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Abstract

We consider robust signal processing techniques for intereentric distributed sensor networks
operating in the presence of possible sensor failures arammunication failures. Motivated by
the multiple description (MD) principle, we develop robudistributed quantization schemes for a
decentralized detection system. Specifically, focusingaotwo-sensor system, our design criterion
mirrors that of MD principle: if one of the two transmissiofals, we can guarantee an acceptable
performance, while enhanced performance can be achiebethitransmissions are successful. Different
from the conventional MD problem is the distributed natuféhe problem as well as the use of error
probability as the performance measure. Two differentroigtition criteria are used in the distributed
quantizer design, the first a constrained optimization lerab and the second using an erasure channel
model. We demonstrate that these two formulations arensitlly related to each other. Further, using
a person-by-person optimization approach, we proposeeaatiite algorithm to find the optimal local
quantization thresholds. A design example is provideditistilate the validity of the iterative algorithm
and the improved robustness compared to the classicaibdigtt detection approach that disregards

the possible transmission losses.
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I. INTRODUCTION

For the emerging wireless sensor networks (WSN), distribsignal processing design has
to deal with various physical limitations imposed by sevexsource constraints. For example,
the power and bandwidth constraints, coupled with the fatence and channel fading, may
result in transmission loss due to channel outage. In adhditow-cost sensor nodes deployed
in harsh environments may be subject to sensor failure, mgaklhem unavailable for sens-
ing/communication.

A conventional approach to combat transmission loss is pdoéxchannel diversity through
the use of multiple description (MD) design [1] such as the Niiles [2] or MD quantizers
[3]. This MD idea is illustrated in Fig. 1(a) with two encodeand three decoders [2]. The
encoders are so designed that in the case of loss of one ofvhdransmissions, the side
decoders (Decoder 1 or Decoder 2) are guaranteed with mextaeptable performance; if both
transmissions are successful, the central decoder outprreéponding to Decoder 0) will have
enhanced performance. As sensor failure can be dealt wdh identical fashion under the MD
framework, we will no longer distinguish the two types ofdes, one due to channel outage
and the other due to sensor failure.

To carry over the MD principle to sensor network applicasionare must be taken in con-
sidering the distinct features for distributed sensor oeka. Two of the critical differences are
listed below and are what motivate the current work.

« Distributed nature of WSN.

In the conventional MD framework, two encoders operate owramon source. In WSN,
each encoder resides in a sensor and operates only on its lsenvationsvithout access
to the other sensor’s observations. This is illustratedig E.

. Inference-centric nature of WSN.

In WSN applications, all the sensor nodes are typically eadaga collective inference task.
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The ultimate goal may be the evaluation of some underlyiateshstead of recovering the
sensor observations. In reference to Fig. 1(b), the goal lmawnferring about the unknown
parameter instead of recovering(; and X,. This is in comparison with the conventional
MD problem where the goal is to recover the original sourda.da direct consequence is
that, instead of using the conventional distortion measurehe traditional MD quantizer

design, other performance metrics that cater toward tlegente task may be more relevant.

In this paper, we study how the MD principle can be adaptedf&rénce-centric applications
with distributed quantizer design. By focusing on a binargetgralized hypothesis testing
problem (i.e.f is binary in Fig. 1(b)), we investigate distributed binayagtizer design using the
MD principle. We term this new framework distributed muléplescription quantizer (DMDQ)
design. The DMDQ approach achieve robust inference pedooa in the presence of channel
outage or sensor failure as it strikes a better balancetféetween the detection performance
at the fusion center and that of local sensors.

The proposed scalar quantizer design is closely relatetiedatassical distributed detection
problem [4], [5] as it involves the design of multiple sengecision rules that are coupled with
each other. Major differences exist, and the most signifisatihat we no longer deal with a single
objective function (minimum error probability at the fusi@enter). Instead, multiple design
objectives need to be considered, each corresponding terti¢o-end inference performance
for a particular channel outage or sensor failure state.

To explain the significance of the proposed approach, andaiticplar, to understand its
improved robustness compared with the classical diseibuatetection design, consider the fol-
lowing simple example. Assume a binary hypothesis testimoplpm with a two-sensor parallel
fusion system where each sensor employs a binary quaniibertwo hypotheses under test,

H, and H,, area priori equally likely. The local sensor observations at the twsees) X; and
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X5, are conditionally independent and identically distrézliternary random variables with

P(X,=0|Hy) = 0.95 P(X, =0[H)) = 0.05
P(X,=1|Hy) = 0.05 P(X,=1/H) = 0.9
P(X,=2|Hy) = 0 P(X, =2|H)) = 0.05

for £ = 1,2. By the monotonicity of the likelihood ratio (LR) in the sensavservations (i.e.,
the local sensor LR values are monotoneXip), we need to consider only the two binary local
decision rules at each sensor [6]:
RueA 1,=4  F7Y RuleB D=4 | rT0ord
1 X,=1or2 1 X, =2

