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A General Compiler Framework for
Speculative Multithreaded Processors

Anasua Bhowmik and Manoj Franklin

Abstract—Speculative multithreading (SpMT) promises to be an effective mechanism for parallelizing nonnumeric programs, which
tend to have irregular and pointer-intensive data structures and complex flows of control. Proper thread formation is crucial for
obtaining good speedup in an SpMT system. This paper presents a compiler framework for partitioning a sequential program into
multiple threads for parallel execution in an SpMT system. This framework is very general and supports speculative threads,
nonspeculative threads, loop-centric threads, and out-of-order thread spawning. It is therefore useful for compiling for a wide variety of
SpMT architectures. For effective partitioning of programs, the compiler uses profiling, interprocedural pointer analysis, data
dependence information, and control dependence information. The compiler is implemented on the SUIF-MachSUIF platform. A
simulation-based evaluation of the generated threads shows that the use of nonspeculative threads and nonloop speculative threads
provides a significant increase in speedup for nonnumeric programs.

Index Terms—Multithread processor, scheduling and task partitioning, compilers.

1 INTRODUCTION

ONE of the definitive challenges in computer science and
engineering over the last several decades has been
reducing the completion time of a single computational
task. The primary means of reducing execution time,
besides decreasing the clock period and the memory
latency, has hinged on exploiting the inherent parallelism
present in programs. Parallelization of programs has been a
success for scientific applications, but not for nonnumeric
applications. The emergence of the speculative multithreading
(SpMT) model [2], [10], [12], [13], [16], [18], in the last
decade has provided the much awaited breakthrough for
nonnumeric applications. The hardware support that this
model provides for speculative thread execution makes it
possible for the compiler to parallelize sequential applica-
tions without being constrained by the data dependences
and control dependences present in the program.

This paper presents and evaluates a general compiler
framework that we have developed for partitioning
sequential programs (especially nonnumeric programs) into
multiple threads for parallel execution in SpMT systems.
Traditional compiler work in parallelization has targeted
scientific applications, and has focused mainly on loops that
have predefined loop bounds and operate on regular data
structures such as arrays. Nonnumeric applications, by
contrast, often have loops with large loop bodies, complex
flows of control, loop-carried dependences, and loop
bounds that cannot be determined statically. Also, unlike
scientific applications, nonnumeric applications access
irregular data structures with an abundance of pointers
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and sometimes spend considerable time outside loops.
Many of the parallelization techniques used for scientific
programs cannot therefore be directly applied to nonnu-
meric programs.

To parallelize nonnumeric programs effectively, our
compiler considers all parts of the program—Iloop regions
as well as nonloop regions—and uses control dependence
information and profile information. Its main features are
listed below:

e Extracts parallelism from loop regions as well as
nonloop regions.

e Very general thread model (allowing it to be used for
various SpMT processors).

- Control-speculative threads as well as control-
nonspeculative threads.
- Multiple spawning points anywhere inside the
spawning thread.
- Out-of-order spawning of threads.
- Shared register name space and shared memory
address space for threads.
e  Explicitly exploits control independence information
while forming threads.
e Performs interprocedural analysis and considers
data value predictability during thread formation.

Simulation studies with our SpMT compiler have led to the
following conclusions:

e Nonnumeric programs can be successfully parti-
tioned into SpMT threads.

e For nonnumeric programs, it is important to exploit
parallelism from both the loops and the nonloop
regions.

e It is important to model interthread data depen-
dences carefully to exploit parallelism in SpMT
systems.

The rest of this paper is organized as follows: Section 2

provides background information on SpMT and existing
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work on SpMT compilation. Section 3 describes our SpMT
compiler framework. Section 4 discusses utilizing data value
predictability information during thread generation. Section 5
presents an experimental evaluation of our compiler. Section 6
presents our conclusions.

2 SPECULATIVE MULTITHREADING (SPMT)

The central idea behind SpMT is to execute in parallel
threads obtained from a (sequential) program. A number of
SpMT models have been proposed, including multiscalar
[10], superthreading [18], DMT [2], clustered speculative
multithreading [13], and CMP [12], [16]. Speculative multi-
threading enables parallelization of applications, despite
any uncertainty about (control or data) dependences that
may exist between the parallel threads. An SpMT processor
generally supports both control speculation and data
speculation. The hardware speculates on dependences and
recovers whenever a speculation is found to be incorrect.
This allows the SpMT compiler to do optimistic speculation,
thereby improving the performance. Below, we briefly
review some of the important aspects of SpMT; a detailed
description is available in [6].

2.1 Spawning Strategies

Spawning refers to creating dynamic threads and is
analogous to the fork mechanism used in conventional
parallel processing; the thread that initiates a spawning is
called the spawning thread. Spawned threads are assigned to
idle processing elements (PEs) for execution.

Spawning Point: An important issue in an SpMT model
concerns the points in a thread from where the spawning of
other threads can be initiated. Two possibilities exist for the
location of the spawning point: 1) at the beginning of the
spawning thread and 2) anywhere in the spawning thread.
The first case tries to maximize PE utilization by minimiz-
ing the time an idle PE waits for a thread to be activated in
it. A potential drawback with this approach is that a
speculative thread may be spawned prematurely without
considering enough runtime information. In the second
approach, spawning can be done from anywhere within a
thread. This allows the spawning to be delayed, if required,
until a particular branch or data dependence gets resolved.

