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Abstract—Dynamic computation has emerged as a promising strategy to improve the inference efficiency of deep networks. It allows
selective activation of various computing units, such as layers or convolution channels, or adaptive allocation of computation to highly
informative spatial regions in image features, thus significantly reducing unnecessary computations conditioned on each input sample.
However, the practical efficiency of dynamic models does not always correspond to theoretical outcomes. This discrepancy stems from
three key challenges: 1) The absence of a unified formulation for various dynamic inference paradigms, owing to the fragmented research
landscape; 2) The undue emphasis on algorithm design while neglecting scheduling strategies, which are critical for optimizing
computational performance and resource utilization in CUDA-enabled GPU settings; and 3) The cumbersome process of evaluating
practical latency, as most existing libraries are tailored for static operators. To address these issues, we introduce Latency-Aware
Unified Dynamic Networks (LAUDNet), a comprehensive framework that amalgamates three cornerstone dynamic
paradigms—spatially-adaptive computation, dynamic layer skipping, and dynamic channel skipping—under a unified formulation. To
reconcile theoretical and practical efficiency, LAUDNet integrates algorithmic design with scheduling optimization, assisted by a latency
predictor that accurately and efficiently gauges the inference latency of dynamic operators. This latency predictor harmonizes
considerations of algorithms, scheduling strategies, and hardware attributes. We empirically validate various dynamic paradigms within
the LAUDNet framework across a range of vision tasks, including image classification, object detection, and instance segmentation. Our
experiments confirm that LAUDNet effectively narrows the gap between theoretical and real-world efficiency. For example, LAUDNet can
reduce the practical latency of its static counterpart, ResNet-101, by over 50% on hardware platforms such as V100, RTX3090, and TX2
GPUs. Furthermore, LAUDNet surpasses competing methods in the trade-off between accuracy and efficiency. Code is available at:
https://www.github.com/LeapLabTHU/LAUDNet.

Index Terms—Dynamic networks, Efficient inference, Convolutional neural networks, Vision Transformers.
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1 INTRODUCTION

D EEP neural networks have demonstrated exceptional
capabilities in various domains such as computer vision

[1], [2], [3], [4], [5], natural language processing [6], [7],
[8], [9], and multi-modal understanding/generation [10].
Despite their stellar performance, the intensive computa-
tional requirements of these deep networks often limit their
deployment on resource-constrained platforms, like mobile
phones and IoT devices, highlighting the need for more
efficient deep learning models.

Unlike traditional static networks [2], [3], [4] which
process all inputs uniformly, dynamic models [11] adaptively
allocate computation in a data-dependent fashion. This
adaptivity involves bypassing certain network layers [12],
[13], [14], [15] or convolution channels [16], [17] conditionally,
and executing spatially adaptive inference that concentrates
computational effort on the most informative regions of an
image [18], [19], [20], [21], [22], [23]. As the field evolves and
various dynamic models show promise, it begs the question:
How can we design a dynamic network for practical use?
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Addressing this question is challenging due to diffi-
culties in fairly comparing different dynamic-computation
paradigms. These challenges fall into three categories: 1)
The lack of a unified framework to encompass different
paradigms, as research in this area is often fragmented; 2)
The focus on algorithm design, which often results in the
mismatch between practical efficiency and their theoretical
computational potential, due to the significant impact of
scheduling strategies1 and hardware properties on real-
world latency; 3) The laborious task of evaluating a dynamic
model’s latency on different hardware platforms, as common
libraries (e.g. cuDNN) are not built to accelerate many
dynamic operators.

In response, we introduce a Latency-Aware Unified Dy-
namic Network (LAUDNet), a framework that unifies three
representative dynamic-inference paradigms. Specifically, we
examine the algorithmic design of layer skipping, channel
skipping, and spatially dynamic convolution, integrating
them through a ”mask-and-compute” scheme (Fig. 1 (a)).

Next, we delve into the challenges of translating theoreti-
cal efficiency into tangible speedup, especially on multi-core
processors such as GPUs. Traditional literature commonly
adopts hardware-agnostic FLOPs (floating-point operations)
as a crude efficiency measure, failing to provide latency-
aware guidance for algorithm design. In dynamic networks,

1. Scheduling strategies are essential for practical efficiency because
they optimize the use of GPU threads and memory with CUDA codes.
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Fig. 1: An overview of our method. (a) illustrates three representative adaptive inference algorithms (i.e. spatial-wise dynamic
convolution, channel skipping, and layer skipping); (b) is an example of the scheduling strategy for spatial-wise dynamic
convolution; and (c) presents our key idea of using the latency to guide both algorithm design and scheduling optimization.

adaptive computation coupled with sub-optimal scheduling
strategies intensifies the gap between FLOPs and latency.
Moreover, most existing methods execute adaptive inference
at the finest granularity. For instance, in spatial-wise dynamic
inference, the decision to compute each feature pixel is made
independently [19], [20], [21]. This fine-grained flexibility
results in non-contiguous memory access [21], necessitating
specialized scheduling strategies (Fig. 1 (b)).

Given that dynamic operators exhibit unique memory
access patterns and scheduling strategies, libraries designed
for static models, like cuDNN, fail to optimize dynamic
models effectively. The lack of library support implies that
each dynamic operator requires individualized scheduling
optimization, code refinement, compilation, and deployment,
making network latency evaluation across hardware plat-
forms labor-intensive. To address this, we propose a novel
latency prediction model that efficiently estimates network
latency by taking into account algorithm design, scheduling
strategies, and hardware properties. Compared to hardware-
agnostic FLOPs, our predicted latency offers a more realistic
representation of dynamic model efficiency.