Adopting the classical distributed detection approacks gtraightforward to show that the two
sensors should employ different decision rules to achiewenanum error probability 0f).04875
at the fusion center. Assume that, without loss of gengralénsor 1 uses Rule A while sensor 2
uses Rule B. If sensor 1's decision does not reach the fusiderceither due to a channel outage
or a sensor failure, the actual minimum error probabilityusng the decision from sensor 2
alone become8.475, which is a significant degradation from the case when batis@eoutputs
are available. This error probability essentially rendies detection system essentially useless
as it is close td).5. A more robust design is to use decision rule Rule A at botha@snn this
case, both the fusion center and each local sensor havécalestror probability0.05 thus there
is no degradation in the event of a lost transmissi@ompared with the classical distributed
detection approach (whose error probability pair@fd875 and0.475), the alternative approach
provides a more robust performance in the presence of antiasi®n loss.

The proposed DMDQ also provides an alternative approachgahannel aware design for a
decentralized detection problem [7]-[9] in dealing withpienfect channels. The channel-aware
guantization schemes require that the channel state iatoym (CSI) be available to attain

This simple example also indicates thegpending on the local decision rules used and the observation distributions, having

more sensors in the system may not always improve the overall pexfme.
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optimum performance. Acquiring CSI, however, may be too Igast systems with stringent
resource constraints. It is, therefore, imperative to mwrsquantizer design that is robust to
potential channel outagesithout the knowledge of CSI. The proposed DMDQ framework is
an initial attempt toward robust and proactive signaling destributed sensor networks in the
absence of CSI.

The rest of the paper is organized as follows. In the nexti@gctve describe the problem
formulation and introduce the two-sensor fusion networkhwiossible transmission losses. In
Section Ill, we apply the Lagrangian method to solve the tamged minimization and to obtain
necessary conditions for optimum binary quantizers in tvenfof LR test (LRT) thresholds.
In Section 1V, we impose the discrete memoryless erasurenghanodel and obtain the corre-
sponding optimum local decision rules using the channeravguantizer design methodology
described in [7], [8]. Numerical results are presented ictiBa V to demonstrate how the
proposed quantizer design can be implemented and the ieghnmbustness over the classical

distributed detection approach. We conclude in Section VI.

II. PROBLEM FORMULATION

Fig. 2 depicts a two-sensor parallel fusion network taskétl & hypothesis testing problem.
Each sensor collects data that are generated accordingtofdhe two hypothesedi; and H,)
under test. We assume in the present work that the local\digmrs.X; and X, are conditionally

independent given the underlying hypothesis, i.e.,ifer0, 1,
(X1, Xo|H) = f(Xa|H,) f(Xo|Hy).

It is easy to establish that with this conditional indeperaeassumption, the LR pair of the

local sensor observations

f(X1|Hy)
f(X1[Ho)

form a sufficient statistic for the detection problem.

L(X>)

(L(Xl) _ _ f(Xz\Hl))

- f(Xa|Ho)
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Based on its local observatioky, the kth local sensor implements a binary quantizer whose
outputU, € {1,0}, for k£ = 1,2, will be sent to the fusion center. The transmission, howeve
is subject to channel outage or sensor failure. When botlsinessions are successful, Decoder
0 will perform as a fusion center and make a final decision orchwhypothesis is true using
both U; andU,. Otherwise, if only one of the two transmissions is sucedssither Decoder 1
or Decoder 2 will make a final decision based on the succdgstdeivedU,. In our current
work, asU,, is binary, Decoders 1 and 2 will simply také and U, as their respective output,
as illustrated in Fig. 2.

Adopting a Bayesian framework, we use error probability aspglrformance measure. Define

P, the probability of error at Decoder:
Pek:ﬂ'()P(Uk:1|H0)+7T1P(Uk:O|H1), k:0,1,2 (1)

wherer; = P(H;) is the prior probability for hypothesid ;, andU, denotes the decision output
for Decoder 0. ThusP,, corresponds to the error probability of the fusion centeemviboth
U, and U, are available whileP,; and P,, are respectively the error probabilities at individual
sensors. Classical distributed detection theory aim tormza P., while our present work strives
for a balance in performance betweény and P., for k =1, 2.

Our approach is derived from the MD principle [1]: we aim tesid@ sensor decision (quanti-
zation) rules such that if one of the two transmissions i§ ks acceptable performance (in terms
of error probability) is guaranteed; if both transmissians successful, a better performance can
be achieved. Catering toward the hypothesis testing prgblamcan succinctly summarize the

design criterion using the following constrained minintiaa problem

min P,
2)
subjectto P.; <e; and P, < .
wheree; ande, are the pre-specified error probabilities that are guaeahieonly U; or Us is

successfully received. This design criterion is remingad the MD scalar quantizer design [3]
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where a general distortion measure is used.

