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Abstract 

Today’s fast-pace evolving and digitalizing World is posing new challenges to reliability 

engineering. On the other hand, the continuous advancement of technical knowledge and the 

increasing capabilities of monitoring and computing offer opportunities for new developments in 

reliability engineering. 

In this paper, I reflect on some of these challenges and opportunities in research and application. The 

underlying perspective taken stands on: 

 the belief that the knowledge, information and data (KID) available for the modeling, 

computations and analyses done in reliability engineering is substantially grown and continue 

to do so; 

 the belief that the technical capabilities for reliability engineering have been significantly 

advanced; 

 the recognition of the increased complexity of the systems, nowadays more and more made 

of heterogeneous, highly interconnected elements. 

In line with this perspective, opportunities and challenges for reliability engineering are discussed in 

relation to degradation modeling and integration of multi-state and physics-based models therein, 

accelerated degradation testing, component-, system- and fleet-wide prognostics and health 

management in evolving environments. 

The paper is not a review, nor a state of the art work, but rather it offers a vision of reflection on 

reliability engineering, for consideration and discussion by the interested scientific community. It 

does not pretend to give the unique view, nor to be complete in the subject discussed and the related 

literature referenced to. 
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1. Introduction 

As the digital, physical and human worlds continue to integrate, we experience a deep 

transformation in industry, which far-reaches into our lives. The 4
th

 industrial revolution, the 

internet of things and big data, the industrial internet, are changing the way we design, 

manufacture, provide products and services. This is creating a complex network of things and 

people that are seamlessly connected and communicating. It is providing opportunities to make 

productions systems more efficient and faster, and more flexible and resilient the complex supply 

chains and distribution networks that tie the global economy. 

 In this fast-pace changing environment, the attributes related to the reliability of components and 

systems continue to play a fundamental role for industry. The innovations that are being 

developed have high potential of increased wellbeing and benefits, but also generate new and 

unknown failure mechanisms, new and unknown functional and structural dependencies, and 

eventually new and unknown hazards and risks. On the other hand, the advancements in 

knowledge, methods and techniques, the increase in information sharing and data availability, 

offer new opportunities of analysis and assessment for reliability engineering. Then, a new 

reliability engineering “revolution” is in the making for addressing the challenges brought about 

by the new and evolved systems, and the innovations therein; this calls for and, at the same time, 

drives the advancements of new methods and tools, and the extension of their applications, based 

on the increased knowledge, information and data (KID) available, which can improve our 

reliability prediction capability. 

 In this paper, I consider the above context and address some challenges and opportunities for 

reliability engineering. In particular, I argue that the big KID available allows refined modeling 

of the degradation processes that drive the components and systems to failure.  

In Section 2, multi-state modeling schemes are discussed as an opportunity of describing the 

degradation processes as Piecewise Deterministic Markov Processes (PDMP), accommodating 

the relevant knowledge in physics-based models of transition rates (Multi-State Physics-based 

Models, MSPM). Challenges are highlighted in relation to the treatment of dependent, and often 

competing, processes, the accounting of uncertainties and of the effects of maintenance. On the 

contrary, the complexity of the resulting models does not impede their solution by advanced 

mathematical techniques and Monte Carlo simulation, although scalability may be a challenge 

for large systems. As for the problem of the estimation of the model parameters values, this can 

be tackled by Accelerated Degradation Testing (ADT), as discussed in the subsequent Section 3.  

On the other hand, the increased availability of data coming from monitoring the relevant 

components and systems parameters and the grown ability of treating these data by intelligent 



algorithms capable of mining out information relevant to the assessment and prediction of their 

state, has open wide the doors for Prognostics and Health Management (PHM) in many industrial 

sectors, for improved operation and maintenance. This is discussed in Section 4, highlighting the 

challenges of: 

 developing methods and models capable of dealing with the inevitable Evolving 

Environment (EE) that changes the conditions in which a component or system lives, and 

degradation and failure occur (PHM in EE);  

 considering the information and data coming from a fleet of components and systems, for 

effectively informed PHM (Fleet PHM); 

 considering the integration and interaction of the information and data monitored on 

multiple components operating on a system (Distributed PHM); 

 evaluating the performance of PHM approaches by defining significant Prognostic 

Performance Indicators (PPIs) and their adequacy for a given application, by a maturity 

assessment of the predictive model; 

 evaluating the economic and safety value of a PHM approach for condition-based and/or 

predictive maintenance. 

 

2. Degradation modeling 

In the evolving scenario of development of complex networks of things and people, supported by 

(more and more interdependent) critical infrastructures, concerns are arising on vulnerability to 

failure and risk of accident. The worries are that the allocated system capacities may not be adequate 

to respond to the postulated growing demands and that the safety margins preventively designed may 

degrade and become insufficient to cope with the expected and unexpected stresses arriving onto the 

systems. Emergent behaviors may arise in collective ways difficult to predict from the superposition 

of the behavior of the individual elements and difficult to manage resiliently. Indeed, we are 

witnessing more and more system-level breakdowns in our critical infrastructures, which emerge 

from local degradations of individual components that cascade to large-scale consequences possibly 

propagating from one system to another, through the (inter-)dependencies. The analysis of this 

problem for ensuring the protection and resilience of our critical infrastructures calls for the 

integration of methods capable of viewing the problem from different perspectives (topological and 

functional, static and dynamic, etc.), under the existing uncertainties and given the high system 

complexity (Kröger and Zio 2011). 

 

On the other hand, safety-critical components and systems, like those employed in the nuclear, oil 



and gas, automotive, aeronautic and aerospace sectors, are designed not to fail, i.e. with very high 

reliability, because of the potentially catastrophic consequences of their failures. Traditional data-

based reliability analysis, based on failure data, is, then, unsuitable. Yet, most failure mechanisms 

can be traced to underlying degradation processes (e.g. wear, stress corrosion, shocks, cracking, 

fatigue, etc.), for which models may exist (Yang, 2002). 

 

In general, the reliability of a system decreases as the degradation processes develop, eventually 

leading to failure (Ye and Xie, 2015). In reliability engineering, degradation processes have been 

widely studied and different degradation models have been developed.  

However, there is a need for the development of a holistic framework of models and computational 

methods for the reliability-based analysis and maintenance optimization of safety-critical systems, 

taking into account the available knowledge about the components and systems degradation and 

failure behaviors, their dependencies, the external influencing factors and the associated 

uncertainties. The holistic treatment of the problem should also allow for the consideration of 

damage precursor, as backbones for tracking component and system degradation which can allow 

early detection and effective, predictive maintenance.  