Guided by the latency prediction model, we tackle
the aforementioned challenges within our latency-aware
unified dynamic network (LAUDNet) framework. For a
given hardware device, we use the predicted latency as
the guiding metric for algorithm design and scheduling
optimization, as opposed to the conventionally used FLOPs
(Fig. 1 (c)). In this context, we propose coarse-grained
dynamic networks where ”whether-to-compute” decisions
are made at the patch/group level rather than individual
pixels/channels. Though less flexible than pixel/channel-
level adaptability in prior works [16], [17], [19], [20], [21], this
approach encourages contiguous memory access, enhancing
real-world speedup on hardware. Our improved scheduling
strategies further permit batching inference. We investigate
dynamic inference paradigms, focusing on the accuracy-
latency trade-off. Notably, previous research has established
a correlation between latency and FLOPs on CPUs [21], [23],
hence in this paper, we primarily target the GPU platform, a
more challenging but less explored environment.

The LAUDNet is designed as a general framework in two

ways: 1) Multiple adaptive inference paradigms can be easily
implemented in various vision backbones, like ResNets [2],
RegNets [24] and vision Transformers [25], [26]; and 2) The
latency predictor functions as an off-the-shelf tool that can
be readily applied to diverse computing platforms, such as
server-end GPUs (Tesla V100, RTX3090), desktop-level GPU
(RTX3060) and edge devices (Jetson TX2, Nvidia Nano).

We evaluate LAUDNet’s performance across multiple
backbones for image classification, object detection, and
instance segmentation. Our results show that LAUDNet sig-
nificantly improves the efficiency of deep CNNs, both in
theory and practice. For instance, the inference latency of
ResNet-101 on ImageNet [1] is reduced by >50% on different
types of GPUs (e.g., V100, RTX3090 and TX2), without
compromising accuracy. Moreover, our method outperforms
various lightweight networks in low-FLOPs scenarios.

Although parts of this work were initially published in a
conference version [27], this paper significantly expands our
previous efforts in several key areas:

• A unified dynamic-inference framework is proposed.
While the preliminary paper [27] predominantly
focused on spatially adaptive computation, this paper
delves deeper into two additional and important dy-
namic paradigms, specifically, dynamic layer skipping
and channel skipping (Fig. 1 and Sec.3.1). Further-
more, we integrate these paradigms into a unified
framework, and provide more thorough study on
architecture design and complexity analysis (Sec.3.2).

• The latency predictor has been enhanced to support
an expanded set of dynamic operators, including layer
skipping and channel skipping (Sec. 3.3). Moreover,
we adopt Nvidia Cutlass [28] to optimize the schedul-
ing strategies. Hardware evaluations demonstrate
that our latency predictor can accurately predict the
latency on real hardware (Fig. 5).

• The LAUDNet framework has been extended to
accommodate Transformer architectures, as detailed
in Sec. 3.2. This extension notably enhances latency
optimization through the implementation of dy-
namic token skipping (spatially adaptive computation),
head (channel) skipping, and layer skipping. Such ad-
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vancements significantly broaden the applicability of
LAUDNet. The empirical evaluation, illustrated in
Fig. 10 (c) and discussed in Sec. 4.3.2, yields valuable
insights into the design of efficient Transformers,
underpinning the framework’s versatility and efficacy.

• For the first time, we incorporate batching inference
for our dynamic operators (Sec. 3.4). This innovation
leads to more consistent prediction outcomes and an
enhanced speedup ratio on GPU platforms (Fig. 8, 12).

• We undertake an exhaustive analysis of vari-
ous dynamic granularities (Fig. 9) and paradigms
(Fig. 10,11,13, Tab. 2,3), spanning different vision
tasks and platforms, with added evaluations on
contemporary GPUs like RTX3060 and RTX3090. We
are confident that our results will offer valuable
insights to both researchers and practitioners.

2 RELATED WORKS

Efficient deep learning has garnered substantial interest.
Traditional solutions involve lightweight model design [29],
[30], [31], [32], network pruning [33], [34], [35], [36], weight
quantization [37], [38], [39], [40], and knowledge distillation
[41], [42]. However, these static methods have sub-optimal
inference strategy, leading to intrinsic redundancy since they
process all inputs with equal computation.
Dynamic networks [11], [12], [18], [43] propose an appealing
alternative to static models by enabling input-conditional
dynamic inference. This adaptive approach has yielded supe-
rior results across various domains. In visual recognition,
prevalent dynamic paradigms include early exiting [12], [13],
[44], layer skipping [14], [15], [43], channel skipping [16],
[17], [45], and spatial-wise dynamic computation [19], [20],
[21]. This paper primarily targets the latter three paradigms,
as they can be readily applied to arbitrary visual backbones,
thereby offering a generality advantage. Layer skipping and
channel skipping explore structural redundancy within deep
networks by selectively activating computation units, such
as layers or convolution channels when processing different
inputs. Spatial-wise dynamic models alleviate spatial redun-
dancy in image features and selectively assign computation
to the regions most pertinent to the task at hand.