[1I. NECESSARYCONDITIONS FOROPTIMALITY AND A DESIGNALGORITHM
The constrained optimization problem readily admits a hagran formulation which is used
to solve the minimization problem below. The Lagrangianction is given by

L1, 72, M, A2) = Pog + M (P — €1) + A2(Pea — €2) (3)
whereT; is the local sensor LRT threshold;,. is the Lagrangian multipliers, fok = 1, 2.
Using the Kuhn-Tucker theorem [10], the set of optimum sotubof the constrained mini-
mization problem must satisfy the following necessary dons, for k = 1, 2,

OP. oP, oP,
0 Ly, 2

8Tk~ +)\1 aTk 67’k - 0 (4)
M > 0 ©))

Pek — €k S 0 (6)

Me(Por, —€x) = 0 (7)

Given the above necessary conditions, the optimum soklutionthe local decision rules are
described in the following theorem.
Theorem 1. Assume that the two local observationk,’s, are conditionally independent.
Further, if the fusion rule and theth local sensor decision rule satisfy, fbr= 1,2
P(Uy = 1|Ux =1,U;) = P(Up = 1|Uy = 0,U;) = 0
PUy=0|Uy,=0,Uz) — P(Uy=0|U,=1,U;) > 0
wherek 2 3 — k, thus1 = 2 and2 = 1. Then the optimum solution of the constrained

minimization problem in Eq. (2) is given by the following LRTor & = 1,2

if

P(Xk|H1)
p(X|Ho) = Th (8)

Y

P(U, = 11Xy) =
0, otherwise
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whereT;, the optimal LRT threshold for théth local sensor, is determined as follows:

« When )\, = 0 (inactive constraint),

7T0Ak
= 9
Tk .Bs ( )

« When )\, > 0 (active constraint)7; is obtained by solving
Pek — € — 0 (10)

The associated, can be obtained by

7T0Ak: — M1 By

A = (12)
™7y — To
from which we get,
7T0(Ak + )\k)
== 12
7T1(Bk + /\k) ( )

The quantitiesd, and By, in Egs. (9-12) are defined respectively as

Ay = > (P(Us = 1|Up = 1,Uz) = P(Uy = 1|Ux = 0,Uy)) P(Ug| Ho) (13)
Uk
B, = Y (P(Uy=0lUsx =0,Us) = P(Uy = 0|Uy = 1,Uy)) P(Ug|Hy) (14)

Theorem 1 is prove[g in Appendix A.
Remarks:

« Note that the forms ofy,, A, and B;, indicate that the threshold for thgh sensor is a
function of the decision rule at the other sensor. Thus, aeaerd, the optimal thresholds
at sensor 1 and 2 are coupled with each other.

« In order for the constrained optimization to have feasilkit®ons, ¢; and e, can not be
chosen to be too small. Specifically, needs to be no smaller than the minimum achievable
error probability at sensor k. More discussions about this lse found in Section V after
we introduce an alternative design approach (Approach Zaotiéh V).

« P, is the achievable error probability using bdth andU,. On the other hand?,; and P,

are respectively the error probabilities at local sensessh associated witti; or Us,. Thus

Revised on April 21 2006 Submitted to IEEE Trans. Wireless Communications



P.o, <min{P,;, P.»} where the inequality is due to the fact that one can simplpiigrone
of {U,,U,} and the error probability should thus be no worse than eitheor P.,. Due

to the constraintd’,; < ¢; and P., < ¢y, we have
Py <min{ P, P} < min{er, e}

That is, the error probability achieved when both transioiss are successful is upper
bounded by the error probability constraints at local ses1so

e If Py < e and Py < €, i€, A\, =0 for k = 1,2, P,y is the minimum error probability
that can be achieved at the fusion center. The constrainguination approach yields the
same result as the unconstrained approach that minimieesrtar probability at the fusion
center. This happens when the constraitsre large enough.

« Eqg. (12) is a unifying expression of the optimal local LR 8ireld for the two cases of
A > 0 and A\, = 0.

« The conditions described in Theorem 1 do not admit closeah&plutions. Simultaneously
optimizing 7, and, is intractable due to the distributed nature - it typicaltyalves some
exhaustive search over a two dimension space forthe-) pair. However, the necessary
conditions established in Theorem 1 allows us to adopt aopebg-person optimization
(PBPO) approach where each threshold is optimized assunxied tinreshold at the other
sensor. The PBPO approach has been widely used in optimizangnttalized systems,
and in particular, in the classical distributed detectisee| e.g., [11], [12]) when joint
optimization is typically intractable.