The existing degradation models are often classified into the following general categories:  

 statistical models of time to failure, based on degradation data (e.g. Bernstein distribution 

(Gebrraeel et al., 2009), Weibull distribution (Lu and Meeker, 1993)); 

 stochastic process models (e.g. Gamma process (Lawless and Crowder, 2004), inverse 

Gaussian process (Chen et al., 2015)) describing the evolution of one or more degradation 

parameters by gradual, stochastic degradation increments over time, and the failure occurs 

when the degradation parameter values reach predefined thresholds;  

 physics-based models (PBMs), based on the knowledge of the physics of degradation, which 

is translated into equations to give a quantitative description (e.g. the physics functions based 

on critical environmental stresses, e.g. amplitude and frequency of mechanical loads, used to 

model the pitting and corrosion-fatigue degradation mechanisms (Chookah et al, 2011)); 

 multi-state models (MSMs) describing the underlying degradation process by finite 

degradation states (e.g. semi-Markov models for the deterioration of infrastructure systems 

(Black et al., 2005); piecewise deterministic Markov process for dependent degradation 

process (Lin et al., 2014)). 

The recent literature on degradation modeling can be organized under the above taxonomy. For 

statistical models, Lu et al. (Lu et al., 1997) have combined random regression coefficients and a 

standard deviation function for analyzing linear degradation data for statistical inference of a time-to-

http://en.wikipedia.org/wiki/Stress_corrosion_cracking


failure distribution. Lu and Meeker (Lu and Meeker, 1993) have developed methods using 

degradation measures to estimate a time-to-failure distribution for a broad class of degradation 

models and demonstrated some special cases for which it is possible to obtain closed-form 

expressions of the distributions. Yang and Yang (Yang and Yang, 1998) have estimated the 

parameters of lifetime distributions using a random-coefficient-based approach that uses the lifetimes 

of failed devices, combined with degradation information from operating devices.  

For stochastic models, Whitmore (Whitemore, 1995) has estimated the degradation process by a 

Wiener diffusion process subject to measurement errors due to imperfect instruments, procedures and 

environments. Lawless and Crowder (Lawless and Crowder, 2004) have constructed a tractable 

Gamma-process model incorporating a random effect for taking into account different degradation 

rates of the individual components. Chen et al. (Chen et al., 2015) have employed the inverse 

Gaussian process with random-drift mode, in which the random drifts are used to represent 

heterogeneities commonly observed across the product population. Note that the aforementioned 

degradation models are always built on sufficient degradation/failure data. 

Physics-Based Models (PBMs) (Daigle and Goebel, 2011; Reggiani et al., 2011; Keedy and Feng, 

2012) and Multi-State Models (MSMs) (Moghaddass and Zuo, 2014; Lisnianski and Levitin, 2003; 

Li and Pham, 2005; Lin et al., 2012) can be used to describe the evolution of degradation in 

structures, systems and components, for which statistical degradation/failure data are insufficient, 

e.g. the highly reliable devices in the nuclear, oil and gas, automotive, aeronautic and aerospace 

industries. For PBMs, Daigle and Goebel (Daigle and Goebel, 2011) have developed a physics model 

of a pneumatic valve, based on mass and energy balances in which the damages depend on sliding 

velocity. Reggiani et al. (Reggiani et al., 2011) have developed a physics-based analytical expression 

of the linear drain current for hot-carrier stress degradation in transistors. Keedy and Feng (Keedy 

and Feng, 2012) have proposed a probabilistic reliability and maintenance modeling framework for 

stent deployment and operation, based on physics-of-failure mechanisms, e.g. delayed failure due to 

fatigue crack and instantaneous failure due to overload fracture.  

For MSMs, Moghaddass and Zuo (Moghaddass and Zuo, 2014) have employed the nonhomogeneous 

continuous-time hidden semi-Markov process to model the degradation and observation processes 

associated with the device. Giorgio et al. (Giorgio et al., 2011) have developed an age- and state-

dependent Markov model for the wear process of cylinder liners of identical heavy-duty diesel 

engines for marine propulsion. Unwin et al. (Unwin et al., 2011) have proposed a multi-state physics 

model (MSPM) for the cracking process of a dissimilar metal weld in a primary coolant system of a 

nuclear power plant.  

Yet, there are several factors which can influence degradation evolution and, thus, need to be 

accounted for in degradation modeling.  



Indeed, in practice components and systems are often subject to multiple competing degradation 

processes and any of them may cause failure (Wang and Pham, 2012). The dependencies among 

these processes within one component (e.g. the wear of rubbing surfaces influenced by the 

environmental stress shock within a micro-engine (Jiang et al., 2012)), or/and among different 

components (e.g. the degradation of the pre-filtrations stations leading to a lower performance level 

of the sand filter in a water treatment plant (Rasmekomen and Parlikad, 2013)) need to be 

considered, under certain circumstances. Components can be dependent due to functional 

dependence, where the failure of a trigger component causes other components to become 

inaccessible or unusable (Xing et al., 2012; Wang et al., 2012). Failure isolation effects can induce 

degradation dependency among different components, since failure of one component may cause 

other components within the same system to become isolated from the system due to the failure 

isolation actions (Xing and Levitin, 2010; Wang et al., 2013). This renders challenging the analysis 

and prediction of the components and systems reliability (Peng et al., 2010). Wang and Pham (Wang 

and Pham, 2012) applied time-varying copulas for describing the dependencies between the 

degradation processes modeled by statistical distributions. Straub (Straub, 2009) used a dynamic 

Bayesian network to represent the dependencies between degradation processes modeled by multi-

state models. However, very few studies have considered degradation dependency in a system whose 

degradation processes are modeled by PBMs and MSMs. 

Components may also suddenly fail due to randomly occurring events of excessive loading or 

environmental conditions (e.g. excessive temperature) (Wang et al., 2011). For example, thermal and 

mechanical shocks (e.g. internal thermal shocks and water hammers) (Lydell, 2000; Salonen et al., 

2007) onto power plant components can lead to intense increases in temperatures and stresses, 

respectively. These events, referred to as random shocks, need to be accounted for on top of the 

underlying degradation processes, because they can contribute to accelerating the degradation 

processes. In the literature, random shocks are typically modeled by Poisson processes (Li and Pham, 

2005), distinguishing two main types, extreme shock and cumulative shock processes (Bai et al., 

2006), according to the severity of the damage. The former could directly lead the component to 

immediate failure (Anderson, 1987), whereas the latter increases the degree of damage in a 

cumulative way (Agrafiotis and Tsoukalas, 1995). Esary and Marshall (1973) have considered 

extreme shocks in a component reliability model, whereas Wang et al. (2011), Klutke and Yang 

(2002) and Wortman et al. (1994) have modeled the influences of cumulative shocks on a 

degradation process. Both extreme and cumulative random shocks have been considered by Li and 

Pham (2005), and Wang and Pham (2012). Additionally, Ye et al. (2011) and Fan et al. (2000) have 

considered that a high severity of degradation can lead to a high probability that a random shock 

causes extreme damage. However, the fact that the effects of cumulative shocks can vary according 

to the severity of degradation has also to be considered. 