Despite their effectiveness, previous studies often fail to
recognize the shared underlying formulation across different
dynamic paradigms. In contrast, we introduce a unified
framework that encompasses all three paradigms, facilitating
a thorough exploration of dynamic networks. Additionally,
existing methods primarily concentrate on algorithm de-
sign, which often results in a significant disparity between
theoretical and practical efficiency. In our latency-aware co-
design framework, we bridge this gap by utilizing latency
directly from our latency predictor to guide both algorithm
design and scheduling optimization. This approach results
in improved latency performance across diverse platforms.
Hardware-aware network design. Researchers have ac-
knowledged the necessity to bridge the gap between theoreti-
cal and practical efficiency of deep models by considering ac-
tual latency during network design. Two primary approaches
have emerged: the first entails conducting speed tests on
hardware and deriving guidelines to facilitate hand-designing
lightweight models [32], and the second involves performing

speed tests for various types of static operators and modeling
the latency predictor as a small trainable model [46], [47],
[48], [49]. Neural architecture search (NAS) techniques [50],
[51] are then used to search for hardware-friendly models.

Our work distinguishes itself from these approaches in
two significant ways: 1) while existing works predominantly
focus on constructing static models that inherently exhibit
computational redundancy by treating all inputs uniformly,
our goal is to design latency-aware dynamic models that
adjust their computation based on inputs; 2) conducting
speed tests for dynamic operators across various hardware
devices can be laborious and impractical. To circumvent
this, we propose a latency prediction model that efficiently
estimates the inference latency of dynamic operators on any
given computing platform. This model accounts for algo-
rithm design, scheduling strategies, and hardware properties
simultaneously, providing valuable insights without the need
for extensive speed testing.

3 METHOD

This section begins by providing an introduction to the
foundational concepts underlying three dynamic inference
paradigms (Sec. 3.1). We then present the architecture design
of our LAUDNet framework, which unifies these paradigms
under a cohesive mask-and-compute formulation (Sec. 3.2).
Next, we explain the latency prediction model (Sec. 3.3),
which guides the determination of granularity settings and
scheduling optimization (Sec. 3.4). Finally, we describe the
training strategies for our LAUDNet (Sec. 3.5).

3.1 Preliminaries
Spatially adaptive computation. Existing spatial-wise dy-
namic networks typically incorporate a masker Ms within
each convolutional block of a CNN backbone. Given an
input x∈RH×W×C to a block, where H and W represent
the feature height and width, and C denotes the channel
number. Assuming a convolution stride of 1, the masker
Ms takes x as input and generates a binary-valued spatial
mask Ms = Ms(x) ∈ {0, 1}H×W . Each element in Ms

determines whether to perform convolution operations at
the corresponding output location. Unselected regions are
populated with values from skip connection [19], [20].

During inference, the current scheduling strategy for
spatial-wise dynamic convolutions generally involve three
steps [52] (Fig. 1 (b)): 1) gathering, which re-organizes the
selected pixels (if the convolution kernel size is greater
than 1× 1, the neighbors are also required) along the batch
dimension; 2) computation, which performs convolution on
the gathered input; and 3) scattering, which fills the computed
pixels on their corresponding locations of the output feature.
Compared to performing convolutions on the entire feature
map, this scheduling strategy reduces computation at the
cost of overhead from mask generation and non-contiguous
memory access. As a result, the overall latency could even
be increased, particularly when the granularity of dynamic
convolution is at the pixel level (Fig. 6).
Dynamic layer skipping [14], [15], [53] adaptively deter-
mines whether to execute each layer or block, leveraging
the structural redundancy of deep models to achieve data-
dependent network depth. The implementation of dynamic
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Fig. 2: Our proposed LAUDNet block. (a) we first use a lightweight module to generate the channel mask Mc or the
spatial/layer mask Ms/Ml. The granularity of dynamic inference is controlled by G (for channel skipping) and S (for
spatially adaptive computation). During training, the channel mask is multiplied with the input and output of the 3× 3
convolution, and the spatial mask is applied on the final output of the block. Layer skipping could be easily implemented by
setting S equal to the feature resolution. The scheduling strategies in inference ((b) for spatial-wise dynamic convolution and
(c) for channel skipping) is performed to decrease memory access and facilitate parallel computation (Sec. 3.4). Note that we
omit layer skipping here due to its simplicity: the whole block will be executed if the layer masker produces a value of 1.

layer skipping is similar to spatially adaptive inference, but
with a scalar 0, 1 decision variable Ml instead of a spatial
H × W mask. Compared to spatially adaptive inference,
layer skipping provides less flexibility but more regular
computation patterns. Moreover, it generally does not require
special scheduling strategies, as the original convolution
operators remain unmodified.
Dynamic channel skipping [16], [17], [54] takes a more
conservative approach to dynamic architecture versus full
layer skipping. It uses a C-dimensional vector Mc ∈ {0, 1}C
to adaptively determine the runtime width of a convolu-
tion layer with C output channels. For instance, the i-th
(1 ≤ i ≤ C) channel is computed only if Mc

i = 1. The
scheduling of dynamic channel skipping usually requires
gathering convolution kernels instead of feature pixels as in
spatially dynamic computation (compare Fig. 2 (b) and (c)) .

3.2 LAUDNet architecture
Overview. Our analysis in Sec.3.1 reveals that the three
dynamic inference paradigms share a common ”mask-and-
compute” scheme, with the key difference being the mask
shapes. Leveraging this insight, we propose a unified frame-
work (Fig.2) where lightweight modules generate the channel
mask Mc and the spatial/layer mask Ms/l, respectively.
Notably, layer skipping can be treated as a special case of
spatially adaptive inference by introducing the concept of
granularity in dynamic computation as follows.

Argmax/
Gumbel
Softmax

Gumbel
Softmax

Argmax/

...
...

Conv1x1

...

Pooling

Pooling
...

MLP

... ... ...
Reshape

(a) Spatial/layer masker.

(b) Channel masker.