« Theorem 1 describes necessary conditions for the optimuiin thResholds; thus multiple

initializations are needed to find the globally optimum #ivelds.

The following iterative algorithm describes this PBPO pihae.

Iterative Algorithm

. Step 1. Initializery, for k =1, 2.
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o Step 2. Obtain the optimum fusion rule for fixed and 7.
« Step 3. For fixed fusion rule and, calculater; using (9).
« Step 4. Check to see if satisfiesP,; —¢; < 0.
— If yes, go to Step 5.
— If no, calculater; using (10).
« Step 5. For fixed fusion rule and, calculater, in a similar fashion.
« Step 6. Check convergence, i.e, if the obtaimednd =, are identical (up to a prescribed
tolerance) to that from the previous iteration.
— If yes, stop.
— Otherwise, go to Step 2.
At each iterationy; is optimized for a given fusion rule and the other threshqldhence the

error probability is monotone decreasing until a statignawint is reached.

IV. OPTIMAL LocAL DECISIONRULE DESIGN UNDER ANERASURE CHANNEL MODEL

The constrained minimization approach provides a proaat®sign methodology that avoids
severe performance degradation in the absence of CSIl. Wes®ap this section an alternative
approach by imposing a certain parametric model on the @tmemsor failures. This allows
us to adopt existing channel aware approach [8] to desigiotted quantizers. Similar to [13],
we model the potential transmission loss usergsure channels where the erasure accounts
for possible sensor failures/channel outages. This chanodel is illustrated in Fig. 3 where
0 = P(Xy = E|Uy) is the erasure probability corresponding to sensoOur alternative

optimization criterion is to minimize the average errorlpability P., defined as
Pe = (1 — 51)(1 - (52)P€0 + 52(1 — 51)P€1 + 51(1 - 52)P62 + min{ﬁg,m}5152 (15)

where the last term corresponds to the error probabilitynibhath transmissions are lost. This

constant term has no effect on the quantizer design, hemckecdropped in the design problem.
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The following theorem provides the solution for the sensecision rules that minimizé,.
Theorem 2: Assume that the two local observations,’s, are conditionally independent and
channels are independent discrete memoryless erasuraetbaRurther, if the fusion rule and
the kth local sensor decision rule satisfy, fbr= 1,2
P(Uo =1Up =1,U;) = P(Up = 1{Uy = 0,U) = 0
P(Uy=0|U, =0,Uz) — P(Uy=0|U, = 1,U3) > 0
where k is defined similar as in Theorem 1. Then the optimum local fatethe kth sensor

amounts to the following LRT, fok = 1,2

1 if P(Xk|H1) ~ mo(Axtar)

P(U, = 11X;,) = p(Xk|Ho) = m(B+ak) (16)
0 otherwise
where
o 01
= anday = ——— 17
TS, TR T T T (17)

and A, and B;, are defined in Egs. (13) and (14).
A proof is given in Appendix B. Following the same spirit of tierative algorithm in Section
lll, we can devise a similar procedure to find the optimal shadds using Theorem 2.
Comparing Egs. (12) and (16), we have some interesting odiseng that suggest intrinsic
connections between the erasure channel model and theaoest minimization formulation.
From Eq. (15), if we drop the last term and divide the averagdability by (1 — §;)(1 — ds),

the new function to be minimized becomes
Qépeo+alpel+a2P62-

with «; and o, defined as in Eqg. (17). The design problem reduces to a probfeminimizing
@ subject too; > 0 anday, > 0. Compare this with Eq. (3), we see that plays a similar role

as the Lagrangian multipliex,.

Revised on April 21 2006 Submitted to IEEE Trans. Wireless Communications



12

Further more, the first-order necessary conditions for mizing () are given by:

0P,y 0P, 0P,
= 18
67‘k +a1 8Tk +Oé2 aTk 0 ( )

Comparing Eg. (18) and (19) to Eqg. (4-7), we notice that these formulations are similar
except that the constrained optimization approach has mesteictive constraints (Eq. (6) and
(7)). Next we elaborate when these two formulations willd&lentical optimal solutions.
Consider the first case: when = 0, i.e., the constraints.;, < ¢, are satisfied. In this case, set
ar = A\, = 0, and the two formulations have the same optimal threshdlds.case of\;, > 0 is
more complicated. With\, > 0, we haveP,, = ¢, k = 1,2. Assume the erasure channel model
yields L local minima, with the corresponding threshold péit,7!), | = 1,2, ..., L,. Denote
by Pl;, j = 0,1,2, the error probabilities associated with{, 7}). By virtue of the problem
formulation, there must exist ong", 7;*) whose local error probabilities satist#} = e,

k=12 If
QméPm—FOqGI—FOéQEQSPj—FOqu+OéngéQj for j#m,j:1,2,..,L (20)
e0 e0 el e2

then (7j", 73*) is the optimal solution for both constrained minimizatiasrriulation and the
erasure channel formulation. We will further illustratesle connections using some numerical

examples in the next section.