Besides, previous research has focused on the dependency between continuous/multi-state 

degradation processes and random shocks. For continuous degradation processes, Peng et al. (2010) 

considered systems with one linear degradation path where shocks can bring additional abrupt 

degradation damage if the shock loads do not exceed the maximum strength of the material. Multi-

component systems subject to multiple linear degradation paths have been further considered by 

Song et al. (2014). Jiang et al. (2012) studied changes in the maximal strength of the material when 

systems are deteriorating under different situations. Becker et al. (2002) extended the theory of 

dynamic reliability to incorporate random changes of the degradation variables due to random 

shocks. Rafiee et al. (2014) proposed reliability models for systems for which the degradation path 

has a changing degradation rate according to particular random shock patterns. Song et al. (2014) 

studied random shocks with specific sizes or functions, which can selectively affect the degradation 

processes of one or more components (not necessarily all components) in one system. For multi-state 

degradation processes, Yang et al. (2011) combined random shocks with Markov degradation models 

where shocks can lead the systems to further degraded states. However, few studies have explicitly 

considered both the dependencies between degradation processes and the random shocks, and among 

the degradation processes themselves. 

Finally, it is important to consider that the degradation processes can be interrupted or slowed down 

by maintenance tasks (e.g. one component can be restored to its initial state by preventive 

maintenance if any of its degradations exceed the respective critical level (1992) and by corrective 

maintenance upon its failure (2012)). The interactions among components complicate the modeling 

for maintenance planning, which becomes a big challenge (2008). Thomas (1986) has categorized 

these interactions in maintenance modeling into three groups: economic, structural and stochastic 

dependences. Economic dependence exists when the maintenance cost of several components is not 

equal to the sum of their individual maintenance costs. For example, Castanier et al. (2005) have 

considered a condition-based maintenance policy for a two-unit deteriorating system, where the set-

up cost of inspection is charged only once if the actions on the two components are combined. Van 

Dijkhuizen (2000) has investigated the long-term grouping of preventive maintenance jobs in a 

multi-setup, multi-component production system where the set-up activities can be combined when 

several components are maintained at the same time. Structural dependence occurs if some working 

components need to be replaced or dismantled in order to execute the maintenance of the failed ones. 

For example, Dekker et al. (1998) have studied the maintenance policy for asphalt roads, where the 

number of maintenance services is limited by integrating neighboring segments into a homogeneous 

section which is completely repaired. Stochastic dependence, also referred to as probabilistic 

dependence, applies when the state of one component can affect those of other components or their 

failure rates. Failure interactions have been the most discussed cases for stochastic dependence 

(Rasmekomen and Parlikad, 2013) and imply that the failure of one component may lead to the 

failure of other components with certain probabilities, and/or influence their failure rates (Murthy 



and Nguyen, 1985). For example, Lai and Chen (Lai and Chen, 2006) have presented an economic 

periodic replacement model for a two-unit system where the failure of unit 1 can increase the failure 

rate of unit 2, while the failure of unit 2 induces unit 1 into instantaneous failure. Zequeira and 

Bérenguer (2005)] have studied the inspection policies for a two-component standby system, where 

the failure of one component can modify the conditional failure probability of the component still in 

operation with probability 𝑝 and does not modify it with probability 1 − 𝑝. Barros et al. (2006) have 

optimized the maintenance policy for a two-unit parallel system where the failure of a component 

increases the failure rate of the surviving one.  

Dependency among degradation mechanisms or processes has received less attention within the 

framework of maintenance modeling and optimization of multi-component systems, although they 

are of real concern in practice (e.g. the failure of a pump due to oxidation of contacts and bear 

wearing). Peng et al. (2010) have developed a maintenance policy with periodic inspections when 

two dependent or correlated failure processes are considered. Jiang et al. (2012) have further 

compared two preventive maintenance (PrM) policies, age replacement policy and block replacement 

policy, combining immediate corrective replacement in consideration of shifting failure thresholds. 

Özekici (1988) has considered interdependent aging processes between components due to 

continuous wear and shocks, and proposed an optimal periodic replacement policy. Rasmekomen and 

Parlikad (2013) have considered degradation dependency in terms of output performance between 

one critical component and other parallel components based on aging processes, and the optimal age-

based maintenance policy for this case was also studied. Yang et al. (2013) have proposed a general 

statistical reliability model for repairable multi-component systems considering dependent 

competing risks, under a partially perfect repair assumption which considers that only the failed 

component, rather than the whole system, is replaced. Hong et al. (2014) have used copulas to model 

degradation dependency among all the components of a system and obtained the optimal 

maintenance policy including condition-based maintenance with periodic inspections and 

instantaneous corrective maintenance (CM). Van Horenbeek and Pintelon (2013) have proposed a 

dynamic predictive maintenance policy that minimizes the long-term mean maintenance cost per unit 

time while considering different component dependencies (i.e. economic, structural and stochastic 

dependence). Song et al. (2014) have applied age replacement policy and inspection-based 

maintenance policy for systems whose components have s-dependent failure times, and the optimal 

replacement interval or inspection times are determined. Note that maintenance optimization for 

multi-component systems with multiple dependent competing degradation processes within 

individual components has not been considered and only the pre-scheduled periods for inspection or 

maintenance are considered as the decision variables of the optimization problem.   

 

From the above description and discussion of the degradation processes, and the associated relevant 



factors of dependency, random shocks and maintenance effects, it seems evident that a component-

level and system-level, holistic framework of models and computational methods of reliability 

analysis and maintenance optimization is necessary to integrate the available data and knowledge on 

degradation processes and failure mechanisms, their dependencies, the external influencing factors 

and the associated uncertainties. One main argument in support to this relates to the need of 

considering dependencies among different aspects of the components and systems degradation 

processes (dependencies among multiple competing degradation processes within one component or 

among different components, functional dependencies among components, etc.). It would, indeed, be 

very advantageous to have a holistic degradation modelling framework that allows considering in an 

integrated manner all such dependencies at component-level and system-level. More specifically, the 

availability of such modeling framework would be strongly beneficial for the asset management of 

these components and systems, because it would enable to realistically predict component and 

system degradation, and optimally plan the necessary maintenance activities. However, it is 

important to recognize that at the current state of practice, it is usually not feasible to integrate the 

consideration of all these aspects and incorporate them in a single application problem. For 

practicality purposes, modeling solutions must be developed, that enable such holistic description of 

the degradation processes occurring in a component or system, and their quantitative evaluation by 

efficient computation. 

Finally, such modelling framework would be apt to deal with phased-mission systems (PMS), such 

as those encountered in nuclear, aerospace, chemical, electronic and other industries. These systems 

are required to perform different tasks either during any given mission or their operational life time. 

