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Robust Binary Quantizers for Distributed Detection

Ying Lin, Biao Chen, and Bruce Suter

Abstract

We consider robust signal processing techniques for inference-centric distributed sensor networks

operating in the presence of possible sensor failures and/or communication failures. Motivated by

the multiple description (MD) principle, we develop robustdistributed quantization schemes for a

decentralized detection system. Specifically, focusing ona two-sensor system, our design criterion

mirrors that of MD principle: if one of the two transmissionsfails, we can guarantee an acceptable

performance, while enhanced performance can be achieved ifboth transmissions are successful. Different

from the conventional MD problem is the distributed nature of the problem as well as the use of error

probability as the performance measure. Two different optimization criteria are used in the distributed

quantizer design, the first a constrained optimization problem, and the second using an erasure channel

model. We demonstrate that these two formulations are intrinsically related to each other. Further, using

a person-by-person optimization approach, we propose an iterative algorithm to find the optimal local

quantization thresholds. A design example is provided to illustrate the validity of the iterative algorithm

and the improved robustness compared to the classical distributed detection approach that disregards

the possible transmission losses.
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I. I NTRODUCTION

For the emerging wireless sensor networks (WSN), distributed signal processing design has

to deal with various physical limitations imposed by severeresource constraints. For example,

the power and bandwidth constraints, coupled with the interference and channel fading, may

result in transmission loss due to channel outage. In addition, low-cost sensor nodes deployed

in harsh environments may be subject to sensor failure, making them unavailable for sens-

ing/communication.

A conventional approach to combat transmission loss is to exploit channel diversity through

the use of multiple description (MD) design [1] such as the MDcodes [2] or MD quantizers

[3]. This MD idea is illustrated in Fig. 1(a) with two encoders and three decoders [2]. The

encoders are so designed that in the case of loss of one of the two transmissions, the side

decoders (Decoder 1 or Decoder 2) are guaranteed with certain acceptable performance; if both

transmissions are successful, the central decoder output (corresponding to Decoder 0) will have

enhanced performance. As sensor failure can be dealt with inan identical fashion under the MD

framework, we will no longer distinguish the two types of losses, one due to channel outage

and the other due to sensor failure.

To carry over the MD principle to sensor network applications, care must be taken in con-

sidering the distinct features for distributed sensor networks. Two of the critical differences are

listed below and are what motivate the current work.

• Distributed nature of WSN.

In the conventional MD framework, two encoders operate on a common source. In WSN,

each encoder resides in a sensor and operates only on its own observationswithout access

to the other sensor’s observations. This is illustrated in Fig. 1.

• Inference-centric nature of WSN.

In WSN applications, all the sensor nodes are typically engaged in a collective inference task.
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The ultimate goal may be the evaluation of some underlying state instead of recovering the

sensor observations. In reference to Fig. 1(b), the goal maybe inferring about the unknown

parameterθ instead of recoveringX1 andX2. This is in comparison with the conventional

MD problem where the goal is to recover the original source data. A direct consequence is

that, instead of using the conventional distortion measures in the traditional MD quantizer

design, other performance metrics that cater toward the inference task may be more relevant.

In this paper, we study how the MD principle can be adapted to inference-centric applications

with distributed quantizer design. By focusing on a binary decentralized hypothesis testing

problem (i.e.,θ is binary in Fig. 1(b)), we investigate distributed binary quantizer design using the

MD principle. We term this new framework distributed multiple description quantizer (DMDQ)

design. The DMDQ approach achieve robust inference performance in the presence of channel

outage or sensor failure as it strikes a better balance/tradeoff between the detection performance

at the fusion center and that of local sensors.

The proposed scalar quantizer design is closely related to the classical distributed detection

problem [4], [5] as it involves the design of multiple sensordecision rules that are coupled with

each other. Major differences exist, and the most significant is that we no longer deal with a single

objective function (minimum error probability at the fusion center). Instead, multiple design

objectives need to be considered, each corresponding to theend-to-end inference performance

for a particular channel outage or sensor failure state.

To explain the significance of the proposed approach, and in particular, to understand its

improved robustness compared with the classical distributed detection design, consider the fol-

lowing simple example. Assume a binary hypothesis testing problem with a two-sensor parallel

fusion system where each sensor employs a binary quantizer.The two hypotheses under test,

H0 andH1, area priori equally likely. The local sensor observations at the two sensors,X1 and
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X2, are conditionally independent and identically distributed ternary random variables with






















P (Xk = 0|H0) = 0.95

P (Xk = 1|H0) = 0.05

P (Xk = 2|H0) = 0























P (Xk = 0|H1) = 0.05

P (Xk = 1|H1) = 0.9

P (Xk = 2|H1) = 0.05

for k = 1, 2. By the monotonicity of the likelihood ratio (LR) in the sensorobservations (i.e.,

the local sensor LR values are monotone inXk), we need to consider only the two binary local

decision rules at each sensor [6]:

