
1

Bo Jiang, Peng Chen, W.K. Chan
†
, and Xinchao Zhang

 Abstract—An Android-based smart Television (TV) must

reliably run its applications in an embedded program

environment under diverse hardware resource conditions. Owing

to the diverse hardware components used to build numerous TV

models, TV simulators are usually not high enough in fidelity to

simulate various TV models, and thus are only regarded as

unreliable alternatives when stress testing such applications.

Therefore, even though stress testing on real TV sets is tedious, it

is the de facto approach to ensure the reliability of these

applications in the industry. In this paper, we study to what

extent stress testing of smart TV applications can be fully

automated in the industrial environments. To the best of our

knowledge, no previous work has addressed this important

question. We summarize the findings collected from 10 industrial

test engineers to have tested 20 such TV applications in a real

production environment. Our study shows that the industry

required test automation supports on high-level GUI object

controls and status checking, setup of resource conditions and the

interplay between the two. With such supports, 87% of the

industrial test specifications of one TV model can be fully

automated and 71.4% of them were found to be fully reusable to

test a subsequent TV model with major upgrades of hardware,

operating system and application. It represents a significant

improvement with margins of 28% and 38%, respectively,

compared to stress testing without such supports.

Keywords—Stress Testing, Android, TV, Reliability,

Automation, Test Case Creation, Software Reuse

 Acronyms
TV Television
CPU Central Processing Unit
MIC Microphone
ADB Android Debug Bridge
D-pad Directional Pad
GUI Graphical User Interface
API Application Programing Interface
OS Operating System
USB Universal Serial Bus
TTS Text To Speech
SAPI Speech Application Programing Interface
ANR Application Not Responding

TAST Testing of Android-based Smart TVs
ANOVA Analysis of Variance

I. INTRODUCTION

Smart televisions (Smart TVs) [11] are widely-used
embedded systems [10][13], and a major class of such
embedded system is Android-Based Smart TVs [29]. Different
models even for the same series of TV use diverse types of
hardware components. Each model in this class includes
much standard TV functionality, such as channel controls
and preferences, as well as non-standard applications such
as online game clients, web browsers, multimedia players,
photo albums, in the form of Android applications, and
executes them concurrently. At any one time, users may
turn on zero or more non-standard applications and keep
these applications executing while watching TV, or the
other way round. As we are going to present in Section II.A,
stress testing of TV applications can be quite different from
the testing of applications of Android smart phones.
Moreover, a high degree of test automation is in high
demand in industrial environments.

We thus ask a couple of research questions. (i) What
are the areas that test engineers consider most important,
which require automation when stress testing TV
applications? (ii) To what extent do semi-automated test
cases become fully automated for the purpose of stress
testing?

To the best of our knowledge, no previous work has
studied these two important questions. To answer these
two questions, in this paper, we report our 7 months case
study on improving the degree of automation in the stress
testing of TV applications in a major TV vendor
(Changhong [27]) in China.

Specifically, we worked together with ten (10) test
engineers in testing 20 real-world applications in a real-
world smart TV model manufactured by the same vendor
for 7 months (Mar−Sep 2013) using real TV sets. These test
engineers have 2 to 5 years of TV testing experiences with
an average of 3 years. They have experiences on both
digital TV testing and smart TV testing. Each test engineer
was assigned to test two TV applications for a TV model.
Because the TV model is not the first model in the TV series,
each application was associated with a set of test scripts.
Our methodology was to firstly observe how test engineers
used their original Android testing toolkit (denoted by MT,
which was an upgraded version of MobileTest [7] for
Android) to create and maintain their automated test
scripts based on the corresponding test case specifications
(or test specification for short). Following a typical
recommended practice of code refactoring, when we

To What Extent Is Stress Testing of
Android TV Applications Automated in

Industrial Environments?

————————————————
 Bo Jiang is with School of Computer Science and Engineering, Beihang

University, China. E-mail: jiangbo@buaa.edu.cn.
 Peng Chen is with School of Computer Science and Engineering, Beihang

University, China. E-mail: pc@buaa.edu.cn.
 W.K. Chan is with Department of Computer Science, City University of

Hong Kong, Tat Chee Avenue, Hong Kong. E-mail: wkchan@cityu.edu.hk.
 Xinchao Zhang is with Institute of Reliability, Si Chuan Chang Hong

Electric Co., Mianyang, China. E-mail: zhangxinchao@changhong.com
† Correspondence author.
Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the
bibliography.

observed that they repeatedly wrote similar code fragments,
we asked questions on what they wanted to automate
further to save their repetitive efforts. Moreover, on
observing them aborting the automation of a test
specification, we also asked questions on why that
particular test specification was failed to be automated and
what automation features to be available in order to make
them willing to successfully write automated test scripts.
We then added each identified feature to the same testing
tool as new APIs if the feature either is a piece of code
produced via “method extraction” in code refactoring or
controls the available hardware resources in the program
execution of a test script. We continuously enhanced and
released the testing tool with added features, and the test
engineers continuously used the latest releases of the
testing tool to create and maintain their test cases. We note
that, as new APIs were available to test engineers, their
subsequent test scripts might incorporate additional coding
patterns that triggered the discovery of new APIs to be
incorporated into newer versions of the testing tool. We
continued this process of tool enhancement until all 10
engineers found further automation unable to assist them
in testing their assigned TV applications meaningfully (in
their work environments). We then requested each test
engineer to review the possible uses of the original version
of the testing tool (i.e., MT) to create test script(s) that were
originally chosen not to be automated by the test engineers.

Finally, we measured the effects of the resultant test
suites of these 20 applications produced through the latest
version of the testing tool against the effects of the test
suites using the original version of the testing tool (MT).
For the ease of our reference, we refer the latest version of
the testing tool to as TAST. We also note that the TV model
tested via the latest version of the testing tool in the case
study was being sold in the Mainland China market at the
time of writing this article.

The results of the case study show the importance of
providing a higher level of abstraction with resource
controls in the stress testing of TV-based applications on
real TV sets. First, test engineers in the case study examined
1563 test specifications in total. Originally, with the
assistance of MT, they fully automate 915 test specifications.
On the other hand, with the assistance of TAST, they fully
automate 1347 test specifications. The difference is 432,
which represents 50% more test cases. Moreover, using

TAST, test engineers fully automated 75.096.3% (with a
mean of 86.8%) test specifications of these 20 applications.
This degree of automation was significantly higher than

that using MT, which only achieved 50.071.3% (with a
mean of 58.7%).

Second, when applying the resultant test scripts to
conduct a session of stress test on a newer version of the

same TV model series, we found that 55.088.0% (with a
mean of 71.4%) of TAST test scripts can be completely
reused. The amount of complete reuse is significantly

higher than that achieved by MT, where only 31.049.0%
(with a mean of 40.7%) of the MT test scripts can be reused.

Furthermore, out of these reusable test cases, 5963% of

them do not cover any change in code and 37 41% of them
cover some changes in code and can still work correctly.
Note that the newer TV set has used newer operating
system and hardware, making the program environments
not the same as the ones perceived by test engineers when
they wrote test scripts based on an older TV set.

Third, being able to produce more automated test
scripts means being able to produce more scenarios for
stress testing. Stress testing required the execution of many
test scripts extensively. We also found that test scripts
provided via TAST had exposed previously unknown bugs
during the above-mentioned iterative process. Specifically,
we found that the TAST test scripts exposed real faults
from each application with a failure rate of 1.9−4.1% (with a
mean of 3.2%). We emphasized that the TV model analyzed
in the case study was not the first model in the TV series to
use the same test specification for both stress testing and
functional testing. This result showed that the new
automated test scripts exposed unknown bugs that were
not exposable before the arrival of TAST.

Last, but not the least, the case study confirmed and
validated the feasibility of the above methodology to
produce an effective testing framework.

The main contribution of this paper is twofold: (i) This
paper presents the first work on studying to what extent
stress testing of TV applications can be automated. (ii) It
reports the first large-scale industrial case study on the
stress testing of Android applications in the industrial
environment.

We organize the rest of this paper as follows: Section II
presents the motivation, including a motivating example, of
our work. Section III describes the design of the resultant
testing tool. Section IV and Section V present a case study
that validates the methodology and investigates the
research questions that motivate this work. Section VI
reviews the closely related work. Finally, Section VII
concludes this paper.

II. MOTIVATION

A. Inadequacy of Testing Infrastructure

Testing smart TV applications is significantly different
from testing smart phone applications. In this section, we
present four areas of differences that we observed from
conducting our case study to motivate this work further.

First, TVs are typically designed to be viewed 10-feet
away, and TV applications should provide the so-called
“10-foot user experience” ([18], page 42), where user
interface (UI) objects such as scroll bars may be too small to
precisely control by users. As such, screen-based or touch-
based inputs are seldom used; and the UI interaction of TV
applications is mainly controlled by D-pads (Directional
pads), which usually contains the left key, right key, up key,
down key, select key, as well as receiving voice commands.
Hence, traditional Android application testing tools, which
issue the UI touch event to drive the device, are often
invalid to test TV applications. The need of voice-based
input demands for automatic voice input testing.

3

Second, traditional TVs are mature and reliable
through many decades of development. End users of smart
TVs include people of all ages and all educational
backgrounds, and they all require the TV (including its TV
applications) to be reliable. Stress testing of TV applications
should be much more comprehensive (e.g., including all
sorts of dialect variations and voice tones of the same
speaking language when testing against the voice input
channel) than stress testing of typical Android applications.

Third, unlike a phone simulator sufficient to test a
typical Android phone application, TV simulators are
seldom high in fidelity, making them as inferior and
unreliable alternative to real TV sets when stress testing TV
applications. Therefore, even though stress testing on real
TV sets is tedious, it is the de facto approach to ensuring
these applications in the industry. Nonetheless, controlling
a real TV set is much more tedious than controlling a
simulator.

In summary, a testing tool for smart TV testing differs
from the testing tool for smart phone testing in three
aspects: first, it calls for D-pad input support and voice
input support. Second, stress-testing support is crucial to
ensure the TV is of high reliability for selling as consumer
electronics. Third, smart TV lacks a high fidelity simulator,
which demands the testing tool to support testing on real
TV sets.