Fig. 3: The architecture design of two types of maskers.
The spatial/layer masker (a) is composed of a an adaptive
pooling layer and a 1×1 convolution. The channel makser (b)
consists of a global average pooling and a 2-layer MLP. The
argmax operation is directly applied to obtain the discrete
decisions during inference, while Gumbel Softmax [55], [56]
is utilized for end-to-end training (Sec. 3.5).

Dynamic granularity. As mentioned in Sec. 3.1, using pixel-
level dynamic convolutions [19], [20], [21] poses substantial
challenges for realistic speedup on multi-core processors
due to non-contiguous memory access. To address this, we
propose to optimize the granularity of dynamic computation.
For spatially adaptive inference, instead of producing an
H ×W mask directly, we first generate a low-resolution
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Fig. 4: Our hardware model, which allows us to model the
latency of both data moving and computation.

mask Ms
coarse∈{0, 1}H

S ×W
S , where S is the spatial granularity.

Each element in Ms
coarse determines computation for a

corresponding S×S feature patch. For instance, the first
ResNet stage2 deal with 56×56 features. Then the valid
choices for S are {1, 2, 4, 7, 8, 14, 28, 56} . The mask Ms

coarse

is then upsampled to the size of H×W . Notably, S = 1
corresponds to pixel-level granularity [19], [20], [21], while
S=56 naturally implements layer skipping.

Similarly, we introduce channel granularity G for channel
skipping. Each element in Mc

coarse ∈ {0, 1}C
G determines

computation for G feature channels. The choice of the
spatial granularity S and the channel granularity G for each
block will be guided by our latency predictor (Sec. 3.3) for
balancing flexibility and efficiency. Note that we apply the
channel mask at the first two convolution layers within
a block. This design is compatible with various backbone
architectures, including those with arbitrary bottleneck ratios
or group convolutions [24].
Masker design. We design different structures for spatial
(layer) and channel-wise dynamic computation. As shown
in Fig. 3 (a), the spatial masker uses an adaptive pooling
layer to downsample the input x to the size of H

S ×W
S ×C,

followed by a 1×1 convolution layer producing the soft
logits M̃s

coarse∈RH
S×W

S×2. For the channel masker, we use a 2-
layer MLP (Fig. 3 (b)) to produce channel-skipping decisions.
Given input channels C the target mask dimension D=C/G,
we set the hidden units in the MLP as max{⌊D/16⌋, 16},
where ⌊·⌋ denotes a round-down operation. Appendix C.1
shows this design effectively reduces the latency of channel
maskers, especially in late stages with more channels.
Computational complexity. We first point out that the
masker FLOPs are negligible compared to the backbone
convolutions. Therefore, we mainly analyse the complexity
of standard convolution blocks here.

For spatially adaptive computation, We define the acti-
vation ratio rs =

∑
i,j Ms

i,j

H×W ∈ [0, 1] to denote the fraction of
computed pixels. Following [20], we further compute rsdil of
a dilated spatial mask to represent the activation ratio of the
first convolution in a block. It is observed in our experiments
that rsdil is generally close to rs. With FLOPs F1, F2, F3

for the three convolution layers, the theoretial speedup is
rsdilF1+rsF2+rsF3

F1+F2+F3
≈rs.

For channel skipping, the activation ratio is rc =
∑

j Mc
i

C ∈
[0, 1]. Apply the mask before and after the 3× 3 convolution
makes its complexity quadratic with respect to rc. The overall
speedup is rcF1+(rc)2F2+rcF3

F1+F2+F3
≤ rc.

2. Here we refer to a stage as the cascading of multiple blocks which
process features with the same resolution.

(c) Dynamic layer skipping

(b) Dynamic channel skipping

(a) Spatial-wise dynamic convolution

Fig. 5: Comparison between the real and predicted latency
of a dynamic block in LAUD-ResNet-101.

Generalization in Transformer architectures. It is essen-
tial to highlight that the implementation of the three dy-
namic paradigms—namely spatial-wise adaptive compu-
tation, dynamic channel selection, and layer skipping—is
inherently more straightforward in vision Transformers
compared to CNNs. These paradigms are not only more
amenable to hardware considerations, requiring minimal
scheduling optimization, but also benefit from the inherent
structure of vision Transformers. For instance, spatial-wise
dynamic computation can be efficiently executed through
token indexing and selection, thanks to the image tokenization
process in vision Transformers, thereby avoiding the complex
pixel gathering required in convolution layers (Fig. 2 (b)).
From an algorithmic design perspective, the recent AdaViT
framework [57] introduces a method for adaptively skipping
tokens, heads/channels in multi-head attention, and layers,
thus enabling dynamic computation across spatial, width,
and depth dimensions simultaneously. However, despite
theoretical comparisons presented in [57], the practical
efficacy of these paradigms on hardware remains uncertain.
This paper leverages the architectural design principles of
AdaViT to circumvent the need for foundational redesigns
and utilizes our proposed latency predictor to conduct a
thorough examination of the practical performance of these
dynamic paradigms in vision Transformers.