Rule A Uk =











0 Xk = 0

1 Xk = 1 or 2
Rule B Uk =











0 Xk = 0 or 1

1 Xk = 2

Adopting the classical distributed detection approach, itis straightforward to show that the two

sensors should employ different decision rules to achieve aminimum error probability of0.04875

at the fusion center. Assume that, without loss of generality, sensor 1 uses Rule A while sensor 2

uses Rule B. If sensor 1’s decision does not reach the fusion center, either due to a channel outage

or a sensor failure, the actual minimum error probability byusing the decision from sensor 2

alone becomes0.475, which is a significant degradation from the case when both sensor outputs

are available. This error probability essentially rendersthe detection system essentially useless

as it is close to0.5. A more robust design is to use decision rule Rule A at both sensors. In this

case, both the fusion center and each local sensor have identical error probability0.05 thus there

is no degradation in the event of a lost transmission1. Compared with the classical distributed

detection approach (whose error probability pair are0.04875 and0.475), the alternative approach

provides a more robust performance in the presence of a transmission loss.

The proposed DMDQ also provides an alternative approach to the channel aware design for a

decentralized detection problem [7]–[9] in dealing with imperfect channels. The channel-aware

quantization schemes require that the channel state information (CSI) be available to attain

1This simple example also indicates that,depending on the local decision rules used and the observation distributions, having

more sensors in the system may not always improve the overall performance.
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optimum performance. Acquiring CSI, however, may be too costly in systems with stringent

resource constraints. It is, therefore, imperative to consider quantizer design that is robust to

potential channel outageswithout the knowledge of CSI. The proposed DMDQ framework is

an initial attempt toward robust and proactive signaling for distributed sensor networks in the

absence of CSI.

The rest of the paper is organized as follows. In the next section, we describe the problem

formulation and introduce the two-sensor fusion network with possible transmission losses. In

Section III, we apply the Lagrangian method to solve the constrained minimization and to obtain

necessary conditions for optimum binary quantizers in the form of LR test (LRT) thresholds.

In Section IV, we impose the discrete memoryless erasure channel model and obtain the corre-

sponding optimum local decision rules using the channel-aware quantizer design methodology

described in [7], [8]. Numerical results are presented in Section V to demonstrate how the

proposed quantizer design can be implemented and the improved robustness over the classical

distributed detection approach. We conclude in Section VI.

II. PROBLEM FORMULATION

Fig. 2 depicts a two-sensor parallel fusion network tasked with a hypothesis testing problem.

Each sensor collects data that are generated according to one of the two hypotheses (H0 andH1)

under test. We assume in the present work that the local observationsX1 andX2 are conditionally

independent given the underlying hypothesis, i.e., fori = 0, 1,

f(X1, X2|Hi) = f(X1|Hi)f(X2|Hi).

It is easy to establish that with this conditional independence assumption, the LR pair of the

local sensor observations
(

L(X1) =
f(X1|H1)

f(X1|H0)
, L(X2) =

f(X2|H1)

f(X2|H0)

)

form a sufficient statistic for the detection problem.
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Based on its local observationXk, thekth local sensor implements a binary quantizer whose

output Uk ∈ {1, 0}, for k = 1, 2, will be sent to the fusion center. The transmission, however,

is subject to channel outage or sensor failure. When both transmissions are successful, Decoder

0 will perform as a fusion center and make a final decision on which hypothesis is true using

both U1 andU2. Otherwise, if only one of the two transmissions is successful, either Decoder 1

or Decoder 2 will make a final decision based on the successfully receivedUk. In our current

work, asUk is binary, Decoders 1 and 2 will simply takeU1 andU2 as their respective output,

as illustrated in Fig. 2.

Adopting a Bayesian framework, we use error probability as the performance measure. Define

Pek the probability of error at Decoderk:

Pek = π0P (Uk = 1|H0) + π1P (Uk = 0|H1), k = 0, 1, 2 (1)

whereπj = P (Hj) is the prior probability for hypothesisHj, andU0 denotes the decision output

for Decoder 0. ThusPe0 corresponds to the error probability of the fusion center when both

U1 andU2 are available whilePe1 andPe2 are respectively the error probabilities at individual

sensors. Classical distributed detection theory aim to minimizePe0 while our present work strives

for a balance in performance betweenPe0 andPek for k = 1, 2.

Our approach is derived from the MD principle [1]: we aim to design sensor decision (quanti-

zation) rules such that if one of the two transmissions is lost, an acceptable performance (in terms

of error probability) is guaranteed; if both transmissionsare successful, a better performance can

be achieved. Catering toward the hypothesis testing problem, we can succinctly summarize the

design criterion using the following constrained minimization problem

min Pe0

subject to Pe1 ≤ ε1 and Pe2 ≤ ε2.
(2)

whereε1 andε2 are the pre-specified error probabilities that are guaranteed if only U1 or U2 is

successfully received. This design criterion is reminiscent of the MD scalar quantizer design [3]
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where a general distortion measure is used.

