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The Effect of Model Uncertainty
on Maintenance Optimization

Cornel Bunea and Tim Bedford

Abstract—Much operational reliability data available, e.g., Sx(z) 1— Fx(z): Sfof X

in the nuclear industry, is heavily right-censored by preventive v (v) 1 — Fy(y): Sfof Y

maintenance. The common methods for dealing with right-cen- S%(z) Pr{X > t, X < Y}: sub-Sf ofX
sored data (Total Time on Test statistic, Kaplan—Meier estimator, X ’ ;

adjusted rank methods) assume the-independent competing-risk Sy (¢ Pr{Y >,V < X}: sub-Sfofy
model for the underlying failure process and the censoring process, £'x () Pr{X <t, X <Y}: sub-Cdf ofX
even though there are manys-dependent competing-risk models F3(t) Pr{Y < ¢, Y < X}: sub-Cdf ofY’
that can also interpret the data. It is not possible to identify the ¢, cost of critical failure

“correct” competing risk model from censored data. A reasonable co cost of planned replacement
question is whether this model uncertainty is of practical impor-
tance. This paper considers the impact of this model-uncertainty C(z,y) copula OU{ andy

on maintenance optimization, and shows that it can be substantial. 2(z, ¥) ~ Spearman’s

Three competing-risk model classes are presented which can bet(z, y) Kendall'st

used to model the data, and determine an optimal maintenance g age replacement time
policy. Given these models, then consider the error that is made s-expected cost ovelr
when optimizing costs using the wrong model. Model uncertainty
can be expressed in terms of the “dependence between competing
risks,” which can be quantified by expert judgment. This enables
reformulating the maintenance optimization problem to account
for model uncertainty.

DEFINITION

copula:  see Section IlI-C

Index Terms—Censored data, competing risks, copula, identifi-

ability, preventive maintenance. |. INTRODUCTION

HE COMMON methods (assumingrindependent cen-
soring), used to treat right-censored data, are nonconser-

ACRONYMS! . :
vative, in the sense that othedependent censoring models es-
Cdf cumulative distribution function timate the underlying failure process more pessimistically [4].
ii.d. s-independent and identically distributed Without making nontestable assumptions (esgndependence
pdf probability density function of the failure and censoring processes), the true distribution
PM preventive maintenance function is not identifiable from the data. Hence, in addition to
RC replacement cost the usual uncertainty caused by sampling fluctuation, there is
RT replacement time the extra problem of model uncertainty.
r.v. random variable This paper tests the effect of model uncertainty on the
Sf survivor function problem of optimizing maintenance.
Assumption 1:Data are available which contain censors
NOTATION from an existing PM program.
L The data in assumption #1 are used to estimate an optimal age
X lifetime, X > 0; ar.v. replacement PM program.
Y PMtime,Y > 0;ar.v. Section Ill presents 3 model-classes of competing risk. The
fx(x),  [pdf, Cdf] of X independent model is used as the most extreme pessimistic
Fx(x) model of existing PM. The other extreme model is used for
fr(y),  [pdf, Cdf] of Y the most optimistic model of existing PM. The dependent
Fy(y) ' competing risk model is used for the general case; the de-
rx(t) failure rate ofX pendence between competing risks is given by a copula. The

minimally informative copula with respect to the uniform
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Section IV recalls the theory of optimal age-replacement poli-
cies. Section V presents 3 numerical examples to determine the

IThe singular and plural of an acronym are always spelled the same. error thatis made when optimizing costs using the wrong model.
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Section VI shows that model uncertainty does lead to substanBut from competing risk data a different rate of failure for
tial uncertainty in estimating optimal maintenance intervals amslobserved. The observed failure rate 10iis
excessive costs.

This paper extends and develops results in [6], in particulajbrx(t) = lim PrX >t X <Y, X €(t,t+9)|Z >t}
by showing how expert judgment can be used to quantify model 60 o
uncertainty. 1 dSx(t)

TSt +Sp(t) dt

Il. COMPETING RISK

The competing-risk approach models the data as a rene\ﬁgf_th? most frequently made assumption in the literature, prob-
process: a sequence of i.i.d. variabs Zs, .. .. Each obsery- abilistic independence betweehandY’, then
ableZ; is the minimum of 2 variables and the indicator of which . i
variable was smaller. The lifetime of the componenKisthe Sx(t) + Sy () = Pr{X >, ¥V >t}
life that the component would reach if it were not PM’ed. The = Pr{X >t} - Pr{Y >t} = Sx(t) - Sy ().

