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The Effect of Model Uncertainty
on Maintenance Optimization

Cornel Bunea and Tim Bedford

Abstract—Much operational reliability data available, e.g.,
in the nuclear industry, is heavily right-censored by preventive
maintenance. The common methods for dealing with right-cen-
sored data (Total Time on Test statistic, Kaplan–Meier estimator,
adjusted rank methods) assume the-independent competing-risk
model for the underlying failure process and the censoring process,
even though there are many -dependent competing-risk models
that can also interpret the data. It is not possible to identify the
“correct” competing risk model from censored data. A reasonable
question is whether this model uncertainty is of practical impor-
tance. This paper considers the impact of this model-uncertainty
on maintenance optimization, and shows that it can be substantial.
Three competing-risk model classes are presented which can be
used to model the data, and determine an optimal maintenance
policy. Given these models, then consider the error that is made
when optimizing costs using the wrong model. Model uncertainty
can be expressed in terms of the “dependence between competing
risks,” which can be quantified by expert judgment. This enables
reformulating the maintenance optimization problem to account
for model uncertainty.

Index Terms—Censored data, competing risks, copula, identifi-
ability, preventive maintenance.

ACRONYMS1

Cdf cumulative distribution function
i.i.d. -independent and identically distributed
pdf probability density function
PM preventive maintenance
RC replacement cost
RT replacement time
r.v. random variable
Sf survivor function

NOTATION

lifetime, ; a r.v.
PM time, ; a r.v.

, [pdf, Cdf] of

, [pdf, Cdf] of

failure rate of
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1The singular and plural of an acronym are always spelled the same.

: Sf of
: Sf of

: sub-Sf of
: sub-Sf of
: sub-Cdf of
: sub-Cdf of

cost of critical failure
cost of planned replacement
copula of and
Spearman’s
Kendall’s
age replacement time
-expected cost over

DEFINITION

copula: see Section III-C

I. INTRODUCTION

T HE COMMON methods (assuming-independent cen-
soring), used to treat right-censored data, are nonconser-

vative, in the sense that other-dependent censoring models es-
timate the underlying failure process more pessimistically [4].
Without making nontestable assumptions (e.g.,-independence
of the failure and censoring processes), the true distribution
function is not identifiable from the data. Hence, in addition to
the usual uncertainty caused by sampling fluctuation, there is
the extra problem of model uncertainty.

This paper tests the effect of model uncertainty on the
problem of optimizing maintenance.

Assumption 1:Data are available which contain censors
from an existing PM program.

The data in assumption #1 are used to estimate an optimal age
replacement PM program.

Section III presents 3 model-classes of competing risk. The
independent model is used as the most extreme pessimistic
model of existing PM. The other extreme model is used for
the most optimistic model of existing PM. The dependent
competing risk model is used for the general case; the de-
pendence between competing risks is given by a copula. The
minimally informative copula with respect to the uniform
distribution and Archimedean copula are studied—the later is
used to approximate the first one, due to numerical difficulties
in working with the minimally informative copula for strong
dependence between risks. A method is presented by which
expert judgment can be used to quantify model uncertainty.

Section IV recalls the theory of optimal age-replacement poli-
cies. Section V presents 3 numerical examples to determine the
error that is made when optimizing costs using the wrong model.
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Section VI shows that model uncertainty does lead to substan-
tial uncertainty in estimating optimal maintenance intervals and
excessive costs.

This paper extends and develops results in [6], in particular
by showing how expert judgment can be used to quantify model
uncertainty.

II. COMPETING RISK

The competing-risk approach models the data as a renewal
process: a sequence of i.i.d. variables, , . Each observ-
able is the minimum of 2 variables and the indicator of which
variable was smaller. The lifetime of the component is: the
life that the component would reach if it were not PM’ed. The
PM time of the component is : the time at which the com-
ponent would be preventively maintained if it did not fail first.
Clearly,

Usually is the minimum of several variables giving the time
to failure by a particular failure mode: this paper considers the
case of 1 failure mode. The observable data allow estimating the
sub-Sf,

but not the true Sf of and . Hence one can not estimate the
underlying failure distribution for without making additional,
nontestable, model assumptions. A characterization of these dis-
tributions for that are possible for given sub-Sf is in [5].

By specifying a copula for the underlying joint distribution of
and one can identify the marginals (and the full joint distri-

bution) [12]. However the choice of such a copula is difficult to
make: [2] suggests doing this by specifying the Spearman’s rank
correlation between and , and then using the copula with
minimum information with respect to the independent copula
(i.e., the most-independent copula with the given Spearman rank
correlation).