III. N ECESSARYCONDITIONS FOROPTIMALITY AND A DESIGN ALGORITHM

The constrained optimization problem readily admits a Lagrangian formulation which is used

to solve the minimization problem below. The Lagrangian function is given by

L(τ1, τ2, λ1, λ2) = Pe0 + λ1(Pe1 − ε1) + λ2(Pe2 − ε2) (3)

whereτk is the local sensor LRT threshold,λk is the Lagrangian multipliers, fork = 1, 2.

Using the Kuhn-Tucker theorem [10], the set of optimum solution of the constrained mini-

mization problem must satisfy the following necessary conditions, for k = 1, 2,

∂Pe0

∂τk

+ λ1
∂Pe1

∂τk

+ λ2
∂Pe2

∂τk

= 0 (4)

λk ≥ 0 (5)

Pek − ǫk ≤ 0 (6)

λk(Pek − ǫk) = 0 (7)

Given the above necessary conditions, the optimum solutions for the local decision rules are

described in the following theorem.

Theorem 1: Assume that the two local observations,Xk’s, are conditionally independent.

Further, if the fusion rule and thekth local sensor decision rule satisfy, fork = 1, 2










P (U0 = 1|Uk = 1, Uk̄) − P (U0 = 1|Uk = 0, Uk̄) ≥ 0

P (U0 = 0|Uk = 0, Uk̄) − P (U0 = 0|Uk = 1, Uk̄) ≥ 0

where k̄
△
= 3 − k, thus 1̄ = 2 and 2̄ = 1. Then the optimum solution of the constrained

minimization problem in Eq. (2) is given by the following LRT, for k = 1, 2

P (Uk = 1|Xk) =











1, if p(Xk|H1)
p(Xk|H0)

≥ τk

0, otherwise
(8)
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whereτk, the optimal LRT threshold for thekth local sensor, is determined as follows:

• Whenλk = 0 (inactive constraint),

τk =
π0Ak

π1Bk

(9)

• Whenλk > 0 (active constraint),τk is obtained by solving

Pek − ǫk = 0 (10)

The associatedλk can be obtained by

λk =
π0Ak − π1Bkτk

π1τk − π0

(11)

from which we get,

τk =
π0(Ak + λk)

π1(Bk + λk)
(12)

The quantitiesAk andBk in Eqs. (9-12) are defined respectively as

Ak =
∑

Uk̄

(P (U0 = 1|Uk = 1, Uk̄) − P (U0 = 1|Uk = 0, Uk̄)) P (Uk̄|H0) (13)

Bk =
∑

Uk̄

(P (U0 = 0|Uk = 0, Uk̄) − P (U0 = 0|Uk = 1, Uk̄)) P (Uk̄|H1) (14)

Theorem 1 is proved in Appendix A.

Remarks:

• Note that the forms ofτk, Ak, andBk indicate that the threshold for thekth sensor is a

function of the decision rule at the other sensor. Thus, as expected, the optimal thresholds

at sensor 1 and 2 are coupled with each other.

• In order for the constrained optimization to have feasible solutions, ǫ1 and ǫ2 can not be

chosen to be too small. Specifically,ǫk needs to be no smaller than the minimum achievable

error probability at sensor k. More discussions about this can be found in Section V after

we introduce an alternative design approach (Approach 3 in Section V).

• Pe0 is the achievable error probability using bothU1 andU2. On the other hand,Pe1 andPe2

are respectively the error probabilities at local sensors,each associated withU1 or U2. Thus
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Pe0 ≤ min{Pe1, Pe2} where the inequality is due to the fact that one can simply ignore one

of {U1, U2} and the error probability should thus be no worse than eitherPe1 or Pe2. Due

to the constraintsPe1 ≤ ǫ1 andPe2 ≤ ǫ2, we have

Pe0 ≤ min{Pe1, Pe2} ≤ min{ǫ1, ǫ2}

That is, the error probability achieved when both transmissions are successful is upper

bounded by the error probability constraints at local sensors.

• If Pe1 < ǫ1 and Pe2 < ǫ2, i.e., λk = 0 for k = 1, 2, Pe0 is the minimum error probability

that can be achieved at the fusion center. The constrained optimization approach yields the

same result as the unconstrained approach that minimizes the error probability at the fusion

center. This happens when the constraintsǫk are large enough.

• Eq. (12) is a unifying expression of the optimal local LR threshold for the two cases of

λk > 0 andλk = 0.

• The conditions described in Theorem 1 do not admit closed-form solutions. Simultaneously

optimizing τ1 andτ2 is intractable due to the distributed nature - it typically involves some

exhaustive search over a two dimension space for the (τ1, τ2) pair. However, the necessary

conditions established in Theorem 1 allows us to adopt a person-by-person optimization

(PBPO) approach where each threshold is optimized assuming fixed threshold at the other

sensor. The PBPO approach has been widely used in optimizing decentralized systems,

and in particular, in the classical distributed detection (see, e.g., [11], [12]) when joint

optimization is typically intractable.