B. Motivating Example

We use an example to illustrate the challenges in the
stress testing of an application embedded in a smart TV.

The scenario is as follows: Suppose that a Smart TV
system has the following two applications: a media player
(denoted by A1) and a voice assistant application (denoted
by A2), which translates an audio stream into commands.
Suppose further that a user is watching a local video using
the media player A1. Ideally, upon the user pronouncing a
word (e.g., T-V-B) to the smart TV, the application A2

should receive and analyze the sound followed by
switching the TV screen to some other applications (that
shows the targeted particular TV channel).

Conducting a session of stress testing on A2 can be
challenging and tedious. To make our presentation concise,
we refer to a test engineer in the following testing scenario
as U. First, U manually navigates on the application launch
panel of the TV to activate A1 to watch a local video clip. U
then sets up a resource-constrained Smart TV environment
to prepare for the testing of A2 running the TV as follows:
To reduce the CPU and memory resources available to A2,
U invokes some computationally intensive applications and
invokes numerous other applications, respectively. The
reason is that each Android application tends to behave like
a small Linux process (e.g., occupying 20MB memory only),
and a Smart TV may easily have two orders of magnitude
more memory than the need of the former (e.g., 8GB). A
Smart TV is usually designed to launch a limited number of
applications. As such, U requires installing many other
applications in the Smart TV under test to occupy internal
memory, so that the memory left for execution of the
targeted application can be “small enough”. Installing

applications on a Smart TV involves downloading these
applications from Android app markets (over the internet)
with a process of user confirmation each. Each installation
however takes some time (e.g., 1 minute). Installing
hundreds of applications in the Smart TV is thus a tedious
process. After setting up the environment, U spells the
required word according to a test specification, and visually
observes whether the TV screen switches to the required
TV channel correctly and in time. The main problems are
that the steps involved are semi-automated, tedious,
inaccurate, and non-representative to the operating
situations.

1 # -*- coding: utf-8 -*-
 /*Import the required TAST packages*/
2 from com.android.tast import TAST
3 from com.android. tast import MTDevice
4 from com.android. tast.easy import By
5 from com.hierarchyviewer import HierarchyViewer
 /*Connecting to the device under test*/
6 device = MobileTest.waitForConnection()
 /*Start the media player application */
7 device.startActivity("com.mediaplayer.MediaPlayerActivity")
8 MobileTest.sleep(5)
9 /*Start a stress testing agent to consume target amounts of

resources*/
10 device.consumeMemory(90)
11 device.consumeCPU(90)
12 device.consumeNetwork(90)
13 MobileTest.sleep(10)
 /*Check and print resource consumed to console*/
14 memoryInfo = device. getMemoryUsage()
15 print memoryInfo
16 netInfo = device.getNetworkUsage()
17 print netInfo
18 cpuInfo = device.getCPUUsage()
19 print cpuInfo
 /*Specify a command for the voice assistant app */
20 voices = [u'Channel 4', u'Star Trek', u'Weather of Beijing',

u'music of Taylor Swift', u'Search Google']
21 oracle=[u'com.atv.activity.AtvMainActivity',

 u'com.mediaplayer.MediaPlayerActivity',
 u'com.changhong.app.WeatherActivity',
 u'com.changhong.onlineMusic',
 u'com.android.browser.BrowserActivity']

22 for index, str in enumerate(voices):
23 device.sendVoiceCmd(str)
24 activity = device. getFocusedWindow ()
 /*Verify whether the correct application invoked */
25 device.assertion(activity.getName() == oracle[index])
 /*Tear down the test script by going back to the Main

Window */
26 device.press ("KEYCODE_BACK")
27 /*Release the consumed resources */
28 device.StopConsumeMemory()
29 device.StopConsumeNetwork()
30 device.StopConsumeCPU()
31 #MTRecorder@end

Figure 1. A fully automated TAST test script for the stress-testing

scenario in the motivating example

Our goal is to understand and testify to what extent
automation can be feasible. Following the methodology
presented in the last section, TAST simplified the testing
steps involved by allowing U to develop fully automated

test scripts. Figure 1 shows a fully automated TAST test
script that serves the same purpose as the above tedious
testing process: After importing some required TAST
libraries (lines 2 to 5), the script connects the TV under test
(line 6) to instantiate a device object. It starts an instance of
A1 (line 7) and controls the execution environment of the
device object by consuming 90% of CPU, memory, and
network resources (lines 9 to 12). It then shows the resource
consumption status (lines 14 to 19), and declares a sequence
of voice commands and the test oracle for the command,
respectively (lines 20 and 21). It sends each voice command
sequentially to the device object, and verifies whether the
corresponding applications have started successfully
according to the above-defined test oracle (lines 22 to 25).
Finally, the script releases the TV resources deliberately
held by TAST (lines 28 to 30). In TAST, the resource control
is abstracted as properties of the device object. From the
execution of line 10 to line 30, the CPU utilization level of
the Smart TV is actively sustained at 90% (i.e., only 10% of
the CPU resources are available to the execution from line
10 to line 30). Moreover, the communication between the
Smart TV and TAST is completely abstracted away from
the test script, and feedbacks from the Smart TV (e.g.,
memory usage or the active GUI control objects) are
abstracted as data objects (e.g., memoryInfo) in the test script.
As such, the test script can use the property of such an
object to control the execution of the test script.

There are two notes on this motivating example that
deserve explanation. First, the motivating example mainly
focuses on presenting why our TAST framework can
automate some manual testing effort. We will discuss the
reusability aspect of our TAST platform in the RQ2 of our
case study. Second, the use of hard-code value is mainly for
improving the readability of the test script to ease
understanding. In fact, we have also provided a data-
driven interface (API) for TAST, where the test scripts can
read input data from files or databases to enable data-
driven testing.

III. THE RESULTANT TESTING TOOL: TAST

In Section 1, we have presented the methodology to
identify a feature needed for automation. In this section, we
present the resultant tool produced via the methodology.
We firstly present the overall design, and then enumerate
each kind of features that we have identified.

A. Overview of the TAST Architecture

In this section, we present the overall architecture of
TAST. As depicted in Figure 2, TAST consists of four layers
in additional to an agent service embedded in the device.

At the bottom layer, TAST communicates with a Smart
TV via a set of TAST-TV interfaces: the ADB interface [24],
a Socket-based voice interface, and a Socket-based Agent
interface. The former two interfaces provide the
input/output channels to mimic user interactions with the
application under test (AUT) in the TV, and the third
interface enables TAST to control the available resource to

the execution environment of the AUT. These three TAST-
TV interfaces are connected to three controllers (ADB
Controller, Voice Controller, and Agent Controller,
respectively) of TAST as shown in Figure 2.

The first TAST-TV interface known as the ADB
(abbreviated for Android Debug Bridge) [24] interface is a
standard interface common to all Android-based systems.
Through this interface, the ADB controller in the next layer
above controls a built-in testing component to issue user
events to the AUT and capture screenshots of the AUT
running in the Smart TV.

We note that most testing tools for Android
applications share the above ADB interface. Our MT testing
platform (i.e., MobileTest) has no exception. Like TAST,
MobileTest was also built on the services provided by

Monkey.

Figure 2. Architecture of our testing platform TAST

Owing to the need of voice control, simply using ADB
is insufficient to provide the inputs to some TV applications
adequately. Therefore, in response to the testing
requirement, we added a new TAST-TV interface (the
Socket-based voice interface) to the testing tool. The
purpose of this interface is to send voice control commands
to interact with the voice assistant application (e.g., Ciri [28])
in a smart TV.

The test engineers expressed that stress testing of TV
applications requires setting up the resource available for
the applications to use. Therefore, we introduced a third
TAST-TV interface (i.e., the Socket-based Agent interface) to
the tool, which is to communicate with an agent service of
TAST running on the Smart TV to control and monitor the
resource utilization levels of various resources.

The layer above the TAST-TV interface layer is the
controller layer, where we have the ADB-controller, voice-
controller, and the Agent controller. The ADB controller
encapsulates the ADB interface, the voice-controller
encapsulates the socket-based voice interface, and the agent
controller encapsulates the agent interface. These three
controllers then each provide a set of interface to support
test script execution controlled by the interpreter in the

5

layer above. This controller layer essentially encapsulates
the interactions with the Android device such that the
interpreter above can focus on the interpreted execution of
test scripts per se.

The execution of each test script is handled by a test
script interpreter, which forms the second top layer as
shown in Figure 2. The interpreter handles instructions
sequentially along the execution trace of each test script.
For every such instruction, it translates the instruction into
lower-level tasks, interacts with the Smart TV via the above
set of TAST-TV interfaces to carry out all these tasks.

The top layer of TAST shown in Figure 2 is for test
engineers to develop test scripts such as the test script
shown in Figure 1. The test management component is an
abstraction for organizing and executing test scripts.

The test script development environment and the
script recorder tool are also in the top layer. The former
provides an integrated test development environment for
the test engineers to develop test scripts while the latter is a
classic test-script recorder tool by logging user interactions.

In the next section, we will present the new APIs
identified through the methodology presented in Section 1.

B. Events and Execution Trace Model

We have also highlighted in Figure 1 that TAST
provides methods (e.g., consumeMemory()) that are
specifically related to the TAST-TV interfaces (see Section 3)
in the form of its Application Programming Interfaces (API).
As such, during the test script execution, the interpreter
invokes a sequence of such API methods. We refer to every
request to invoke such an API method as an event, and
hence an execution trace is viewed as a sequence of such
events. The interpreter executes along an execution trace
sequentially.

The interpreter catches all unhandled exceptions
thrown by a test script during the execution of the test
script. It aims at rendering a layer of fault tolerance to the
test environment of the AUT to improve the reliability and
usability of TAST. Suppose that the unhandled exception
occurrence is from the ADB Controller (occurred when the
ADB connection is unexpectedly inactive). The interpreter

will invoke the resetADB()method that resets the ADB
connection followed by re-sending the event that generates
the unhandled exception within a predefined number of
trial attempts. Similarly, suppose that an unhandled
exception occurrence is from the Agent Controller. The
interpreter invokes another method, which is
resetAgent(), to restart the agent service residing in the
smart TV, and looks back the execution trace to identify
latest resource consumption events and reissue these events
to the agent service so that the agent service can re-establish
the required environmental resources setting. (We note that
the number of trial attempts is a configuration parameter
defined by tool users.) For other exception occurrences, the
interpreter forwards the exception occurrences to its own
program environment. The interpreter also throws an
exception if any assertion statement (e.g., line 25 in Figure 1)
is violated.