PM time of the component i¥": the time at which the com- ] )
ponent would be preventively maintained if it did not fail firstYSing these results, [8] shows that if the competing riskand
Clearly, Y ares-independent with differentiable Sf, then

Z = [min[X, Y], [(X < Y)]. rx(s) = obrx(s).

. . . - . Now, the underlying marginal distributions af andY can be
Usually X is the minimum of several variables giving the timeyantified in terms of the observable sub-Sf

to failure by a particular failure mode: this paper considers the

case of 1 failure mode. The observable data allow estimating the t dS%-(s)
sub-Sf Sx(t) = exp [/ TR LY } : 1)
, Jo S%(s)+ S3(s)
XA =Pr{X >t X <Y}, B. Model #2: Highly Correlated Censoring
Sy () =Pr{Y >,V < X}, s-Independent censoring does not capture the notion that PM

) is done when the equipment gives some sign of future failure.
but not the true Sf o’ andY’. Hence one can not estimate the The most extreme case is: PM aims to prevent component-

underlying failure distribution foX" without making additional, fajlure at a time immediately before failure. If that aim is not
nontestable, model assumptions. A characterization of these gighieved then the PM action is applied immediately after failure.

tributions forX that are possible for given sub-Stisin [S].  pw is unsuccessful with probabilifyand successful with prob-

By specifying a copula for the underlying joint distribution ofypjjity 1 — p, s-independent of the time at which the failure oc-
X andY one can identify the marginals (and the full joint distrix,rs This is modeled by

bution) [12]. However the choice of such a copula is difficultto | Y= X46-¢
make: [2] suggests doing this by specifying the Spearman’s rank '
correlation betweeX andY’, and then using the copula with
minimum information with respect to the independent copu
(i.e., the most-independent copula with the given Spearmanr

correlation). ) =Pr{X >t X <Y} =Pr{X >t 6§=1}
=Pr{6 =1} -Pr{X >t} =p- Sx(t);
Sy () =Pr{Y >¢t, Y < X} =Pr{6 = -1} - Pr{Y > ¢t}
This section presents 3 competing-risk models in which the ~(1—p) Pr{X >t} = (1—p)-Sx(t).
marginal Cdf are identifiable. Two of them are the extreme ’

cases—independent model and high correlated censorifgnce thenormalizedsub-Sf (normalized so that they equal 1
model; the third one assumes that the dependence betwgen— () are approximately equal,

competing risks is given by a copula.

e ¢ > 0is very small but depends oX,
g,= {1, =1}, with probability [p, 1 — p], is s-independent of
r(For very smalk Model 2 gives:

I1l. THREE MODELS FORCOMPETING RISK

Sx(t) _ Si(t) @)
A. Model #1: Independence P L—p’
Let Fx have pdf,fx(t), then and both are equal 6 (). This condition can be checked from
the data. If it does not hold then model #2 is not correct. Fig. 1
" fx(t) 1 dSx(t) is an example where
rx(t) =- = — . .
SX<t> SX (t) dt SX(t) — eXp(_tO.S) ) (3)
dSx
dllog(Sx)] = ==, : .
Sx 1000 samples were taken for this model, with= 1/3; then

i the empirical functiongS% ())/p, (S3-(t))/(1 — p), and the
Sx(t) = exp [_/0 rx(s) ds} ' theoretical functionSx (t), were plotted.
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Fig. 1. Highly correlated censoring.