• Theorem 1 describes necessary conditions for the optimum LRT thresholds; thus multiple

initializations are needed to find the globally optimum thresholds.

The following iterative algorithm describes this PBPO procedure.

Iterative Algorithm

• Step 1. Initializeτk, for k = 1, 2.
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• Step 2. Obtain the optimum fusion rule for fixedτ1 andτ2.

• Step 3. For fixed fusion rule andτ2, calculateτ1 using (9).

• Step 4. Check to see ifτ1 satisfiesPe1 − ǫ1 ≤ 0.

– If yes, go to Step 5.

– If no, calculateτ1 using (10).

• Step 5. For fixed fusion rule andτ1, calculateτ2 in a similar fashion.

• Step 6. Check convergence, i.e, if the obtainedτ1 and τ2 are identical (up to a prescribed

tolerance) to that from the previous iteration.

– If yes, stop.

– Otherwise, go to Step 2.

At each iteration,τk is optimized for a given fusion rule and the other thresholdτk̄, hence the

error probability is monotone decreasing until a stationary point is reached.

IV. OPTIMAL LOCAL DECISION RULE DESIGN UNDER ANERASURECHANNEL MODEL

The constrained minimization approach provides a proactive design methodology that avoids

severe performance degradation in the absence of CSI. We propose in this section an alternative

approach by imposing a certain parametric model on the channel/sensor failures. This allows

us to adopt existing channel aware approach [8] to design thelocal quantizers. Similar to [13],

we model the potential transmission loss usingerasure channels where the erasure accounts

for possible sensor failures/channel outages. This channel model is illustrated in Fig. 3 where

δk = P (Xk = E|Uk) is the erasure probability corresponding to sensork. Our alternative

optimization criterion is to minimize the average error probability Pe, defined as

Pe = (1 − δ1)(1 − δ2)Pe0 + δ2(1 − δ1)Pe1 + δ1(1 − δ2)Pe2 + min{π0, π1}δ1δ2 (15)

where the last term corresponds to the error probability when both transmissions are lost. This

constant term has no effect on the quantizer design, hence can be dropped in the design problem.
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The following theorem provides the solution for the sensor decision rules that minimizePe.

Theorem 2: Assume that the two local observations,Xk’s, are conditionally independent and

channels are independent discrete memoryless erasure channels. Further, if the fusion rule and

the kth local sensor decision rule satisfy, fork = 1, 2










P (U0 = 1|Uk = 1, Uk̄) − P (U0 = 1|Uk = 0, Uk̄) ≥ 0

P (U0 = 0|Uk = 0, Uk̄) − P (U0 = 0|Uk = 1, Uk̄) ≥ 0

where k̄ is defined similar as in Theorem 1. Then the optimum local rulefor the kth sensor

amounts to the following LRT, fork = 1, 2

P (Uk = 1|Xk) =











1 if p(Xk|H1)
p(Xk|H0)

≥ π0(Ak+αk)
π1(Bk+αk)

0 otherwise
(16)

where

α1 =
δ2

1 − δ2

andα2 =
δ1

1 − δ1

, (17)

andAk andBk are defined in Eqs. (13) and (14).

A proof is given in Appendix B. Following the same spirit of theiterative algorithm in Section

III, we can devise a similar procedure to find the optimal thresholds using Theorem 2.

Comparing Eqs. (12) and (16), we have some interesting observations that suggest intrinsic

connections between the erasure channel model and the constrained minimization formulation.

From Eq. (15), if we drop the last term and divide the average probability by (1 − δ1)(1 − δ2),

the new function to be minimized becomes

Q , Pe0 + α1Pe1 + α2Pe2.

with α1 andα2 defined as in Eq. (17). The design problem reduces to a problemof minimizing

Q subject toα1 ≥ 0 andα2 ≥ 0. Compare this with Eq. (3), we see thatαk plays a similar role

as the Lagrangian multiplierλk.
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Further more, the first-order necessary conditions for minimizing Q are given by:

∂Pe0

∂τk

+ α1
∂Pe1

∂τk

+ α2
∂Pe2

∂τk

= 0 (18)

αk ≥ 0 (19)

Comparing Eq. (18) and (19) to Eq. (4-7), we notice that these two formulations are similar

except that the constrained optimization approach has morerestrictive constraints (Eq. (6) and

(7)). Next we elaborate when these two formulations will have identical optimal solutions.

Consider the first case: whenλk = 0, i.e., the constraintsPek ≤ ǫk are satisfied. In this case, set

αk = λk = 0, and the two formulations have the same optimal thresholds.The case ofλk > 0 is

more complicated. Withλk > 0, we havePek = ǫk, k = 1, 2. Assume the erasure channel model

yields L local minima, with the corresponding threshold pair(τ l
1, τ

l
2), l = 1, 2, ..., L,. Denote

by P l
ej, j = 0, 1, 2, the error probabilities associated with(τ l

1, τ
l
2). By virtue of the problem

formulation, there must exist one(τm
1 , τm

2 ) whose local error probabilities satisfyPm
ek = ǫk,

k = 1, 2. If

Qm , Pm
e0 + α1ǫ1 + α2ǫ2 ≤ P j

e0 + α1P
j
e1 + α2P

j
e2 , Qj for j 6= m, j = 1, 2, .., L (20)

then (τm
1 , τm

2 ) is the optimal solution for both constrained minimization formulation and the

erasure channel formulation. We will further illustrate these connections using some numerical

examples in the next section.