The test management component catches all
exceptions thrown from the interpreter followed by
marking the test script execution as failed. Otherwise, if the
test script is executed without any exception, it marks the
test script as passed.

TAST defines three parallel TAST-TV interfaces.
Correspondingly, there are three primitive types of events,
one for each TAST-TV interface. In the next three sub-
sections, we present these three types of events in turn.

C. Events for the ADB Interface

The ADB interface links the ADB controller in TAST
and a monkey [31] resided in an Android-based TV. Like
MT, TAST has been, by default, configured to operate with
the monkey provided by Android SDK. This monkey
listens to a default network port on the device to accept
text-based commands. It executes one text-based command
and returns a text-based output, before executing the next
text-based command received. For instance, the monkey
accepts a variety of commands such as drag, mouse click,
key press, install/remove package. The state information of
a particular control object of an Android application can be

obtained by sending the DUMP command or the DUMPQ

command (a lightweight DUMP implementation) [31].
However, unlike MT, in TAST, for each text-based

command that the monkey accepts as an input, the ADB
controller wraps the command as a corresponding method
in the TAST API with the sequence of parameters that
exactly matches the types and the sequence of the
parameters used by this command. For instance, the
commands to represent making a connection to the TV,
pressing a specific key, and clicking a specific mouse button
are modeled as waitForConnection(), press(), and

mouse(), respectively. This allows test scripts to
communicate with the monkey in a higher level of
abstraction.

We note that each method directly mapped from each
command of a monkey is quite primitive (and low level),
which is exactly the type of APIs provided by MT.
Although test engineers may use such wrapped methods to
control a monkey in TAST test scripts in full strengths, yet
instructing the monkey to complete a testing-oriented task
via such a set of primitive methods are reported by test
engineers to be tedious, lengthy, and non-productive,
which is illustrated below.

Let us consider a scenario. Suppose that a test script
needs to acquire the identity of a particular GUI window,
which is the current focusing window among all Android
applications in the Smart TV. In the body of the test script,
the test engineers need to write instructions to invoke an

API method corresponding to the GET_FOCUS command of
the monkey to retrieve a string of texts, in which the string
lists out the hash code of the currently focused window. The
test script should then extract this hash code. Next, the test
script should invoke another API method corresponding to
the LIST command of the monkey to the view server of the
Android operating system to retrieve a list of currently
active windows, which is again in the text string format.

The test script then parses the text string to identify the
window identity fragments, and compares the text of each
window identity in turn to the above hash code to identify
the required window identity. In other words, to complete
this task, it is not merely a few method invocations of such
methods; rather, this task involves the development of
program code to link up these method invocations.

Table I. Questionnaire to Test Engineers

No. Questions

1 Are there similar code fragments that you repeatedly write in different
test scripts?

2 What combinations of the testing APIs you use frequently them

together?

3 List some testing APIs you feel cumbersome to use?

4 When writing test scripts, which part of the code often costs you most
of the time?

5 What are the test specifications that you often give up to automate?

6 What are the test specifications that you feel hard to automate?

7 What automation features you desire most in a future version of testing
framework?

8 For semi-automated test scripts, please list examples of the manual

efforts required.

9 For manual test scripts, which part of the execution process requires
most manual efforts.

As mentioned in the introduction section, to determine

the automation features to support by our TAST tool, we
asked a set of prepared questions to the test engineers
following a typical recommended practice of code
refactoring. We summarize the questionnaire in Table I.

Based on the analysis on the collected answers of the
questionnaires and some inspections on existing test scripts,
we paired with the test engineers to identify a set of real
world, useful code templates. Each code template is finally
wrapped as a method in the TAST API. For instance, the
functions in the above scenario have finally been wrapped

as one single method getFocusedWindow(), which not
only obtains the window identity, but also creates (and
returns) an object instance in the test script execution state
that represents a corresponding control object of the
“remote” AUT. The testing tool also automatically
maintains the relations between this control object and its
associating application and exposes the relationship to the
execution state of the test script. Also, to get the GUI
control object with a specific control identity, there is a

method entitled getControlItemOp(), which sends a
DUMPQ command to the monkey to query the view server to
obtain a tree of GUI controls. It then searches the tree to
locate the required control object identity, and returns an
object that model the matched control object. Hence, a test
script can manipulate the control object or its associating
application object using much fewer and simpler code.
Similarly, TAST provides methods to query the GUI states
at all levels: the whole system level, single application level,
single window level, single control level, and single
property level. Invoking a lower level of query consumes
less time before returning the result. Developers may
invoke selective methods to implement their own test

oracle strategies in their test scripts. TAST currently
provides 36 such high-level GUI-object methods in total.

The above scenario also illustrates that the text

returned by a command (e.g., DUMPQ) may contain much
information and there are programming efforts to extract
the required pieces of texts from the text. TAST provides
several API methods, each finer in granularity than what an

underlying command provides. For instance, getText(),
isFocused(), and isVisible() are API methods to
query the corresponding properties of the control objects
inputted as their parameters. In total, TAST currently
provides 20 such high-level GUI-attribute methods.

We have presented how TAST handles the events (API
methods) that each instructs TAST to query the current
states of some control objects and pass back these states to
the interpreter. Sometimes, a test script requires methods
that each waits for the occurrence of a particular GUI state
to appear. For instance, if a window is still invisible before
a text input event to a control is received, the event will be
lost, making the testing invalid.

TAST provides methods (e.g., WaitingUIState())
for each level of GUI object (including application, window,
and control) to wait for the occurrences of the
corresponding GUI states. Specifically, if the interpreter
generates such an event, the ADB controller checks whether
the GUI object has changed to the expected state as
specified in the method parameter every now and then.
This period, say 3 seconds, is configurable in TAST. A
match will resume the execution of the interpreter.
Otherwise, if a timeout event raised by the interpreter
occurs, the interpreter will raise an unhandled exception.
With such a set of methods, a test script can use non-
sleeping statements to synchronize their testing commands
with the corresponding GUI controls.

We note that if a sleep command is issued, the
parameter needed for one TV model may require fine-
tuning, but then the parameter may not be applicable to
other TV models (e.g., using processors with more cores) or
operating system versions and other suites of applications
to be installed in the TV. They may make the test scripts
significantly less non-reusable.

In summary, we found that to support test scripts that
manipulate applications through their GUIs, there require
supports to identify GUI elements at different levels of
details. We have discovered 36 API methods to query GUI
states from the whole TV set level to individual property
level, which hides the internal navigation of the GUI object
structures obtained from ADB from test engineers when
using such APIs. This allows a more flexible coding support
on checking and setting the GUI objects. We have also
discovered 20 API methods each to extract partial
information from a lower level of command. We found that
synchronization between a state of a test script and a
particular state of a particular GUI object is mandatory,
which has been frequently missed in the test scripts
generated by existing stress testing tool like MT. We shared
this finding with test engineers, and they agreed that the
finding was consistent to their first-hand experiences.

7

D. Events for the Agent Interface

The agent interface bridges between the agent
controller and an agent service on the Android system
deployed by the test engineers. When the interpreter
generates an event for the agent interface, the interpreter
will pass the event to the agent controller of TAST. There
are two types of events, one for monitoring the resource
utilization level of the Android system and another for
active setup and maintenance of these resource utilization
levels. Any failure in processing such an event (e.g., unable
to attain a required memory usage level specified by the
event) will trigger an exception by the agent controller.

Profiling events: Our industrial collaborator specifies
that there are five typical kinds of resource information on
an Android system that they need to know in order to test
Android applications in their industrial environment:
memory usage statistics, CPU usage statistics, network
usage statistics, USB storage usage statistics, and operating
system (OS) information. We want to ensure our tool to
acquire the same information as their own profiling
procedures. Therefore, we asked the test engineers to
provide their procedures to acquire such information.

 /*Function for consuming the CPU usage */
1 Input: the percentage of the CPU to consume.
2 Output: The CPU usage are consumed as required.
3 void consumeCPU(int percentage){
4 /*get the current CPU Usage */
5 float currentPercent = getCPUUsage();
6 float toConsume = percentage – currentPercent;
7 if(toConsume > 0){ /* need to consume resouces */
8 int num = numofCores(); /* get the number of cores */
9 /* start a thread for each core */
10 for(int i=0; i<num; i++)
11 new CPUServiceThread(toConsume).start();
12 }/*if*/
13 }/* end of ConsumeCPU */
14 private class CPUServiceThread extends Thread {
15 private int tPercent;
16 private boolean stop;
17 public CPUServiceThread(int percent) {
18 stop = false;
19 tPercent = percent;
20 }
21 public void run() {
22 long time;
23 /* if not yet stopped by the script*/
24 while (!stop) {
25 time = System.currentTimeMillis();
26 while (System.currentTimeMillis() - time < 10);
27 try {
28 Thread.sleep(10 * (100 - tPercent) / tPercent);
29 } catch (InterruptedException IException) {}
30
31

}/* while*/
 }/* run*/

32 public synchronized void stopThread() {
33 stop = true;
34 }

Figure 3 Algorithm consumeCPU() for controlling CPU usage

We model their profiling procedures as methods in an
extensible class hierarchy of TAST. Specifically, TAST
wraps the Linux commands “cat /proc/meminfo” and

“top” as the classes for profiling the memory and CPU

usages as getMemoryUsage() and getCPUUsage(),
respectively. To get the network usage information such as
the uplink and the downlink network speeds, TAST uses
the Android API android.net.TrafficStats class to get the
data sent and received per second, and calculate the current
network speed (by adding up these two values) accordingly

in the method getNetworkUsage(). The method
getUSBUsage()invokes the methods of the Android API
android.os.Environment and android.os.StatFs classes to
get the path of a USB device as well as its total space and
available space. Lastly, the method getOSInfo() directly
wraps the Android API android.os.build class. All these
events are sent through the agent interface to the agent
service, which in turn invokes these Linux commands or
Android APIs to obtain the corresponding outputs, and
sends the outputs back to the agent controller. (We note
that the agent service in the TV set is also an Android
service.)