For example, a modern aircraft flight typically involves automated take-off, ascent, level flight, 

altered flight due to interferences, descent and landing where each of these phases may require 

different configurations of components and develop under different environments. In a boiling water 

reactor, a loss of coolant accident involves three phases for emergency core cooling: initial core 

cooling, suppression core cooling, and residual heat removal. Other systems, such as communication 

satellites, may require transportation to the operation site, followed by deployment and a multitude of 

on-station activities. Different systems or system configurations may be used during different phases 

in different environments, under varying degrees of stress and with consequent different degradation 

evolution. In some cases, under certain conditions, a degraded system may be capable of continuing 

the phases until mission completion. The reliability analysis of phased-mission systems must, then, 

account for changes in configuration, component use, stresses and degradation evolution. Models of 

PMS can be built using combinatorial models, Fault Trees, Markov models, Petri nets, Binary 

Decision Diagrams (BDDs), simulation models and others (Alam and Al-Saggaf, 1986; Bondavalli et 

al., 2004; Dong et al., 2008; Dugan, 1991; Fussel et al., 1981; Lai and Chen, 2006; Laskey, 1996; 

Mura and Bondavalli, 1999 and 2001; Sormani et al., 1992; Smotherman and Zermoudeh, 1989; 

Wang et al., 2012; Xing and Dugan, 2002 and 2004; Xing and Levitin, 2013; Yong and Dugan, 2004; 



Zang et al., 1999). During a particular phase, only certain system features are important, in 

accordance with the specific task(s) being performed in that phase. Typically, each phase is identified 

by: phase number; duration; system configuration or task(s) to be performed; performance 

measure(s) of interest; and maintenance policy. The whole mission is described by a mission profile 

table. The overall reliability of a PMS is the probability that the mission successfully achieves (all) 

the submission objectives in each phase.  

In the context of PMS reliability analysis, the modeling framework discussed above would be quite 

useful to capture the relevant factors of dependency, random shocks and maintenance effects, 

pertaining to each different phase over the entire mission duration, within an integrated analysis for 

the calculation of system and mission performance indicators such as the probability of mission 

success, the mean time to failure, the ranks of importance of the system features in the different 

phases of the mission. 

 

3. Accelerated Degradation Testing 

As mentioned in the previous Section, many components and systems, particularly those employed 

in safety-critical applications, are designed to be highly reliable and to have a long lifespan, e.g. 

battery life of 15 years for hybrid electric vehicles (Chalk and Miller, 2006).  

 

Traditional reliability tests are obviously not suitable for the reliability assessment of such equipment 

over such long time spans. Thus, accelerated degradation tests (ADT) are widely used to accelerate 

the failure/degradation processes, exposing the equipment to severe test conditions. Successful 

applications of ADT have been developed for batteries (Thomas et al., 2008), light emitting diodes 

(LED)s (Wang and Chu, 2012), metal oxide semiconductor field effect transistors (MOSFETs) 

(Santini et al., 2014), and others. 

 

In standard ADT data analysis, a degradation model like those discussed in the previous Section is 

assumed to describe the degradation paths of the samples tested at different stress levels and some 

specific parameters of the model are assumed to be stress-related, as described by a given 

acceleration model, e.g. the drift coefficient in the Wiener process (Whitemore and Schenkelberg, 

1997; Park and Padgett, 2006; Lim and Yum, 2011). In general, acceleration models are assumed 

based on the physical mechanisms of the tested samples or empirical observations of the stress 

variable (Escobar and Meeker, 2006), e.g. temperature-Arrhenius model, voltage-Eyring model, etc. 

After obtaining the data from ADT, statistical inferences are made to get estimates of the unknown 

parameters in both degradation and acceleration models. Then, the component reliability assessment 

and lifetime evaluation are performed with the estimated parameters, and considering the given use 



conditions. Statistical inference methods for ADT data analysis have been extensively reviewed in 

Nelson (1990) and Meeker and Escobar (1998).  

 

In literature, stochastic process models have drawn more attention than degradation-path models, 

because of their properties of time-dependent structures, like the Wiener (Whitemore and 

Schenkelberg, 1997; Lim and Yum, 2011; Liao and Elsayed, 2006), Gamma (Tseng et al., 2009; 

Ling et al., 2015) and inverse Gaussian (Wang and Xu, 2010; Ye and Chen, 2013; Ye et al., 2014; 

Peng et al., 2014) process models mentioned in the previous Section. 

 

The Wiener process model is often used when the degradation process is increasing or decreasing 

with time. If the decreasing data is discarded, Gamma or inverse Gaussian processes can be used as 

degradation models.  

 

Under a unified modeling framework for ADT analysis, it is assumed that the degradation X(t) 

follows a stochastic process with statistically independent increments, where the mean and variance 

of X(t) are proportional to time. The unified stochastic process thereby defined becomes the Wiener 

process model when X(t) follows a normal distribution, a Gamma process when X(t) follows a 

Gamma distribution and an inverse Gaussian process when X(t) follows an inverse gamma 

distribution. 

 

The acceleration model describes the relationship between the accelerated stress and the degradation 

rate. It can be obtained based on either physical knowledge of the tested equipment or empirical 

observations. The typical physics-based acceleration models include Arrhenius model, Eyring model, 

etc. (Escobar and Meeker, 2006), while the empirical acceleration models include, for example, 

Coffin-Manson model (Musallam et al., 2014), etc. A general log-linear form of the model can be 

written, whose vector of unknown parameters can be obtained by maximizing the corresponding log-

likelihood functions.  

 

Then, a p−quantile lifetime of interest can derived from the unified stochastic process of accelerated 

degradation, which can be used for maintenance decision-making or verifying the lifetime and 

reliability levels of the tested equipment. 

 

In practice, in ADT analysis, for a given dataset, more than one model might be plausible to describe 

it. Then, model uncertainty exists but in standard ADT data analysis, this is not yet fully considered 

and this may lead to wrong inferences. Actually, also in accelerated life testing (ALT), different 

lifetime distributions may plausibly describe the data and the problem of model uncertainty arises. 

This is, for example, treated in Yu and Chang (2012) by the Bayesian model averaging (BMA) 



method, with demonstration that the choice of the distribution has significant effects on the results of 

the lifetime evaluation at the use conditions, especially for extreme quantiles. For ADT, the Akaike’s 

information criterion (AIC) has been introduced to select the appropriate model (Park and Padgett, 

2006; Park and Padgett, 2005). However, the effect of model uncertainty on the lifetime evaluation 

results is not considered. In Pan and Balakrishnan (2010), both Wiener and Gamma process models 

have been used, and shown to give accurate parameters estimates. However, the question remains to 

how the degradation model affects the lifetime evaluation results and how the model uncertainty can 

be accounted for. 

 

As to the acceleration models, arguments are given in Yu and Chang (2012) for it not to be of 

concern for the model uncertainty issue, since one can choose it based on physical considerations.  

 

With respect to model uncertainty in literature, many works have addressed this issue (Laskey, 1996; 

Nislsen and Aven, 2003; Aven and Zio, 2011; Liu et al., 2013). In the work of Zio and Apostolakis 

(1996), two approaches, i.e. alternate-hypotheses (also known as model averaging) and adjustment-

factor, have been used to treat model uncertainty by expert judgments. The former one combines all 

the available models through a mixture of probabilities. The latter selects a best model as reference 

and updates it with information from the other models. Model averaging has been fully extended into 

Bayesian model averaging (Hoeting et al., 1999; Park and Grandhi, 2014), by the integration of 

model prior knowledge and the likelihood function of the obtained data for each model. In Droguett 

and Mosleh (2008), it is applied to account for model uncertainty based on differences between 

experimental observations and model predictions. One problem of the model averaging method is 

that it assumes that the real model is one of the candidate models since the summation of model 

probabilities must be equal to one, even though it is unknown and of difficult interpretation, and 

controversial in practical applications. To relax this assumption, Dempster-Shafer (D-S) theory can 

be introduced, using belief and plausibility functions to account for model uncertainty (Baraldi and 

Zio, 2010; Park  and Granhi, 2012). Some difficulties may arise in this method, in the elicitation of 

expert knowledge on the belief values to assign to the models. As to the adjustment-factor method, 

some work has been done for its application to accelerated testing models based on field lifetime or 

degradation data. For example, Pan (2009) chose exponential and Weibull lifetime distributions as 

the reference models for Device-A ALT data; then, a calibration factor is introduced to update the 

reference models with the field failure data since the lab-test environment and field conditions are 

different. A similar procedure is used for ADT models in (Wang et al., 2013). 