V. A N UMERICAL EXAMPLE

In this section, we use several numerical examples to highlight the robust performance of

the proposed local quantizer design compared with the classical distributed detection approach.

Consider the detection of a known signal in independent Gaussian noises using two sensors:

H0 : Xk = nk

H1 : Xk = s + nk
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wheres is a known signal andnk is zero mean Gaussian noise with varianceσ2, for k = 1, 2.

Without loss of generality, we assumes = 1 and σ2 = 1. Each local sensor makes a binary

decision using its observationXk and a decision ruleγk, i.e., Uk = γk(Xk) ∈ {1, 0}. The

transmission ofUk, however, is subject to channel losses. If bothU1 and U2 are successfully

received, Decoder 0 will implement the maximuma posteriori probability decoding (detection)

rule, i.e.,

P (U0 = 1|U1, U2) =











1, if P (U1,U2|H1)
P (U1,U2|H0)

≥ π0

π1

0, otherwise
(21)

For simplicity, we consider a symmetric setting where we useidentical error probability con-

straints (i.e.,ǫ1 = ǫ2) for the constrained minimization approach, and identicalerasure probabil-

ities (i.e.,δ1 = δ2) for the erasure channel model approach.

In addition to the proposed approaches, we also present results using alternative approaches

to highlight the robustness of the proposed MD principle based framework. The complete list

of approaches used in the simulations is as follows.

Approach 1 Constrained minimization described in Section III (Theorem 1).

Approach 2 Erasure channel model approach described in Section IV (Theorem 2).

Approach 3 Minimizing the local error probabilitiesPe1 andPe2. We denote byPek,3 (k =

1, 2) the minimum achievable local error probabilities, andPe0,3 the corresponding error

probability at Decoder 0, respectively. Note thatPek,3 provides the lower bound for the

local error probability constraintǫk, i.e., one must haveǫk ≥ Pek,3 for the constrained

minimization formulation to have a solution.

Approach 4 Minimizing the error probability at the fusion center. We denote byPe0,4 the

minimum achievable error probability at Decoder 0, andPek,4 (k = 1, 2) the correspond-

ing local error probabilities, respectively.This approach corresponds to the classical

distributed detection with a single objective function. An interesting observation is that

this approach can be considered as a special case of the erasure channel model with

Revised on April 21 2006 Submitted to IEEE Trans. Wireless Communications



14

δk = 0, for k = 1, 2. As such, one only need to minimizePe0 as both transmissions

are always assumed successful.

Notice that Approaches 3 and 4 are conflicting with each other: one can show that optimizingPe0

andPek for k = 1, 2 can not be simultaneously achieved [14]. Otherwise, the entire distributed

MD framework will become trivial as one can simultaneously optimize the local error probability

and that of Decoder 0 (the fusion center).

As we are considering a Gaussian problem, the obtained LRT thresholds at the sensors

can be directly translated into thresholds for the originalobservations. Thus in the following

presentation, we will use thresholds for the original observations, denoted byηk for k = 1, 2.

The numerical results are summarized in Tables I-III as wellas in Figs. 4-6. Specifically,

• Tables I and II enumerate respectively the parameters and the obtained thresholds and error

probabilities of the two proposed approaches (Approaches 1and 2).

• Tables III gives the obtained thresholds and error probabilities of the two alternative ap-

proaches (Approaches 3 and 4).

• Figs. 4 and 5 give the analytically calculated error probabilities (both of the fusion center

and local sensors) versus threshold plots with two different priors, π0 = 0.6 andπ0 = 0.8,

respectively. In each plot, (b) is a zoom-in of (a) for bettervisualization.

• Fig. 6 is the error probability versus erasure probability plot.

Our observations from the numerical results are summarizedbelow.

• For Approach 1, the iterative algorithm indeed yields thresholds that are solutions to the con-

strained optimization problem. For example, withπ0 = 0.6 and error probability constraint

ǫk = 0.3, the threshold obtained using Approach 1 isηk = 1.1812 with corresponding error

probabilitiesPe0 = 0.2649 andPe1 = Pe2 = 0.30 (the left half of the last row of Table I).

This is consistent with Fig. 4 (the corresponding values aremarked on Fig. 4(b)). Similarly,

with π0 = 0.8 andǫk = 0.2, the minimum achievablePe0 = 0.1775 with the corresponding
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thresholdηk = 2.0311 and local error probabilityPek = 0.1866. These values are marked

on Fig. 5 and are consistent with those listed in Table I (right half of the last row).