Controlling events: It is essential to set up and maintain
the amount of resources consumed to the level as specified
by an instruction in a test script. We are going to describe
the strategy used by TAST for this purpose to control
memory, CPU, network, and USB usages.

 /*Function for consuming the network bandwidth*/
1 Input: the percentage of the network bandwidth to

consume.
2 Output: The network bandwidth is consumed as required.
3 void consumeNetwork(int percentage){
4 /*calculate the number of network consumer threads */
5 int num=MAX_NETWORK_THREADS*percentage/100;
8 /* start the threads accessing files on USB storage */
9 for(int i=0; i< num; i++)
10 new NetworkAccessThreads(i).start();
11 }/*end of consumeNetwork*/
12 private class NetworkAccessThreads extends Thread {
13 private int idx;
14 private boolean stop;
15 public NetworkAccessThreads (int aIndex) {
16 stop = false;
17 idx = aIndex;
18 }
19 public void run() {
20 /* if not yet stopped by the script*/
21 while (!stop)
22 /* even numbered thread send data*/
23 if(idx % 2 == 0)
24 Post data to Web server with HTTP client;
25 else /* odd numbered thread receive data*/
26 Get data from Web server with HTTP client;
27 } //run
28 public synchronized void stopThread() {
29 stop = true; } /* stopThread*/
30 } /* end of NetworkAccessThreads*/

Figure 4. Algorithm consumeNetwork() for
controlling network usage

To keep the memory consumption at a specified level

(e.g., 90% of all memory), the agent service actively
allocates and de-allocates memory blocks via Linux’s native
memory management library through the Java Native

Interface so that it bypasses the memory usage restriction
imposed by the Android OS on the agent service. A
memory usage control is valuable in testing memory-
intensive applications such as games. TAST wraps the
procedure as the method consumeMemory(). For instance,
it is critical to test whether an application runs or shuts
down correctly even in an execution environment with a
small amount of available memory.

A Smart TV typically is equipped with a multi-core
processor (CPU). Figure 3 shows the

consumeCPU()algorithm to control the CPU usage. The
algorithm first estimates the total amount of additional
CPU loads to be consumed (lines 5 to 6). Then, it starts the
same number of threads as the number of CPU cores (lines
8 to 11) For each thread, the algorithm uses a busy loop and
the sleep system call to consume a certain percentage of the
CPU processing capability and release the consuming CPU
capability, respectively (lines 25 to 28). We have found that
in our industrial case study, this algorithm can effectively
control the CPU usage between 10% and 98% when testing
a TV application. This is extremely useful for stress testing
a computationally intensive application such as playing or
recording a video. In an environment with low CPU
availability, these applications should either degrade their
quality of services or quit gracefully instead of crash or
becoming non-responsive to users.

Figure 4 shows the consumeNetwork() algorithm.
In essence, to control the network bandwidth usage, the
algorithm starts several threads, each sending and receiving
data via the http client API to communicate with a Web
server (in the testing lab) to consume the network
bandwidth. The variable MAX_NETWORK_THREADS is
the number of network threads needed to consume 100% of
the available network bandwidth. Then, it controls the
network bandwidth consumption by starting a portion of

such threads, i.e., MAX__USB_THREADS  percentage 
100.
TAST also provides an API to determine a value for
MAX_NETWORK_THREADS, which simply allocates an
increasingly number of threads (initially 1) until all the
available network bandwidth has just been consumed. This
algorithm is useful for testing network-dependent
applications such as online music players, online video
streaming applications or Web browsers. Instead of
freezing and buffering endlessly, these applications should
either reduce their bandwidth requirement or stop
gracefully under adverse network conditions.

The algorithm consumeUSB()controls the USB

bandwidth. It is identical to consumeNetwork(), except
the following. First, the variable
MAX_NETWORK_THREADS is replaced by a new variable
MAX__USB_THREADS, which is the number of
reader/writer threads needed to fully saturate the USB
bandwidth. Second, the algorithm starts a writer thread
and a reader thread in turn. Due to the similarity between
the two algorithms, for brevity, we skip to present
consumeUSB() explicitly. Moreover, TAST has a method
that determines a value for MAX__USB_THREADS, whose

strategy is similar to the method that determines
MAX_NETWORK_THREADS described above. TAST has a
method that consumes a certain percentage of the USB
storage space, which simply writes dummy contents to new
files kept by the USB device.

In summary, to improve the automation support of
MT, TAST has been extended to include 10 API methods to
query and set up the amount of resources consumed in the
execution environment.

E. Events for Voice Control via Socket-based Voice Interface

In this section, we present the handling of events for
voice commands. Test engineers may manually use the
microphone on the remote controller of a TV to send a
sound stream to the voice assistant application of the TV.
TAST on the other hand converts the parameters (voice
commands) of the voice-related methods in a test script into
audio streams and send these streams via the interface to
the voice assistant application.

Figure 5. Workflow for methods sendVoiceCmd() and

sendNoisyVoiceCmd() to help test applications with voice assistance.

As shown in Figure 5, if the voice controller receives
an event for the MIC interface from the interpreter, it uses a
Text-To-Speech (TTS) library to convert the text into a voice
stream. As a requirement of Changhong, TAST is currently
configured to use The Microsoft Speech API as the TTS
library. Optionally, the voice controller then uses the
DirectSound API for audio mixing so that a noisy home
environment can be simulated. Finally, the resultant audio
stream is sent to the voice assistant application via socket
interface using a custom protocol. TAST provides methods
sendVoiceCmd() and sendNoisy-VoiceCmd()for
perfect and noisy environment, respectively.

IV. CASE STUDY

In this section, we present the empirical study to
answer the important research questions.

9

A. Background

The case study was conducted at the Reliability
Institute of Changhong at Sichuan Province, China during

MarSep 2013. This institute is the testing arm of the
company and is responsible to test various types of
electronics products manufactured by the company,
including smart TVs. The company has used the MT
(MobileTest [7]) tool since 2008, which is an evolving
platform that adds Android application testing support
since 2010. Since the testers are quite familiar with the test
development environment of MT, they ask us to continue
improve MT to better support Android TV applications
testing in this project.

The case study started with a series of requirement
elicitation workshops between the researchers and more
than 20 test engineers of the institute to identify the
requirements of a testing tool. The company had developed
a few smart TV models before this project commenced in
2013. Ten test engineers were eventually selected to join
this project. Each was assigned with two applications to test.
The list of applications (see Table II) for the smart TV model
had been predetermined by the company.

As presented in Section I, we refer the original version
of the testing tool used by the test engineers to as MT, and
the final version of the same testing tool to as TAST.

For each such application, the test engineers had
written in natural language a set of planned test cases (and
sometimes, we refer to them as test specifications in this
paper) for these existing smart TV models. Most of them
were in the form of documentation for test engineers to
interpret and follow them to conduct manual testing.

Despite the significant value of industrial case study
used for evaluation [12], we should note here that an
industrial case study did not enjoy the same level of rigor
and freedom as a controlled experiment conducted in a
research laboratory. For instance, the number of test
engineers in the testing project, the training schedule of the
TAST framework, the available time budget for test case
design and execution, the choice of TV models and
applications, and other factors must conform to the actual
setting of the involved industrial projects. However, an
industrial case study can truly testify to what extent a
research proposal can handle real-world setting and
identify limitations for future research.

B. Research Questions

We aim to study three refined research questions
through the case study.

RQ1: To what extent can the planned test cases be
completely developed on TAST as fully automated test
scripts for the stress testing of Android-based applications
of a targeted smart TV model?

RQ2: To what extent can TAST-automated test cases be
completely reused when conducting stress testing on the
same application but installed in another smart TV model
of the same TV series?

RQ3: Can TAST-automated test cases effectively detect
unknown faults from the targeted TV models?

C. Application Benchmarks

In the case study, the institute provided data of 20
Android-based TV applications listed in Table II for us to
study the three research questions. To the best of our
knowledge, these applications were also some of the most
heavily tested applications by the testing team of the
institute, and they collectively represented a set of most
frequently used applications of a smart TV manufactured
by the company.

D. Experimental Setup

The researchers passively monitored a real-world
testing project on a real-world TV model 3D42A7000iC
(L47). This model was one of the latest smart TVs running
Android 4.0.1 manufactured by the company within the
case study period. At the time of reporting the case study in
this paper, this TV model is being sold in the retail market
of China. We note that this is a real testing project that the
test engineers must conduct testing according to the
planned test cases (using their own approaches).

Ten (10) full-time test engineers were assigned to this
testing project to conduct the system test. We ran a two-day
training workshop session to educate these test engineers
on how to operate the testing tool to write and run test
scripts. They also learned the coding approach to data-
driven testing (i.e., to keep data in a data source, and
populate the parameters in a test script by retrieving data
rows from the associated data sources). Our testing
engineers were experienced on smart TV testing. They have
evaluated various testing platforms including Robotium,
APPium, and Sikuli before adopting the approach
presented in this paper. Several of the testing engineers also
had experiences on using Robotium for writing test scripts
for three months in a previous testing project.

Specifically, each test engineer examined each planned
test case of each application assigned. Based on his/her
own professional experience, if the test engineer considers
the planned test case can be automated by MT, he/she
labeled the MT test script automated, otherwise, manual.

Next, the test engineer attempted to implement each
planned test case as a TAST test script. As expected, some
test cases were eventually still not fully supported. If a test
engineer found the development of the corresponding test
script was either not possible or too difficult to implement
and decided not to automate it using TAST, the test
engineer marked the test case as manual, otherwise
automated. The test engineers then executed each test
script thus produced on the given TV model.

According to their feedback after the case study, TAST
is easy to use and the time cost of creating TAST-based test
cases is small. They did not record the time spent on
individual test cases, however. It is because in the industry
setting, test engineers usually and flexibly switch between
multiple tasks (e.g., answering unplanned calls or queries
from others or attending meetings). Such situation made
accurate recording the time spent in detail impractical.

