
1

A Class of Cross-Layer Optimization Algorithms
for Performance and Complexity Trade-offs in

Wireless Networks
Xiaoying Zheng∗, Feng Chen†, Ye Xia∗ and Yuguang Fang†

∗ Computer and Information Science and Engineering Department, University of Florida
Email: {xiazheng, yx1}@cise.ufl.edu

† Electrical and Computer Engineering, University of Florida
Email: {chenf, fang}@ece.ufl.edu

Abstract—In this paper, we solve the problem of a joint optimal
design of congestion control and wireless MAC-layer scheduling
using a column generation approach with imperfect scheduling.
We point out that the general subgradient algorithm has difficulty
in recovering the time-share variables and experiences slower
convergence. We first propose a two-timescale algorithm that can
recover the optimal time-share values. Most existing algorithms
have a component, called global scheduling, which is usually
NP-hard. We apply imperfect scheduling and prove that if the
imperfect scheduling achieves an approximation ratio ρ, then our
algorithm converges to a sub-optimum of the overall problem
with the same approximation ratio. By combining the idea of
column generation and the two-timescale algorithm, we derive a
family of algorithms that allow us to reduce the number of times
the global scheduling is needed.

Index Terms—Cross-Layer design, Optimization, Column Gen-
eration, MAC-layer scheduling, Congestion control

I. INTRODUCTION

The joint congestion-control and scheduling problem in
multi-hop wireless networks has become a very active research
area in the last few years [3], [4], [6], [7], [10], [11], [13]–
[15], [19], [21]–[23]. The problem can be formulated as
the maximization of the aggregate source utility over the
network capacity constraints. Unlike the similar problem in
the wired network, the essential nature of the problem in the
wireless setting is that the network capacity itself is a decision
variable. Due to wireless interference, not all transmission
configurations are allowed at each time instance. For instance,
in the well-known model of the multiple access scheme for
the 802.11 network, an allowed configuration is a subset
of the links whose transmissions do not interfere with each
other. Scheduling at the MAC layer is to decide which of the
allowed configurations should be used and how they should
be used (e.g., time shared). The result of scheduling implicitly
determines the network capacity.

The standard subgradient algorithm is a good candidate in
solving such a problem. By the subgradient technique, the rate
control and the wireless resource allocation are decoupled:
The sources adapt their source rates according to the path
congestion costs, whereas the MAC-layer scheduling adjusts
the time share of different allowed transmission configurations,
thus varying the link capacities according to the link costs so
as to support the flow rates. However, the standard subgradient
technique has its own limitation, which will be discussed.

We propose a two-timescale, column-generation approach
with imperfect global scheduling to solve the above problem.

Compared with the subgradient technique and others, our
approach offers the following features.

• Our approach solves the difficult issue of recovering
the time share using a two-timescale method. The issue
arises when the Lagrangian function of the maximization
problem is not strictly concave in all its primal variables.
Specifically, in the subgradient algorithm, the dual prob-
lem converges to an optimal solution. However, the pri-
mal variables corresponding to the time share proportions
oscillate. Our two-timescale algorithm ensures that both
the primal and dual solutions converge to the optimum.

• The column generation method introduces one extreme
point at a time and and gradually expands the feasible
set, where an extreme point corresponds to one allowed
transmission configuration (also known as a schedule).
Typically, introducing such an extreme point involves
solving an NP-hard combinatorial optimization problem
[14], [15]. In our approach, we allow the introduction of
a sub-optimal extreme point, which is often far easier to
obtain. This opens the door for the application of many
heuristic algorithms in solving the hard combinatorial
problem. Importantly, we show that, if the sub-optimal
extreme point is a ρ-approximation solution to the com-
binatorial optimization problem, then the overall utility-
maximization problem also achieves ρ approximation.

• By combining column generation and the aforementioned
two-timescale algorithm, we in fact have a whole family
of algorithms. On one side of the spectrum, we have
a pure column generation algorithm; on the other side,
we have a pure two-timescale algorithm. In between,
we have a mixed algorithm that introduces new extreme
points at varying degree of frequency, thus balancing
various aspects of the algorithm, e.g., performance and
complexity.

We subsequently call the sub-problem of finding a new
extreme point in the column generation algorithm, global
scheduling, since it involves finding an allowed transmission
schedule from all possible ones. This sub-problem is a com-
binatorial optimization problem on an exponential number of
possibilities. A perfect schedule refers to an optimal solution
to the sub-problem; an imperfect schedule refers to a sub-
optimal solution to the sub-problem. Other algorithms usually
also contain this sub-problem. How to avoid global scheduling
as much as possible and how to solve it fast when needed are
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two key issues. This paper makes contributions in both.
We now give a brief summary of prior work on the

joint design of congestion control, routing and scheduling
in wireless networks. A survey of resource allocation and
cross-layer control in wireless networks can be found in [10].
Varbrand et al. [3] propose the column generation method
to solve the resource allocation problem in wireless ad hoc
networks. Johansson and Xiao [11] extend the use of the
column generation method to solve the same problem under
more comprehensive wireless interference models. But both
[3] and [11] give centralized solutions, where the restricted
master problems are solved by some linear/nonlinear solvers
(We are interested in distributed algorithms.); and they only
consider the case where perfect scheduling is used. [13] also
gives a centralized column generation solution. Bohacek and
Wang [4] implicitly apply the column generation method and
their approach is centralized. In [14], [15], the authors propose
a way to solve this problem by a distributed subgradient
algorithm with imperfect scheduling. Their approach and
conclusion are different from ours and we will detail the
differences in Section IV. In [6], [7], the authors formulate
similar problems as ours and develop subgradient algorithms.
[22] discusses the framework of cross-layer optimization in
wireless networks. Another related paper is [19]. The two-
timescale adaptive method is proposed in [9], and used in
[5], [17] for the problem of multi-path routing. To our best
knowledge, no prior work has combined the three elements
together, two timescales, column generation and imperfect
scheduling.

The paper is organized as follows. The network model and
problem formulation are given in Section II. The two-timescale
algorithm and its convergence proof are given in Section III.
In Section IV, we present the column generation approach,
combine it with the two-timescale method, and study the
impact of imperfect scheduling. We show the performance
with imperfect scheduling is bounded. In Section V, we give
the experimental examples. The conclusion is drawn in Section
VI.