Out-of-Order Spawning of Threads: With out-of-order
spawning, threads are not necessarily spawned in program
order. That is, a sequentially earlier thread may be spawned
after spawning a subsequent thread. In such a situation,
some threads may occasionally need to be preempted so as
to execute sequentially earlier threads that were spawned
later. It is also possible to have SpMT models with limited
out-of-order spawning. In the case of an out-of-order depth
of 1, for instance, after spawning a thread, at most one
predecessor thread can be spawned.

2.2 Nature of Threads

Loop-Centric Threads versus Nonloop Threads: Loop
iterations are an obvious candidate for forming threads,and
have been the traditional target of parallelization. Each
iteration can be specified as a separate thread. The only
form of control dependences shared between multiple
threads of this kind are loop termination branches, whose
outcomes are generally biased toward loop continuation. In
nonnumeric programs, many of the loops have loop-carried
dependences and, so, it is important to form threads from
nonloop regions also.

Control Speculative versus Control Nonspeculative
Threads: Speculative spawning—where the existence of
the spawned thread is control dependent on a conditional
branch present after the spawning point—is the essence of
SpMT. In Fig. 1d, thread T2 is speculative because it is
spawned from block Bl and the execution of T2 is control
dependent on the conditional branch in B3. Speculative
spawning is particularly desirable when the length of the
speculated path is long and the control flow is likely to take
the speculated path more often than the other possible
paths. As we will see later, speculative threads are a must
for exploiting thread-level parallelism (TLP) from many
nonnumeric programs. Nonnumeric programs also tend to
have a noticeable number of control mispredictions,
necessitating frequent recovery actions. Therefore, it is also
important to exploit control independence [9], possibly by
identifying threads that are nonspeculative from the control
point of view. When executing such a nonspeculative
thread in parallel with its spawning thread, a branch
misprediction within the initiator does not affect the
nonspeculative thread’s existence (although it can poten-
tially affect its execution through interthread data depen-
dences). Effective use of control independence information
thus helps to reach distant code, despite the presence of
mispredicted branches in between. In Fig. 1d, thread T3 is
nonspeculative from its initiator (T1)’s point of view as it is
spawned from Bl and the execution of T3 is control-
independent of the path taken to reach T3 from B1.

2.3 Thread Granularity

Thread size is an important parameter to consider during
program partitioning. Short threads may not expose
adequate parallelism and may incur high overhead,
depending on the thread initiation mechanisms. On the
other hand, very long threads may be impractical due to
expensive recovery actions from mispredictions and high
buffering requirements.' In SpMT processors that organize
the PEs as a circular queue [10], it is also important to
reduce the variance in thread size [10].

2.4 Interthread Data Dependences

Another important factor to consider is interthread data
dependences, which affect interthread data communication
and determine the amount of TLP present. The impact of a
data dependence depends on the producer’s and consu-
mer’s respective positions in their threads. Detection of all
data dependences at compile time is impossible because of
aliasing. Accurate determination of the relative timing of
the dependent instructions in different threads is also very
difficult because of factors like conditional branches and
cache misses. The compiler can, however, use profile
information and heuristics to deal with this.

2.5 Prior Compiler Work on SpMT

The high level of complexity involved in program partition-
ing makes it a job more suitable for the compiler rather than
the hardware. There have been several implementations of
compiler-based thread generation for SpMT systems,

1. Even if a particular thread is nonspeculative from the control point of
view, some of the data values used by that thread may be speculative.
Because of this speculative nature, a thread cannot be committed until all of
its data operands are verified to be correct and its results must be buffered
until commit time.
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Fig. 1. Example of thread generation. (a) A sample C procedure—foo ().
threaded procedure foo ().

including superthreading [23], multiscalar [20], Hydra [16],
clustered speculative multithreading [14], and Stampede
[22]. Among these, the Agassiz compiler [23], the Hydra
compiler [16], and the Stampede compiler [22] focus mainly
on loop-centric threads. Agassiz also performs intrathread
code scheduling for pipelined execution of threads. The
Stampede compiler uses optimizations such as data
forwarding and instruction scheduling to maximize the
parallelism.

B9 ‘ 3. call f2; spawn T4 ‘

T4

B10 1. callf3;

(d)
(b) The CFG for foo (). (c) After forming threads T1 and T2. (d) The

The multiscalar compiler [20] was the first major effort to
partition the entire program. It uses a set of heuristics that
are specific to the multiscalar model. It does not support
out-of-order spawning of threads, in contrast to ours. For
some programs, out-of-ordering spawning yields better
performance, as shown in our experimental results.
Furthermore, in the multiscalar model, a successor thread
is spawned only from the beginning of a thread. Our
compiler allows a thread to be spawned from anywhere
within a thread.
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Fig. 2. The layout of our compiler framework for SpMT processors.

The spawning scheme proposed in [14] also partitions
the entire program. It relies entirely on profiling to
determine good spawning points and thread starting
points. It computes reaching probabilities for all basic blocks,
based on their execution frequency. Then, every pair of
basic blocks is evaluated for likely pairs of {thread
spawning point - thread starting point}, considering the
likely thread size. This scheme does not take into account
data dependences. On the other hand, our compiler
considers statically determined data dependences besides
profile-based information on likely control flow paths.
Moreover, our compiler also uses value predictability
information for obtaining better threads.

Apart from the SpMT model, there has been notable
work on other highly speculative models such as disjoint-
eager execution (DEE) [19] and adaptive branch trees (ABT) [8].