V. A NUMERICAL EXAMPLE

In this section, we use several numerical examples to lgghlihe robust performance of
the proposed local quantizer design compared with theiclsdistributed detection approach.

Consider the detection of a known signal in independent Gaus®ises using two sensors:
HO . Xk = Ng
H1 . Xk = S+ ny
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wheres is a known signal ana,, is zero mean Gaussian noise with varianéefor k = 1, 2.
Without loss of generality, we assume= 1 and ¢?> = 1. Each local sensor makes a binary
decision using its observatioX;, and a decision ruley, i.e., U, = v (Xx) € {1,0}. The
transmission ofU;, however, is subject to channel losses. If béthand U, are successfully
received, Decoder 0 will implement the maximwnposteriori probability decoding (detection)

rule, i.e.,
if P(U1,Uz|Hy) > mo

1, >
P(UO = 1‘U1’ UQ) — P(U17U2|HO) T (21)
0, otherwise

For simplicity, we consider a symmetric setting where we wdentical error probability con-
straints (i.e.¢; = €;) for the constrained minimization approach, and identgzakure probabil-
ities (i.e.,0; = &) for the erasure channel model approach.

In addition to the proposed approaches, we also presentseming alternative approaches
to highlight the robustness of the proposed MD principleeblaBamework. The complete list

of approaches used in the simulations is as follows.

Approach 1 Constrained minimization described in SectidrfTheorem 1).

Approach 2 Erasure channel model approach described imo8det (Theorem 2).

Approach 3 Minimizing the local error probabilitig3; and F... We denote byF,. s (k =
1,2) the minimum achievable local error probabilities, @gs; the corresponding error
probability at Decoder 0, respectively. Note tHifa} 5 provides the lower bound for the
local error probability constraing, i.e., one must have, > P, 5 for the constrained
minimization formulation to have a solution.

Approach 4 Minimizing the error probability at the fusionnéer. We denote by’ 4 the
minimum achievable error probability at Decoder 0O, dhgl, (k = 1, 2) the correspond-
ing local error probabilities, respectivelyhis approach corresponds to the classical
distributed detection with a single objective function. An interesting observation is that

this approach can be considered as a special case of theeecdmnnel model with
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0 = 0, for £ = 1,2. As such, one only need to minimiz&, as both transmissions
are always assumed successful.
Notice that Approaches 3 and 4 are conflicting with each ottree can show that optimizing.,
and P, for k = 1,2 can not be simultaneously achieved [14]. Otherwise, theeedistributed
MD framework will become trivial as one can simultaneougbyimize the local error probability
and that of Decoder O (the fusion center).
As we are considering a Gaussian problem, the obtained LREshblds at the sensors
can be directly translated into thresholds for the origiolaservations. Thus in the following
presentation, we will use thresholds for the original obagons, denoted by, for k =1, 2.

The numerical results are summarized in Tables I-1ll as asglin Figs. 4-6. Specifically,

« Tables | and Il enumerate respectively the parameters andlitained thresholds and error
probabilities of the two proposed approaches (Approachasdl?).

. Tables Ill gives the obtained thresholds and error proligdsilof the two alternative ap-
proaches (Approaches 3 and 4).

« Figs. 4 and 5 give the analytically calculated error prolités (both of the fusion center
and local sensors) versus threshold plots with two diffepgiors, 7o = 0.6 andmy = 0.8,
respectively. In each plot, (b) is a zoom-in of (a) for betteualization.

« Fig. 6 is the error probability versus erasure probabilityt.p

Our observations from the numerical results are summaitztaiv.

« For Approach 1, the iterative algorithm indeed yields thodds that are solutions to the con-
strained optimization problem. For example, with= 0.6 and error probability constraint
ex = 0.3, the threshold obtained using Approach Ijis= 1.1812 with corresponding error
probabilities P,y = 0.2649 and P,; = P., = 0.30 (the left half of the last row of Table I).
This is consistent with Fig. 4 (the corresponding valuesnaaeked on Fig. 4(b)). Similarly,

with 7o = 0.8 and ¢, = 0.2, the minimum achievabl®., = 0.1775 with the corresponding
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thresholdn, = 2.0311 and local error probability®,, = 0.1866. These values are marked
on Fig. 5 and are consistent with those listed in Table | ¢riggdf of the last row).

« From Table I, it can be seen that, by comparing columns gooreding to P., and P,
smaller local sensor error probabilities typically resnliarger error probability at the fusion
center. In general, having a generous constraint on locgedoseerror probabilities (large
€x) Imposes less restriction on the admissible thresholdspuaihich typically gives rise to
smaller P,y. In the extreme case, for example, when= 0.5, the obtained thresholds will
always coincide with that of Approach 4.