To answer RQ1, we measured the ratio of “automated”
test scripts to the total number of planned test cases with

respect to each application. To ease our presentation, we
refer to such an “automated” test script marked by TAST
and MT as TAST-automated and MT-automated test
scripts, respectively.

After they have completed the above testing sessions,
the institute provided a new smart TV model for us to
evaluate the reusability of the test scripts developed by the
test engineers. This new TV model was equipped with a
different hardware configuration and an upgraded
Android OS version (Android 4.1). Note some of the
applications also update accordingly to this new TV model.
The test engineers ran each TAST-automated test script and
each MT-automated test script on this new model.

To answer RQ2, we measured the ratio of such test
scripts that each can successfully be run on this new TV
model without any modification to the total number of
“automated” test scripts.

Each TAST test script contained one or more assertion
statements (e.g., line 25 in Figure 1) as test oracle. We also
analyzed the dataset for RQ1 to identify whether there were
any test scripts that violated any assertion statement or
threw any exceptions in the course of execution. Each of
such test scripts is marked as a failed test script.

To answer RQ3, we measured the number of failed test
scripts to the total number of TAST-automated test scripts.
The TV models are real products. As such, the development
engineers had also debugged the applications (or else, the
TV model would not be launched). We requested the
development engineer to share with us some representative
root causes (i.e., the faults) of the failures found that have
not been detected without using TAST beforehand.

V. DATA ANALYSIS

A. Answering RQ1: Extent of Automation

The fourth to sixth columns in Table II show the
number of planned test case, the number of TAST-
automated test, and the number of MT-automated test
scripts, respectively. We found that on average, TAST and
MT successfully automated 87% and 59% of all the planned
test cases. We also found that for each application
examined, the number of TAST-automated test cases was
more than the corresponding number of MT-automated test
cases by 10% to 41%, with an average of 28%. This margin
of difference is significant.

We have further performed an ANOVA test using
MATLAB to confirm whether the two datasets are different
significantly from each other at the 5% significance level.
The ANOVA test yielded a p-value of 1.11 ∗ 10 (with SS =
0.7952 (error = 0.1473), df = 1 (error = 38), MS = 0.7952
(error = 0.0039), F = 205.1396), which successfully rejected
the null hypothesis that there was no difference between
the two groups of data at the 5% significance level.

Although our methodology aims to automate code
fragments that can be refactored as generic methods, this
strategy may still be inadequate to make a test script fully
automated. We thus conducted code inspection on the test
scripts to understand why there were more TAST-
automated test scripts than MT-automated test scripts.

On Ciri, TAST automated most of the planned test
cases that were voice-driven, whereas MT had to leave such
test cases for manual testing. This finding is a natural
consequence of the API enrichment offered by TAST.

Table II Benchmarks and experimental results on planned test case automation

App ID Applications Description

of test cases
In ratio

Planned
(A)

automated

TAST
(B)

MT
(C)

D =
B / A

E =
C / A

F=

D  E

1 TV Control 1.0.1 TV control to set channel, volume, etc 75 64 46 0.853 0.613 0.240

2 Setting 1.2.1 TV setting app 82 79 49 0.963 0.598 0.366

3 Browser 29.0.1547.23 A built-in web browser for TV 116 94 59 0.810 0.509 0.302

4 Market 1.1.0 A built-in app market for TV 73 58 50 0.795 0.685 0.110

5 Weather Report 1.2.3 A built-in weather report app 79 66 42 0.835 0.532 0.304

6 Online Video 4.5.3 Online video streaming app 94 89 67 0.947 0.713 0.234

7 Media Player 2.72 A video/audio player that play movies on the USB storage 88 79 47 0.898 0.534 0.364

8 Photo Viewer 3.2.1 An app to view photos 53 49 32 0.925 0.604 0.321

9 Temple Run 5.1.2 Temple Run [35] is a popular “Endless Running” game 79 74 43 0.937 0.544 0.392

10 Ciri 1.2.5 Ciri [28] is a voice assistant app developed by Changhong 91 77 49 0.846 0.538 0.308

11 Dictionary 2.7 A Google Translate app 73 66 45 0.904 0.616 0.288

12 Calendar 201305280 A calendar app 61 52 38 0.852 0.623 0.230

13 Weibo 3.6.0 A Weibo client on TV 76 67 51 0.882 0.671 0.211

14 IM 1.3.5 An instant messenger on TV 41 39 23 0.951 0.561 0.390

15 News 2.4.0 A NetEase news client 92 69 53 0.750 0.576 0.174

16 Map 7.0.1 A built-in map app 89 70 45 0.787 0.506 0.281

17 Calculator 1.7.3 A built-in calculator app 80 73 40 0.913 0.500 0.413

18 File Explorer 2.3.0 A built-in file explorer app 43 39 24 0.907 0.558 0.349

19 Car Race 5.1.0 A car racing game app 77 63 48 0.818 0.623 0.195

20 Email 1.2.5 An email client app 101 80 65 0.792 0.644 0.149

Total 1563 1347 915   
Mean 78 67 46 0.868 0.587 0.280

Standard Deviation 0.060 0.059

11

On TV control, Setting, Weather Report, Dictionary,
Calendar, News, and Email, TAST automated significantly
more test cases than MT because the executions of those
test cases often led to small changes in only a few user-
interface (UI) controls. Like other capture-and-replay tools,
MT used an image comparison approach to checking test
results. A small difference in the image would make MT to
produce unreliable test reporting if the test engineers did
not examine each difference and wrote specific comparison
scripts to get rid of this false positive difference between
the images under comparison. In a many cases, test
engineers gave up automating such test cases due to the
tedious code development and resolved to use their
“eyeball” to scan the TV screens. TAST provided properties
of UI controls to provide data for test oracle checks, which
was more logical to be handled, more precise in item
location comparison, and more insensitive to the changes in
UI control irrelevant to the selected properties.

On Market, Online Video, Media Player, Photo Viewer,
Temple Run, Weibo, IM, Map, Calculator, and Car Race, quite
many planned test cases required resource controls for
stress testing of the applications under diverse CPU,
memory, and/or USB bandwidth conditions. Like other
capture-and-replay tools, MT had no mechanism to
automate the resource control function, and the test
engineers chose to give up the automation of these test
cases. (Note that in some test cases, the test engineers
actually wrote some Linux shell scripts to ease their testing
while using MT.) On Browser and File Explorer, TAST
automated significantly more test cases than MT also due to
the above reasons or their combinations.

We had also measured the numbers of lines of code for
the TAST-automated test scripts and MT-automated test
scripts. We found that the two types of test scripts resulted
in 56 to 378 lines of code with a mean of 120 and a standard
deviation of 30, and 80 to 460 lines of code with a mean of
223 and a standard deviation of 75, respectively. The result
indicated that TAST-automated test cases tended to be
significantly coarser in granularity to complete the same
tasks. The result is consistent with the purpose of the
testing tool enhancement to provide a higher-level test-
script development platform than MT to assist test
engineers.

Some test specifications were not automated. We
found that almost all of them were due to their reliance on
human involvement. The test engineers deemed them to be
too hard to automate. Examples include human interactions
with hardware, the verification of video quality, and the
evaluation of user experience, which were either too costly
to implement or subject to human judgment. For example,
one test specification requires “unplug the USB disk when
playing movie stored in the USB, and plug the USB again to
check whether the movie file can still be played (or is corrupted)”.
This specification was not automated due to the “unplug
and then plug” actions. To automate these test case
specifications further, we may use a robot and further
integrate TAST with it. However, it is beyond the scope of
this work.

Figure 6. Comparison of the percentage of reusable test cases

Table III. Number of TAST Reusable Test Scripts
Covering and Without Covering Changes

Applications

TAST

Reusable

(A)

TAST Reusable Scripts In Ratio

Covering

Change (B)

Covering No

Change (C)

D=

B/A

E=

C/A

TV Control 55 20 35 37% 63%

Setting 52 20 32 38% 62%

Browser 51 20 31 40% 60%

Market 45 17 28 38% 62%

Weather Report 46 18 28 40% 60%

Online Video 52 19 33 37% 63%

Media Player 54 21 33 39% 61%

Photo Viewer 39 15 24 39% 61%

Temple Run 63 26 37 41% 59%

Ciri 56 21 35 37% 63%

Dictionary 51 19 32 38% 62%

Calendar 33 13 20 40% 60%

Weibo 48 18 30 37% 63%

IM 27 10 17 38% 62%

News 59 24 35 41% 59%

Map 53 19 34 37% 63%

Calculator 45 18 27 40% 60%

File Explorer 25 10 15 38% 62%

Car Race 38 15 23 40% 60%

Email 54 21 33 39% 61%

Mean 48 18 30 37% 63%

Standard

Deviation
10 4 6 1% 1%

B. Answering RQ2: Extent of Reuse

Figure 6 shows the percentage of TAST-automated test
scripts that were successfully reused in testing the same
application on a newer TV model, and MT-automated test
scripts alike. We refer to them as TAST-Reusable test
scripts and MT-Reusable test scripts, respectively. The x-
axis represents the benchmarks; and the y-axis is the
percentage of test cases that have been successfully reused.

For each benchmark, there is a pair of bars. The solid
bar in blue color on the left is for MT-Reusable test scripts,
and the bar (in green) with a pattern filled on the right

represents the TAST-Reusable test scripts. The rightmost
pair of bars show that the mean percentage of reusable test
cases over all benchmarks. The result shows that TAST

resulted in 55.088.0% (with a mean of 71.4%) reusable test

scripts, compared to 31.049.0% (with a mean of 40.7%)
when using MT. On average, the difference is 30.7%, which
is significant. However, the standard deviation achieved by
TAST is 11.78%, which is higher than that of MT (5.36%).

In last section, we observe that TAST is able to
automate significantly more test cases than MT, and hence
the above difference may be conservative. If we took the
percentage of automated test cases into account, then on
average, test engineers were able to completely reuse 61.9%

(= 86.8%  71.4%) and 23.9% (= 58.7%  40.7%) of all test
cases via TAST and MT, respectively. Encouragingly, the
difference is 38%.

Moreover, for each benchmark, we also found that the
bar for TAST-automated test script was significantly longer
than that for MT-automated test scripts, indicating that the

degree of reuses provided by TAST was usually
significantly higher than that provided by MT.