II. PROBLEM DESCRIPTION

Let the network be represented by a directed graph G =
(V, E), where V is the set of nodes and E is the set of links.
The presence of link e ∈ E means that the network is able
to send data from the start node of e to the end node of e.
Unlike in a wired system where the capacity of a link is a
fixed constant, in a wireless system, due to the shared nature
of the wireless medium, the rate ce of a link e depends not
only on its own modulation/coding scheme, power assignment
Pe and the ambient noise, but also on the interference from
other transmitting links, which in turn depends on their power
assignments. Let P = (Pe) denote a vector of a global
power assignment and let c = (ce) denote the vector of the
corresponding link rates, where 0 ≤ Pe ≤ Pe,max for all
e ∈ E. We assume the data rates c are completely determined
by the global power assignment P , which means there exists a
rate-power function u such that c = u(P ) [14]. The rate-power
function is determined by the interference model.

We describe the following model as an example. Let Gee′

denote the effective power gain between the sender of link e
and the receiver of link e′. Let σe denote the thermal noise
power at e’s receiver. The signal to interference and noise ratio

(SINR) of link e is

ωe(P ) =
GeePe

σe +
∑

e′∈E,e′ 6=e Ge′ePe′
. (1)

According to Shannon’s capacity theorem, the maximum data
rate of link e is ce = W log(1+ωe(P )), where W is the system
bandwidth. In practice, the link rate is usually lower than the
Shannon capacity. Typical wireless systems allow a finite set
of link rates, say c1

e, · · · , ck
e , which are associated with a set

of thresholds for the SINR, β
(c1

e)
e , · · · , β

(ck
e )

e . This is usually
due to the finite number of modulation/coding schemes built
into the wireless transceiver. A link e can use the transmission
rate cj

e, if ωe ≥ β
(cj

e)
e .

To summarize, at any time instance, the number of possible
rate vectors is finite. Each of these allowed rate vectors will be
called a schedule. Let Q denote the total number of schedules.
Let c(i) = (c(i)

e ) denote the ith schedule (rate vector) in the
set of feasible schedules, for i = 1, · · · , Q, where the order
is arbitrary. Though Q is finite, it might be exponential in the
number of links. By time sharing of these feasible schedules,
the achievable time-average link-rate region is the convex hull
of c(i), i = 1, · · · , Q. Denote this convex hull by C. Thus, C is
a convex polytope. With slight abuse of terminology, we call
c(i), i = 1, · · · , Q, the extreme points of C. In fact, some of
them may not be extreme points of the polytope. For any c ∈
C, it could be represented by the following convex combination
of the extreme points of C,

c =
Q∑

i=1

αic
(i),

Q∑

i=1

αi = 1, αi ≥ 0, i = 1, · · · , Q, (2)

where αi denotes the time-share fraction of the schedule
that uses the schedule c(i). One can find more discussion on
wireless interference models in [11].

A. Network Model

Suppose there is a set of source-destination pairs. Let S
be the set of sources and xs be the source rate of source
s ∈ S. Assume the flow between each source-destination pair
is routed along the fixed single path, and denote this path by ps

for each source s. Define Us(xs), xs ≥ 0, the utility function
for each source s ∈ S. Assumptions on the utility functions
are, for every s ∈ S,

• A1: Us is increasing, strictly concave and twice continu-
ously differentiable for all xs ≥ 0.

• A2: Us(xs) ≥ 0 for all xs ≥ 0.
• A3: U ′

s(xs) is well-defined and bounded at xs = 0.

The optimal resource allocation and scheduling problem is
formulated as

max
∑

s∈S Us(xs) (3)
s.t.

∑
s:e∈ps

xs ≤ ce, ∀e ∈ E

c ∈ C (4)
xs ≥ 0, ∀s ∈ S.
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By replacing (4) with the equivalent expression in (2), we re-
write the above problem as follows.

MP: max
∑

s∈S Us(xs) (5)

s.t.
∑

s:e∈ps
xs ≤

∑Q
i=1 αic

(i)
e , ∀e ∈ E (6)

∑Q
i=1 αi = 1
xs ≥ 0, ∀s ∈ S

αi ≥ 0, ∀i = 1, · · · , Q.

Note that c
(i)
e is a constant instead of a decision variable, and

the only decision variables are x and α. We call the above
problem the master problem (MP).

B. Dual of Master Problem

Let λe be the Lagrangian multiplier associated with the
constraint (6). The Lagrangian function of MP is

L(x, α, λ)

=
∑

s∈S

Us(xs) +
∑

e∈E

λe(
Q∑

i=1

αic
(i)
e −

∑
s:e∈ps

xs).

=
∑

s∈S

(Us(xs)− xs

∑
e∈ps

λe) +
Q∑

i=1

αi(
∑

e∈E

λec
(i)
e ).

The dual function is

θ(λ) = max L(x, α, λ) (7)

s.t.
∑Q

i=1 αi = 1
xs ≥ 0, ∀s ∈ S

αi ≥ 0, ∀i = 1, · · · , Q.

Now the dual problem of MP is

Dual-MP: min θ(λ) (8)
s.t. λ ≥ 0.

III. A TWO-TIMESCALE ALGORITHM

In this section, we will illustrate how the MP can be solved
by a two-timescale algorithm. In Section IV, we will com-
bine this two-timescale algorithm with a column generation
algorithm and derive a family of algorithms.

We first consider the rate control problem with fixed time
fraction vector α.

MP-A: Φ(α) := maxx

∑
s∈S Us(xs) (9)

s.t.
∑

s:e∈ps
xs ≤

∑Q
i=1 αic

(i)
e , ∀e ∈ E (10)

xs ≥ 0, ∀s ∈ S.

The above problem MP-A has a strictly concave objective
function and has a unique solution with respect to the only
variable, vector x. Φ(α) denotes the optimal objective function
value of MP-A under each α. The original problem MP can
be re-written as

MP-B: maxα Φ(α) (11)

s.t.
∑Q

i=1 αi = 1
αi ≥ 0, ∀i = 1, · · · , Q.

A. Solve Problem MP-A with the Subgradient Method
The problem MP-A could be solved by the subgradient

algorithm1. Let λe be the Lagrange multiplier associated with
the constraint (10). The Lagrangian function of MP-A is

LA(α, x, λ)

=
∑

s∈S

Us(xs) +
∑

e∈E

λe(
Q∑

i=1

αic
(i)
e −

∑
s:e∈ps

xs)

=
∑

s∈S

(Us(xs)− xs

∑
e∈ps

λe) +
Q∑

i=1

αi(
∑

e∈E

λec
(i)
e ).