If (2) does hold, then the model might be correct, butstie-

H is the joint Cdf of(X, Y);

dependent model might also hold with the same observable dataF)}landF;1 are the right-continuous inverses dfy

Assuming model #1 stindependence) when model #2 holds

and Fy-.

would lead to an incorrect assessment of the marginals. Propmders-independence ok andY’, the copula is

sition 1 is obtained by using (1), [6].
Proposition 1: Let X andY have a joint distribution de-
scribed by model #2. LeX andY be s-independent with

S%(t) = S%(t), Sy (t) = S5 ().
Then

Sy =[SxF,  Sy(t) =[Sx ()"

Cu, v) =u-v=1I,
and any copula must fall between

M(u,v) = min(u,v) and W(u,v) = max(u+ v —1,0)

the copulas of the upper and lower Fréchet bounds [9]. As in
model #1, under the assumption ©fndependence ok and
Y, the marginal Cdf ofX andY are uniquely determined by

Model #2 is a special case of the random-signs model in [ sub-Sf ofX andY'. The more general result [12] is: if the

and can be used when the sub-Sf satisfy

Sx(t) o Sy(t)
D 1-p

» 120 4

The random-signs model says that= X — ¢ ((isar.v.),
¢ < X,Pr{¢ =0} = 0, whose sign is-independent oK . The
failure is observed with probabilitr{X < Y} = Pr{¢ >
0} = p.

C. Model #3: Dependent Competing Risks

Definition: Copula: the copula of 2 rv.X andY, is
the distribution,C, on the unit square [0, 1]of the pair
(Fx(X), Fy(Y)) (for a continuous r.v.X, with pdf, Fx, the
r.v., Fx(z), is always uniformly distributed on [0, 1]) [10].

copula of(X, Y') is known, then the marginal Cdf of and
Y are uniquely determined by the competing-risk data, as in
theorem 1.

Theorem 1: Let the marginal Cdf of X, Y) be continuous
and strictly increasing if0, co). Let the copulaC be known,
and the corresponding probability measure for any open set of
the unit square be positive. Théf and Fy-, the marginal Cdf
of X andY’, are uniquely determined by the sub-Cdf.

The Appendix shows briefly why the marginals are identifi-
able when the pdfs and sub-pdfs exist.

The problem of choosing a copula is now considered. There
are many measures of association for the pair V'), which
are symmetric inX andY . The best known measures of associ-
ation are Kendall's- and Spearman’s; the more modern term
“measure of association” is used instead of “correlation coeffi-

This model assumes that the dependence structure befiveefient” for a measure of dependence between r.v.

andY is given by a copula. The functional form 6f [0, 1]*> —
R is

C(u, v) = H (Fy'(u), Fy'(v)),

Kendall'st for a vector(X, Y') of continuous r.v. with joint
Cdf H is defined:

Let (X1, Y1) and (X5, Y3) be i.i.d. random vectors, each
with joint Cdf H; then the Kendal- is defined as the proba-
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bility of concordance minus the probability of discordance:

7(X,Y)=Pr{(X; — X2)- (Y1 — Y2) > 0}
—Pr{(X; — X5) - (Y1 — Y2) < 0};
or
7(X,Y) = Pr{sgn(X; — X5) =sgn(¥Y; - Y2)}
— Pr{sgn(X; — X5) # sgn(Y; — Y2)}.

The other measure of association, Spearman's defined as:
Let X andY be continuousr.v.; then Spearmap’s defined

489

1-parameter family of copulae which has a strict generator. The
Gumbel family is defined as:

Co(u, v) = exp(— [(—logu)® + (- logv)o‘]l/a>
fora € [1, 00).

The generator is the functiop,, (t) = (—log(t))~.

The Appendix shows that can be written as a function of
Kendall'sT: a; = (1 —7)~ L.

It remains now to quantify the uncertainty in Kendal*s
using expert opinion. Experts can not be directly asked to quan-

as the product moment correlationBf, (X) andFy- (Y):

tify their uncertainty overr, instead they are asked to give un-

certainties over physically realizable quantities [3].

pr(z, y) = p(Fx(X), Fy(Y)) :
Cov[Fx (X), Fy(Y)]

~ Var[Fx (X)] VarlFy (V)]

Simple formulae relating the measures of association to copula
density are given in the Appendix.

Because the measure of association is to be treated as a pri—°
mary parameter, it is necessary to choose a family of copulae
which are as “smooth” as possible and which model all pos-
sible measures of association in a simple way. Reference [5]
proposes using the unique copula with the given Spearman’s '
that has minimum information with respect to théndepen-
dent distribution, and gives a method to numerically-calculate
this copula. Due to the difficulties of interpreting Spearman’s
by a nonspecialist, and of quantifying it, Kendal's tau is used ¥
a primary parameter. Kendalkshas the advantage of a defini-
tion which can be explained to a nonspecialist, but the value c

Consider 2 sockets with failure timeX; and.X», and the
PM timesY; andYs.