« The classical distributed detection (Approach 4) that mines error probability at the
fusion center suffers significant performance loss in thenewf a lost transmission. This
can be illustrated using Fig. 4(b) along with Table Ill. Af = 0.6, Approach 4 yields a
globally minimum error probability®,, = 0.2574 at the fusion center. However, if one of the
transmission is lost, the error probability suffers a digant degradation td,, = 0.3315
(marked on the dash-dotted curve). Clearly, the constranpéichization approach is much
more robust (a degradation frof, = 0.2649 to P., = 0.30). This effect is even more
pronounced for the case af, = 0.8. Approach 4 yields a fusion center error probability
P,y = 0.1686 (corresponding to the minimum point of the solid curve in.Efp)). However,
if only one transmission reach the fusion center, the enmobgbility becomes’,, = 0.2466
which essentially renders this system useless — as thegyobability isTy = 0.8, the error
probability should be capped @t. This seemingly pathological result is due to the fact that
the threshold design at local sensors for the classicalilnlistd detectioralways assumes
successful transmissions from other collaborating sensor

« Approach 3 which optimizes local sensor performance do¢haee significant improve-
ment when both transmissions are successful. From TabbendIFig. 4, forry = 0.6, the

minimum local sensor error probability iB.; = P., = 0.2945. When both transmissions

Revised on April 21 2006 Submitted to IEEE Trans. Wireless Communications



16

are successful, the fusion center will have an error prdibabP., = 0.2846, which is
only marginally better than the individual sensor’s pariance. This improvement is much
smaller than that achieved by the proposed constrainedmazation approach.

« For the erasure channel model approach, as the erasurebpitybd, approaches one, the
obtained optimal local thresholds converge to that obthimng Approach 3 (minimizing
the local error probabilities). This can be seen by comarables Il and IlI: the thresholds
obtained using Approach 2 will approach that of Approach &.ascreases. This is expected
since largey,, implies that the channel is likely to break down, thus thel@sror probability
will dominate the system performance. On the other handhasetasure probabilities
approach zero, the obtained optimal local thresholds egeven those that minimize the
error probability at Decoder 0 (corresponding to Approachrtuitively, smallj, indicates a
high probability of successful transmissions of béthand U,. Thus, the error probability
at Decoder 0 would largely determine the system performambe same behavior can
be observed from Fig. 6, plotted for, = 0.6, by looking at the two extreme points
corresponding t@, = 0 andd, = 1. The associated error probabilities coincide with that
of Approach 4 and 3 respectively.

« We have explored the intrinsic connections between Apgpradh@nd 2 in Section V.
Now we present numerical results to further elaborate theections. Consider the case
of 7y = 0.6.

— With ¢, = 0.32, the corresponding\, = 0.1652. Seta;, = 0.1652, we obtain two
local minima that satisfy Eq. (18), as listed in Table IV. &rnwve want to choose the
thresholds that minimizé&), it turns out that); = n, = 1.237 (with P,; = P, = 0.3023
and P., = 0.2636) is the optimal solution for the erasure channel model aggtoBut
the constrained minimization approach results in the tiolels, = 1, = 0.3609 (with

P, = P, =0.32 and P,, = 0.2519). From Table 1V, it is clear that Eq.(20) does not
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hold, i.e., the@ function corresponding t&., = 0.32 is not the smallest among the
two. Hence in this particular setup, these two approachemtbave the same optimal
solution.

— Now we examine a case when the two formulations share the salagon. Consider
e = 0.3, the corresponding, = 0.4023. Seta;, = 0.4023, again there are two local
minima as listed in Table V obtained using the erasure cHamioeel approach. We
notice thatn; = n, = 1.1812 is the optimal solution for both approaches and it is easy
to check that Eq.(20) is satisfied.

« In general, the rate of convergence of the proposed iteratiyorithm depends on the initial
values of local thresholds. Our simulations indicate tlmat proposed iterative algorithm
converges very fast. For all the scenarios we have examaoesergence happens typically
after several € 10) iterations. For instance, the results in Table | were ols@diafter about

six iterations on the average.

VI. CONCLUSIONS

In this paper, we developed robust signal processing tqaksifor distributed sensor networks
applications. In particular, we presented a distributedtiple description quantization (DMDQ)
framework for the design of sensor signaling in the presa&fcensor failures/channel outages.
Two approaches are proposed to address the DMDQ design asimg-sensor distributed
detection problem. The first scheme is based on a constrameuhization approach; and
a solution using Lagrangian multiplier is presented. Theosd imposes a discrete erasure
channel model; we developed the channel-aware quantizéegrd¢hat minimizes the average
error probability. Iterative algorithms were constructedsearch of the optimal thresholds. The
intrinsic connections between to the two approaches wearmred. A design example was used
to show how the DMDQ can be implemented in a real distributetéction problem, and to

demonstrate its robust performance compared with theictsdistributed detection approach
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in the presence of possible transmission losses.