3 OuRr CoMmPILER FRAMEWORK

Next, we present our compiler framework for generating
threads for speculative multithreaded processors. While
partitioning a sequential program, our compiler considers
data dependences, control dependences, and thread size together to
decide a good partitioning. The compiler performs a
thorough analysis of the program to generate efficient
threads. We have developed some metrics and heuristics to
help this endeavor. The layout of our compiler framework is
shown in Fig. 2. Itis built using the SUIF compiler framework
[21] and has two main components: a profiler and a thread
generator. The profiler collects execution statistics and the
thread generator performs the partitioning.

The program to be partitioned is first converted into the
SUIF intermediate representation (IR) using the SUIF front-
end compiler scc. The IR program is then optimized by
applying various optimizations available in SUIF, such as
copy propagation, constant propagation, forward propaga-
tion, common subexpression elimination, dead code elim-
ination, and moving loop-invariant calculation out of loops.
The optimized code is passed through our interprocedural
analysis module [5], [6], which annotates every instruction
with the list of variables the instruction may read and write.
The read and write sets of a call instruction contain the side
effect of the procedure being called. The thread generator
takes the annotated program, along with the profile
information, and partitions it into threads. It also specifies
the thread spawning points. Its output is in SUIF IR, from

which the MACHSUIF [17] back-end generates the threaded
Alpha assembly program.

Profiler: The compiler uses the profiler to determine the
most likely paths in the program. The profile information is
also used to estimate the number of dynamic instructions in
a procedure (including the procedures called from that
procedure), the size of a loop body, and the number of
iterations of a loop.

3.1 Thread Generator

The thread generator partitions one procedure at a time. It
does that in multiple passes. In the first pass, it builds the
procedure’s control flow graph (CFG). The immediate
postdominator of every basic block is computed and the
postdominator tree is built from the CFG. A main feature of
our thread generator is explicit exploitation of control
independences. The postdominator tree is used to find the
control-independent point for each basic block. After
building the CFG, the use-def chains [1] are computed using
the read and write sets generated by interprocedural
analysis. The interprocedural dependences are automati-
cally taken care of by the read and write sets of the call
instructions. Detailed array index analysis and structure
analysis are done during the computation of use-def sets.

After computing the use-def information, the procedure is
partitioned using Algorithm 1 (see Fig. 3). During partition-
ing, the effects of interthread data dependences are
estimated by building an interthread data dependence
model. Fig. 1b shows the CFG for procedure foo (). Note
that while building a CFG, we use a new basic block for
every call to a procedure. This facilitates our partitioning
algorithm which partitions the program only at basic block
boundaries. The likely path in the CFG from B3 to B8 is
shown by thick arrows. Also, the average dynamic
instruction count of each procedure is specified within
parenthesis beside the procedure call.

3.2 Interthread Data Dependence Modeling
Interthread data dependences are very influential in
program partitioning and should therefore be modeled as
accurately as possible. This modeling is done on the fly
during the partitioning process. We have incorporated two
different models to quantify interthread data dependences.
One uses data dependence distance (DDD) and the other uses
data dependence count (DDC).

3.2.1 Data Dependence Distance (DDD)

The data dependence distance between two threads T1 and T2
models the maximum time that the instructions in
thread T2 will stall for instructions in T1 to complete, if
T1 and T2 are executed in parallel. Consider the code
segment in basic blocks {B1, B2, B3} in Fig. 1b. Instruction
1 of B2 is data dependent on instructions 1 and 2 of B1, as
shown by dependence arcs Al and A2. Assume sequential
execution within each basic block and an instruction
latency of one clock cycle. If B1 and B2 start execution in
the same cycle, then instruction 1 of B2 will wait one cycle
for x and two cycles for y. So, in this example, B2 will
encounter a delay of two cycles when executed in parallel
with B1. Similarly, if B2 and B3 are executed in parallel,
then the dependence distance of B3 is 10 cycles because
instruction 1 in B3 has to wait for the return value of £1 ()
in B2. On the other hand, if blocks B4 and B5 are executed
in parallel, then instruction 2 of B5 does not have to wait
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Algorithm 1 Algorithm for program partitioning
partition_a_procedure (Procedure P)
1: for all Loop L in P do
2:  partition_loop(L);
3: end for
4: start_block = P.entry_block;
5: pdom_block = postdominator block of start_block;
6: curr_thread = create_new_thread (start_block, null);
7: while (pdom_block ! = null) do
8:  curr_thread = generate_thread (start_block, pdom_block, curr_thread);
9:  start_block = pdom_block;
10:  pdom_block = postdominator block of start_block;
11: end while
Thread *generate thread (start b, end b, curr_thread)
1: pdom = postdominator block of start_b;
2: path = most likely path between start_b and pdom;
3: opt_dep = find optimum dependence (start.b, pdom, path, curr_thread, &spawn_instr);
4: thread_size = sizeof (path) + sizeof (curr_thread);
5: if (is_medium(thread_size) && (opt_-dep < DEP_THRESHOLD)) then
6: add basic blocks from path to curr_thread,
7:  curr_thread = create_new_thread (pdom, spawn_instr);
8: else if (is_big (thread_size)) then
9:  first_b = first basic blocks from path;
10:  opt_dep = find_optimum_dependence (start_b, first_b, null, curr_thread, &spawn_instr);
11:  if (! is_small(sizeof (curr_thread)) && (opt-dep < DEP_THRESHOLD)) then
12: curr_thread_1 = create_new_thread (first_b, spawn_instr);
13:  else
14: add first_b to curr_thread;
15: curr_thread_1 = curr_thread;
16: end if
17:  curr_thread_l = generate_thread (first_b, pdom, curr_thread_1);
18:  opt_dep = find_optimum_dependence (start_b, pdom, null, curr_thread, &spawn_instr);
19:  if (opt-dep < DEP_.THRESHOLD) then
20: curr_thread = create_new_thread (pdom, spawn_instr);
21:  else
22: curr_thread = curr_thread_l;
23:  end if
24: else
25 add basic blocks from path to curr_thread;
26: add pdom to curr_thread,;
27: end if
28: curr_thread = generate_thread (pdom, end b, curr_thread);
29: generate thread for other paths;
30: return curr_thread;

Fig. 3. Algorithm 1: Algorithm for program partitioning.

for the value of a from instruction 1 of B4 as it is already
computed (assuming sequential execution). Formally,

Dependence _Distance(T) =
M AX (dependence_distance(A;));V incoming dependence
edge A; of Thread T.