The expert can be asked for the “probability that an at-
tempt to do PM for socket #1 would occur before the PM
for socket #2, given that the failure of socket #1 occurs be-
fore the failure of socket #2;” let this probability lge

By symmetry the probability is the same for the occur-
rence of the PM for socket #2 before the PM for socket
#1, given that the failure time of socket #1 is greater than
the failure time of socket #2.

The “probability of occurrence of the PM for socket #2
before the PM for socket #1 given that the failure time of
socket #1 is smaller than the failure time of socket #2” is

—q.

If the experts can give a distribution far = Pr{Y; >
2| X1 > X2}, then this can be converted to a distribution over
IéﬁndaII'ST. Thus,

not be estimated using only the competing risk data, because of Pr{(X; — X3)- (Y1 — Y2) > 0}

its “identifiability problem.”

Thus some prior knowledge or subjective information must
be used to obtain information about the value oExpert judg-
ment is used to model the uncertainty ovemand is discussed
later in this section. For now, the way to obtain the copula must
be explained.

=Pr{(X1 > X2)N (Y1 > Ya)}
+Pr{(X; < Xo)N (Y1 < Y32)}

=Pr{X1 > Xo} - Pr{Y¥; > V5| X1 > X»}
+Pr{X; < Xo}-Pr{V]; < V5| X; < X3} =q.

Reference [12] suggests that the important factor for &imilarly:

estimate of the marginal Sf is a reasonable guess at the strength
of the association between competing risks, rather than the

PI‘{(Xl — XQ) . (Yl —_ Yg) < 0} = 1 — q;

functional form of the copula. Thus a class of copula wit}}, s, — 2 — 1.
which it is easy to work from the mathematical view-point is e ¢ can be considered an observable quantity be-

chosen, e.g., Archimedean copula. Some definitions about
Archimedean copula and some properties of Kendallfer a
certain Archimedean family of copula are explained.

Let X andY be continuous r.v. with joint Cdf/ and mar-
ginal Cdf F'x andFy . WhenX andY ares-independent, then
H(z,y) = Fx(x) - Fy(y); this is the only case when the.
joint distribution is written as a product dfy and Fy . But,
there are some families of distributions in whikbH (x, y)) =
M(Fx(2)) - M(Fy (1)) [9]

se ¢
(v > v x™ > x{™1 holds when a large sample of
pairs(X{™ | v, (x{™, v{™) is observed.

For eachd andr, calculate the long-term specific cost; then
optimize this replacement cost by finding the minimal cost. This

is the approximate average rate for which

is discussed in Section V.

IV. M AINTENANCE OPTIMIZATION

Usingp(t) = —log(A(t)), then \(-) must be positive on the

interval (0, 1)], andH is a sum of the marginalB'y and Fy,

Consider the effect of uncertainty about the underlying life-
time distribution on the selection of the maintenance policy.

o(H(z, y)) = o(Fx(x)) + ¢(Fy(y)), or in terms of copula To keep things simple, consider the age-replacement policies.

¢(Clu, v)) = p(u) + ¢(v).

An age-replacement policy is one for which replacement occurs

Copulas of this form are “Archimedean copulas.” The funat failure or at agé#, whichever occurs first. Unless otherwise

tion ¢ is an “additive generator” of the copula.¢f0) — oo,
theny is a strict generator and(u, v) = o~ (¢(u) +¢(v)) is

specified,f is a constant.
In the “finite time-span replacement model” minimic&o)

a strict Archimedean copula. For the goal in this paper, choosexperienced durinf, 6]; the cost is computed in money units,
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TABLE |
OPTIMAL MAINTENANCE TIMES AND COSTS
c1/ca 10 20
p 0.3 0.1 0.3 0.1
RT RC RT RC RT RC RT RC