III. T HREE MODELS FORCOMPETING RISK

This section presents 3 competing-risk models in which the
marginal Cdf are identifiable. Two of them are the extreme
cases—independent model and high correlated censoring
model; the third one assumes that the dependence between
competing risks is given by a copula.

A. Model #1: Independence

Let have pdf, , then

But from competing risk data a different rate of failure for
is observed. The observed failure rate foris

For the most frequently made assumption in the literature, prob-
abilistic independence betweenand , then

Using these results, [8] shows that if the competing risksand
are -independent with differentiable Sf, then

Now, the underlying marginal distributions of and can be
identified in terms of the observable sub-Sf,

(1)

B. Model #2: Highly Correlated Censoring

-Independent censoring does not capture the notion that PM
is done when the equipment gives some sign of future failure.

The most extreme case is: PM aims to prevent component-
failure at a time immediately before failure. If that aim is not
achieved then the PM action is applied immediately after failure.
PM is unsuccessful with probabilityand successful with prob-
ability , -independent of the time at which the failure oc-
curs. This is modeled by

• ,
• is very small but depends on,

, with probability [ , ], is -independent of
. For very small Model 2 gives:

Hence thenormalizedsub-Sf (normalized so that they equal 1
at ) are approximately equal,

(2)

and both are equal to . This condition can be checked from
the data. If it does not hold then model #2 is not correct. Fig. 1
is an example where

(3)

1000 samples were taken for this model, with ; then
the empirical functions , , and the
theoretical function, , were plotted.
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Fig. 1. Highly correlated censoring.

If (2) does hold, then the model might be correct, but the-in-
dependent model might also hold with the same observable data.
Assuming model #1 (-independence) when model #2 holds
would lead to an incorrect assessment of the marginals. Propo-
sition 1 is obtained by using (1), [6].

Proposition 1: Let and have a joint distribution de-
scribed by model #2. Let and be -independent with

Then

Model #2 is a special case of the random-signs model in [7],
and can be used when the sub-Sf satisfy

(4)

The random-signs model says that ( is a r.v.),
, , whose sign is-independent of . The

failure is observed with probability
.

C. Model #3: Dependent Competing Risks

Definition: Copula: the copula of 2 r.v., and , is
the distribution, , on the unit square [0, 1]of the pair

(for a continuous r.v., , with pdf, , the
r.v., , is always uniformly distributed on [0, 1]) [10].

This model assumes that the dependence structure between
and is given by a copula. The functional form of:

is

is the joint Cdf of ;
and are the right-continuous inverses of

and .
Under -independence of and , the copula is

and any copula must fall between

and

the copulas of the upper and lower Fréchet bounds [9]. As in
model #1, under the assumption of-independence of and

, the marginal Cdf of and are uniquely determined by
the sub-Sf of and . The more general result [12] is: if the
copula of is known, then the marginal Cdf of and

are uniquely determined by the competing-risk data, as in
theorem 1.

Theorem 1: Let the marginal Cdf of be continuous
and strictly increasing in . Let the copula be known,
and the corresponding probability measure for any open set of
the unit square be positive. Then and , the marginal Cdf
of and , are uniquely determined by the sub-Cdf.

The Appendix shows briefly why the marginals are identifi-
able when the pdfs and sub-pdfs exist.

The problem of choosing a copula is now considered. There
are many measures of association for the pair , which
are symmetric in and . The best known measures of associ-
ation are Kendall’s and Spearman’s; the more modern term
“measure of association” is used instead of “correlation coeffi-
cient” for a measure of dependence between r.v.

Kendall’s for a vector of continuous r.v. with joint
Cdf is defined:

Let and be i.i.d. random vectors, each
with joint Cdf ; then the Kendall is defined as the proba-
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bility of concordance minus the probability of discordance:

or

The other measure of association, Spearman’s, is defined as:
Let and be continuous r.v.; then Spearman’sis defined

as the product moment correlation of and :

Simple formulae relating the measures of association to copula
density are given in the Appendix.

Because the measure of association is to be treated as a pri-
mary parameter, it is necessary to choose a family of copulae
which are as “smooth” as possible and which model all pos-
sible measures of association in a simple way. Reference [5]
proposes using the unique copula with the given Spearman’s
that has minimum information with respect to the-indepen-
dent distribution, and gives a method to numerically-calculate
this copula. Due to the difficulties of interpreting Spearman’s
by a nonspecialist, and of quantifying it, Kendal’s tau is used as
a primary parameter. Kendall’shas the advantage of a defini-
tion which can be explained to a nonspecialist, but the value can
not be estimated using only the competing risk data, because of
its “identifiability problem.”