 

 

4. Prognostics and Health Management 



Prognostics and Health Management (PHM) is a field of research and application aiming at detecting 

the degradation of engineering components, diagnosing the type of faults, predicting the failure times 

and proactively managing their failures.  

In the last ten years, it has drawn great attention from both the research and practice points of view, 

because of the increased capacity in monitoring and the significant advancements in the techniques 

of signal and data analysis, including data mining and artificial intelligence, which enable the 

intelligent reading of the recorded signals and data for fault detection and diagnostics, and failure 

prediction.  

The objective of PHM is to take past, present and (predicted) future information on the conditions of 

engineering components and systems, and use it for detecting their degradation, diagnosing their 

faults, predicting their future health state evolution and their Remaining Useful Life (RUL, namely 

how much time the engineering component or system can keep performing its intended function). 

Ideally, the accurate prediction of the future evolution of the component health state allows running 

it as long as it is healthy, with the possibility of planning maintenance work at the most convenient 

and inexpensive time. Thus, expected benefits of PHM are increased plant reliability and availability, 

increased equipment lifetime, increased plant safety, fewer accidents with negative impact on 

environment, and optimized spare parts handling (Zio, 2012).  

Traditional PHM methods have been firstly developed and verified considering single engineering 

components and systems operating in fixed and stationary working conditions. For example, several 

diagnostic methods have been developed and successfully applied to bearings working at fixed and 

constant rotating speed and load, and prognostic methods are available for the prediction of the RUL 

of structures operating under constant loads at constant temperatures (Wu et al., 2012; Zhou et al., 

2012). However, in practical industrial applications, there are a lot of engineering systems operating 

in an Evolving Environment (EE), characterized by continuous or periodic variations of the working 

conditions. For example, bearings in automotive vehicles are subject to continuous variation of the 

rotating speed and several structures work under variable loads. The main issue of applying 

traditional PHM in an EE is that the information available at the time of developing the PHM models 

usually does not cover all the possible future working conditions that the engineering components 

and systems will experience during their life. Thus, the traditional PHM approaches, where the 

predictive models are developed using information collected in a limited set of working conditions, 

tend to provide unsatisfactory performances when applied in the realistic EE conditions encountered 

in practice. 

The problem of developing models able to provide satisfactory performances in presence of an EE is 

encountered in several research fields such as network monitoring, web mining, telecommunications 

and financial data management (Dyer et al., 2014). Most engineering components and systems are 



operating in an EE. For example, bearings, gears, alternators, shafts and pumps in automotive 

vehicles typically work in continuously varying conditions of loads (Zhao et al., 2015; Bian et al., 

2013; Liu et al., 2014). Thus, in order to avoid a remarkable reduction of the performance of the 

PHM models when they are used in an EE, it is fundamental to develop PHM models able to 

continuously and automatically update themselves. 

From a statistical point of view, data collected in an evolving environment are affected by a concept 

drift, i.e., the statistical properties of the data change over time in an unforeseen way (Elwell and 

Polikar, 2014). Since the relationship between model input and output tends to continuously change, 

learning a model in presence of a concept drift is a difficult task. A possible approach to this problem 

is based on the following two steps: 

i. detection of the occurrence of the concept drift; 

ii. once the concept drift is detected, updating the model using new input-output data collected in 

the new environment. 

With respect to i), the task of concept drift detection is similar to that of fault detection, i.e. verifying 

whether there is a significant difference of the statistical properties between current and past signal 

values. Thus, typical residual-based approaches to fault detection such as Sequential Probability 

Ratio Test (SPRT) and Auto-Associative Kernel Regression (AAKR) can be applied also to the 

problem of concept drift detection. 

With respect to ii), some algorithms able to online update the models in order to adapt them to the 

EE have been developed (Dries and Ruckert, 2009). Algorithms based on the ideas of domain 

adaptation and semi-supervised learning are capable to extract information from the drifted data, 

whereas active learning algorithms allow reducing the retraining cost by selecting the most 

informative patterns in the drifted data (Zliobaite et al., 2011). In Razavi-Far et al. (2012), an 

ensemble approach is proposed, where a new model is developed and added to the ensemble each 

time a new set of data becomes available. 

With respect to the problem of fault detection in an EE, the standard methods may provide 

unsatisfactory performances because modifications of the working conditions can be confused with 

abnormal conditions, since they may have similar effects on the behavior of the measured signals. 

Thus, fault detection systems can provide several false alarms when they are used in an EE. For this 

reason, the current industrial practice is to periodically update the fault detection systems in order to 

limit the effects of the EE. 

In the presence of an EE, empirical diagnostic models like K-Nearest Neighbors (KNN), Artificial 

Neural Networks (ANN), Support Vector Machines (SVM) and Relevance Vector Machines (RVM) 

may suffer a reduction of diagnostic performance. As mentioned earlier, the main reason is that the 

data used to develop them are collected in a limited set of working conditions, not sufficiently 



covering all the possible working conditions that may be experienced by the engineering system 

during its life. Thus, diagnostic models need to learn the modification of the mapping between the 

measured signals and the fault type caused by the EE. Notice that many methods of fault diagnostics 

in an EE are supervised and, thus, require the availability of input-output labeled data, i.e. the 

knowledge of the signal values and the corresponding fault class, whereas, in practice, the 

identification of the class of the fault causing the malfunctioning in an EE is often not feasible, or 

very expensive and time consuming. Thus, novel drift learning algorithms which do not rely on 

labeled data are strongly needed for fault diagnostics in an EE. 

With respect to the problem of prognostics in an EE, many studies have adopted approaches based 

on filter algorithms, such as the Kalman and Particle Filters, which model the effect of the EE on the 

equipment degradation as a process noise. In practice, the degradation measurements which 

progressively become available are used to estimate the engineering system degradation state and its 

future evolution, taking into account the effect of measurement and process noises. However, these 

approaches are difficult to apply in situations characterized by scarce information on the degradation 

process, since they require the knowledge of a physics-based degradation model and its parameters. 

A further problem is that the presence of an EE can cause major modifications on the signal behavior 

which cannot be described by a process noise.  