• From Table I, it can be seen that, by comparing columns corresponding toPek and Pe0,

smaller local sensor error probabilities typically resultin larger error probability at the fusion

center. In general, having a generous constraint on local sensor error probabilities (large

ǫk) imposes less restriction on the admissible threshold pairs, which typically gives rise to

smallerPe0. In the extreme case, for example, whenǫk = 0.5, the obtained thresholds will

always coincide with that of Approach 4.

• The classical distributed detection (Approach 4) that minimizes error probability at the

fusion center suffers significant performance loss in the event of a lost transmission. This

can be illustrated using Fig. 4(b) along with Table III. Atπ0 = 0.6, Approach 4 yields a

globally minimum error probabilityPe0 = 0.2574 at the fusion center. However, if one of the

transmission is lost, the error probability suffers a significant degradation toPek = 0.3315

(marked on the dash-dotted curve). Clearly, the constrainedoptimization approach is much

more robust (a degradation fromPe0 = 0.2649 to Pek = 0.30). This effect is even more

pronounced for the case ofπ0 = 0.8. Approach 4 yields a fusion center error probability

Pe0 = 0.1686 (corresponding to the minimum point of the solid curve in Fig. 5(b)). However,

if only one transmission reach the fusion center, the error probability becomesPek = 0.2466

which essentially renders this system useless – as the priorprobability isπ0 = 0.8, the error

probability should be capped at0.2. This seemingly pathological result is due to the fact that

the threshold design at local sensors for the classical distributed detectionalways assumes

successful transmissions from other collaborating sensors.

• Approach 3 which optimizes local sensor performance does not have significant improve-

ment when both transmissions are successful. From Table IIIand Fig. 4, forπ0 = 0.6, the

minimum local sensor error probability isPe1 = Pe2 = 0.2945. When both transmissions
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are successful, the fusion center will have an error probability Pe0 = 0.2846, which is

only marginally better than the individual sensor’s performance. This improvement is much

smaller than that achieved by the proposed constrained minimization approach.

• For the erasure channel model approach, as the erasure probability δk approaches one, the

obtained optimal local thresholds converge to that obtained using Approach 3 (minimizing

the local error probabilities). This can be seen by comparing Tables II and III: the thresholds

obtained using Approach 2 will approach that of Approach 3 asδk increases. This is expected

since largeδk implies that the channel is likely to break down, thus the local error probability

will dominate the system performance. On the other hand, as the erasure probabilities

approach zero, the obtained optimal local thresholds converge to those that minimize the

error probability at Decoder 0 (corresponding to Approach 4). Intuitively, smallδk indicates a

high probability of successful transmissions of bothU1 andU2. Thus, the error probability

at Decoder 0 would largely determine the system performance. The same behavior can

be observed from Fig. 6, plotted forπ0 = 0.6, by looking at the two extreme points

corresponding toδk = 0 and δk = 1. The associated error probabilities coincide with that

of Approach 4 and 3 respectively.

• We have explored the intrinsic connections between Approach 1 and 2 in Section IV.

Now we present numerical results to further elaborate the connections. Consider the case

of π0 = 0.6.

– With ǫk = 0.32, the correspondingλk = 0.1652. Set αk = 0.1652, we obtain two

local minima that satisfy Eq. (18), as listed in Table IV. Since we want to choose the

thresholds that minimizeQ, it turns out thatη1 = η2 = 1.237 (with Pe1 = Pe2 = 0.3023

andPe0 = 0.2636) is the optimal solution for the erasure channel model approach. But

the constrained minimization approach results in the thresholdsη1 = η2 = 0.3609 (with

Pe1 = Pe2 = 0.32 andPe0 = 0.2519). From Table IV, it is clear that Eq.(20) does not
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hold, i.e., theQ function corresponding toPek = 0.32 is not the smallest among the

two. Hence in this particular setup, these two approaches donot have the same optimal

solution.

– Now we examine a case when the two formulations share the samesolution. Consider

ǫk = 0.3, the correspondingλk = 0.4023. Setαk = 0.4023, again there are two local

minima as listed in Table V obtained using the erasure channel model approach. We

notice thatη1 = η2 = 1.1812 is the optimal solution for both approaches and it is easy

to check that Eq.(20) is satisfied.

• In general, the rate of convergence of the proposed iterative algorithm depends on the initial

values of local thresholds. Our simulations indicate that the proposed iterative algorithm

converges very fast. For all the scenarios we have examined,convergence happens typically

after several (< 10) iterations. For instance, the results in Table I were obtained after about

six iterations on the average.

VI. CONCLUSIONS

In this paper, we developed robust signal processing techniques for distributed sensor networks

applications. In particular, we presented a distributed multiple description quantization (DMDQ)

framework for the design of sensor signaling in the presenceof sensor failures/channel outages.