The dependence distance for A; is computed by considering
the starting cycle of thread 7' relative to the predecessor
threads, assuming enough processing elements.

It is not beneficial to parallely execute threads having
large dependence distances. In order to decide whether to
start a new thread at a certain point, our compiler calculates
the dependence distance that will result if a new thread is
started there. A thread is started only if the distance is
below a threshold.

3.2.2 Data Dependence Count (DDC)

The data dependence count is the weighted count of the
number of data dependence arcs coming into a thread from
other threads. A small count value indicates that this thread
is somewhat data independent on its predecessor threads,
making it a good candidate to be executed in parallel with
its predecessors. In Fig. 1b, the data dependence arcs for
procedure foo() are shown with dashed arrows. If we
consider blocks B1 and B2 as two separate threads, then the
data dependence count of B2 is 2 because of the
dependence arcs Al and A2. While counting the depen-
dence arcs, the compiler gives less weight to the arcs
coming from distant threads as dependences from these
threads are likely to be resolved earlier. Furthermore, the
compiler gives less weight to the dependence arcs coming
from the infrequent control flow paths. Formally,
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Dependence_Count(T) = Xw, * A,;
where A,, is the number of dependence edges coming from
thread T), to T'.

The weight w,, decreases (starting from 1) as the distance
between T and T,, increases.

The rationale behind the use of data dependence count is
twofold. First, it is simple to compute. Second, if out-of-
order execution is carried out within a thread, then the data
dependence distance model may not be very accurate
because it assumes serial execution within each thread.

3.3 Program Partitioning

An overview of our partitioning approach is given in
Algorithm 1 (see Fig. 3). The function partition_a_pro
cedure () traverses the CFG and partitions the procedure
into multiple threads. First, the loops are examined and
partitioned in partition_loop (). Further partitioning is
then done by traversing the CFG from the root. At every
iteration of the while loop in partition_a_procedure(),
the compiler looks ahead up to the control-independent point
of the basic block under consideration and partitions the CFG
between these two basic blocks into threads by calling
generate_thread (). The function create_new_th
read () starts a new thread from the basic block start_
block, passed as the first argument. The second argument is
an instruction (belonging to a predecessor thread) from
where the new thread has to be spawned. The first thread in a
procedure is actually the continuation of the thread contain-
ing the call to this procedure. Therefore, the second argument
of create_new_thread() in line 6 of partition_a_
procedure () is null. This function creates new entry into a
global list of threads and returns a pointer to the newly
created entry.

3.3.1 Partitioning Loops

Our framework treats loops as a special case of control
dependences. It checks the data dependences between two
successive iterations of a loop. If starting another thread at
the next iteration is determined to be profitable, then a
thread is started there. Notice that the spawning point can
be kept somewhere inside the loop body and not necessarily
at the beginning of the loop body. Large loops may be
further partitioned into multiple threads, just like the case
with nonloop regions.

Judicious partitioning of the loops is aided by profile
information on the expected number of iterations and the
number of dynamic instructions in the loop. In general, we
do not want parallel execution of iterations of a small loop
body that iterates only a few times. If a small loop body
iterates many times, loop unrolling can first be done to
increase the loop body size, after which the iterations can be
executed in parallel. For partitioning nested loops, the
compiler considers both the inner loop and the outer loop
for parallel execution. Depending upon the available
parallelism, the structure of the loop bodies, and the load
balancing, either the inner loop, or the outer loop, or both
can be designated as threads.

3.3.2 Thread Generation for Nonloop Regions

The pseudocode for generate_thread () is also shown in
Algorithm 1 (see Fig. 3). This function takes two basic
blocks and current thread as inputs and partitions the
program segment between these two basic blocks into

multiple threads (if possible) by calling itself recursively.
Current thread consists of basic blocks from previous
control-independent regions up to start_block. It first
determines the most likely path between start_block
and its immediate postdominator block (which is also the
next control-independent point) based on the profile
information. Then, it calls find_optimum_depen
dence () to determine the optimum dependence between
current thread and the possible future thread starting from
the postdominator. It also identifies the best spawning point
for the future thread. Whether a thread gets spawned
speculatively or nonspeculatively is determined by its
spawning point. It is generally desirable to spawn a thread
as early as possible. However, this also increases its data
dependence on its predecessor threads. The function
find_optimum_dependence() tries to find an early
spawning point for the future thread while keeping its
dependence distance/count below DEPENDENCE_THRES
HOLD. The details of find_optimum_dependence () are
available in [6].