The dual function is

θA(α, λ) =
∑

s∈S

max
xs≥0

{Us(xs)−xs

∑
e∈ps

λe}+
Q∑

i=1

αi(
∑

e∈E

λec
(i)
e )

Since MP-A is maximizing a strictly concave function with
linear constraints, the strong duality holds for MP-A [2]. Since
there is no duality gap at the optimum of MP-A under a fixed
α, we can re-write Φ(α) as the optimal objective function
value of the dual problem of MP-A,

Dual-MP-A: Φ(α) = min
λ≥0

θA(α, λ). (12)

The dual problem (12) can be solved by the subgradient
method as in Algorithm 1 ( [1], [2]), where δ(t) is a positive
scalar stepsize, and [·]+ denote the projection onto the non-
negative domain.

Algorithm 1 Fast Timescale: Subgradient Algorithm for Solv-
ing MP-A

λe(t + 1) = [λe(t)− δ(t)(
Q∑

i=1

αic
(i)
e −

∑
s:e∈ps

xs(t))]+,

∀e ∈ E (13)

xs(t + 1) = [(U ′
s)
−1(

∑
e∈ps

λe(t + 1))]+, ∀s ∈ S (14)

Let (x∗(α), λ∗(α)) denote the optimal primal-dual solutions
of MP-A under a fixed α.

Theorem 1: (Convergence of the Subgradient Algorithm
for MP-A): With the diminishing step size rule, i.e.,
limt→∞ δ(t) = 0 and

∑∞
t=1 δ(t) = ∞, let {λ(t)}

be a sequence generated by Algorithm (13)-(14). Then
θA(α, λ(t)) → θA(α, λ∗(α)) and there exists a subsequence
T such that {λ(t)}T → λ∗(α) [1].

Theorem 2: (Convergence of the Primal Sequence for MP-
A): Assume A1. In Algorithm (13)-(14), if λ(t) → λ∗(α),
then x(t) → x∗(α).

Proof: The proof is standard and is omitted.

B. Update Time Fraction on a Slower Timescale
The above rate control algorithm (13)-(14) works under the

assumption that the time fraction vector α remains constant.
Now we discuss how to adjust αi, i = 1, · · · , Q, to solve the

1Since the time-share variable α is a constant vector, there is no difficulty
with the subgradient algorithm here.
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problem MP-B. We assume the update of α is much slower
so that the minimization of θA(α, λ) over λ can be regarded
as being instantaneous. Here, we follow the approaches in [5],
[9], [17].

Let k index the time slots (called stages) of the slow
timescale. At stage k, given the time fraction vector α(k),
suppose λ(k) ∈ argminλ≥0θA(α(k), λ) is an optimal dual
solution to MP-A. Let’s call λe(k) the price or cost of link e.
Therefore, λe(k)c(i)

e is the cost of link e under the ith schedule
(i.e., the ith extreme point of C); and

∑
e∈E λe(k)c(i)

e is the
cost of the network under the ith schedule, which will be
called the cost of the schedule. Let i(k) be the index of a
schedule achieving the maximum schedule cost under the link
costs λ(k), i.e.,

i(k) = argmaxQ
i=1{

∑

e∈E

λe(k)c(i)
e }. (15)

If there is a tie, an arbitrary maximizing index is chosen. (15)
may be called a scheduling problem [14], since it aims at
finding a schedule. Because (15) is an optimization problem
over all allowed schedules, 1, · · · , Q, we call (15) a global
scheduling problem, and the achieved maximum cost the
global maximum cost of the schedule. We denote this global
maximum cost under a fixed λ by

γ(λ) = max
1≤i≤Q

{
∑

e∈E

λec
(i)
e }. (16)

The time fraction update is shown in Algorithm 2, which is
similar to the one in [5], [9], [17].

Algorithm 2 Slow Timescale: Time Fraction Update for
Solving MP-B

αi(k + 1) = αi(k) + ∆i(k) (17)

∆i(k) =





−min{ξ(k)(
∑

e∈E λe(k)c(i(k))
e

−∑
e∈E λe(k)c(i)

e ), αi(k)}, if i 6= i(k)

−∑
i 6=i(k) ∆i(k), if i = i(k).

(18)

Here, ξ(k) is a positive step size. Note that ∆i(k) ≤ 0 for
i 6= i(k) and ∆i(k) ≥ 0 for i = i(k). Hence, the algorithm
increases the time fraction of the most costly schedule while
decreases the time fractions of other active schedules, i.e.,
those schedules with positive time fractions αi(k). Further-
more, if

∑Q
i=1 αi(k) = 1, then

∑Q
i=1 αi(k + 1) = 1. Hence,

α(k) will always be valid time fraction vectors for all k if∑Q
i=1 αi(0) = 1.
It can be verified that

Q∑

i=1

∆i(k) = 0 (19)

Q∑

i=1

∆i(k)
∑

e∈E

λe(k)c(i)
e ≥ 0. (20)

Equality in (20) occurs if and only if ∆i(k) = 0 for all i,
which is equivalent to

αi(k)(
∑

e∈E

λe(k)c(i(k))
e −

∑

e∈E

λe(k)c(i)
e ) = 0,∀i. (21)

Conditions in (19) - (21), and those described in the
proceeding paragraph guarantee that the time fraction update
algorithm converges to the correct optimal value. As in [5],
we consider a continuous-time, differentiable version of the
algorithm (17)-(18). First, define the set

Λ(α) = {λ ≥ 0 : θA(α, λ) = min
λ′≥0

θA(α, λ′)}. (22)

The differentiable version of the algorithm (17)-(18) satisfies
the following conditions, for any λ(α) ∈ Λ(α).

Q∑

i=1

α̇i = 0, (23)

Q∑

i=1

α̇i

∑

e∈E

λe(α)c(i)
e ≥ 0, (24)

Q∑

i=1

α̇i

∑

e∈E

λe(α)c(i)
e = 0 if and only if α̇i = 0, ∀i. (25)

The condition in (25) is equivalent to

αi(
∑

e∈E

λe(α)c(i(k))
e −

∑

e∈E

λe(α)c(i)
e ) = 0, ∀i. (26)

Theorem 3: The time fraction update algorithm (17)-(18)
converges to an optimal solution of the problem MP-B.

Proof:

Φ(α) = min
λ≥0

θA(α, λ)

= min
λ≥0

{
∑

s∈S

(Us(xs(λ))− xs(λ)
∑
e∈ps

λe)

+
Q∑

i=1

αi(
∑

e∈E

λec
(i)
e )}.