D1, M1 | 0.8280 10.9217 | 1.2849 9.8756 | 0.6127 18.8850 | 0.9508 21.6988
D1, M2 | 0.3860 7.5921 | 0.3860 7.5921 | 0.2574 9.9433 | 0.2574 9.9433
D2, M1 | 0.8687 4.9674 | 1.5047 6.5283 | 0.5950 7.2682 | 1.0305 10.1017
D2, M2 | 0.4758 4.2823 | 0.4758 4.2823 | 0.3259 6.1916 | 0.3259 6.1916
D3, M1 | 0.3393 3.3011 | 0.3353 3.3280 | 0.2322 4.6522 | 0.2303 4.6821
D3, M2 | 0.3556 3.2006 | 0.3556 3.2006 | 0.2393 4.5459 | 0.2393 4.5459

time, or an appropriate combination. For an infinite time span, TABLE I
an appropriate objective function is mean-cost per time-unit: RATIOS OF MAINTENANCE TIMES AND COSTS
cl/cz 10 20
v(®) = Tim C() ’ 0.3 0.1 0.3 01
- 9 | RT RC| R RC | RI RC | RI RC
D1 | 215 1.44 | 333 13| 238 1.9 | 369 2.18
Nl(H)E number of failures durin@), 6], D2 |18 116|316 152 | 1.8 1.17 | 3.16 1.63
: D3| 095 1.03 )| 094 1.04 | 097 102|096 1.03
N> ()= number of planned PM durin@, 6];
c1 = cost of critical failure,
co = cost for planned replacement.
The mean cost duriny, 4] is:

Thus the long term specific cost, givénis

1
16) = [ € 0)- fiir)ar
J0
andé, is obtaining minimizingy(6).
Consider only nonrandom age replacement in seeking the policy

minimizing the~(#) for an infinite time span. V. NUMERICAL EXAMPLES
By definition of

Acronyms:
Di Distribution #
E[N.(0 E[N> (0
~() = lim |c; - MO, EN2(0)] Mj Model #j
f—o0 0 0 . .
Three numerical experiments show
[1] shows that « the effect of using M1 when M2 actually holds,
c1-F(0) +cy-S(9) « the dependence of replacement cost with the measure of
1(0) = fe S(t) dt - association (Kendall's),
Th 0 * the optimal replacement time of the average specific cost.
en
c1 A. Part 1
7(0) =00,  y(o0) = . . o .
Jo S(t)dt Consider 3 distributions fokX:
. . . . Dlirx(t) = 3/2
Differentiatey to fmtithe optimumgd-(#)/dé = 0, then D2: (1) = 12
r(0) - / S(t)dt — F(f) = —2—. D3:rx(t) = t3.
Jo C1 — C2

. . . . The failure rates are Weibull, and are continuous and increasing.
WhenFy (x) has anincreasing failure rate, the optiiais the  gaca;se the costs of critical failure can be much higher than

unique solution of this equation. For a r.v. with constant failurﬁ\mse of PM (because of other consequences to the system be-
rate or decreasing failure rate, the specific cost does not hav%lgﬂd the simple need to replace the failed unit).diets ¢

optimum: Because actual plant data show a many PM actiong; let
dv(0)\ small:
sign (%) is constant 110, 20
C2
p=0.3,0.1;

thus this type of maintenance policy is not appropriate for a such
rv. thus there are 4 cases to compare the models. Both RT and RC

When the primary parameter is Kendatfsind the informa- are in Table I. The RT are the optimal-RT calculated under the
tion onr is F, () andf, (7), the specific cost depends erand  @ssumption that the model is correct. For M2 the RC are the
9: optimal-RC. For M1 the RC are the RC of M2 (which is actually

the correct model), evaluated with the optimal RT calculated for
y(r, 0) = ‘1 'F(Tge) +ex-S(r, 9)_ M1. Hence the costs for M1 are always higher than those of M2.
Jo S(r, t)dt Table 1l gives the ratio of the 2 model-outcomes (M1-outcome
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Fig. 2. Dependence between RC and the measure-of-motivation for the pairs of subXSafaY” given by sub-Sf #1 forX', and the other three fdr. (a)
p=0.3,¢2/c1=0.1; (b) p=0.3¢2/c;=0.05; (c) p=0.1¢»/c,=0.1; (d) p=0.1¢2/c,=0.05.
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Fig. 3. Dependence between RC and the measure-of-motivation for the pairs of subXSafarY” given by sub-Sf #2 forX', and the other three fdr. (a)
p=0.3,¢2/¢1=0.1; (b) p=0.3¢2/c;=0.05; (c) p=0.1¢>/c,=0.1; (d) p=0.1¢2/c;=0.05.