To reduce thread size variance, our SpMT compiler
maintains a lower limit and an upper limit for the number
of dynamic instructions in a thread. If the current thread
size (including the size of the likely path from the current
basic block to the postdominator block) is within those
limits and the dependence of the possible thread starting
from the control-independent block is less than DEPEN
DENCE_THRESHOLD, then a new thread is started from the
postdominator block. If the current thread is large, then the
region between start_block and its control-independent
block is further examined for possible partitioning. More-
over, if the possible thread starting from the control-
independent point does not have much data dependence
with the current thread, then a thread is created at the
control-independent block. On the other hand, if the thread
is too small even after including the blocks from the likely
path, then no new thread is created at the control-
independent point. The main goal of partitioning is to
optimize the execution along the most likely path inside the
procedure. The compiler also checks the less likely paths
and partitions them as well.

3.3.3 Handling of Procedure Calls

The function generate_thread () automatically handles
the call instructions present in the CFG. The compiler
terminates the basic block after a procedure call. So, the
instructions following a call instruction appear in the
postdominator block of the basic block containing the call.
At procedure call, it takes into account the average number
of dynamic instructions to complete this call. The data
dependences across the call are taken care of by the
interprocedural analysis. If the called procedure is small,
then it is completely included in the current thread. On the
other hand, for a call to a bigger procedure, a new thread
may begin after the call, depending on the thread size and
the data dependences. If the called procedure is further
partitioned into threads, then out-of-order spawning may
take place.

3.4 An Example of Program Partitioning

The working of generate_thread () is illustrated with
an example in Figs. 1c and 1d. In this example, we assume
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that a thread should have more than eight instructions, but
preferably less than 20 instructions.” We are using the data
dependence distance model with a DEPENDENCE_THRES
HOLD of 2, i.e., an instruction should not stall for more than
two cycles for its operands from the predecessor threads,
assuming sequential execution and one cycle latency. In
Figs. 1c and 1d, we number the instructions with respect to
the beginning of the threads to which they belong.

Program partitioning starts from block B1; the instructions
of B1 are included in T1. Looking into B2, as T1’s size at this
point is less than 8, B2 is added to T1. The procedure £1 ()
called from B2 has only eight dynamic instructions and,
hence, is not partitioned into threads. Thus, the entire
dynamic instance of £ () is included in T1 and the size of
T1 becomes 14. If we consider the thread size only, then we
canstartanew thread from B3 (as T1 now has more than eight
instructions), but in that case, the dependence distance of B3
would be 12. Hence, we include B3 also in T'1.

Afterward, the compiler determines the most likely path
from B3 to its control independent block, B8 (shown by the
thick arrows). If we include the blocks {B4, B5, B7}in T1, then
T1’s size becomes more than 20. Therefore, we try to start a
new thread T2 from B4 by finding a suitable spawning point
from T1. The function £ind_optimum_distance () inline
10 of the pseudocode of generate_thread () does that. It
first builds a possible future thread T2 containing {B4, B5,
B7}. After that, it finds a spawning point for T2 by computing
the dependence distances of T2 for various spawning points.
We see that, if T2 is spawned from instruction 1 of T1, the
resultant dependence distance for T2 is 1, i.e., less than
DEPENDENCE_THRESHOLD. Therefore, T2 is started from B4
and spawned speculatively from instruction 1 of T1, as
shown in Fig. 1c. Then, we include blocks {B5, B6, B7}in T2. If
that path were longer, it would have been partitioned into
multiple threads.

After partitioning the most likely path from B3 to B8, we
recompute the optimum dependence for a future thread T3
starting at B8, considering both T1 and T2. In Fig. 1, we see
that if T3 is spawned from instruction 1 of T1, then the
dependence distance is 3 due to the dependence arc from
instruction 4 of T2 to instruction 2 of T3. However, if we
spawn T3 from instruction 2 of T1, then the dependence
distance is 2, which is within DEPENDENCE_THRESHOLD.
Hence, we spawn the nonspeculative thread T3 from there,
as shown in Fig. 1d. After starting T3 from B8, we look into
B9. Like B2 in T1, we include B9 in T3. The number of
dynamic instructions in £2 () called from B9 is 100 and
£2 () is therefore partitioned into threads. Moreover, by
performing interprocedural analysis, the compiler finds that
there is no dependence between £2 () and £3 () . Therefore,
it spawns thread T4, starting at the call of £3 () from T3.
Note that T4 is spawned out-of-order as it is spawned
before the threads belonging to £2 (), which precede T4 in
program order.

4 EXPLOITING VALUE PREDICTABILITY IN THREAD
GENERATION

Data dependences have a big effect on the speedup
obtained in a multithreaded system. If interthread data
dependences abound, very little speedup will result unless
the SpMT hardware uses data value prediction. Past
research has shown that runtime data value prediction

2. Note that, because of the library routine calls and program structure, it
is not always possible to restrict the thread size within the upper limit.

Bl | pae .
_oepare=.. Thread 1
-7 - red_cost=.;
g I O
s et / Thread 2
O N=arg
/‘éé r .. = red_cost; likely
<~ _}».. = ABS(red_cost); control flow
data

- -
dependences

S

B3

Fig. 4. An example code fragment to show the importance of data value
profiling.

can provide good speedup in SpMT processors by
temporarily ignoring data dependences and executing
instructions based upon the predicted values [15]. When
employing data value prediction, the partitioning algorithm
could be improved to exploit this. We next present an
enhancement that considers the effects of runtime data
value prediction while making compile-time partitioning
decisions. To do this, we map the predictable instructions to
the actual source variables they operate on and then use the
predictability information of the source variables to build a
more accurate data dependence model.