3.3 Latency predictor

As stated before, it is laborious to evaluate the latency of
dynamic operators on different hardware platforms. To effi-
ciently seek preferable dynamic paradigms and granularity
settings on any target device, we propose a latency prediction
model G. Given hardware properties H, layer parameters
P, dynamic paradigm D, spatial/channel granularity S/C,
and activation rates rs/rc, G directly predicts block execution
latency ℓ = G(H,P,D, S, C, rs, rc).
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Hardware modeling. We model a device with multiple
processing engines (PEs) for parallel computation (Fig. 4).
The memory system has three levels [58]: 1) off-chip memory,
2) on-chip global memory, and 3) memory in PE. In practice,
the latency mainly comes from two processes: data movement
and parallel computation:

ℓ = ℓdata + ℓcomputation + ℓConst, (1)

where ℓConst is a hardware-specific constant. This model
accurately predicts both ℓdata and ℓcomputation, enabling more
practical efficiency measurement than FLOPs.
Latency prediction. Given hardware properties and model
parameters, adopting a proper scheduling strategy is key to
maximizing resource utilization through increased paral-
lelism and reduced memory access. We use Nvidia Cutlass
[28] to search for the optimal scheduling (tiling and in-
PE parallelism configurations) of dynamic operations. The
data movement latency can then be easily obtained from
data shapes and target device bandwidth. Furthermore, the
computation latency is derived from hardware properties.
Please refer to Appendix A for more details.
Empirical validation. We evaluate the performance of our
latency predictor with a ResNet-101 block on an RTX3090
GPU, varying the activation rate r. The blue curves represent
the predictions, and the scattered dots are obtained via
searching for a proper scheduling strategy (implemented with
custom CUDA code) using Nvidia Cutlass [28]. All the three
dynamic paradigms are tested. Fig. 5 compares predictions to
real GPU testing latency, showing accurate estimates across
a wide range of activation rates.

3.4 Scheduling optimization

We use general optimization methods like fusing activation
functions and batch normalization (BN) layers into convo-
lution layers. We also optimize our dynamic convolution
blocks as follows.
Operator fusion for spatial maskers. As mentioned in
Sec. 3.2, spatial maskers have negligible computation but
take the full feature map as input, making them memory-
bounded (latency is dominated by memory access). Since the
masker shares its input with the first 1 × 1 conv (Masker-
Conv1×1 in Figure 2 (b)), fusing them avoids repeated input
reads. However, this makes the convolution spatially static,
potentially increasing computation. For simplicity, we adopt
such operator fusion in all tested models. In practice, we find
that operator fusion improves efficiency in most scenarios.
Fusing gather and dynamic convolution. Traditional ap-
proaches first gather the input pixels of the first dynamic
convolution in a block. The gather operation is also a memory-
bounded operation. Furthermore, when the kernel size exceeds
1×1, input patches overlap, leading to repeated loads/stores.
We fuse gathering into dynamic convolution to reduce the
memory access (Gather-Conv3x3 in Fig. 2 (b)).

Note that for dynamic channel skipping (Fig. 2 (c)),
gathering is conducted on convolution kernels rather than
features. The weight gather operations is also fused with
convolution by our scheduling optimization.
Fusing scatter and add. Conventional methods scatter the
final convolution outputs before the element-wise addition.
We fuse these two operators (Scatter-Add in Fig. 2 (b)) to

reduce memory access costs. The ablation study in Sec. 4.2
validates the effectiveness of the proposed fusing methods.
Batching inference is enabled by recording patch, location,
and sample correspondences during gathering and scattering
(Fig. 2 (b, c)). Inference with a larger batch size facilitates
parallel computation, making latency more dependent on
computation versus kernel launching or memory access. See
Appendix C.1 for empirical analysis.

3.5 Training

Optimization of non-differentiable maskers. The masker
modules produce binary variables for discrete decisions,
and cannot be directly optimized with back-propagation.
Following [20], [21], [23], we adopt straight-through Gumbel
Softmax [55], [56] for end-to-end training. Take spatial-wise
dynamic inference as an example, let M̃s∈RH×W×2 denote
the output of the spatial mask generator Ms. The decisions
are obtained with the argmax function during inference.
Training uses a differentiable Softmax approximation:

M̂s =
exp

{(
log

(
M̃s

:,:,0

)
+G:,:,0

)
/τ

}
∑1

k=0 exp
{(

log
(
M̃s

:,:,k

)
+G:,:,k

)
/τ

} ∈ [0, 1]H×W , (2)

where τ is the Softmax temperature. Similarly, a channel
masker Mc produces a 2C-dimensional vector M̃c ∈ R2C ,
where C is the channel number of the 3 × 3 convolution
in a block. We first reshape M̃c into the size of C × 2,
and apply Gumbel Softmax along the second dimension
to produce M̂c ∈ [0, 1]C . Following [20], [23], we let τ decay
exponentially from 5.0 to 0.1 in training to facilitate the
optimization of maskers.
Training objective. As analyzed in Sec. 3.2, the FLOPs of each
dynamic convolution block can be calculated based on our
defined activation rate rs (or rc). Let Fdyn and Fstat denote
the overall dynamic and static network FLOPs. We optimize
their ratio to approximate a target 0 < t < 1: LFLOPs =

(
Fdyn

Fstat
− t)2. In addition, we define Lbounds as in [20] to

constrain the upper/lower bounds in early training epochs.
We further propose to leverage the static counterparts

of our dynamic networks as “teachers” to guide the opti-
mization procedure. Let y and y′ denote the output logits
of a dynamic “student” model and its static “teacher”,
respectively. Our final loss can be written as

L = Ltask+α(LFLOPs+Lbounds)+βT 2 ·KL(σ(y/T )||σ(y′/T )), (3)

where Ltask represents the task-related loss, e.g., cross-
entropy loss in classification. KL(·||·) denotes the Kull-
back–Leibler divergence, and α, β are the coefficients balanc-
ing these items. We use σ to denote the log-Softmax function,
and T is the temperature for computing KL-divergence.