divided by M2-outcome) for the time and costs of each of the * use Weibull distributions with the same shape parameter

distributions. of S% and Sy,
* the scale parameter &f-, ay-, must be greater than the
B. Part 2 scale parameter &%, ax.
Consider 3 sub-Sf faX which for the extreme casesi{nde- Thus, take:
pendence and highcorrelation) take the same failure rates for ax _ 1 ax _ 1 ay _ 1
X as in Section V-A and for every sub-Sf &fF, take the other ay 2" ay 47 ay 8

3 sub-SfY in such a way that inequality (4) is satisfied; for p andc; /¢, use the same values as in Section V-A.
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Fig. 4. Dependence between RC and the measure-of-motivation for the pairs of subXSafaY” given by sub-Sf #3 fofX, and the other three fdr. (a)
p=0.3,c2/¢1=0.1; (b) p=0.3¢2/c;=0.05; (c) p=0.1¢2/c;=0.1; (d) p=0.1¢2/c1=0.05.
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Fig. 5. Specific cost for 3 values of Kendallts 0.1, 0.5, 0.9. Fig. 6. Average specific cost and optimal replacement time.

Figs. 2—4 show the way in which the RC (normalized by RC
for the independent case) depends on Kendall's

To obtain a distribution for Kendall's, ask an expert to give  The results in Tables | and Il show that the “optimal replace-
quantiles for they defined in Section 1lI-C. If the expert givesment interval” and “optimal replacement costs” can be dramati-
5% and 95% quantiles then fit a beta distributionPif{q < cally nonoptimal when the wrong model is used to estimate the
0.7} = 0.05 andPr{q < 0.95} = 0.95, then the 5% and 95% underlying failure distribution from censored data. The differ-
quantiles forr arePr{r < 0.4} = 0.05 andPr{r < 0.9} = ence is least when the failure rate increases quickly. When the
0.95. Assume the beta distribution fer, then the parametersfailure rate increase more slowly, the difference is larger. For one
of this distribution, given the 5% and 95% quantiles, are: case calculated here, the specific costs obtained by using the in-
5.6705, b = 2.7322. dependent model are more than twice the best possible specific

Fig. 5 shows the specific costs for various values of Kendallt®sts using the correct model.
7; Fig. 6 shows the average specific costs with optimal replace-Section V-B considers the effect of model uncertainty due
ment times. to the impossibility of identifying the “correct” competing risk

VI. DISCUSSION
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model from censored data. Using expert-judgment to quantifyTheorem 3:Let X andY be continuous r.v. with copul@.
the dependence between competing risks, shows that theTkeen Spearman’sfor X andY [denoted by eithep(X, Y') or
placement cost is highly sensitive to Kendali'd=igs. 1-3show pc¢] is

that sensitivity is higher for distribution #1 and, for a certain 1,1

case, RC can be twice that of RC for the independent case. Fig. 4 p(X,Y) = 12/ / uw-vdC(u, v) — 3,

shows that the difference between optimal replacement costs 0 J0

1 1
and optimal replacement time can be more than a factor of 2. p(X,Y) = 12/ / C(u, v) dudv — 3.
Fig. 5 presents the long-term average specific-cost and optimal o Jo /
replacement-time. From[9, theorem 5], determines the parametéand implicitly

This work demonstrates the importance of using good ettre copula) when Kendall’s is known.

pert judgment from experts with insight into the maintenance Theorem 4: Let X andY” be r.v. with an Archimedean copula
process. If the experts can select the correct correlation levebenerated by € 2. Kendall'st for X andY is
then the results in this paper will considerably aid model-selec-

tion 1+4/1 Y.
. T = .
¢ o ¥'(t)
APPENDIX If C, is a member of the Gumbel family, then fer> 1,
olt) ,, _ t-log(t)
A. Partl o'(t) a

This briefly shows why the marginals are identifiable whegg thatr(a) = 1 — (1/a). Thusa, = 1/(1 — 7).
pdfs and sub-pdfs exist. By definition, the sub-Cdf Xfis
Fi(t)=Pr{X <t,X <Y}, and
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