4.1 Importance of Exploiting Value Predictability

Information

We shall use an example to illustrate the importance of
exploiting value predictability information at compile time.
The code fragment (and CFG) shown in Fig. 4 is taken from
a frequently executed function in mcf, a SPEC2000
program. Most of the time the control goes to B2 after
executing Bl. Under the partitioning scheme described
earlier, a new thread is not created at the beginning of B2
for parallel execution with B1 because there are many data
dependences between B1 and B2 through variables arc and
red_cost. So, B1 and B2 are grouped under the same thread.
However, the data value prediction statistics indicate
that the variables arc and red_cost are correctly predicted
more than 80 percent and 52 percent of the time,
respectively. Therefore, at runtime, more than 50 percent
of the time, it is actually beneficial to execute B1 and B2 in
parallel. By using the prediction statistics of these variables,
the compiler can ignore the related data dependences and
allocates these basic blocks into two separate threads.

4.2 Integrating the Effects of Data Value

Predictability

The first step toward considering the effects of runtime
value predictability during the compilation phase is to
collect runtime prediction statistics. We developed a
profiler called walue predictability profiler (VPP) for this
purpose. For every variable accessed during profiling, VPP
determines the number of times it was accessed and the
number of times it was predicted correctly. The challenge is
that the VPP works with the executable, which has no
notion of progam variables, whereas the thread generator
needs the information for the program variables. Therefore,
all information collected by VPP needs to be mapped back
to the IR code.

VPP executes the program using a trace-driven simu-
lator, which has a data value predictor similar to the one to
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Fig. 5. Speedup obtained with different dependence modeling. Bar a: Data dependence distance. Bar b: Data dependence count.

be used in the SpMT processor. VPP collects the prediction
statistics for instructions as and when they are simulated
and simultaneously maps their source operands to the
corresponding source variables, if possible, using the
symbol table of the executable. Not all operands correspond
to source variables; often, instructions either access registers
that hold intermediate results or load register-spilled values
from memory locations. A global variable is identified by
matching the memory address with the elements of the
symbol table. Local variables are identified by determining
their position in the current stack frame. For structure
variables, VPP maps the source operand to the particular
field of the structure it corresponds to. For array variables,
VPP maps the source operand to the array variable and
does not narrow it down further to the specific index.
However, our SpMT compiler later uses the prediction
statistics of the array variable along with array index
analysis to determine whether the dependence due to the
array variable can be ignored.

Using the value prediction statistics in the thread
generator is quite straightforward: In the interthread
dependence model, consider only the dependences due to

the variables with value prediction accuracies less than a
threshold.

5 EXPERIMENTAL EVALUATION

Our simulator models a generic SpMT processor on top of a
trace-driven simulator. Each processing element (PE) has its
own program counter, fetch unit, decode unit, and execution
unit that can fetch and execute instructions from a thread.
Each PE has an instruction window of 64 instructions and can
issue up to four instructions per cycle in an out-of-order
fashion. The PEs are connected together by a 2-cycle latency
interconnect. All functional units are assumed to have a single
cyclelatency. Thereis a2 cycle overhead in assigning a thread
to a PE; thread preemption also incurs a 2 cycle penalty. The
simulator also models a shared 256 KB L1 d-cache with a
1 cycle access latency and a miss latency of 10 cycles; we have
kept the memory system somewhat ideal so that the results
are not tied to a specific memory system. When encountering
a conditional branch instruction in a thread, a branch
predictor is consulted for making a prediction. A hybrid data
value predictor is modeled for predicting the results of
instructions whose operands are unavailable at decode time.

The simulator uses the Alpha ISA. The code executed in
the supervisor mode is unavailable to the simulator and are
therefore not taken into account in the statistics. The library
code is not parallelized as we use the standard libraries in

our experiments. The serial execution of the library code
provides a conservative treatment to our parallelism values.

For benchmarks, we use 11 programs: five from
SPEC2000 and six from the Olden suite, all written in C.
For the SPEC benchmarks, we “fast forward” the first
500 million instructions in order to skip the initialization
phases before beginning the actual simulation. For the
Olden benchmarks, there is no need to fast forward as they
do not have any initialization phases. We simulate all the
programs except mcf and perimeter for one billion
instructions after fast forwarding (the parallelism values
are found to be stable at one billion instructions); mcf
terminated after 700 million instructions, while perimeter
terminated after 500 million instructions. For the SPEC
benchmark programs, we use the train data set as input
during profiling and the ref data set as input during
simulation (except for mcf). For mcf, we use the 1lgred
input from the MinneSPEC [11] input set, as its ref input
has very high memory requirements. In Olden benchmarks,
we use the same input sizes as [7] for the simulation and
scaled down input for profiling.

Default Partitioning Setup: As there are many para-
meters, it is difficult to perform a completely orthogonal set
of experiments. Therefore, we define a default setup, and
vary one parameter at a time. For the default setup, the
compiler generates all kinds of threads (i.e., speculative
threads, control independent threads, and loop-centric threads)
and uses data dependence distance-based modeling of
interthread data dependences. The default compiler thresh-
old values for lower and upper limits of the number of
dynamic instructions in a thread are 20 and 200, respec-
tively. The default value for interthread data dependence
distance threshold is 15.

5.1 Evaluation of Basic Thread Generation Scheme

To evaluate the effectiveness of our basic partitioning
algorithm, we measure the speedup obtained with all
kinds of threads by increasing the number of PEs from 1
to 16. Fig. 5 shows the speedup measured with respect to
the sequential execution of the programs in a single PE.
Table 1 presents some thread-related statistics for the
DDD-based configuration used in Fig. 5.