Note that θA(α, λ) is a continuous function. For each α ≥ 0,
θA(α, ·) is bounded from below (say, by

∑
s∈S Us(0)). Hence,

Φ(α) is well defined on α ≥ 0. Furthermore, θA(·, λ) is
concave (actually linear), for each fixed λ. Hence, Φ(α) is
a concave function in α, which means it has directional
derivatives. We will apply Danskin’s theorem ( [2], page 717).
The theorem requires λ to be in a compact set. In other words,
it requires that there exists a compact set Λ independent of
α such that Φ(α) = minλ≥0 θA(α, λ) = minλ∈Λ θA(α, λ).
We will next construct one such compact set. Since Us(·) is
concave, we have U ′

s(0) ≥ U ′
s(xs) for all xs ≥ 0. Under

assumption A3, take some K ≥ maxs∈S U ′
s(0) > 0. Let

Λ = {λ : 0 ≤ λe ≤ K, ∀e ∈ E}. For any λ 6∈ Λ, there exists
a non-empty subset E1 ⊆ E, where λe > K for any e ∈ E1

and λe ≤ K for any e 6∈ E1. Let denote a subset of sources
by S1 ⊆ S, where for any source s ∈ S1, its routing path
ps contains some links in the set E1. We construct a vector
λ′ ∈ Λ where λ′e = K for any e ∈ E1, and λ′e = λe for any
link e ∈ E \E1. For any s ∈ S, if its accumulated path cost is
no less than K, then the maximum of Us(xs)− xs

∑
e∈ps

λe
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in the definition of θA(α, λ) is achieved at xs = 0, which
means for any s ∈ S1,

Us(0)

=max
xs≥0

{Us(xs)− xs

∑
e∈ps

λe} = max
xs≥0

{Us(xs)− xs

∑
e∈ps

λ′e}.

Then

θA(α, λ)

=
Q∑

i=1

αi(
∑

e∈E

λec
(i)
e ) +

∑

s∈S1

max
xs≥0

{Us(xs)− xs

∑
e∈ps

λe}

+
∑

s∈S\S1

max
xs≥0

{Us(xs)− xs

∑
e∈ps

λe}

≥
Q∑

i=1

αi(
∑

e∈E

λ′ec
(i)
e ) +

∑

s∈S1

max
xs≥0

{Us(xs)− xs

∑
e∈ps

λ′e}

+
∑

s∈S\S1

max
xs≥0

{Us(xs)− xs

∑
e∈ps

λ′e}

=θA(α, λ′). (27)

Thus for any α, the minimum of θA(α, λ) over λ ≥ 0 occurs
in Λ.

The conditions required by Danskin’s theorem are met.
Let Φ′(α; α̇) denote the directional derivative of Φ(α) in the
direction of α̇. Let θ′A(α, λ; α̇) be the directional derivative
of θA(·, λ) at α in the direction of α̇. Then, by Danskin’s
theorem,

Φ′(α; α̇) = min
λ∈Λ(α)

θ′A(α, λ; α̇)

= min
λ∈Λ(α)

Q∑

i=1

(
∑

e∈E

λec
(i)
e )α̇i

=
Q∑

i=1

(
∑

e∈E

λ̄e(α)c(i)
e )α̇i. (28)

where λ̄ ∈ Λ(α) achieves the minimum.
Then, by (24),

Φ′(α; α̇) ≥ 0. (29)

By the Lasalle invariance principle [12], α(t) converges to
an invariant set inside {α : Φ′(α; α̇) = 0}. Take a trajectory
in this invariant set, which satisfies Φ′(α; α̇) ≡ 0. By (28),∑Q

i=1(
∑

e∈E λ̄ec
(i)
e )α̇i ≡ 0. Then, by (25), α̇i ≡ 0 for all

i. Hence, the invariant set has only one point, which will be
denoted by α∗. Hence, α(t) converges to α∗.

Next, we will show that α∗ solves problem MP-B. Let
x∗(α∗) and λ∗(α∗) be the optimal solution of MP-A under
α∗. MP-A maximizes a strictly concave function with linear
constraints, and hence, the KKT conditions are both necessary
and sufficient optimality conditions for MP-A [2]. Thus, at
the optimum (x∗(α∗), λ∗(α∗)), we have that x∗(α∗) is primal
feasible and λ∗(α∗) is dual feasible for MP-A, and

x∗(α∗) = argmaxx≥0{Us(xs)− xs

∑
e∈ps

λ∗e(α
∗)} (30)

λ∗e(α
∗)(

Q∑

i=1

α∗i c
(i)
e −

∑
s:e∈ps

x∗s(α
∗)) = 0,∀e ∈ E. (31)

At α∗, we have α̇ = 0. Hence, according to (26), we have

α∗i > 0 only if λ∗e(α
∗)c(i)

e = maxQ
j=1{λ∗e(α∗)c(j)

e }. (32)

Also, by (23), if we initialize the update of α at some α(0)
satisfying

∑Q
i=1 αi(0) = 1, we will have

Q∑

i=1

α∗i = 1, (33)

which implies that

α∗ = argmaxα≥0:
∑

i αi=1{
Q∑

i=1

αi(
∑

e∈E

λ∗e(α)c(i)
e )}. (34)

Obviously, x∗(α∗), λ∗(α∗) and α∗ are all non-negative. These
non-negativity conditions, the fact that x∗(α∗) is primal
feasible for MP-A, and the conditions in (30) - (31) and
(33) - (34) are the optimality conditions of the MP. Hence,
(x∗(α∗), α∗, λ∗(α∗)) is an optimal primal-dual solution to the
MP (also to MP-B).

C. Summary of the Two-Timescale Algorithm
To summarize, the two-timescale algorithm consists of
• a fast timescale distributed algorithm for rate control,

which adapts the source rates and link prices according
to (13)-(14),

• a slow timescale algorithm for updating the time fraction
according to (17)-(18).

However, in most wireless interference models, problem (15)
does not even have a centralized polynomial-time solution.
This has been the main obstacle in developing practical rate
control/scheduling algorithms. In next section, we will try to
overcome this difficulty.

IV. COLUMN GENERATION METHOD WITH IMPERFECT
GLOBAL SCHEDULING

The global scheduling problem (15) is usually an NP-hard
combinatorial problem [11], [14], [15]. One fundamental rea-
son is that the convex polytope, C, usually has an exponential
number of extreme points in terms of the number of links. The
column generation method with imperfect global scheduling
can be introduced to overcome this difficulty. The column
generation part reduces the number of times when the global
scheduling problem is invoked. Imperfect scheduling uses fast
approximation or heuristic algorithms for speedup.