Two approaches are proposed to address the DMDQ design usinga two-sensor distributed

detection problem. The first scheme is based on a constrainedminimization approach; and

a solution using Lagrangian multiplier is presented. The second imposes a discrete erasure

channel model; we developed the channel-aware quantizer design that minimizes the average

error probability. Iterative algorithms were constructedin search of the optimal thresholds. The

intrinsic connections between to the two approaches were explored. A design example was used

to show how the DMDQ can be implemented in a real distributed detection problem, and to

demonstrate its robust performance compared with the classical distributed detection approach
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in the presence of possible transmission losses.

Our future work will address the application of the MD principle to sensor networks involving

more than two sensors. The problem becomes conceivably muchmore complex as the number

of objective functions grow exponentially as the number of sensors. Thus the constrained mini-

mization approach may not be feasible. On the other hand, theerasure channel model essentially

collapses the multi-objective functions into a single error probability, making it more appealing

in dealing with large sensor networks. Thoroughly understanding the connection between the

constrained minimization problem and the erasure channel model will provide valuable insight

in how to choose the erasure channel model parameters.

APPENDIX A

PROOF OFTHEOREM 1

Without loss of generality, we expandPe0 with respect toU1, and we get

Pe0 = π0P (U0 = 1|H0) + π1P (U0 = 0|H1)

= π0

∑

U1

∑

U2

P (U0 = 1|U1, U2)P (U1, U2|H0) + π1

∑

U1

∑

U2

P (U0 = 0|U1, U2)P (U1, U2|H1)

= π0

∑

U2

P (U2|H0)[P (U0 = 1|U1 = 1, U2)P (U1 = 1|H0) + P (U0 = 1|U1 = 0, U2)P (U1 = 0|H0)]

+π1

∑

U2

P (U2|H1)[P (U0 = 0|U1 = 1, U2)P (U1 = 1|H1) + P (U0 = 0|U1 = 0, U2)P (U1 = 0|H1)]

= π0P (U1 = 1|H0)A1 − π1P (U1 = 1|H1)B1 + C1

whereA1 andB1 are defined in Eqs. (13) and (14), and

C1 = π0

∑

U2

P (U2|H0)P (U0 = 1|U1 = 0, U2) + π1

∑

U2

P (U2|H1)P (U0 = 0|U1 = 0, U2)

C2 can be similarly defined by swapping the roles ofU1 andU2. Without loss of generality, we

can rewritePe0 as:

Pe0 = π0P (Uk = 1|H0)Ak − π1P (Uk = 1|H1)Bk + Ck (22)
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for k = 1, 2.

From Eq. (1), the local error probabilities can be expressedas Pek = π0Pfk + π1(1 − Pdk),

where Pfk = P (Uk = 1|H0) and Pdk = P (Uk = 0|H1). Thus the left-hand side of Eq. (4)

becomes

∂Pe0

∂τk

+
2

∑

i=1

λi

∂(Pei − ǫi)

∂τk

= π0Ak

∂Pfk

∂τk

− π1Bk

∂Pdk

∂τk

+ λk(π0
∂Pfk

∂τk

− π1
∂Pdk

∂τk

)

= π0Ak

∂Pfk

∂τk

− π1Bkτk

∂Pfk

∂τk

+ λk(π0
∂Pfk

∂τk

− π1τk

∂Pfk

∂τk

) (23)

where we have used the fact thatdPdk

dPfk
= τk, andτk is the LR threshold for thekth sensor.2.

Set (23) equal to zero, we haveτk = π0(Ak+λk)
π1(Bk+λk)

. Eqs. (9-12) follow by directly applying the

Kuhn-Tucker theorem for the two casesλk = 0 and λk > 0 separately. Thus, Theorem 1 is

proved.

APPENDIX B

PROOF OFTHEOREM 2

Similar to the proof in Appendix A,Pe0 can be expanded with respect to the individual

decision rules, and we get, fork = 1, 2,

Pe0 =

∫

Xk

P (Uk = 1|Xk) [π0AkP (Xk|H0) − π1BkP (Xk|Hk)] dXk + Ck (24)

whereCk has no effect on the decision rule at sensor k.

Similarly, the error probability at thekth sensor can be expanded as

Pek = π0P (Uk = 1|H0) + π1P (Uk = 0|H1)

=

∫

Xk

P (Uk = 1|Xk)[π0P (Xk|H0) − π1P (Xk|H1)]dXk + π1 (25)

2This is the property of the receiver operating characteristics (ROC) curve for a likelihood ratio test. The threshold

corresponding to the(Pf , Pd) pair equals the slope of the ROC curve at that point.
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Thus, using sensor 1 as an illustration, the average error probability Pe can be written as, from

Eqs. (15), (24), and (25),

Pe = (1 − δ1)(1 − δ2)Pe0 + δ2(1 − δ1)Pe1 + δ1(1 − δ2)Pe2 + min{π0, π1}δ1δ2

= (1 − δ1)(1 − δ2)

∫

X1

P (U1 = 1|X1) [π0A1P (X1|H0) − π1B1P (X1|H1)] dX1

+δ2(1 − δ1)

∫

X1

P (U1 = 1|X1) [π0P (X1|H0) − π1P (X1|H1)] dX1 + D1

=

∫

X1

P (U1 = 1|X1)F1dX1 + D1 (26)

where

D1 = C1 + δ2(1 − δ1)π1 + δ1(1 − δ2)

(
∫

X2

P (U2 = 1|X2)[π0P (X2|H0) − π1P (X2|H1)]dX2 + π1

)

F1 = (1 − δ1)(1 − δ2) [π0A1P (X1|H0) − π1B1P (X1|H1)] + δ2(1 − δ1) [π0P (X1|H0) − π1P (X1|H1)]

As D1 is independent of the quantizer rule at sensor 1, we need onlyto minimize the first term

in Eq. (26) with respect to the local decision rule for sensor1. Thus, the optimum local decision

rule for sensor 1 is as follows.