Thus some prior knowledge or subjective information must
be used to obtain information about the value of. Expert judg-
ment is used to model the uncertainty over, and is discussed
later in this section. For now, the way to obtain the copula must
be explained.

Reference [12] suggests that the important factor for an
estimate of the marginal Sf is a reasonable guess at the strength
of the association between competing risks, rather than the
functional form of the copula. Thus a class of copula with
which it is easy to work from the mathematical view-point is
chosen, e.g., Archimedean copula. Some definitions about the
Archimedean copula and some properties of Kendall’sfor a
certain Archimedean family of copula are explained.

Let and be continuous r.v. with joint Cdf and mar-
ginal Cdf and . When and are -independent, then

; this is the only case when the
joint distribution is written as a product of and . But,
there are some families of distributions in which

[9].
Using , then [ must be positive on the

interval (0, 1)], and is a sum of the marginals and ,
, or in terms of copula

.
Copulas of this form are “Archimedean copulas.” The func-

tion is an “additive generator” of the copula. If ,
then is a strict generator and is
a strict Archimedean copula. For the goal in this paper, choose a

1-parameter family of copulae which has a strict generator. The
Gumbel family is defined as:

for

The generator is the function: .
The Appendix shows that can be written as a function of

Kendall’s : .
It remains now to quantify the uncertainty in Kendall’s

using expert opinion. Experts can not be directly asked to quan-
tify their uncertainty over , instead they are asked to give un-
certainties over physically realizable quantities [3].

• Consider 2 sockets with failure times, and , and the
PM times and .

• The expert can be asked for the “probability that an at-
tempt to do PM for socket #1 would occur before the PM
for socket #2, given that the failure of socket #1 occurs be-
fore the failure of socket #2;” let this probability be.

• By symmetry the probability is the same for the occur-
rence of the PM for socket #2 before the PM for socket
#1, given that the failure time of socket #1 is greater than
the failure time of socket #2.

• The “probability of occurrence of the PM for socket #2
before the PM for socket #1 given that the failure time of
socket #1 is smaller than the failure time of socket #2” is

.
If the experts can give a distribution for

, then this can be converted to a distribution over
Kendall’s . Thus,

Similarly:

thus .
The can be considered an observable quantity be-

cause is the approximate average rate for which
holds when a large sample of

pairs , is observed.
For each and , calculate the long-term specific cost; then

optimize this replacement cost by finding the minimal cost. This
is discussed in Section IV.

IV. M AINTENANCE OPTIMIZATION

Consider the effect of uncertainty about the underlying life-
time distribution on the selection of the maintenance policy.
To keep things simple, consider the age-replacement policies.
An age-replacement policy is one for which replacement occurs
at failure or at age , whichever occurs first. Unless otherwise
specified, is a constant.

In the “finite time-span replacement model” minimize
experienced during ; the cost is computed in money units,
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TABLE I
OPTIMAL MAINTENANCE TIMES AND COSTS

time, or an appropriate combination. For an infinite time span,
an appropriate objective function is mean-cost per time-unit:

number of failures during ,
number of planned PM during ;
cost of critical failure,
cost for planned replacement.

The mean cost during is:

Consider only nonrandom age replacement in seeking the policy
minimizing the for an infinite time span.

By definition of

[1] shows that

Then

Differentiate to find the optimum, , then

When has an increasing failure rate, the optimalis the
unique solution of this equation. For a r.v. with constant failure
rate or decreasing failure rate, the specific cost does not have an
optimum:

is constant

thus this type of maintenance policy is not appropriate for a such
r.v.

When the primary parameter is Kendall’sand the informa-
tion on is and , the specific cost depends onand
:

TABLE II
RATIOS OF MAINTENANCE TIMES AND COSTS

Thus the long term specific cost, given, is

and is obtaining minimizing .

V. NUMERICAL EXAMPLES

Acronyms:
D Distribution #
M Model #

Three numerical experiments show

• the effect of using M1 when M2 actually holds,
• the dependence of replacement cost with the measure of

association (Kendall’s ),
• the optimal replacement time of the average specific cost.

A. Part 1

Consider 3 distributions for :
D1:

D2:

D3:
The failure rates are Weibull, and are continuous and increasing.