A. Column Generation Method
The main idea of column generation is to start with a subset

of the extreme points of C and bring in new extreme points
only when needed. Consider a subset of C formed by convex
combination of q extreme points, i.e., C(q) = {c : c =∑q

i=1 αic
(i),

∑q
i=1 αi = 1, αi ≥ 0,∀i = 1, · · · , q}. We can

formulate the following restricted master problem (RMP) for
c ∈ C(q).

qth-RMP: max
∑

s∈S Us(xs) (35)

s.t.
∑

s:e∈ps
xs ≤

∑q
i=1 αic

(i)
e , ∀e ∈ E (36)∑q

i=1 αi = 1
xs ≥ 0, ∀s ∈ S

αi ≥ 0, ∀i = 1, · · · , q.
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The value of q is usually small and the extreme points of C(q)

in the qth-RMP are enumerable.
Let λe be the Lagrange multiplier associated with the

constraint (36). The Lagrangian function of the qth-RMP is

L(q)(x, α, λ)

=
∑

s∈S

Us(xs) +
∑

e∈E

λe(
q∑

i=1

αic
(i)
e −

∑
s:e∈ps

xs)

=
∑

s∈S

(Us(xs)− xs

∑
e∈ps

λe) +
q∑

i=1

αi(
∑

e∈E

λec
(i)
e ).

The dual function is

θ(q)(λ) = max L(q)(x, α, λ) (37)
s.t.

∑q
i=1 αi = 1
xs ≥ 0, ∀s ∈ S

αi ≥ 0, ∀i = 1, · · · , q.

The dual problem of the qth-RMP can be formulated similarly
as in (8).

The qth-RMP is more restricted than the MP. Thus, any
optimal solution to the qth-RMP is feasible to the MP and
serves as a lower bound of the optimal value of the MP. By
gradually introducing more extreme points (columns) into C(q)

and expanding the subset C(q), we will improve the lower
bound of the MP [3], [11], [13].

B. Apply the Two-Timescale Algorithm to the RMP
The two-timescale algorithm can be used to solve the qth-

RMP. Here, we define the following problem under the link
cost vector λ(k).

i(q)(k) = argmaxq
i=1{

∑

e∈E

λe(k)c(i)
e }. (38)

The optimization is taken over the q currently known schedules
(extreme-point link-rate vectors). The problem in (38) is called
the local scheduling problem, and the achieved maximum cost
is called the local maximum cost of the schedule. We denote
this local maximum cost under λ ≥ 0 by

γ(q)(λ) = max
1≤i≤q

{
∑

e∈E

λec
(i)
e }. (39)

If there is more than one link-rate vector achieving the local
maximum cost, the tie is broken arbitrarily.

C. Bounding the Gap between the MP and the qth-RMP
Now the question is how to check whether the optimum

of the qth-RMP is optimal for the MP, and if not, how to
introduce a new column (schedule or extreme point). It turns
out there is an easy way to do both.

Let (x∗, α∗, λ∗) denote one of the optimal primal-dual
solutions of the MP, and (x̄(q), ᾱ(q), λ̄(q)) denote one of the
optimal primal-dual solutions of the qth-RMP. Since the strong
duality holds for both problems, we have

∑

s∈S

Us(x∗s) = θ(λ∗),
∑

s∈S

Us(x̄(q)
s ) = θ(q)(λ̄(q)). (40)

Since the qth-RMP is more restricted than the MP, we have
∑

s∈S

Us(x∗s) ≥
∑

s∈S

Us(x̄(q)
s ). (41)

Combining (40) and (41), we get the following lower bound
for the optimal objective value of the MP.

∑

s∈S

Us(x∗s) ≥
∑

s∈S

Us(x̄(q)
s ) = θ(q)(λ̄(q)). (42)

By the weak duality [2], for any λ feasible to the dual
problem of the MP, θ(λ) is an upper bound for the optimal
objective value of the MP. In particular, consider λ̄(q), which
is optimal to the dual of the qth-RMP and feasible to the dual
of the MP. θ(λ̄(q)) is an upper bound of

∑
s∈S Us(x∗s), i.e.,

θ(λ̄(q)) ≥
∑

s∈S

Us(x∗s). (43)

By inspecting the dual functions (37) and (7) of the qth-
RMP and the MP, respectively, we note that x̄(q) is the unique
Lagrangian maximizer at λ̄(q) for both (37) and (7). By the
definitions of the dual functions,

θ(λ̄(q))− θ(q)(λ̄(q))

= max
α≥0,

∑Q
i=1 αi=1

{
Q∑

i=1

αi(
∑

e∈E

λ̄(q)
e c(i)

e )}

− max
α≥0,

∑q
i=1 αi=1

{
q∑

i=1

αi(
∑

e∈E

λ̄(q)
e c(i)

e )}

= γ(λ̄(q))− γ(q)(λ̄(q)).

In the last equality, we have used (15) and (38). Hence, the
gap between the upper and lower bounds for the optimal
objective value of the MP is γ(λ̄(q)) − γ(q)(λ̄(q)), which is
exactly the difference between the global maximum cost and
the local maximum cost of the schedule under λ̄(q). Therefore,
we conclude the following fact.

Lemma 4: Let (x̄(q), ᾱ(q), λ̄(q)) denote one of the optimal
primal-dual solutions of the qth-RMP. (x̄(q), ᾱ(q), λ̄(q)) is
optimal to the MP if and only if γ(λ̄(q)) = γ(q)(λ̄(q)).

D. Introduce One More Extreme Point (Column or Schedule)

If the gap between the upper and lower bound, γ(λ̄(q)) −
γ(q)(λ̄(q)), is not narrow enough, then C is not sufficiently
well characterized by C(q) and a new extreme point should
be added to the RMP. We state the rule of introducing a new
column in the following.

Fact 5: Any schedule achieving a cost greater than the local
maximum cost of the schedule could enter the subset C(q) in
the RMP. The schedule achieving the global maximum cost of
the schedule is one possible candidate and is often preferred.