P (U1 = 1|X1) =











1, if F1 ≥ 0

0, otherwise
(27)

This is equivalent to the decision rule specified by Eqs. (16-17) fork = 1. The optimum quantizer

rule for sensor 2 can be similar established. This completesthe proof of Theorem 2.
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TABLE I

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USINGAPPROACH1

π0 = 0.6 π0 = 0.8

εk ηk Pek Pe0 λk εk ηk Pek Pe0 λk

0.33 0.2629 0.33 0.2574 0.0177 0.25 0.8474 0.2466 0.1686 0

0.32 0.3609 0.32 0.2591 0.1652 0.21 1.1737 0.21 0.1744 0.1788

0.31 1.2895 0.3047 0.2632 0.0001 0.2 2.0292 0.1866 0.1775 0.001

0.30 1.1812 0.30 0.2649 0.4023 0.19 2.0292 0.1866 0.1775 0.001

TABLE II

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USINGAPPROACH2

π0 = 0.6 π0 = 0.8

δk ηk Pek Pe0 αk δk ηk Pek Pe0 αk

0.0174 0.2629 0.33 0.2574 0.0177 0.01 0.8667 0.2438 0.1686 0.0101

0.2869 1.1812 0.3 0.2649 0.4023 0.4 1.9757 0.1864 0.1777 0.8

0.5 1.0971 0.2973 0.2685 1.0 0.5 1.9616 0.1863 0.1778 1

0.7 1.018 0.2955 0.2738 2.3333 0.7 1.9324 0.1863 0.1780 2.3333

0.9 0.9417 0.2946 0.2807 9.0 0.9 1.902 0.1862 0.1784 9.0

TABLE III

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USINGAPPROACHES3 AND 4

Approach 3 ηk Pek,3 Pe0,3

π0 = 0.6 0.9059 0.2945 0.2846

π0 = 0.8 1.8863 0.1862 0.1787

Approach 4 ηk Pek,4 Pe0,4

π0 = 0.6 0.2495 0.3315 0.2574

π0 = 0.8 0.8474 0.2466 0.1686
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TABLE IV

LOCAL MINIMA OBTAINED BY THE ERASURE CHANNEL MODEL APPROACH, ǫk = 0.32, αk = λk = 0.1652

δk ηk Pek Pe0 Q

0.1418 1.237 0.3023 0.2636 0.3635

0.1418 0.3609 0.32 0.2591 0.3648

TABLE V

LOCAL MINIMA OBTAINED BY THE ERASURE CHANNEL MODEL APPROACH, ǫk = 0.3, αk = λk = 0.4023

δk ηk Pek Pe0 Q

0.2869 0.4784 0.3101 0.2645 0.514

0.2869 1.1812 0.3 0.2649 0.5063
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Decoder 0

Decoder 2
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Encoder 1

Encoder 2

Decoder 1

Decoder 0

Decoder 2
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X2
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c2

(a) (b)

Fig. 1. Comparison between (a) conventional MD, and (b) distributed MDfor sensor network applications. In (a), Encoders

1 and 2 have access to the same observationX. In (b), Encoder 1 encodesX1 without access toX2 while Encoder 2 encodes

X2 without access toX1
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Fig. 2. A two-sensor parallel fusion network with possible transmission failures.
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Fig. 3. A discrete memoryless erasure channel model for the channel between sensork and the fusion center.

−3 −2 −1 0 1 2 3 4 5 6
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

η=η
1
=η

2
 (local observation thresholds)

E
rr

o
r 

p
ro

b
a

b
ili

tie
s

p
ek

−−at local sensor
p

e0
−−at Decoder 0

−2 −1 0 1 2 3 4
0.25

0.3

0.31

0.35

0.4

η=η
1
=η

2
 (local observation thresholds)

E
rr

o
r 

p
ro

b
a

b
ili

tie
s

p
ek

−−at local sensor
p

e0
−−at Decoder 0

0.30 

0.2649 

0.2945 

0.3315 

0.2846 

0.2574 

(a) (b)

Fig. 4. Analytically calculated error probability versus threshold plot forπ0 = 0.6; (b) is a zoom-in of (a).
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Fig. 5. Analytically calculated error probability versus threshold plot forπ0 = 0.8; (b) is a zoom-in of (a).
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erasure channel model.
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