4 EXPERIMENTS

In this section, we first introduce the experiment settings in
Sec. 4.1. Then the latency of different granularity settings are
analyzed in Sec. 4.2. The performance of our LAUDNet on
ImageNet is further evaluated in Sec. 4.3, followed by the
visualization results in Sec. 4.4. We finally validate our
method on the object detection and instance segmentation
tasks (Sec. 4.5). For simplicity, we add “LAUDs/c/l-” as a
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(a) Relationship between the latency ratio rℓ and the activation rate rs for LAUDs/l-ResNet.
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(b) Relationship between the latency ratio rℓ and the spatial granularity S for LAUDs/l-ResNet.
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(c) Relationship between the latency ratio rℓ and the activation rate rs for LAUDs/l-RegNeY-800M.
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Fig. 6: Latency prediction results for LAUDs/l-ResNet blocks on the Nvidia Tesla V100 GPU (a, b) and LAUDs/l-RegNetY-
800MF blocks on the Nvidia Jetson TX2 GPU (c, d). The circle markers (•) represent spatial-wise dynamic computation, and
the star markers (⋆) denote layer skipping, which is implemented via the largest granularity S in each stage.

prefix before model names to denote our LAUDNet with
different dynamic paradigms (s for spatial, c for channel and
l for layer), e.g., LAUDs-ResNet-50.

4.1 Experiment setup
Image classification experiments are conducted on the
ImageNet [1] dataset. We implement our LAUDNet on
five representative architectures extending up to a broad
spectrum of computational costs: four CNNs (ResNet-50,
ResNet-101 [2], RegNetY-400M, RegNetY-800M [24]) and a
vision Transformer, T2T-ViT [26]. Different training settings
are used for CNNs and Transformers. For CNNs, As per
the established methodology in [20], we initialize the back-
bone parameter from a torchvision pre-trained checkpoint
(https://pytorch.org/vision/stable/models.html), and fine-
tune the whole network for 100 epochs employing the loss
function in Eq. (3). We fix α=10, β=0.5 and T =4.0 for all
dynamic models. Note that we adopt the pretrain-fintune
paradigm mainly to reduce the training cost, as Gumbel
Softmax usually requires longer training for convergence. For
our study on T2T-ViT, we use the same setup as described
in AdaViT [57] and evaluate the efficiency of its various
dynamic inference methods through our latency predictor.
Latency prediction. We evaluate our LAUDNet on various
types of hardware platforms, including two server GPUs
(Tesla V100 and RTX3090), a desktop GPU (RTX3060) and
two edge devices (e.g., Jetson TX2 and Nvidia Nano). The

major properties considered by our latency prediction model
include the number of processing engines (#PE), the floating-
point computation in a processing engine (#FP32), the
frequency and the bandwidth. It can be observed from
Tab. 4 that server GPUs generally have a larger #PE than IoT
devices. If not stated otherwise, the batch size is set as 128
for V100, RTX3090 and RTX3060 GPUs. On edge devices TX2
and Nano, tesing batch size is fixed as 1.

More details are provided in Appendix B.

4.2 Latency prediction results
This subsection presents the latency prediction results of
dynamic convolutional blocks using two distinct backbones:
ResNet-50 [2] (on V100) and RegNetY-800MF [24] (on TX2).
Each block features a bottleneck structure with varying
channel numbers and convolution groups, and the RegNetY
employs Squeeze-and-Excitation (SE) [59] modules. We
define ℓdyn as the latency of a dynamic convolutional block
and ℓstat as the latency of a static block. The ratio of the
two is denoted as rℓ =

ℓdyn
ℓstat

, with a realistic speedup being
achieved when rℓ < 1.
Effect of spatial granularity. The primary objective here is
to investigate how the granularity of dynamic computation
impacts the latency ratio rℓ. We explore the correlation
between rℓ and the activation rate rs (refer to Sec. 3.2) for
varying granularity settings. The results in Fig. 6a (ResNet on
V100) and Fig. 6c (RegNetY-800M on TX2) demonstrate that:

https://pytorch.org/vision/stable/models.html
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(a) Relationship between the latency ratio rℓ and the activation rate rc for LAUDc-ResNet.

1 2 4 8

Channel granularity (G)

0.6

0.7

0.8

0.9

1.0

1.1

La
te

nc
y 

ra
tio

 (r
)

stage 1
rc = 0.00
rc = 0.25
rc = 0.50
rc = 0.75
rc = 1.00

1 2 4 8

Channel granularity (G)

0.5

0.6

0.7

0.8

0.9

1.0

1.1
stage 2

rc = 0.00
rc = 0.25
rc = 0.50
rc = 0.75
rc = 1.00

1 2 4 8

Channel granularity (G)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
stage 3

rc = 0.00
rc = 0.25
rc = 0.50
rc = 0.75
rc = 1.00

1 2 4 8

Channel granularity (G)
0.2

0.4

0.6

0.8

1.0

stage 4
rc = 0.00
rc = 0.25
rc = 0.50
rc = 0.75
rc = 1.00

(b) Relationship between the latency ratio rℓ and the channel granularity G for LAUDc-ResNet.
Fig. 7: Latency prediction results for LAUDc-ResNet blocks on the Nvidia Tesla V100 GPU.

TABLE 1: Ablation studies on operator fusion.