Lemma 4 says, at the current link cost λ̄(q), if none of
the schedules that achieve the global maximum cost of the
schedule are in the subset C(q), then the current optimal
solution of the qth-RMP is not optimal for the MP. In this
case, there are reasons to prefer the introduction of the globally
optimal schedule specified by (15) as the new extreme point to
the restricted master problem. This strategy is a local greedy
approach to improve the lower bound of the optimal value
of the MP. In fact, it can be viewed as a conditional gradient
method for optimizing the lower bound, when the lower bound
is viewed as a function of c [11].
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E. Column Generation by Imperfect Global Scheduling

The global scheduling problem (15) is usually NP-hard,
which makes the step of column generation very difficult.
However, according to Fact 5, we do not have to solve it
precisely. Instead, we may solve it approximately, and this is
referred to as imperfect global scheduling [14]. 2

Suppose we are able to solve (15) with an approximation
ratio ρ ≥ 1, i.e.,

γ(λ) ≤ ργρ(λ), (44)

where γρ(λ) is the cost of the schedule given by the approxi-
mate solution. Note that both γ(λ) and γρ(λ) are non-negative
for all vectors λ ≥ 0.

1) A ρ-approximation Approach: We develop a column
generation method with imperfect global scheduling as fol-
lows.

Algorithm 3 Column Generation with Imperfect Global
Scheduling
• Initialize: Start with a collection of q schedules
• Step 1: Run the slow timescale update (17)-(18) (which

will call the fast timescale algorithm) for several (a finite
number) times on the qth-RMP.

• Step 2: Solve the global scheduling problem (15) with
approximation ratio ρ under the current dual cost λ.

– If the schedule corresponding to the approximate
solution of (15) is already in the current collection
of schedules, go to Step 1;

– otherwise, introduce this schedule into the current
collection of schedules, increase q by 1, and go to
Step 1.

We make several comments regarding Algorithm 3.
• If the approximate schedule derived in step 2 has a lower

schedule cost than that of an existing schedule already
selected, we define the existing schedule with the highest
cost as the solution to the approximation algorithm.
Hence, the cost of the imperfect (approximate) schedule
cannot be lower than any of the existing schedules.

• In the worst case, the column generation method may
bring in all the extreme points. However, it often hap-
pens that, within a relatively small number of column-
generation steps, the optimal solution to the MP is already
in C(q). Thus, the original problem may be solved without
generating all the extreme points [11].

• Our focus here is on approximation algorithms because
we will be able to show guaranteed performance bound
on the MP problem later. Other types of imperfect
scheduling can also be used, including many heuristics
algorithms and random search algorithms. Examples of
the latter include genetic algorithms and simulated an-
nealing [20].

• Note that since the number of extreme points of C(q)

is usually small and enumerable, it is possible for the
nodes in the network to store the current collection of
schedules. In order to compute the cost of each known
schedule in each slow timescale update, each link e

2Note that the local scheduling problem (38) can be easily solved precisely
since the number of extreme points of C(q) is usually small, and hence,
enumerable.

can independently compute its corresponding term for
each known schedule based on the local link dual cost.
Then, those components of the schedule cost can be
collected by some controller elected by the nodes in the
network. The controller can compute the cost of each
known schedule, the locally most costly schedule, update
the time fractions by (18), and broadcast the results.
Other than that, the two-timescale algorithm (13)-(14) and
(17)-(18) on the qth-RMP is completely decentralized.
Furthermore, if the global scheduling problem (15) can
be solved approximately in a decentralized fashion, then
Algorithm 3 is completely decentralized except the part
of the controller. In Section V, we will introduce one
interference model, under which (15) can be solved in a
decentralized fashion approximately [14], [15].

• Algorithm 3 in fact describes a whole class of algorithms.
To see this, consider the special case where ρ = 1, i.e.,
the case of perfect global scheduling. In one end of the
spectrum, if the slow-timescale algorithm in step 1 runs
only once on the RMP, the algorithm becomes a pure
two-timescale algorithm as in Section III. In the other
end of the spectrum, if the slow-timescale algorithm runs
on the RMP until convergence, the algorithm becomes a
pure column generation method with the two-timescale
algorithm as a building block for solving the restricted
problems between consecutive column generation steps.
By choosing different numbers of times to run the slow-
timescale algorithm in step 1, we have many algorithms,
representing different performance, convergence speed
and complex tradeoffs.

2) Convergence with Imperfect Global Scheduling:
Theorem 6: Under the condition that the fast timescale

optimization in the two-timescale algorithm can be regarded
as being instantaneous, there exists a q, 1 ≤ q ≤ Q,
such that Algorithm 3 converges to one optimal primal-dual
solution of this particular qth-RMP, i.e., (x̄(q), ᾱ(q), λ̄(q)).
Furthermore, after Algorithm 3 converges to (x̄(q), ᾱ(q), λ̄(q)),
γρ(λ̄(q)) = γ(q)(λ̄(q)).

Proof: Since the fast timescale algorithm is assumed to
converge instantaneously, we only need to consider the slow
timescale algorithm and the column generation steps. Since the
number of extreme points of C is finite, eventually Algorithm
3 will stop introducing new extreme points. Hence, there exists
a q, 1 ≤ q ≤ Q, such that, after Algorithm 3 stops introducing
new extreme points, the number of extreme points that have
been introduced is q. Let the convex hull formed by these
q points be denoted by C(q). After Algorithm 3 no longer
introduces new extreme points, it behaves just like the two-
timescale algorithm but on the restricted set C(q). According
to the theorems in Section III, the two-timescale algorithm
converges. Thus, Algorithm 3 converges to (x̄(q), ᾱ(q), λ̄(q))
on this particular qth-RMP.

We next show that, after Algorithm 3 converges to
(x̄(q), ᾱ(q), λ̄(q)), we have γρ(λ̄(q)) = γ(q)(λ̄(q)). First, note
that γρ(λ̄(q)) ≥ γ(q)(λ̄(q)) by the comment after Algorithm 3.
Next, it must be true that γρ(λ̄(q)) ≤ γ(q)(λ̄(q)). Otherwise, the
schedule whose cost is γρ(λ̄(q)) must not have already been in
C(q) and will be selected to enter. This violates the assumption
that the algorithm never selects more than q schedules.

3) Performance Bound under Imperfect Scheduling: Theo-
rem 6 says that the column generation method with imperfect
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global scheduling converges to a sub-optimum of the MP.
Next, we will prove that the performance of this sub-optimum
is bounded.

Theorem 7 (Bound of Imperfect Global Scheduling):
Under assumption A2, if the column generation method with
imperfect global scheduling converges to (x̄(q), ᾱ(q), λ̄(q)) on
the qth-RMP, we have

θ(q)(λ̄(q)) ≤
∑

s∈S

Us(x∗s) ≤ θ(λ̄(q)) ≤ ρθ(q)(λ̄(q)). (45)

Proof: Since the qth-RMP is more restricted than the MP,
we have θ(q)(λ̄(q)) ≤ ∑

s∈S Us(x∗s). By the weak duality, we
have

∑
s∈S Us(x∗s) ≤ θ(λ̄(q)).