Our future work will address the application of the MD priplei to sensor networks involving
more than two sensors. The problem becomes conceivably moce complex as the number
of objective functions grow exponentially as the numbereaisors. Thus the constrained mini-
mization approach may not be feasible. On the other handrdmire channel model essentially
collapses the multi-objective functions into a single epoobability, making it more appealing
in dealing with large sensor networks. Thoroughly undeditsg the connection between the
constrained minimization problem and the erasure chanoeleinwill provide valuable insight

in how to choose the erasure channel model parameters.

APPENDIXA

PROOF OFTHEOREM 1

Without loss of generality, we expan@, with respect tal/;, and we get
Peo = WOP(U() = 1|H0) +7T1P(U0 = 0|H1)

= m Y Y P(Usy=1U1,U)P(Uy,Ua|Hy) +m1 Y Y P(Uy = 0|Uy, Us) P(Uy, Up| Hy)

U1 U2 Ul U2

= m Y P(Ua|Hy)[P(Uy = 1|Uy = 1,Us) P(Uy = 1|Hy) + P(Up = 1|U; = 0,U) P(Uy = 0|Hy)]

Uz

—|—7T1 ZP(UQ‘Hl)[P(UO — O’Ul — 1, UQ)P(Ul - 1‘H1) —|— P(UO - O‘Ul — O, UQ)P(Ul — O’Hl)]
Uz

== 7TOP<U1 == 1’[‘[0)141 — 7T1P(U1 == 1‘H1)Bl -+ Cl
where A, and B; are defined in Egs. (13) and (14), and
Cy =10 P(Us|Ho)P(Uy = 1|Uy = 0,U) + m Y P(Ua|Hy)P(Uy = 0|Uy = 0,U)

U2 U2

C5 can be similarly defined by swapping the rolestgfand U,. Without loss of generality, we

can rewriteP,, as:

PeO = WOP(Uk = 1|H0)Ak - 77'1P(Uv]C = 1|H1)Bk + Ck (22)
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for k =1,2.

From Eq. (1), the local error probabilities can be expresse®,, = my P, + m1(1 — Py),

where Py, = P(U, = 1|Hy) and Py, = P(U; = 0|H;). Thus the left-hand side of Eq. (4)
becomes

2
6Peo 4 Z )\Zﬁ(Pez — Ei)
1

aTk 8Tk
OPp &Py, Py OPy
A —mBr——+ A —
oLk aTk T2k aTk + k(ﬂ'[) aTk m aTk )
oP oP oP oP
= 7T0Ak Ik — WlBka Ik + /\k(ﬂ'g Ik — 1Tk fk) (23)
87’k 87’k 87’k aTk

where we have used the fact ttﬁﬁ = 14, and 7 is the LR threshold for théth sensor?.

Set (23) equal to zero, we havg = %. Egs. (9-12) follow by directly applying the

Kuhn-Tucker theorem for the two cases = 0 and \, > 0 separately. Thus, Theorem 1 is

proved.

APPENDIXB

PROOF OFTHEOREM 2

Similar to the proof in Appendix AP, can be expanded with respect to the individual

decision rules, and we get, féar=1, 2,
PeO = / P(Uk = HX]{;) [WoAkP(Xk|H0) — WlBkP(Xk|Hk)] ka —|— Ck (24)
Xk

where (), has no effect on the decision rule at sensor k.

Similarly, the error probability at théth sensor can be expanded as

Pek = 7T0P(Uk == 1|H0) + 7T1P(Uk == O‘Hl)
X
2This is the property of the receiver operating characteristics (ROQ)ector a likelihood ratio test. The threshold

corresponding to th¢Py, P;) pair equals the slope of the ROC curve at that point.
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Thus, using sensor 1 as an illustration, the average erodrapility 2, can be written as, from

Egs. (15), (24), and (25),
Pe = (1 — 51)(1 — 52>Peo + (52(1 — 51)P€1 -+ (51<1 — (52)Peg + min{ﬂ'o,ﬂ'l}éléz

= (1-4)(1— 52)/ P(U, = 11X,) [moA1 P(X1|Hy) — m B P(X1|Hy)] d X,

X1

+52(1 - (51)/ P(Ul = 1|X1) [7TOP(X1|HQ) — 7T1P<X1‘H1)] Xm ‘l‘ Dl
X1

X1

where

D1 == Cl+5g(1—51)7r1+51(1—52) (/
X

2

P(UQ = 1|X2)[7TOP(X2|H0) - 7T1P(XQ|H1)]dXQ + 7T1>
F1 = (1 - (51)(1 — 52) [7TOA1P(X1|H0) — WlBlp(Xl‘Hl)] + 52(1 - (51) [ﬂ'op(Xl‘Ho) - 7T1P(X1|H1)]

As D, is independent of the quantizer rule at sensor 1, we needtontyinimize the first term
in Eq. (26) with respect to the local decision rule for serisofhus, the optimum local decision
rule for sensor 1 is as follows.