Masker-Conv Gather-Conv Scatter-Add Latency (µs)
V100 TX2

✗ ✗ ✗ 162.4 1084.5
✓ ✗ ✗ 135.1 1072.3
✓ ✓ ✗ 131.7 1024.7
✓ ✓ ✓ 118.3 859.7

• Despite the implementation of our optimized schedul-
ing strategies, pixel-level dynamic convolution (S=1)
does not consistently enhance practical efficiency.
This approach to fine-grained adaptive inference
has been adopted in previous works [20], [21], [60].
Our findings help elucidate why these studies only
managed to achieve realistic speedup on less potent
CPUs [21] or specialized devices [60];

• By contrast, a coarse granularity setting (S > 1)
significantly mitigates this issue across both devices.
Realistic speedup (rℓ < 1) is attainable with larger
activation values (rs) when S > 1.

The latency prediction results are further used to de-
termine preferable spatial granularity settings for the first
3 stages. Note that for the final stage where the feature
resolution is 7×7, S=1 and S=7 correspond to two distinct
dynamic paradigms (spatially adaptive inference and layer
skipping). The relationship curves between rℓ and S depicted
in Fig. 6b (ResNet on V100) and Fig. 6d (RegNetY-800M on
TX2) reveal the following:

• The latency ratio rℓ generally decreases as S increases
for a given r on V100;

• An excessively large S (indicating less flexible adap-
tive inference) provides negligible improvement on
both devices. In particular, increasing S from 7 to 14
in the second stage of LAUD-RegNetY-800MF on TX2
detrimentally impacts efficiency. This is hypothesized
to be due to the oversized patch size causing addi-
tional memory access costs on this device, which has
fewer processing engines (PEs);

• Layer skipping (marked by ⋆) consistently outper-
forms spatial-wise dynamic computation (marked by
•). We will analyze their performance across various
vision tasks in Sec. 4.3 and Sec. 4.5.

Based on these results, we can strike a balance between
flexibility and efficiency by choosing suitable S for different

(a) V100 (b) 3090

Fig. 8: Relationship between the latency per image and batch
size of LAUD-ResNet-50 on V100 (a) and 3090 (b) GPUs.

models and devices. For instance, we can simply set Snet=4-
4-2-13 in a LAUDs-ResNet-50 to achieve realistic speedup.
Effect of channel granularity. We further investigate how
the channel granularity G influences the realistic latency of
channel-skipping dynamic models. Using LAUDc-ResNet
as an example, results presented in Fig. 7 show that the
performance of channel skipping is less sensitive to the
channel granularity G. Setting G = 2 improves efficiency
only in deeper stages, while extending G beyond 2 offers
diminishing benefits. This aligns with our understanding that
channel skipping requires more regular operations compared
to spatially sparse convolution, implying that G = 1 can
already employ impactful speedup. Moreover, the curves in
Fig. 7a are generally convex, since the computation of the
3× 3 convolution is quadratic in relation to rc (Sec. 3.2).
Ablation study of operator fusion. In exploring the im-
pact of our operator fusion, as detailed in Sec. 3.4, we
focus on a convolutional block from the initial stage of
LAUDs-ResNet-50 (S=4, rs=0.6) for our case study. The
findings, presented in Tab. 1, reveal that operator fusion
consistently aids in lowering the practical latency across
different computing environments by minimizing memory
access overhead. Notably, the fusion between the masker
and the first convolution emerges as a significant factor
in reducing latency on the server-end V100. In contrast,
combining scattering and addition operations plays a pivotal
role in latency reduction on the edge device TX2.
Ablation study of batch size. To establish a suitable testing
batch size, we graph the relationship between latency per
image and batch size for LAUD-ResNet-50 in Fig. 8. Two
server-end GPUs (V100 and RTX3090) are tested. The results
highlight that latency diminishes with an increase in batch

3. We use this form to represent the S settings for the 4 network stages.
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(a) LAUD-ResNet50

(b) LAUD-RegNetY-800M

Fig. 9: Comparison of different granularities (S and G) in
LAUD-ResNet-50 (a) and LAUD-RegNetY-800M (b). The
latency on TX2 (left) and V100 (right) are presented.

size, eventually reaching a stable plateau when the batch size
exceeds 128 on both platforms. This is comprehensible since
a larger batch size favors enhanced computation parallelism,
resulting in latency becoming more dependent on theoretical
computation. The results on the desktop-level GPU, RTX3060
(Fig. 12 in Appendix C.1), show a similar phenomenon. Based
on these observations, we report the latency on server-end
and desktop-level GPUs with a batch size of 128 henceforth.

4.3 ImageNet classification
4.3.1 Comparison of spatial/channel granularities
We begin by comparing different granularities for spatial and
channel-wise dynamic computation. Based on the analysis in
Sec. 4.2, the candidates for spatial and channel granularities
are Snet ∈{1-1-1-1, 4-4-2-1, 8-4-7-1} and Gnet ∈{1-1-1-1, 2-2-
2-2} respectively. We select ResNet-50 and RegNetY-800M as
backbones, and compare various settings on TX2 and V100.
The results in Fig. 9 reveal that:

• Regarding spatially dynamic computation, the opti-
mal granularity Snet is contingent on both network
structures and hardware devices. For instance, Snet=8-
4-7-1 achieves a preferable performance on V100 for
both models, yet incurs substantial inefficiency on
TX2. This corresponds to our results in Fig. 6.

• Elevating the channel granularity G from 1 to 2 does
yield sort of speedup for ResNet-50, but renders
comparable performance in the case of RegNetY-800M.
We hypothesize that a larger G is only beneficial for
models with more extensive channel numbers, which
also aligns with observations from Fig. 7.