Similar to what we did in the data analysis for RQ1,
we also conducted an ANOVA test to confirm whether the
amount of reuse between the two types of automated test
cases is different significantly at the 5% significance level.
The ANOVA test yielded a p-value of 1.04 ∗ 10 (with SS =
1.0240 (with error = 0.2617), df = 1 (with error = 38), MS =
1.0240 (with error = 0.0069), and F = 148.6837), which
successfully rejected the null hypothesis that there was no
significant difference between the two groups of data.

The finding shows that the use of our APIs can not
only improve the amount of automation (see RQ1) but also
provide a higher potential of test case reuse. This finding
has a strong implication to model-based program testing
because its clear advantage is the ability to reuse test cases
across different programs under test.

We found there are 5 possible sources of changes
affecting script reusability in this case study. The change of
hardware support (e.g., codec), the new constraints

Table IV. Sample Cases of Reusable Test Cases

 MT TAST Example

R
eu

se

F
a

il
ed

F
a

il
ed

One test script is to test the TV system setting application of TV Model A. However, for TV model B, the TV system setting

application was changed significantly, where both the Activity class name and the identities of controls changed, which

made the test scripts of both tools invalid immediately.

S
u

cc
es

sf
u

l

S
u

cc
es

sf
u

l

One test script is to handle the change in D-pad hardware due to the change in TV model. Although the keys were the same

set of keys logically, yet the raw codes of some D-pad keys changed due to driver updates. In such scenario, the interpreter

layers of both MT and TAST internally updated their implementation to use the valid raw codes when testing the new TV

model. Because each of these two interpreters still provided the same set of testing APIs, the test scripts produced can still

be reusable on both frameworks. Hence, the hardware changes had been successfully hidden by the layered design of both

MT and TAST. We believe that the stability of the testing API provided by the interpreter layer across TV models was the

key to this reusability.

F
a

il
ed

S
u

cc
es

sf
u

l

Due to the OS customized update, the ADB command waiting for device connection may fail to connect in WiFi environ-

ment occasionally. Since MT APIs are only low-level wrapper over ADB commands, the test script becomes non-reusable as

it fails to handle the exception case in the test script. In contrast, the TAST scripts APIs are relatively high-level, which han-

dles such potential ADB failure in the API implementation. As such, the high-level abstraction of the TAST testing APIs

makes test scripts less vulnerable to underlying changes.

One test script of this type is to allow changes in the positions of the controls of application GUI across TV models, but the

identities of these controls remained unchanged. TAST test script only referenced the controls by identities, and so, the test

scripts were still usable. However, the MT test script referenced the controls by their positions on screenshots, which made

the MT test script non-reusable. We observe that in this scenario, the reusability of TAST over MT was due to the test engi-

neers’ knowledge on GUI information and the use of identity-based control reference in test scripts, where were supported

by TAST but not in MT.

Yet another case where TAST beats MT in terms of reusability is attributed to its test result checking strategy. MT uses im-

age comparison for test results verification while TAST uses assertion statements over GUI control properties for the same

purpose. One test script is simply to launch the weather application and then verify whether the default city is “Beijing”. In

the case study, the weather application was updated to use a new background. As a result, the MT test script became inva-

lid because the image comparison approach always considered that the two images differ significantly. On the other hand,

the TAST test script extracted the text label of the City control, and used a string comparison to check whether it is “Bei-

jing”. Therefore, the TAST script was immune to the change in application background.

S
u

cc
es

sf
u

l

F
a

il
ed

No such case observed in the case study.

13

imposed by OS upgrade (e.g., local SD card file access), the
change of application logic (e.g., the class name), the change
of application UI (e.g., the position or layout of the controls),
and a mixture of them may all affect the reusability of a test
script.

We have further analyzed these TAST-reusable test
cases to check whether they have covered any changes. As
shown in Table III, the first column lists the applications
and the second column lists the number of reusable test
scripts by TAST. The third and the fourth column list the
number of TAST reusable test scripts covering/without
covering changes. The fifth and the sixth columns list the
percentage of TAST reusable test scripts covering/without
covering changes with respect to all TAST reusable test
scripts, respectively. The last two rows list the mean and
standard deviation of the corresponding column,
respectively.

In general, we found that 5963% of the reusable test
scripts did not cover any change on the newer version of

the TV model; and the remaining 3741% of the reusable
test scripts cover some changes each and still operated
correctly. The mean number of TAST reusable test scripts
over all applications is 48, of which 18 covering changes
while 30 covering no changes, on average.

We had carefully examined the TAST scripts to
understand why those TAST scripts survived the changes.

For TV control, Setting, Ciri, Dictionary, Calendar, IM,
Calculator, and File Explorer applications, their scripts
heavily interact with the underlying Agent interfaces.
Fortunately, the high-level abstraction of the TAST testing
APIs encapsulates the changes in the hardware and
operating system well, which makes the test scripts less
susceptible to those changes.

For Browser, Market, Weibo, News, and Email
applications, they involve small UI changes in their
relatively complex user interface, the position independent
control id reference used in the TAST scripts makes them
insensitive to small layout changes in GUI. In contrast, the
MT scripts using position-based control reference are very
susceptible to those small GUI changes.

For Online Video, Media Player, Photo Viewer, Temple
Run, Map, CarRace, and Weather Report applications, they
have relatively rich multimedia content. In MT, the testers
are can only use image comparison for results verification.
However, in TAST, they have the option to perform test
results checking with assertions on GUI control properties.
This gives TAST scripts great advantages over MT scripts
in terms of reusability.

 Table V. Sample Failure Cases

Failure
Case

How to Repeat Result Discussion

1 Start a web browser. Go to
youku.com. Actively consume 70% all
available network bandwidth. Select
to play a video. Press the “fast for-
ward” button twice.

An ANR error occurs,
showing the web browser
not responding.

This is a typical error that the application using network
cannot handle these limited bandwidth scenarios graceful-
ly. With the network bandwidth control support of TAST,
this bug can be exposed easily.

2 Actively consume 80% CPU usage.
Start Temple Run. Start playing the
game for a while.

The game renders very
slowly, and gets stuck
from time to time. Finally
an ANR error occurs,
showing Temple Run not
responding.

Temple Run is a computation-intensive application. The
error occurs only when the available CPU resource is
stringent. With the CPU usage control support of TAST, it
is easy to set up different levels of CPU utilization to ex-
pose this bug.

3 Actively consumes the USB storage
space so that the available storage
space is less than 1 Megabyte. Start
Market, Select the application Angry
Bird (which is larger than 10 Mega-
bytes in size) to download from Mar-
ket. Select to save Angry Bird in the
USB disk.

Instead of showing a re-
minder dialog box ex-
pressing that there is not
enough space to store
Angry Bird, the Market
application simply crash-
es.

When saving files to an external storage, an application
should check whether an enough space is available. Mar-
ket fails to perform this kind of check before writing data
to the USB disk. Previously, test engineers have to prepare
an almost full USB disk manually. With the support of
TAST, the USB disk storage can be prepared with a single
line of code in the test script.

4 Start Ciri. Read the names of the all
applications in the TV from a data-
base into a list. Iterate in turn over the
list to instruct Ciri to launch the ap-
plication by saying each name in the
noisy mode.

Ciri cannot launch the
correct application in the
noisy mode.

The accuracy of the voice assistant application degrades
seriously when the word is spoken in a noisy environ-
ment. Without the support of TAST, the test engineers
have to set up an environment to prepare a noisy scenario.
Furthermore, in the above steps, TAST can allow test en-
gineers’ to check whether the correct application has been
activated with the support the Agent service (similar to
line 25 in Figure 1)

5 Consume the memory until the sys-
tem issues a low memory alert. Open
the TV setting application. Repeatedly
sets volume, picture room, signal
source, and subtitles for 10 minutes.

The setting application
crashes after 5 minutes.

There is a memory leak bug in the TV setting application.
This bug only manifests when the application is under
stress testing for a long period. Without controlling the
memory usage, the setting application can run for 2 hours
without crash. However, when the test engineers execute
the application under a memory constrained scenario, the
bug can manifest into a crash significantly quickly.

Table IV illustrates cases where at least one of TAST

and MT successfully make the test script of the same test
specification reusable. In particular, we did not find any
test specification that MT made it reusable but TAST failed.
In the table, the second and the third columns show
whether MT and TAST successfully reused the same test
specification, and the fourth column illustrates an example
of the categories.

We also note that TAST uses the properties of widgets
as the source of test oracle information. This strategy may
not generally applicable, such as when the widget is
incorrectly rendered on the screen or some other widgets
shelter the target widget. To check faults like the
inconsistency between a set of displayed widgets against
their in-memory representations, the image comparison
strategy may be more valuable. On the other hands, in our
case study, we found that for many test specifications,
TAST scripts did result in test cases with reusable
implementation of test result checking while MT scripts did
not. It may indicate that the use of the widget properties as
the source of test oracle information can be one of the
effective strategies.

To understand the situation better, we examined these
TAST-reusable test scripts and classified them into 5
categories based on the sources of changes they covered.
Specifically, we classified each of these test scripts based on
the test script covered the change of hardware, OS,
application logic, application UI, or a mixture of them. We
list their ratios (in both mean and standard deviation) in
Table VI. We observe from Table VI that these test scripts
most frequently cover changes in application UI or logic,
followed by changes in OS and hardware. Moreover,
around 8% of these test scripts cover changes in more than
one source (as indicated by the rightmost column of the
table). Finally, the standard deviations of the ratios are
consistently no more than 5%, which is small.

Table VI. Categorization of TAST-Reusable Test Scripts

Category hardware OS application logic application UI mixed

Mean 12% 16% 28% 36% 8%

Stdev. 3% 3% 5% 5% 4%

We further note that there is a tiny fraction of test cases

that are non-reusable but without covering any change. We
found that they were likely due to some factors affecting
application execution but not completely controllable while
the case study was conducted. For example, in the case
study, the application had to interact with external inputs
such as Internet data and TV signal channels. The
congestion of Internet connection and the interrupted TV
signals may lead to unexpected outcomes that invalidates
the corresponding test scripts.

