem level gains over assuming a

fixed model order for all users. The gains due to adapting tbdeinorder, were found to be

substantial in partially loaded systems. Furthermore piftepposed Bayesian Risk Minimization

predictor, significantly outperforms the MAP based premtict
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