On analyzing the speedup obtained with the DDD-based
partitioning, we see that most of the benchmarks show good
speedup and scalability as we increase the number of PEs.
From Table 1, we see that more than 83 percent of the
dynamic instructions in crafty belong to nonloop threads
and the fact that it shows good speedup and scalability
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TABLE 1
Runtime Thread Statistics

Prog. Avg. % of Dynamic Instr. of
Name Dynamic Diff. Thread Types
Thread | Specu- | Nonspecu- Loop-
Size lative lative | centric
crafty 93.5 | 63.8% 14.1% | 22.1%
equake 314 1.6% 0.3% | 98.1%
mcf 35.7 3.5% 0.1% | 96.4%
twolf 33.5 | 13.1% 8.3% | 78.6%
vpr 80.1 | 34.3% 16.4% | 49.3%
health 8.9 5.6% 0.0% | 94.4%
mst 1146.4 0.0% 0.0% | 100.0%
perimeter 67.7 | 78.6% 21.4% 0.0%
power 42.6 4.5% 85.0% | 10.5%
treeadd 106.5 | 100.0% 0.0% 0.0%
tsp 103.8 | 16.1% 01% | 83.8%

indicates that our compiler has been successful in extracting
parallelism from the nonloop parts of the code.’ This is true
for vpr, perimeter, power, and treeadd. Benchmarks
perimeter and treeadd do not have loops; instead, they
have recursive function calls. These benchmarks have large
percentages of speculative threads and nonspeculative
threads.

In {equake, mcf, twolf, health, mst, tsp}, most of
the time is spent in loops. For mst, the speedup is very
high, linear in the number of PEs, as it spends most of the
time in a parallelized loop with no loop-carried depen-
dences. mcf and health suffer mainly from too many
cache misses. twolf and health have very little loop-level
parallelism.

In Table 1, we see that the average thread size is
reasonable for all programs except mst and health. In
health, there is a small loop body that is executed most of
the time, resulting in small threads and, therefore, the PEs
are not able to exploit TLP well. This loop mainly traverses
a linked list and, therefore, prefetching is required to get
parallelism from this loop. On the other hand, in mst, the
most frequently executed loop-centric thread contains library
routine calls that our compiler did not partition, resulting in
very large threads.

5.2 Comparison between the Two Data Dependence
Models

From Fig. 5, we can also compare the effectiveness of the
two data dependence models used for thread generation.
These results are a mixed bag. The Olden benchmark
programs treeadd and perimeter show the most
significant differences in performance. For perimeter,
DDD-based modeling gives a higher speedup, while, for
treeadd, DDC-based modeling gives a better speedup.
On analyzing treeadd’s threads, we found that the
same set of threads are generated in both cases, but the
spawning points are different. One of the most executed
threads is spawned from an earlier point in the DDD-based

3. In this context, the term loops excludes those loops whose bodies
contain procedure calls such that successive iterations of the loops are
thousands to millions of instructions apart, e.g., the processing loop in the
main() function.

partitioning than in the DDC based partitioning. The DDD
model estimated that a particular dependence would get
resolved early at runtime and spawned the thread accord-
ingly. But, it did not get resolved early at runtime and the
thread’s PE stalled for that data affecting the overall
speedup. In general, both models seem to be quite effective
in modeling interthread data dependences.

5.3 Effectiveness of Different Types of Threads

To evaluate the contribution of different types of threads on
performance, we conducted experiments by varying the
nature of threads. For this study, DDD-based modeling was
used. Fig. 6 presents the results obtained with three
different combinations of thread types. From this figure,
we can see that loop-centric threads alone are quite
insufficient to harness the parallelism present in most of
the benchmarks.

From Table 1, we see that more than 65 percent of the
threads in crafty are speculative, so, loop-centric threads
alone or together with nonspeculative threads could not
completely exploit the available parallelism. In equake,
although only 5 percent of the threads are either speculative
or nonspeculative, they have a significant contribution to
parallelism. We found that, by depending solely on loop-
based threads, some parts of the program become com-
pletely serialized, which affects the overall speedup of the
program. In tsp, although only around 15 percent of the
threads are speculative, they seem to play a key role in
exploiting parallelism. It may be possible that, by not
spawning the speculative threads, load balancing and
thread scheduling get affected, thereby affecting the
performance.

5.4 Effectiveness of Accounting for Data Value
Predictability

The results presented in Fig. 7 show the impact of using
value predictability information in thread formation with a
dependence threshold of 50 percent. Table 2 shows the
overall prediction statistics of the source variables for the
benchmark programs.

Comparing bar a with b and c with d in Fig. 7, we find
that mcf shows a 39 percent increase in speedup for DDD-
based modeling and 32 percent increase for DDC-based
modeling, when using 16 PEs. The reason behind this large
improvement was already pointed out in Section 4.
crafty, vpr, and perimeter show significant improve-
ment in speedup when accounting data value predictability.
From these results we can infer that some of the variables
that play a crucial role in deciding the partitioning in these
benchmark programs have good prediction accuracies. By
ignoring the dependences due to these variables, our
compiler has performed a better partitioning.

The benchmarks equake, mst, and power do not show
additional speedup, although they have very high predic-
tion accuracies. In mst, all of the parallelism is present in a
single loop, and the compiler could extract it without
accounting for data value prediction. For equake and
power, it appears that the variables that have high
prediction accuracies are not playing a critical role in
thread formation. For example, if a variable is written and
then read inside the same basic block, then this data
dependence is not considered for deciding the partitioning,.
Similarly, the dependences coming from distant threads
also do not have a major influence on the partitioning. From
Fig. 7, we see that, for most of the benchmarks, the
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difference in speedups for the two dependence models
becomes less significant when utilizing value predictability
information.