1, if F, >0
PU =1|X;) = (27)

0, otherwise

This is equivalent to the decision rule specified by Eqs.{Ibfor k. = 1. The optimum quantizer

rule for sensor 2 can be similar established. This compliegproof of Theorem 2.
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TABLE |

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USINGAPPROACH1

o =0.6 o =0.8

€k Nk Pex Peo Ak €k Nk Pey Peo Ak

0.33| 0.2629| 0.33 | 0.2574| 0.0177| 0.25 | 0.8474| 0.2466 | 0.1686 0

0.32| 0.3609| 0.32 | 0.2591| 0.1652| 0.21 | 1.1737| 0.21 | 0.1744| 0.1788

0.31| 1.2895| 0.3047| 0.2632| 0.0001| 0.2 | 2.0292| 0.1866 | 0.1775| 0.001

0.30| 1.1812| 0.30 | 0.2649| 0.4023| 0.19 | 2.0292| 0.1866 | 0.1775| 0.001

TABLE 1l

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USINGAPPROACH2

7o = 0.6 7o = 0.8

Ok Mk Py, Peo ak Ok Mk Py, P o

0.0174| 0.2629| 0.33 | 0.2574| 0.0177| 0.01 | 0.8667 | 0.2438| 0.1686 | 0.0101

0.2869 | 1.1812| 0.3 0.2649| 0.4023| 0.4 | 1.9757| 0.1864| 0.1777| 0.8

0.5 1.0971| 0.2973| 0.2685| 1.0 0.5 | 1.9616| 0.1863| 0.1778 1

0.7 1.018 | 0.2955| 0.2738| 2.3333| 0.7 | 1.9324| 0.1863| 0.1780| 2.3333

0.9 0.9417| 0.2946| 0.2807| 9.0 0.9 | 1902 | 0.1862| 0.1784| 9.0

TABLE 11l

THRESHOLDS AND ERROR PROBABILITIES OBTAINED USINGAPPROACHES3 AND 4

Approach 3| Pey 3 Peo,3

mo = 0.6 0.9059 | 0.2945| 0.2846

mo = 0.8 1.8863| 0.1862 | 0.1787

Approach 4| Pera | Peoa

mo = 0.6 0.2495| 0.3315| 0.2574

mo =0.8 | 0.8474| 0.2466 | 0.1686
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TABLE IV

LOCAL MINIMA OBTAINED BY THE ERASURE CHANNEL MODEL APPROACH ¢ = 0.32, ax = A\x = 0.1652

Ok Mk Py, Peo Q

0.1418| 1.237 | 0.3023| 0.2636 | 0.3635

0.1418| 0.3609| 0.32 | 0.2591| 0.3648

TABLE V

LOCAL MINIMA OBTAINED BY THE ERASURE CHANNEL MODEL APPROACH ¢ = 0.3, ax, = A\, = 0.4023

6k Nk Pck PEO Q

0.2869 | 0.4784| 0.3101| 0.2645| 0.514

0.2869| 1.1812| 0.3 0.2649 | 0.5063

/ Encoder 1 Decoder 1~ 1 Encoder 1~ Decoder 1~
X\ — ZDecoder 0— @) — 7 Decoder 0—

Decoder 2—

&1

v

Decoder 2— 2N Encoder

Encoder 2

C2

(@ (b)

Fig. 1. Comparison between (a) conventional MD, and (b) distributedfMB3ensor network applications. In (a), Encoders
1 and 2 have access to the same observatiotn (b), Encoder 1 encodeX; without access toX> while Encoder 2 encodes
X5 without access toX;

Ca

Y Sensor 1 U Channel Decoder 1 — U,

@ Decoder 0— 1/,
Sensor 202 Channel 2 Decoder 2,

Fig. 2. A two-sensor parallel fusion network with possible transmissiduarés.
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Fig. 3. A discrete memoryless erasure channel model for the chhatween sensok and the fusion center.
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Fig. 4. Analytically calculated error probability versus threshold plot7#er= 0.6; (b) is a zoom-in of (a).
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Fig. 5.  Analytically calculated error probability versus threshold plotifgr= 0.8; (b) is a zoom-in of (a).
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Fig. 6.  Error probability versus erasure probability plot fay = 0.6 obtained using the channel-aware quantization for the

erasure channel model.

Revised on April 21 2006 Submitted to IEEE Trans. Wireless Communications