By the definition of the dual function for the MP in (7), we
have

θ(λ̄(q))

= max
x≥0

{
∑

s∈S

(Us(xs)− xs

∑
e∈ps

λ̄(q)
e )}+ γ(λ̄(q))

≤ ρ max
x≥0

{
∑

s∈S

(Us(xs)− xs

∑
e∈ps

λ̄(q)
e )}+ ργρ(λ̄(q))

= ρ max
x≥0

{
∑

s∈S

(Us(xs)− xs

∑
e∈ps

λ̄(q)
e )}+ ργ(q)(λ̄(q))

= ρθ(q)(λ̄(q)).

The first inequality holds because, under assumption A2,
maxx≥0{

∑
s∈S(Us(xs) − xs

∑
e∈ps

λ̄
(q)
e )} ≥ 0 for any λ

(which can be checked by plugging in xs = 0 for all s),
ρ ≥ 1, and (44) is assumed. The second equality holds because
γρ(λ̄(q)) = γ(q)(λ̄(q)) by Theorem 6.

Since the strong duality holds on the qth-RMP,∑
s∈S Us(x̄

(q)
s ) = θ(q)(λ̄(q)), we have the following.

Corollary 8 (ρ-Approximation Solution to the MP): Under
the assumption A2, we have

∑

s∈S

Us(x̄(q)
s ) ≤

∑

s∈S

Us(x∗s) ≤ ρ
∑

s∈S

Us(x̄(q)
s ). (46)

If ρ = 1.0, (46) holds with equality, then Algorithm 3 is the
column generation method with perfect global scheduling, and
this algorithm converges to one optimum of MP.

Corollary 8 says that the column generation method with
imperfect global scheduling converges to a sub-optimum of
the MP and achieves the same approximation ratio as the ap-
proximate solution to the global scheduling problem. Finally,

Corollary 9 (Convergence under Perfect Scheduling):
Assume A2. Let ρ = 1 in Algorithm 3, which corresponds to
perfect global scheduling. Then, Algorithm 3 converges to an
optimum of the MP.

In [14], [15], the authors propose a way to solve this
problem by a distributed subgradient algorithm with imperfect
scheduling. With perfect scheduling, their approach guarantees
the convergence of the link dual costs and the primal source
rates; but it does not recover the time share fraction of the
schedules, which oscillates due to the limitation of subgradient
algorithm. However, with imperfect scheduling, their approach
does not guarantee the convergence. Their performance bounds
are not of the constant approximation ratio type, and they are
dependent of the utility function. In contrast, our Algorithm 3
guarantees the convergence of the link dual costs, the source
rates and the time share proportions; and it converges to a

sub-optimal solution whose function value is no less than a
constant fraction of the true optimum value. The constant is
independent of the utility function.

V. NUMERICAL EXAMPLES

In this section we will show the performance of our algo-
rithm by simulation. We will use the following node exclusive
interference model. The model requires that, first, the data rate
of each link is fixed at ce; and second, at any time instance,
each node can only send to or receive from one other node.
Under this model, the scheduling problem (15) becomes the
maximum weighted matching (MWM) problem [14], [15], [18].
There is a polynomial-time algorithm to solve MWM precisely
[8] and a greedy algorithm to solve it approximately with an
approximation ratio ρ = 2. The greedy algorithm is more
useful to our problem because it is distributed [14]. Under
this model, our column generation algorithm with imperfect
scheduling will converge to an approximate solution for the
MP with an approximation ratio ρ = 2, and it is completely
decentralized.

We remark that the node exclusive interference model is
a simple instance of the conflict-graph-based models that
capture the contention relations among the links [4], [6]. In
a conflict graph, each vertex represents one wireless link in
the network, and an edge represents contention between the
two corresponding links, which are not allowed to transmit
at the same time. A set of links in the wireless network
that can transmit data simultaneously, i.e., a schedule, is
an independent set in the corresponding conflict graph. The
scheduling problem (15) becomes the maximum weighted
independent set (MWIS) problem, where the edge weight is
λece. Generally, MWIS has no approximate solution. Some
heuristics or random search algorithms seem necessary to carry
out the imperfect scheduling.

The possible choices of utility function Us(xs) could be

Us(xs) = ws ln(xs + e) (47)

or

Us(xs) = ws
(xs + as)1−β

1− β
, 0 < β < 1, (48)

where ws are the weights for s ∈ S, e is the base of the
natural logarithm and as > 0 is a small constant, which make
the utility functions (47) and (48) satisfy the assumptions A2
and A3. These utility functions have been discussed in [16].
In this paper, we will use the utility function in (47) with
ws = 1.0 for all s ∈ S.

As discussed in Section IV, we can introduce new extreme
points at varying degree of frequency. In the experiments, we
will use three frequencies: fast, medium and slow. With the fast
frequency, we try to introduce extreme points by solving the
global scheduling problem (15) at each slow-timescale update
(17)-(18), in which case, Algorithm 3 degenerates into the
pure two-timescale algorithm. With the slow frequency, we
try to introduce a new extreme point after every 20 slow-
timescale updates of (17)-(18). Our experiences have shown
that the restricted master problem with our experiment sizes
is often optimized within 20 slow-timescale updates. If so,
Algorithm 3 becomes the pure column generation method.
With the medium frequency, we introduce a new extreme point
every 5 slow-timescale updates.
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Fig. 2. Small Network: (a) Fast Frequency, with Perfect Global Scheduling;
(b) Fast Frequency, with Imperfect Global Scheduling.

The network in Fig. 1 has been studied in [14], [15].
There are 5 classes of connections as shown in Fig. 1. The
capacity of each link is fixed at 100 units. We initialize the
experiments with a set of schedules, where each contains
exactly one single transmitting link. This corresponds to the
traditional TDMA scheduling [13]. Fig. 2 shows the conver-
gence of the connection rates with perfect scheduling and
imperfect scheduling, respectively, where both are introducing
new columns at the fast frequency. In Fig. 2 (a), we have two
groups of connections. Class 4 and Class 5 achieve higher rates
because they involve less wireless interference compared with
others. Fig. 2 (b) gives the same order of the connections in
terms of their rates. But, the connections are not separated into
obvious rate groups. Though the two scheduling schemes do
not give the exactly same connection rates, their final objective
function values are very close: 16.0989 for the imperfect
scheduling and 16.1351 for the perfect one. We note that with
our specific objective function in (48), a minor change in the
connection rates will not change the objective too much. Fig.
3 shows the two schemes get the correct time fraction and
the long time average link capacities are able to support the
source flow rates. It means our two-timescale algorithm solves
both the primal and dual problems at the same time.
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Fig. 3. Small Network: (a) Fast Frequency, with Perfect Global Scheduling;
(b) Fast Frequency, with Imperfect Global Scheduling.