5.5 Effectiveness of Out-of-Order Spawning

Our next set of experiments focus on the effect of out-of-
order thread spawning. The results are shown in Fig. §,
where the bars are marked with their out-of-order spawn-
ing depth. Our compiler framework can create out-of-order
spawning to an infinite depth, but it is not practical for the
SpMT hardware to support infinite depth of out-of-order
spawning because of limited buffer space within each PE.

TABLE 2
Prediction Accuracies of the Source Variables

Program No. of Variables Overall Prediction
Name Accessed | with Prediction Accuracies of
Accuracy > 50% Variables
crafty 1088 176 34.19%
equake 172 51 75.49%
mcf 156 54 51.62%
twolf 1727 156 41.34%
vpr 511 124 48.00%
health 55 11 4.10%
mst 64 28 88.49%
perimeter 22 9 39.76%
power 85 21 99.76%
treeadd 14 0 11.65%
tsp 65 4 24.46%

Also, in order to support out-of-order spawning, the SpMT
processor may have to frequently preempt some of the
(sequentially older) threads, thereby increasing the over-
head. So, ideally, we would like to extract as much
parallelism as possible without any out-of-order spawning
or at a low out-of-order spawning depth.

In Fig. 8, we see that, except for health and mst, all
other benchmarks show marked speedup improvements
even at at an out-of-order spawning depth of 2. This implies
that, in health and mst, even in the default configuration,
the threads are mostly spawned and executed in sequential
order. In tsp, there is an increase in parallelism only when
the depth is increased from 4 to co. This signifies that there
is some parallelism available at a distance. In power, there
is a 139 percent increase in speedup as the depth is
increased from 0 to 2. In power, the most frequently
executed part of the program contains calls to procedures
that can be executed in parallel. The first procedure called is
again partitioned into two threads. Without out-of-order
spawning, the procedures are sequentially executed. How-
ever, by allowing an out-of-order spawning depth of 1, the
second procedure can be executed in parallel with the first
procedure, resulting in significant speedup.

5.6 Impact of Thread Size and Data Dependence

Thresholds
To evaluate the impact of the thread size threshold and the
data dependence threshold values used by the compiler, we
compiled the benchmarks programs with different sets of
threshold values and measured the performance. The
thread size threshold is defined by two threshold values:
the lower limit and the upper limit of the number of
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dynamic instructions in a thread. The compiler tries to
create threads within the specified size limits. The amount
of allowable interthread data dependence is controlled by
the data dependence threashold.

We chose threshold values with significant differences to
observe their impact. In Fig. 9, we present the results for the
SPEC benchmarks, for varying thread size thresholds. From
the figure, we see that the highest speedups are obtained
when the lower and upper limits are 20 and 200,
respectively (i.e., bar “c”), that are the default values for
all other experiments. Within this limit, the processors are
able to extract parallelism at different granularities. More-
over, it could also exploit ILP within each thread.

The lower and upper limits of 8 and 40 (i.e., bar “a”)
generate smaller size threads that do not capture paralle-
lism at larger granularities. Moreover, small threads have
less ILP and the thread starting overhead may offset the
advantage of exploiting TLP. The significant decrease in
speedup for crafty and vpr in bar “b” could be because
of the high thread size variance and lack of parallelism at
higher granularity.

Fig. 10 shows the speedup obtained by varying the data
dependence distance threshold to 5, 15 (default value), and
50. For lower dependence thresholds, the compiler parti-
tions more conservatively and, therefore, it loses parallelism
opportunities available at runtime due to data value
prediction and out-of-order execution. By comparing the
speedup with the threshold values of 15 and 50, we see that
speedup increases for equake and mcf while it decreases
for the other benchmarks. The data value prediction
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accuracies of equake and mcf are quite high; by using a
higher threshold, the compiler could effectively ignore the
dependences due to the predictable variables resulting in a
higher speedup. For other benchmarks, the use of higher
dependence threshold results in threads that are stalled
more often because of interthread data dependences and,
thereby, reducing the speedup.

6 CONCLUSIONS

Speculative multithreading (SpMT) is emerging as an
important parallelization method for nonnumeric pro-
grams. The main idea is to fetch and execute multiple
threads, derived from a single program, in parallel.
Judicious partitioning of a sequential program into threads
is difficult to do in hardware. Previous compiler efforts
have focused mainly on loop-based threads and speculative
threads. A limitation of this is that branch mispredictions
may cause all subsequent threads to be squashed, without
retaining any active nonspeculative threads. The use of
nonspeculative threads has the potential to extract addi-
tional amounts of parallelism.

This paper presented a general compiler framework for
partitioning a sequential program into multiple threads for
execution in an SpMT processor. This compiler framework
has been implemented on the SUIF-MachSUIF platform. Our
compiler framework is general and can identify loop-based
threads, speculative threads, and nonspeculative threads. In
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Fig. 10. Speedup obtained with different dependence distance thresh-
olds (values shown under the bars).
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addition, it also supports out-of-order spawning of threads,
and spawning from anywhere in a thread. While performing
the program partitioning, the compiler not only considers
control independence information, but also considers data
dependence information and profile-based information on
the most likely control flow paths. Our compiler framework is
therefore useful for a variety of SpMT architectures. A
simulation-based evaluation of the threads generated with
our compiler indicates that the combination of loop-based
threads, speculative threads, and nonspeculative threads has
the potential to extract large amounts of thread-level
parallelism from nonnumeric programs.
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