A further challenge for PHM methods is their scaling up to the fleet-level needed by the modern 

complex systems, comprising a large number of different components and integrating their 

functionalities. Indeed, the currently proposed approaches mainly consider component- or system-

level prognostics. In such settings for PHM, it can be expected that detections, diagnostics and 

predictions with different degrees of uncertainty need to be aggregated for optimal maintenance 

decisions under various constraints, including resources and availability. For such distributed 

maintenance management problems, some approaches are emerging, with a formulation of the 

problem as multi-agent (Lei and Zuo, 2009) or holonic systems (Mavromatidi et al., 2013), but 

limiting to the integration and exchange of information among the agents, without further interaction 

and cooperation on the decision making for maintenance action, taking into account the different 

levels of uncertainty of the different components detections, diagnostics and predictions. On the 

contrary, a truly effective, distributed intelligent dynamic maintenance management system based on 

PHM must be capable of accommodating exchange of information, aggregation, interaction and 

cooperation at different levels of the system, coping with the different levels of uncertainty therein. 

In such maintenance management system, the operating experience from different systems within 

one fleet needs to be integrated in the learning process of all similar systems, looking for similarity 

of behavior to actually exploit differences and therefore learn the unexpected from one system to 

another. However, this is not a simple task to do as the operating and environmental conditions are 

different from one system to another in the fleet, and the patterns of evolution will not, thus, be 



directly transferable to any specific system. For this reason, the solution to the problem must be 

dynamic, with coordination and organization of the information exchange among the different 

algorithms and models tailored to the specific operating and environmental conditions of the 

different systems.  

From the above discussion, the challenge arises of implementing a distributed intelligent dynamic 

maintenance management system that integrates aggregation and cooperation at different system 

levels, and is capable of handling different degrees of uncertainty under realistic constraints and 

changing operating and environmental conditions (EE). For this:  

 agents at different system levels must be defined, characterized by their RUL, the 

associated uncertainty, the required maintenance actions and the associated costs, and their 

criticality with respect to the functionality and the safety of the entire system;  

 different dynamics of the progression of the occurring degradation or fault must be 

included in the model, to account for the different EE which can be gradual or 

sudden/shock-like; 

 the optimization problem must be formulated so as to ensure allowing that the objectives of 

the agents at different system levels are achieved, while also satisfying the overall system 

objectives and constraints.  

 

From the industry point of view, for the practical implementation of any PHM-based maintenance 

policy, be it a Condition-Based Maintenance (CBM) or a Preventive Maintenance (PrM) one, two 

strategic problems need to be addressed:  

 evaluation of the opportunity of adopting such advanced maintenance policies, founded on 

specialized knowledge and modern technology, to improve performance compared to the 

performance of ‘traditional’ Corrective Maintenance (CM) and PrM policies (Zio and 

Compare, 2013); 

 to choose which PHM method is best, for the system considered.  

Indeed, any PHM approach has its advantages, limitations and drawbacks, so that choosing the best 

approach for a given problem may be difficult. Criteria are needed to help the manager selecting the 

best approach for RUL estimation, for minimizing unscheduled shutdowns, maximizing availability, 

minimizing maintenance costs. A well-known criterion to guide design, operation and maintenance 

choices is the return on investment (ROI) associated to the implementation of a given PHM 

approach.  

In literature, different methodologies have been proposed to evaluate the economic performance of a 

PHM approach. The indicator for evaluating the economic benefit of a PHM approach proposed in 

Feldman et al. (2009) is the ROI, calculated as follows: 
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 In the equation, the avoided cost quantifies the economic benefit realized through using PHM, 

while the investment cost includes all the costs related to PHM installation, support and maintenance.  

Usually, the ROI of a PHM approach is calculated relative to unscheduled maintenance. In this case, 

the avoided cost will be equivalent to the difference between the total life cycle cost of the 

equipment under unscheduled maintenance and the total life cycle cost of the equipment using a 

particular PHM approach (Si et al., 2011), as shown in equation (2):  

                −      −            

  

where      is the life cycle cost in case of unscheduled maintenance,      is the life cycle cost in 

case of adopting PHM and      is the investment cost of PHM implementation. 

By using the expression of the avoided cost in equation (2), the ROI of a PHM approach in equation 

(1) becomes: 
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 Depending on the value of ROI, the decision maker can choose whether to implement the PHM 

approach or not: if the ROI is positive, then it is recommended to implement the PHM approach; if 

the ROI is null or negative, there is no benefit for implementing PHM and an unscheduled 

maintenance strategy would be preferable because, different to the predictive maintenance strategy, 

unscheduled maintenance does not require additional costs related to implementation.  

Indeed, ROI analysis may be used for different purposes: selection of the best PHM approach to 

implement, optimization of the setting and use of a particular PHM approach, and determination of 

whether one should adopt PHM and predictive maintenance at all or another type of maintenance 

(Feldman et al., 2009). Some authors have discussed in the literature the economic justification of 

PHM (Feldman et al., 2008; Sandborn and Wilkinson, 2007; Zhang, 2013; Leao et al., 2008; Nilsson 

et al., 2007; Chang et al., 2015; Fritzsche et al., 2014; Pecht, 2012). For example, the use of ROI for 

PHM in malfunctioned displays of Boeing 737 has been presented in Feldman et al. (2008). PHM 

results of linear replaceable units have been used to define maintenance policies and take related 

decisions aimed at minimizing life cycle costs or maximizing availability in Sandborn and Wilkinson 

(2007). Applications considering ROI for PHM of medical devices and commercial aircrafts have 

been reported in Zhang (2013) and Leao et al. (2008). More specifically, the cost-benefit analysis of 

PHM in the field of medical devices discussed in Zhang (2013) shows that the implementation of 

PHM in medicine-dispensing products can save 36.2% of the service cost for the installed products 

in eight cities (Zhang, 2013), and the methodology developed in Leao et al. (2008) evaluates the 

economic benefits of PHM for application to commercial aircrafts considering four categories: 

benefits of monitoring the system, benefits of prognostics, benefits of complete health management 



and intangible benefits; for each type of benefit, a mathematical model is developed to quantify the 

economic value of the benefit. In a second step and with the same logic, the costs of PHM are 

categorized into three categories: development costs, aircraft costs and costs of PHM side effects, 

with associated mathematical models for their quantification. 

Life-cycle cost analysis has been performed in Nilsson et al. (2007) to improve maintenance 

planning for a single wind turbine onshore and a wind farm offshore. The life cycle cost is calculated 

for both unscheduled and scheduled maintenance as the sum of the cost of investment, the cost of 

corrective and preventive maintenance, the cost for production loss and the cost of the remainder 

value. The results show that for an entire farm of wind power systems, CBM is the most profitable 

and a simple increase on the availability of the system (0.43%) obtained by the use of a Condition 

Monitoring System (CMS) is sufficient to cover the costs related to implementing the CMS itself.  

System monitoring and ROI analysis have been combined in Chang et al. (2015) for maintenance 

planning of LED lighting systems. Prognostics has been introduced in Fritzsche et al. (2014) to 

minimize maintenance costs in the airline industry.  