We next experiment with a larger network with 15 nodes.
The network is randomly generated and 20 end-to-end con-
nections are placed on this network randomly. For each
connection, the routing is the fixed shortest path routing. In the
experiment, it turns out these 20 connections use 28 directed
links. The capacity of each link is fixed at 100 units. Fig.
4 shows the 5 connections with the highest rates. Again, the
perfect scheduling is more likely to group connections.

Next, we evaluate the algorithm with different frequencies
of introducing columns on the large network. In Fig. 5, with
both perfect and imperfect scheduling, the fast scheme always
improves the objective function value more quickly at the
beginning, while the slow scheme improves it much more
slowly than the other two schemes. The reason is that, with the
fast scheme, plenty of schedules are introduced quickly. The
slow scheme always tries to take full advantage of the current
collection of schedules. But later, the slow scheme catches
up the fast scheme, judging from the trend of the curves.
This motivates the use of the medium scheme. In Fig. 5, we
see that the medium scheme increases the objective function
value nearly as quickly as the fast scheme at the beginning
and it surpasses the fast scheme soon after. The curves show
some oscillations at the initial phase for the medium and
slow schemes. This is because those two schemes spend more
effort to obtain better performance from the current collection
of schedules. At the initial phase, with fewer schedules but
more optimized time sharing, introducing one more schedule
abruptly will decrease the function value by a little bit.

In Table I, we compare the three schemes for their computa-
tion costs. Since the most expensive computation is for solving
the global scheduling problem (15), the total computation time
is mainly characterized by the number of times the global
scheduling problem is solved. One expects that lowering the
frequency of introducing new schedules is correlated with
fewer computations for the global scheduling problem. But, we
know no theoretical reasons why this must be true. The result
confirms the expectation: The number of such computations
is 300, 60, and 15, for the fast, medium and slow schemes.
The reduction is dramatic.

We also find, with a lower frequency, the algorithm usually
produces a solution with fewer active schedules. 3 Fewer
active schedules may be desirable since it is easier to manage
and control them, which may reduce the system complexity
and control overhead. With the perfect scheduling, the slow
scheme (i.e., the pure column generation approach) only uses
(i.e., time-share) 15 active schedules in the end, which are all
those that were ever computed and entered. In other words,
there are no redundant schedules; nor are there redundant
computations for the schedules. The fast and medium schemes
use 49 active schedules. In the fast scheme, 7 schedules have
been introduced into the collection but are not used in the
final optimal solution. In the medium scheme, the number of
redundant schedules is 3.

For the imperfect scheduling, we find that both the fast and
the medium schemes generate much fewer schedules than in
the perfect scheduling, although the number of computations
for the schedules remain the same4. The fast scheme even
has fewer redundant schedules than the medium scheme,

3In these 6 experiments, the initial TDMA-style schedules are all inactive
in the optimal solutions, and we didn’t count them in the table.

4However, each computation is less expensive than in the perfect scheduling
case, since it is approximate.
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which a little counter-intuitive. The reason might be that the
approximation algorithm is not as sensitive to the change of
link prices as the precise algorithm. Significant changes in link
prices are needed to trigger the discovery of a new schedule.

Based on the study of Fig. 4 and Table I, we conclude that
the pure two-timescale (fast) or the pure column generation
(slow) algorithms have both pros and cons. An intermediate
algorithm (medium) may achieve a more desirable balance
among factors such as optimization performance, the compu-
tational cost, and system complexity and overhead.

Next, we show that, in the pure column generation method,
the gap between the lower and upper bounds for the opti-
mal object value decreases as the restricted master problem
expands. With the imperfect scheduling, we can compute
the upper bound by θ(q)(λ̄(q)) − γ(q)(λ̄(q)) + γ(λ̄(q)) ≤
θ(q)(λ̄(q))− γ(q)(λ̄(q)) + ργρ(λ̄(q)), where ρ = 2 in our case.
The lower bound is obtained from the current best solution.
Fig. 6 shows that the gap is quickly narrowed after 10 columns
have entered. It also shows that the objective values of both
the perfect scheduling and imperfect scheduling are inside the
two bounds. Also, our imperfect scheduling almost achieves
the global optimum of the original problem.
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Fig. 4. Large Network: (a) Fast Frequency, with Perfect Global Scheduling;
(b) Fast Frequency, with Imperfect Global Scheduling.
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Fig. 5. Large Network: (a) Perfect Global Scheduling; (b) Imperfect Global
Scheduling.

TABLE I
PERFORMANCE COMPARISON OF THE FAMILY OF ALGORITHMS

Fast Per. Medium Per. Slow Per.
#Schedules Computed 300 60 15

#Active Schedules 49 49 15
#Schedules Introduced 56 52 15

Fast Imper. Medium Imper. Slow Imper.
#Schedules Computed 300 60 15

#Active Schedules 19 19 15
#Schedules Introduced 22 30 15
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Fig. 6. Bounds for the Optimal Objective Value of the MP. Pure Column
Generation Method with Imperfect Global Scheduling.

Finally, we have also applied the subgradient algorithms for
these experiments, and found that it is very difficult to tune
the algorithm parameters to reach convergence.

VI. CONCLUSIONS

This paper studies the problem of how to allocate wireless
resources to maximize the aggregate source utility. This op-
timization problem has two difficulties: First, the Lagrangian
function is not strictly concave with respect to the time-share
variables, which makes the subgradient algorithm unable to
recover the optimal values for those variables; second, its
constraint set is a convex polytope usually containing an
exponential number of extreme points. In order to recover
the correct time-share variables, we develop a two-timescale
algorithm. To overcome the difficulty of the global schedul-
ing problem, we adopt a column generation approach with
imperfect global scheduling. If the imperfect scheduling has
bounded performance, then our overall utility optimization
algorithm converges to a sub-optimum with bounded per-
formance. The combination of the two-timescale algorithm
and column generation leads to a family of algorithms with
interesting tradeoffs.
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