In summary, based on our analysis on the TAST test
scripts, we believe that our code refactoring approach, the
high-level abstraction of the TAST testing APIs, the position
independent GUI control id reference, and the oracle
checking strategy of TAST enabled a higher degree of test
script reuse observed in the case study.

C. Answering RQ3: Fault Detection Ability

We computed the failure rate, which was defined as
the percentage of all TAST-automated test scripts that each
exposed a failure. Figure 7 shows the failure rate of the
TAST-automated test scripts in the entire testing project of
the TV model. Note that it is a real testing project, any fault
exposed has been fixed, and the same test script had been
re-run to confirm the fault fixed. Hence, we deemed a test
script exposed a failure if the test script ever detected at
least a failure once in the entire testing project.

Figure 7. Failure rate of the developed test suites

We found that the TAST-automated test scripts were
effective to expose faults in the given TV model. The failure
rate achieved in the first round of testing ranges from 1.8%
to 4.1% (with a mean of 3.2% and standard deviation of
0.68%), which was encouraging. It is because the planned
test cases have been used to test these applications in earlier
Smart TV models and all faults not so hard to be exposed
have been cleared by the test engineers before our case
study started. The result shows that TAST is likely to help
the test engineers to improve the quality of the software
component of the TV model. As a reference, Table V
summarizes five selected failure scenarios detected by
TAST when testing the given TV model.

VI. RELATED WORK

There are many progresses toward full test automation
and raise the level of abstraction to promote test script
reusability. However, there is little research aiming to
understanding how to raise the level of abstraction of test
scripts. Indeed, to the best of our knowledge, our work is
the first empirical study in the area of stress testing of TV
applications.

Improving the test case reusability through repair is a
popular strategy. Tiwari and Goel [20] reported a review
study on reuse-oriented test approaches for reducing
testing effort. Memon [14] proposed a GUI regression
testing technique that performs automated test script
reusability analysis on existing GUI test suites and fixing
the non-usable test cases. JAutomate [1] used a screen-based
image recognition approach to identify input locations and
was able to simulate GUI control events (e.g., mouse

15

movement) so that the test scripts can be reused to test
applications in which GUI control objects have been
relocated. Our study examines test case reusability from a
model-based perspective. Our aim is to abstract test code so
that at a certain abstraction level, there is no need to change
the test code and the specific way to deal with a particular
application under test is handled by the runtime engine of
the testing tool internally.

In test automation, formulating effective test oracles
must be addressed. Many existing GUI testing tools use
image comparison for test result verification. Katona et al.
[9] proposed an automatic and black-box technique to test
TVs on a final product line. The technique used a camera to
capture the image shown on a TV screen for test
verification. Marijan et al. [12] proposed an automatic
system for functional failure detection on TV. The system
adopts an effective image comparison algorithm to
compare the image captured from the TV under test and
that from the reference TV. Their approach was applicable
to test TV systems with or without operating system
support. MobileTest [7] was a typical capture-and-replay
testing tool based on image comparison. It used the ADB
interface to stimulate the device under test and adopted the
GUI screenshots for test result checking. Zhang et al. [23]
compared two techniques addressing the test oracle
problem: metamorphic testing and assertion checking.
TAST provides test engineers with assertion checking APIs
and can compare images and GUI control objects. We will
study metamorphic testing for Android apps in the future.

A branch of test automation that is related to our study
is the generation of test cases. Merkel [15] analyzed and
enhanced the adaptive random test case generation
technique, which is applicable to testing general
applications. Pomeranz [16] proposed to build effective
functional test sequences by concatenating test
subsequences from a generated test pool. Jeon et al. [6]
proposed a symbolic execution framework for the Dalvik
bytecode. In this way, automatic test case generation
through symbolic execution of Android byte code can be
possible. Azim and Neamtiu [2] proposed to apply a static
and taint-style dataflow analysis on the application
bytecode to construct a high-level control flow graph that
captured legal transitions among activities (app screens).
They then performed systematic depth-first exploration on
those graphs to generate events for testing Android
applications. Choi et al. [3] proposed to uses machine
learning to learn a model of the application during testing,
uses the learned model to generate user inputs that visit
unexplored states of the app. Jensen et al. [5] proposed a
two-phase technique for automatically generating event
sequences. They firstly used concolic execution to build
summaries of event handlers of the application. Then, they
used the summaries and the GUI model to generate
targeted event sequences. Takala et al. [19] proposed a
model-based approach for GUI testing of Android
applications. Yeh et al. [22] proposed an approach to
analyze GUI model during testing process, and then
performed black-box Android testing based on the model.

Yang et al. [21] proposed a grey-box approach to automatic
GUI-model generation of mobile applications. They
performed static analysis to identify a set of events
supported by the applications. Then, they systematically
exercised the identified events on the application. As we
have validated in our case study, test scripts without the
consideration of resources often lead to significantly lower
degree of automation. We believe that our work has a
positive impact on the research on test case generation.

Apart from the resource constraint issues, our study
also shows the feasibility that by a process of code
refactoring, one can develop a testing approach that
provides a significantly higher degree of test automation
than without such a process. This approach is orthogonal to
the test automation strategies presented in the above work,
which make our work unique and complements to them.
There are several works on testing embedded systems.
Koong et al. [10] presented an automatic white-box testing
environment for multi-core embedded systems. Their
system can perform unit testing, coverage testing, and
multi-core performance testing based on source code
instrumentation and code generation techniques. TAST is a
black-box testing environment. Mattiello-Francisco et al. [13]
proposed a technique for integration testing of the timing
constraints of real-time embedded software. They used
formal models to describe the timing and interoperability
specifications for test case generation. Different from their
work, ours study focuses on system level testing instead of
integration testing. Satoh [17] proposed to test context-
sensitive networked applications via emulating the physical
mobility by the logical mobility of the underlying
computing devices of these applications. Our strategy is to
emulate the resource condition in the execution
environment of the application in TV.

There are also several open-source or commercial
testing tools for consumer electronics device testing.
TestQuest [37] is a non-intrusive automated test solution
that provides comprehensive support for a wide range of
electronic devices. TestQuest executes predefined actions
and compares the output to valid states to determine
whether the test was successful by simulating a “virtual”
user. The WindRiver UX Test Development Kit [39] is a test
development environment targeted at GUI–based testing
for Android platform. Wind River UX Test Development
Kit is designed to assist in the validation of the user
experience of a device by reproducing human interactions
to test user interfaces.

Robotium [32] is a well-designed testing framework
suited for both white-box and black-box testing of android
application. However, several problems with it prevent us
from selecting it. First, it uses the Android instrumentation
test framework, which limits its execution within the same
process of the application under test, so it can only work
with activities and views within the defined package. This
further makes the future extension of our tool to test the
interaction of several applications (apks) within the same
test case difficult. Second, the apk re-signing process
required by Robotium for black-box testing is tedious. We

adopt Monkey because it provides a clean and adequate
interface to support our basic testing requirements.

The monkeyrunner [30] is a standard built-in tool within
the Android SDK that provides APIs for writing programs
that control an Android device or emulator from outside of
Android code. It also uses Python as the scripting language.
Owing to its immerse impact on the Android development
community, TAST also includes several libraries of this tool
as its build blocks (e.g., device connection management).

Testdroid [36] is a fully automated cloud suite for
compatibility testing, facilitating Android developers to test
applications on multiple real devices at the same time. It
provides a Testdroid recorder tool for recording user
actions, generating reusable Android JUnit test cases and
running them in the Testdroid Cloud. The Testdroid Cloud
provides an online service for testing applications on real
Android devices at the backend.

The Appium [26] testing framework is an open-source
cross-platform tool for automating native, mobile web, and
hybrid applications on iOS and Android platforms. It is fair
language-independent. But, its underlying implementation
has constraints for Android app testing. On Android 2.3+,
Appium depends on the Android’s instrumentation
framework, where the limitation on testing multiple
applications still applies. On Android 4.2+, Appium
depends on the UiAutomator [38] framework, which
requires the applications under test to be designed with
accessibility in mind [25]. However, not all third-party
applications used in our case study provide accessibility
support for their customized UI components. This limits
the applicability of Appium in our testing scenario.

The Sikuli [33] framework automates GUI testing via
the image recognition capability powered by OpenCV to
identify and control GUI components. The writing of test
scripts using Sikuli is simple and intuitive. But, in terms our
own testing requirements, it also has some limitations. First,
since image recognition is used, the reusability of the test
scripts may be affected by small GUI changes (e.g., change
of button style). Second, since it has no knowledge of
system internal information, it cannot help control the
resources available to an application for stress testing.

Reliability testing is a key concern in testing consumer
electronic products. Marijan et al. [11] proposed to derive a
model based on usage profiles on such products. They then
performed a reliability analysis based on the execution
results of the test cases derived from such a model.
Different from this work, TAST mainly provides a script-
based and black-box test infrastructure to develop and
execute test cases. Huang and Lin [4] proposed to improve
the software reliability modeling by taking the testing
compressing factor and the failure-to-fault relationship into
the model. Their evaluation on real failure data shows the
proposed model having a good failure prediction power.

VII. CONCLUSION

Many model-based testing strategies face the difficulty
of translating their abstract test cases into concrete test

cases. In this paper, we have examined this aspect from a
reverse-engineering perspective. Specifically, we have
reported an exploratory study. In the study, our testing
methodology consisted of a number of steps to be
conducted iteratively. First, we started from observing how
test engineers wrote concrete test cases using an existing
testing tool. Then, we identified pieces of code to become
methods in the sense of “extract methods” in code
refactoring, and identified missing features in the testing
tool to prevent test engineers from automating the test
scripts further. The testing tool was then enriched with
such methods as APIs (with necessary runtime supports).
This exploratory process continued until test engineers
were (largely) satisfied with the current testing tools. We
chose stress testing to study because fully automated test
scripts were necessary, or else meaningful stress testing
could not be conducted. Moreover, as newly automated test
scripts can be applied to conduct a session of stress test on a
program, owing to the combinatorial effect, it creates many
new stress testing scenarios to test the program (together
with existing automated test scripts). This testing
methodology have been demonstrated in our case study
that it exposed previously unknown bugs from the
applications, thereby improving the reliability of the TV
product, by producing an effective testing framework.
Specifically, the case study has significantly demonstrated
that at least 28% more test cases can be automated, 38%
more test cases can be reused across TV models of the same
TV series, and 3.2% of the automated test cases can expose
previously unknown bugs in stress testing of the TV
applications.