 However, the existing approaches and frameworks used to evaluate the ROI of a PHM 

approach suffer from many gaps: 

- they are for specific applications: they are not general and only fit the case study in which they 

are applied (Feldman et al., 2009); 

- they do not consider the impact of the performance of a PHM approach on the economic 

benefit generated by it; 

- they only provide a point value estimation of the ROI, without taking into account the 

uncertainties in the values of the model parameters (Feldman et al., 2009). 

Thus, a more general framework to calculate the ROI of a PHM approach needs to be established, 

relating the ROI to different indicators of the performance of a PHM approach, which is described by 

characteristics of the prediction distribution obtained by it. Such framework can be used to set PHM 

requirements, i.e. the proper values of the PHM performance indicators that are required to achieve 

the ROI goal. In this view, it can provide support for managers: for a fixed minimal value (threshold) 

of ROI required to achieve PHM benefits, the values to be achieved by the performance indicators 

for obtaining this threshold can be evaluated.  

 

 In all generality, the ROI of the PHM approach is calculated by equation (1) above. The 

avoided cost is the gain from improvements of availability, reliability, maintainability and avoidance 

of failures, thanks to the PHM approach implementation. It includes the costs of failures avoided and 

the minimization of the loss of the RUL due to the fact that the component or system is replaced 

before it is fully exploited. The investment costs are the costs associated with the realization of PHM, 

the technologies and support necessary to integrate and incorporate PHM into the component or 

system. 



 The value of the cost avoided in equation (1) depends on the effectiveness of the PHM 

approach used to predict the RUL. This depends on the degree to which the predictions are precise 

and reliable. With respect to this, the ability of a model to predict accurately and with confidence the 

RUL of a component or system has become more and more critical for the development of an 

appropriate, timely, and cost-benefitting maintenance scheme (Kan et al., 2015). The selection of the 

most appropriate PHM model for practical implementation in the field of interest relies on the 

possibility of the user to evaluate the prognostic performance of the available models, used in fields 

and applications similar to the one in question (Sirkoska et al., 2011). To quantify such prognostic 

performance, a set of Prognostic Performance Indicators (PPIs), simple to calculate and intuitive to 

understand, is needed for the comparative analysis of the different models leading to the choice of 

the one to be implemented (Saxena et al., 2008). 

However, as of today, prognostic models lack standard definitions of their prognostic performances 

by widely agreed PPIs, because these latter suffer of inconsistent interpretations mainly due to varied 

applications and domain information (Uckun et al., 2008; Sharp, 2013). A common approach to 

define the PPIs of a model needs to be developed, starting from the PPIs that have been proposed in 

literature for a variety of field applications.  

For evaluating the capabilities of prognostic models, by PPIs quantification, it is useful to classify 

the prognostic models in RUL-based and degradation-based models. Despite that for both classes of 

models the final goal is the estimation of the RUL they, however, differ in the process of determining 

the RUL, as in the first case it is calculated directly from the raw data, whereas in the second case it 

is calculated indirectly on the basis of a Health Index (HI), constructed based on raw data (Saxena et 

al., 2014). In other words, in the first case, the raw data is processed and used directly for prognostic 

purposes in the RUL-based model; in the second case, the raw data is manipulated to obtain a HI, 

which is a quantifiable characteristic of the equipment of interest that aggregates the relevant features 

and operational conditions identifying its health (Saxena et al., 2008). The HI is, then, used in a 

degradation-based model, to retrieve the RUL of the equipment.  

Whilst for the RUL-based models, their prognostic performance can be directly quantified by 

looking for the estimated RUL characteristics, for the degradation-based models, the prognostic 

performance is dependent also on the HI characteristics. In fact, for a HI to be useful for RUL 

prediction, it must have certain features and characteristics, such as being monotonic and with 

defined trend. After the HI is assessed to be suitable for being used for RUL prediction, the 

degradation-based models can be used and their PPIs coherently quantified.  

Based on these premises, different classes of PPIs exist: PPIs for RUL performance quantification 

and for HI performance quantification. Both PPIs for RUL and HI can manipulate either 

instantaneous information at a given instant t or the integral information from the moment of interest 

to the end of the predicted life. 



Irrespective of the instantaneous or integral manipulation of the available information, the PPIs can 

be primarily classified according to their characteristics: i) Accuracy, ii) Precision, iii) Stability and 

iv) Spill-Over.  

Accuracy PPIs quantify the closeness between the model output and the true value (Saxena et al., 

2014; Saxena et al., 2008; Walther and Moore, 2005). A very accurate model will have an estimated 

RUL very close to the true one.  

Precision PPIs measure the spread of the model output, by measuring the statistical variance and the 

spread of the data attributable to statistical variability (Saxena et al., 2014; Walther and Moore, 

2005). They quantify how confident the model is on the estimate and the degree to which a repetition 

of the prognosis will yield the same results.  

Stability PPIs quantify the models sensitivity by evaluating the models output with respect to factors 

that directly affect the RUL estimation and prediction (i.e., the models input), and assess the models 

ability to, in the long run, tend to the correct value, i.e., converge (Johnson et al., 2011; Saxena et al., 

2014). The stability of a model allows for an increased confidence in the models output. 

Spill-Over PPIs measure the effects of varying the inputs on the models performance, by evaluating 

the effects of reducing the number of features of a model (Saxena et al., 2008).  

To compare the performances of various prognostic models, one would need to resort to a PPIs 

aggregation technique, which would allow for a quantitative overall assessment of the prognostic 

performances. The aggregation technique must enable the analyst to intuitively grasp the meaning of 

the results provided by the PPIs and must deliver a clear suggestion for the prognostic model to be 

chosen among the available ones.  

For the purposes of sketching the idea of a ROI-based framework of evaluation, we consider the case 

where the performance of the PHM approach is measured by the Precision Index (PI) , which 

describes how close the predictions are clustered together and it is a measure of the narrowness of 

the interval in which the RUL value is expected to really fall (the smaller the PI is, the more precise 

the estimations given by the PHM approach are) and the reliability of the PHM approach can be 

measured by the Risk Index (RI), defined as the probability that the RUL predicted by PHM is lower 

than the threshold for preventive maintenance time Th. Mathematically, the RI will be equal to the 

area below the RUL distribution curve, for RUL<Th. The higher the RI is, the less reliable the 

implemented PHM is. 

 The cost of loss of the RUL of the component or system, (CL), depends on the difference 

between the time of replacement of the component or system and its actual time of failure. This cost 

is higher, the earlier the component or system is replaced. A threshold is given by the manager as the 

minimal time needed for maintenance and CL can be calculated as the integral of the RUL prediction 

distribution between the threshold and the mean value of the prediction, multiplied by the cost of the 

remaining useful life per unit of time.  



 The cost of corrective maintenance (CM) and the cost of failures avoided (FA) are calculated 

with respect to the case when the RUL predicted by PHM exceeds Th. In this sense, the avoided cost 

depends on the risk index. Given the avoided cost, the ROI of a PHM approach can be calculated and 

a relationship can be obtained between the ROI and the characteristics of the predicted RUL 

distribution.  