Because the costs of critical failure can be much higher than
those of PM (because of other consequences to the system be-
yond the simple need to replace the failed unit), let .
Because actual plant data show a many PM actions, letbe
small:

thus there are 4 cases to compare the models. Both RT and RC
are in Table I. The RT are the optimal-RT calculated under the
assumption that the model is correct. For M2 the RC are the
optimal-RC. For M1 the RC are the RC of M2 (which is actually
the correct model), evaluated with the optimal RT calculated for
M1. Hence the costs for M1 are always higher than those of M2.
Table II gives the ratio of the 2 model-outcomes (M1-outcome
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Fig. 2. Dependence between RC and the measure-of-motivation for the pairs of sub-Sf forX andY given by sub-Sf #1 forX , and the other three forY . (a)
p=0.3,c /c =0.1; (b) p=0.3,c /c =0.05; (c) p=0.1,c /c =0.1; (d) p=0.1,c /c =0.05.

Fig. 3. Dependence between RC and the measure-of-motivation for the pairs of sub-Sf forX andY given by sub-Sf #2 forX , and the other three forY . (a)
p=0.3,c /c =0.1; (b) p=0.3,c /c =0.05; (c) p=0.1,c /c =0.1; (d) p=0.1,c /c =0.05.

divided by M2-outcome) for the time and costs of each of the
distributions.

B. Part 2

Consider 3 sub-Sf for which for the extreme cases (-inde-
pendence and high-correlation) take the same failure rates for

as in Section V-A and for every sub-Sf of, take the other
3 sub-Sf in such a way that inequality (4) is satisfied;

• use Weibull distributions with the same shape parameter
of and ,

• the scale parameter of , , must be greater than the
scale parameter of , .

Thus, take:

for and use the same values as in Section V-A.
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Fig. 4. Dependence between RC and the measure-of-motivation for the pairs of sub-Sf forX andY given by sub-Sf #3 forX , and the other three forY . (a)
p=0.3,c /c =0.1; (b) p=0.3,c /c =0.05; (c) p=0.1,c /c =0.1; (d) p=0.1,c /c =0.05.

Fig. 5. Specific cost for 3 values of Kendall’s� : 0.1, 0.5, 0.9.

Figs. 2–4 show the way in which the RC (normalized by RC
for the independent case) depends on Kendall’s.

To obtain a distribution for Kendall’s, ask an expert to give
quantiles for the defined in Section III-C. If the expert gives
5% and 95% quantiles then fit a beta distribution; if

and , then the 5% and 95%
quantiles for are and

. Assume the beta distribution for; then the parameters
of this distribution, given the 5% and 95% quantiles, are:

, .
Fig. 5 shows the specific costs for various values of Kendall’s

; Fig. 6 shows the average specific costs with optimal replace-
ment times.

Fig. 6. Average specific cost and optimal replacement time.

VI. DISCUSSION

The results in Tables I and II show that the “optimal replace-
ment interval” and “optimal replacement costs” can be dramati-
cally nonoptimal when the wrong model is used to estimate the
underlying failure distribution from censored data. The differ-
ence is least when the failure rate increases quickly. When the
failure rate increase more slowly, the difference is larger. For one
case calculated here, the specific costs obtained by using the in-
dependent model are more than twice the best possible specific
costs using the correct model.

Section V-B considers the effect of model uncertainty due
to the impossibility of identifying the “correct” competing risk
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model from censored data. Using expert-judgment to quantify
the dependence between competing risks, shows that the re-
placement cost is highly sensitive to Kendall’s. Figs. 1–3 show
that sensitivity is higher for distribution #1 and, for a certain
case, RC can be twice that of RC for the independent case. Fig. 4
shows that the difference between optimal replacement costs
and optimal replacement time can be more than a factor of 2.
Fig. 5 presents the long-term average specific-cost and optimal
replacement-time.

This work demonstrates the importance of using good ex-
pert judgment from experts with insight into the maintenance
process. If the experts can select the correct correlation level
then the results in this paper will considerably aid model-selec-
tion.

APPENDIX

A. Part 1

This briefly shows why the marginals are identifiable when
pdfs and sub-pdfs exist. By definition, the sub-Cdf of is

, and

joint pdf of , ,
, calculated in ,
, calculated in .

An analogous formula for is obtained; from this formula it
follows that the marginal Cdf and are solutions of the
following system of ordinary differential equations:

with initial conditions: ,

both calculated in .

B. Part 2

To see the relations between the measures-of-association and
copula, recall [9, theorems 2–4].

Theorem 2: Let and be continuous r.v. with copula .
Then Kendall’s for and , denoted by either or

, is

Theorem 3: Let and be continuous r.v. with copula .
Then Spearman’s for and [denoted by either or

] is

From [9, theorem 5], determines the parameter(and implicitly
the copula) when Kendall’s is known.

Theorem 4: Let and be r.v. with an Archimedean copula
generated by . Kendall’s for and is

If is a member of the Gumbel family, then for ,

so that . Thus .
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