Our work also demonstrates a new research direction
that bridging the gap between abstract test cases and
concrete test cases can be a bottom-up process, which can
be very effective. We have obtained many abstract test
cases for each application. In the future, we will study how
to formulate effective test models so that these abstract test
cases can be automatically generated from such test models.
In this way, we are one step closer to the goal of model-
based program testing, where concrete and executable test
cases can be effectively generated from test models directly.

VIII. ACKNOWLEDGMENT

This research is supported in part by the National
Natural Science Foundation of China (project no. 61202077),
Civil Aviation Special Fund (project no. MJ-S-2012-05 and
MJ-Y-2012-07) and the ECS and GRF of Research Grants
Council of Hong Kong (project nos. 123512, 125113, 111313,
and 11201114).

REFERENCES

[1] E. Alegroth, M. Nass, and H. Olsson. JAutomate: A Tool for System-

and Acceptance-test Automation. In Proceedings of the 2013 IEEE Sixth

International Conference on Software Testing, Verification and
Validation (ICST '13). IEEE Computer Society, Washington, DC, USA,

439-446.

[2] T. Azim, and I. Neamtiu. Targeted and depth-first exploration for
systematic testing of android apps. In Proceedings of the 2013 ACM

17

SIGPLAN international conference on Object oriented programming

systems languages & applications (OOPSLA '13). ACM, New York, NY,

USA, 641-660, 2013.

[3] W. Choi, G. Necula, and K. Sen. Guided GUI testing of android apps

with minimal restart and approximate learning. In Proceedings of the
2013 ACM SIGPLAN international conference on Object oriented

programming systems languages & applications (OOPSLA '13). ACM,

New York, NY, USA, 623-640. 2013.
[4] C. Huang, and C. Lin, Analysis of Software Reliability Modeling

Considering Testing Compression Factor and Failure-to-Fault

Relationship, IEEE Transactions on Computers, 59(2):283-288, 2010.
[5] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing with

targeted event sequence generation. In Proceedings of the 2013

International Symposium on Software Testing and Analysis (ISSTA
2013). ACM, New York, NY, USA, 67-77. 2013.

[6] J. Jeon, K. K. Micinski, and J. S. Foster. SymDroid: Symbolic Execution

for Dalvik Bytecode. CS-TR-5022, Department of Computer Science,
University of Maryland, College Park,2012.

[7] B. Jiang, X. Long, and X. P. Gao. MobileTest: A Tool Supporting

Automatic Black Box Test for Software on Smart Mobile Devices.
In Proceedings of the Second international Workshop on Automation of

Software Test (AST 2007), IEEE Computer Society, Washington, DC,

2007.
[8] B. Jiang, T. H. Tse, W. Grieskamp, N. Kicillof, Y. Cao, X. Li, and W. K.

Chan. Assuring the model evolution of protocol software specifications

by regression testing process improvement. Software: Practice and
Experiences, 41(10):1073-1103, 2011.

[9] M. Katona, I. Kastelan, V. Pekovic, N. Teslic, and T. Tekcan. Automatic
black box testing of television systems on the final production line.

IEEE Transactions on Consumer Electronics, 57(1):224-231, 2011.

[10] C. Koong, C. Shih, P. Hsiung, H. Lai, C. Chang, W. Chu, N. Hsueh, and
C. Yang. ATEMES: Automatic testing environment for multi-core

embedded software. Journal of System Software, 85(1):43-60, 2012.

[11] D. Marijan, N. Teslic, V. Pekovic, and T. Tekcan. An Approach to
Achieving the Reliability in TV Embedded System. In Proceedings of

the Fourth International Conference on Secure Software Integration and

Reliability Improvement Companion (SSIRI-C), 13-17, 2010
[12] D. Marijan, V. Zlokolica, N. Teslic, V. Pekovic, T. Tekcan. Automatic

functional TV set failure detection system. IEEE Transactions on

Consumer Electronics. 56(1):125-133, 2010
[13] M. F. Mattiello-Francisco, E. Martins, A. Cavalli, and E. T. Yano. InRob:

An approach for testing interoperability and robustness of real-time

embedded software, Journal of Systems and Software, 85(1):3-15, 2012.
[14] A. Memon. Automatically repairing event sequence-based GUI test

suites for regression testing. ACM Transactions on Software

Engineering Methodology. 18(2), 2008.
[15] R. Merkel, Analysis and enhancements of adaptive random testing. PhD

thesis, Swinburne University of Technology, Australia.

[16] I. Pomeranz. Concatenation of Functional Test Subsequences for
Improved Fault Coverage and Reduced Test Length, IEEE Transactions

on Computers, 61(6):899-904, 2012.

[17] I. Satoh, A testing framework for mobile computing software. IEEE
Transactions on Software Engineering, 29(12):1112–1121, 2003.

[18] A. Surya, D. Lee, M. Ohye, P. Carff. Building Web Apps for Google

TV. O'Reilly, 2011.
[19] T. Takala, M. Katara, and J. Harty. Experiences of System-Level Model-

Based GUI Testing of an Android Application. In Proceedings of the

2011 Fourth IEEE International Conference on Software Testing,
Verification and Validation (ICST '11). IEEE Computer Society,

Washington, DC, USA, 377-386, 2011.

[20] R. Tiwari, and N. Goel. Reuse: reducing test effort. ACM SIGSOFT
Software Engineering Notes. 38(2):1-11, 2013.

[21] W. Yang, M. Prasad, and T. Xie. A grey-box approach for automated

GUI-model generation of mobile applications. In Proceedings of the
16th international conference on Fundamental Approaches to Software

Engineering (FASE'13), Vittorio Cortellessa and Dániel Varró (Eds.).

Springer-Verlag, Berlin, Heidelberg, 250-265. 2013.

[22] C. Yeh, S. Huang, and S. Chang. A black-box based android GUI testing

system. In Proceeding of the 11th annual international conference on

Mobile systems, applications, and services (MobiSys '13). ACM, New
York, NY, USA, 529-530. 2013.

[23] Z. Zhang, W.K. Chan, T.H. Tse, and P. Hu, Experimental study

to compare the use of metamorphic testing and assertion

checking, Journal of Software (JoS), 20(10):2637-2654, 2009.

[24] ADB. Android Debug Bridge.

http://developer.android.com/tools/help/adb.html. Last

access: Sep 2014.

[25] Android UI Testing.

http://developer.android.com/tools/testing/testing_ui.html

[26] Appium. http://appium.io/introduction.html

[27] Changhong Electric Co. http://www.changhong.com Last

access: Sep. 2013.

[28] Ciri. http://www.changhongglobal.com/egdch/1982_8755.htm.

Last access: Sep 2014.

[29] Google TV. http://www.google.com/tv/. Last access: Sep 2014.

[30] Monkey Runner. http://developer.android.com/tools/help

/monkeyrunner_concepts.html. Last access: Sep 2014.

[31] Monkey Tool for Android.

http://developer.android.com/tools/help/monkey.html. Last

access: Sep 2014.

[32] Robotium. https://code.google.com/p/robotium/. Last access:

Sep 2014.

[33] SiKuli. http://www.sikuli.org/. 2015. Last access: Mar. 2015.

[34] Siri. http://www.apple.com/ios/siri/. Last access: Sep 2014.

[35] Temple Run. https://play.google.com/store/

apps/details?id=com.imangi.templerun. Last Access: Sep 2014.

[36] TestDroid. http://testdroid.com/. Last access: Sep 2014.

[37] Test Quest. http://www.bsquare.com/products/testquest-

automated-testing-platform. Last access: Sep 2014.

[38] UiAutomator.

http://developer.android.com/tools/help/uiautomator/index.

html

[39] WindRiver UX Test Development Kit.

http://www.youtube.com/ watch?v=NhXMiit4Abo. Last

access: Sep 2014.

Bo Jiang is an assistant professor at School of Computer Science and
Engineering, Beihang University. He got his PhD from The University of

Hong Kong. His current research interests are software engineering in general,

and embedded systems testing as well as program debugging in particular. He
received the best paper awards from COMP-SAC’08, COMPSAC’09, and

QSIC’11. His research results have been reported in many international

journals and conferences such as TSC, JSS, IST, ASE, WWW, ICWS,
COMPSAC, and QSIC. He is a member of IEEE.

Peng Chen is a MSc student at School of Computer Science and Engineering,

Beihang University. His research interest is software quality assurance. He is

a student member of the IEEE.

W. K. Chan is an associate professor at Department of Computer Science,
City University of Hong Kong. He obtained all his BEng, MPhil and PhD

degrees from The University of Hong Kong. He is currently editors of Journal

of Systems and Software and International Journal of Creative Computing,
guest editors of several international journals, PC/RC members of FSE’14 and

ICSE’15, a symposium chair of COMPSAC, and an area chair of ICWS’15.

His research results have been reported in more than 100 papers published in
major international journals and conferences. His current research interest is

to address the software testing and program analysis challenges faced by

developing and operating large-scale applications. He is a member of IEEE.

Xinchao Zhang is a Senior Test Manager at Reliability Institute of Si-chuan
Changhong Electric Co. in China. His research interest includes quality

assurance and system reliability testing.

http://www.changhong.com/

	I. Introduction
	II. Motivation
	A. Inadequacy of Testing Infrastructure
	B. Motivating Example

	III. The Resultant Testing Tool: TAST
	A. Overview of the TAST Architecture
	B. Events and Execution Trace Model
	C. Events for the ADB Interface
	D. Events for the Agent Interface
	E. Events for Voice Control via Socket-based Voice Interface

	IV. Case Study
	A. Background
	B. Research Questions
	C. Application Benchmarks
	D. Experimental Setup

	V. Data Analysis
	A. Answering RQ1: Extent of Automation
	B. Answering RQ2: Extent of Reuse
	C. Answering RQ3: Fault Detection Ability

	VI. Related Work
	VII. Conclusion
	VIII. Acknowledgment
	References