A framework such as the one sketched above can be used to guide the selection of the adequate PHM 

approach to implement in order to reach a desired ROI. In fact, the decision maker can define the 

requirements for the performance metrics of the PHM approach leading to a minimal desired ROI. It 

is expected that to reach a high value of ROI, the predictions should be precise and the component or 

system should be repaired/replaced at a time such to avoid the failure of the equipment on one hand 

but, also, minimize, on the other hand, the costs related to the loss of still exploitable RUL. Note that 

since the predictions of PHM are subject to uncertainties, the framework of ROI evaluation should be 

able to include the changing operational and environmental factors that may affect the RUL 

predictions. Moreover, in practice also, the threshold for preventive maintenance time Th is typically 

uncertain and, thus, sensitivity analysis should be performed to study how the variation of Th affects 

the variation of the ROI of a given PHM approach. 

The ROI–based evaluation framework sketched above is only illustrative and, in practice, to ensure 

that the adopted PHM method meets the goal of confident maintenance decision making, the 

prognostic method upon which to rely for RUL prediction should not only satisfy the requirements 

on the expected quality of the RUL point estimate (e.g., the accuracy PPIs described), on uncertainty 

quantification (e.g., the precision PPIs described above), and on the other desirable characteristics 

(measured by the other PPIs mentioned above), but also meet some requirements of trustworthiness 

of the prognostic method itself, i.e., the credibility that for the specific RUL prediction problem of 

interest, the method can be trusted to provide an accurate and precise RUL with correct and fair 

uncertainty quantification.  

In this view, one must assess the prediction capability of a prognostic method, i.e. the property of 

providing trustable RUL predictions, with the quality characteristics required for the purpose of the 

maintenance decision making of interest. The RUL quality characteristics are measured by the PPIs 

defined above. For the trustworthiness of the prognostic method, one must introduce some concept of 

prediction capability maturity to measure the property that a prognostic method can provide 

trustworthy results, based on the inherent characteristics of the method itself in relation to RUL 

predictions, and on proven experiences of application in other problem settings similar to the one 

under analysis: the more mature a prognostic method, the more confidence that its predictions can be 

trusted. 

To evaluate the prediction capability of a prognostic method, both the RUL prediction quality (as 

measured by the PPIs) and the trustworthiness of the prognostic method itself should be considered, 



as illustrated in Figure 1Figure 1. As seen above, a number of approaches can be used for measuring 

the quality performance of a prognostic method by evaluating its RUL predictions with respect to 

whether the method can yield accurate and precise RUL estimates, considering both point estimate 

and uncertainty (i.e., in terms of the PPIs). On the other hand, only few methods have been proposed 

for the assessment of the trustworthiness of a prediction method or model (Paulk et al., 1993; 

Oberkampf et al., 2007), and none exists in the specific context and for the specific aim of 

prognostics and maintenance decision making. To fill this gap, a structured framework should be 

proposed for the assessment of the prediction capability maturity of a prognostics method, to be 

integrated with the RUL prediction quality, measured conditioned on the prognostic model 

performance given the available data, to yield the overall prognostic method prediction capability 

(Figure 1Figure 1). 
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Figure 1 Prediction capability consists of RUL prediction quality and prognostic method trustworthiness.  
The former can be quantified resorting to the Prognostic Performance Indicators (PPIs), whereas the latter 

should be quantified resorting to a structured prediction capability maturity assessment framework. 

 

 

Finally, PHM utilizing databases and information technology is the enabling technique for 

condition-based and predictive maintenance. However, in practice a challenge for the use of 

PHM, and the associated condition-based and predictive maintenance policies, comes to the 

reliability qualification of a component or system at the design stage, for its licensing. The 



question is how to include these aspects in the reliability qualification or safety case:  how 

must these be changed when scheduled maintenance is replaced with condition-based and/or 

predictive maintenance? This question has become fundamental, as industry wishes to move 

to these more confident, effective, flexible, smart maintenance policies of their smart 

components and systems, but safety and reliability demonstration are still needed and 

required. The PHM techniques using condition monitoring data can contribute to the analysis 

for evaluating failure frequency and probability with reduced conservatism, thus allowing for 

an online reliability assessment, with reduced uncertainty. In the online, living assessment, if 

the statistics-based distributions are replaced with condition-based distributions obtained by 

PHM reliability estimates and uncertainty bands are no longer fixed a priori but change 

depending on the predictive power of the PHM techniques employed. The frequency of 

failures, the equipment unavailability, the probability of human error and the probability of 

recovery a failure change due to aging effects and other environmental and operational 

factors, the components and systems reliability estimates change too, and so do the associated 

uncertainty bands. This requires that the estimation be done time-dependently on the basis of 

the prognostics results, based on the prior assessment and a Bayesian update using the 

prognostics data (Kim et al., 2015).  

 

 

5. Conclusions 

The reliability engineering field must continuously evolve to be at speed with the industrial 

and societal developments. This requires continuous advancement of technical knowledge and 

ability. In the current scenario of technological development, with strong digitalization and 

interconnection at all levels of cyber-physical systems and in all industrial sectors, reliability 

engineering is faced with new challenges but it is also exposed to new opportunities of 

improvement. 

In this paper, I have focused on the reliability modeling of components and systems, and 

discussed some challenges and opportunities related to degradation modeling and prognostics 

and health management. These areas of research and application hold great promise for the 

improvement of the safety and the productive and service capacity of industrial components 

and systems. The knowledge, information and data that are increasingly acquired offer new 

ways of modeling and analysis, with significant potential benefits.  

The practical implementation of these new ways needs to be followed up with care, for 

effectively collecting such benefits. For example, it is clear that PHM utilizing databases and 

information technology is the enabling technique for condition-based and predictive 

maintenance. However, in practice a challenge for the use of PHM, and the associated 

condition-based and predictive maintenance policies, comes to the reliability qualification of a 

component or system that must be done a priori, at the design stage, for its licensing. The 

question is how to include these aspects in the reliability qualification or safety case:  how 

must these be changed when scheduled maintenance is replaced with condition-based and/or 

predictive maintenance? This question has become fundamental, as industry wishes to move 

to these more confident, effective, flexible, smart maintenance policies of their smart 



components and systems, but safety and reliability demonstration are still needed and 

required.  

Furthermore, the PHM techniques using condition monitoring data can contribute to the 

analysis for evaluating failure frequency and probability with reduced conservatism, thus 

allowing for an online reliability assessment, with reduced uncertainty. In the online, living 

assessment, if the statistics-based distributions are replaced with condition-based distributions 

obtained by PHM, reliability estimates and uncertainty bands are no longer fixed a priori but 

change depending on the predictive power of the PHM techniques employed. As the 

frequency of failures, the equipment unavailability, the probability of human error and the 

probability of recovering a failure change due to aging effects and other environmental and 

operational factors, the components and systems reliability estimates change too, and so do 

the associated uncertainty bands. This requires that the estimation be done time-dependently 

on the basis of the prognostics results, based on a prior assessment and a Bayesian update 

using the prognostics data (Kim et al., 2015).  
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