4.3.2 Comparison of dynamic paradigms
Having decided on the optimal granularities, we submit
different dynamic paradigms to a more detailed compar-
ison. Additionally, our LAUDNet is compared to various
competitive baselines. The findings are illustrated in Fig. 10.
Standard baseline comparison: ResNets. The compared
baselines include various types of dynamic inference ap-
proaches: 1) layer skipping (SkipNet [14] and Conv-AIG [15]);

2) channel skipping (BAS [17]); and 3) pixel-level spatial-wise
dynamic network (DynConv [20]). For our LAUDNet, we se-
lect the best granularity settings for spatial-wise and channel-
wise dynamic inference. Layer skipping implemented in
our framework is also included. We set training targets
(cf. Sec. 3.5) t ∈ {0, 4, · · · , 0.8} for our dynamic models to
evaluate their performance across different sparsity regimes.
We apply scheduling optimization (Sec. 3.4) uniformly across
all models [15], [20] for a fair comparison.

The results are exhibited in Fig. 10 (a). On the left
we plot the relationship between accuracy and FLOPs. It
becomes obvious that our LAUD-ResNets, with various
granularity settings, considerably outperform competing
dynamic networks. Moreover, on ResNet-101, the three
paradigms seem fairly comparable, whereas, on ResNet-50,
layer skipping falls behind, especially when the training
target is small. This is understandable because layer skipping
might be overly aggressive for more shallow models.

Interestingly, the scenario alters as we explore real latency
(middle on TX2 and right on V100). On the less potent
TX2, latency generally exhibits a stronger correlation with
theoretical FLOPs, given that it is computation-bounded (that
means, the latency is primarily focused around computation)
on such IoT devices. However, different dynamic paradigms
yield varying acceleration impacts on server-end GPU, V100,
as latency could be impacted by the memory access cost.
For instance, layer skipping takes precedence over the other
two paradigms on the deeper ResNet-101. With the target
activation rate t=0.4, our LAUDl-ResNet-101 reduces the
inference latency of its static counterpart by ∼53%. On the
shallower ResNet-50, channel skipping keeps pace with
layer skipping on some low-FLOPs models. Although our
proposed course-grained spatially adaptive inference trails
behind the other two schemes, it significantly outclasses the
previous work using pixel-level dynamic computation [20].
The additional results in Appendix C.2 also demonstrate
the preferable efficiency of layer skipping on RTX3060 and
RTX3090. Channel skipping outperforms the other two
paradigms only on the edge device, Nvidia Nano.
Lightweight baseline comparison: RegNets. We further
evaluate our LAUDNet in lightweight CNN architectures,
i.e. RegNets-Y [24]. Two different sized models are tested:
RegNetY-400MF and RegNetY-800MF. Compared baselines
include other types of efficient models, e.g., MobileNets-v2
[30], ShuffletNets-v2 [32] and CondenseNets [35].

The results are presented in Fig. 10 (b). We observe that
while channel skipping surpasses the other two paradigms
substantially in the accuracy-FLOPs trade-off, it is less
efficient than layer skipping on most models except RegNet-
Y-800M. Remarkably, layer skipping emerges as the most
dominant paradigm. We theorize that this is due to the model
width (number of channels) of RegNet-Y being limited, and
the inference latency still being bounded by memory access.
Moreover, layer skipping enables skipping the memory-
bounded SE operation [59]. The results on desktop-level
and server-end GPUs (Appendix C.2) further showcase the
superiority of layer skipping.
Experiments on vision Transformers. Building on the
foundation laid out in Sec. 3.2, our LAUDNet seamlessly
integrates with vision Transformers using the AdaViT [57]
framework. Despite the absence of direct comparisons among
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(b) LAUD-RegNetY

(a) LAUD-ResNet

(c) LAUD-T2T-ViT
Fig. 10: Main results of LAUDNet implemented on ResNet (a), RegNetY (b) and T2T-ViT (c).

(a) Activation rates  of LAUD-ResNet101 r (b) Patches selected by LAUD -ResNet101s

Fig. 11: Visualization results of activation rates rs/c/l and selected patches by LAUDs-ResNet-101.

the three dynamic paradigms in existing studies, with
[57] employing all three simultaneously, it leaves open the
question of which paradigm offers the best balance between
accuracy and efficiency. We address this by showcasing
the accuracy-latency trade-off curves for LAUD-T2T-ViT
across various platforms—TX2, RTX3060, and V100 (the
performance on RTX3090 is similar to that on V100)—in
Fig. 10 (c). The findings highlight several key insights:

• Layer skipping and head (channel) skipping are more
advantageous for maintaining high accuracy at high
activation rates, though both experience a significant
accuracy decline at reduced activation rates.

• When evaluating the balance between practical la-
tency and accuracy, layer skipping consistently outper-
forms head (channel) skipping on all platforms.

• Despite its lower theoretical upper-bound of accuracy,
spatial-wise adaptive computation (token skipping)
might excel over the other paradigms at lower activa-
tion rates, attributing its practical latency benefits to
the straightforward implementation of indexing and
selection operations on GPUs, without necessitating
specialized operators as in CNNs.

• A synergistic application of all three paradigms fur-
ther enhances the accuracy-efficiency trade-off, show-
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TABLE 2: Object detection results on the COCO dataset.
Detection Backbone Backbone Backbone Latency (ms) mAP (%)

Framework FLOPs (G) V100 3090 3060 TX2 Nano

Faster R-CNN

ResNet-101 (Baseline) 141.2 33.9 29.8 44.8 586.4 1600.4 39.4

LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.6) 90.7 32.4 36.8 40.4 402.2 1082.4 40.3
LAUDs-ResNet-101 (Snet=4-4-7-1, t=0.5) 79.5 30.4 29.4 38.2 390.4 1050.7 40.0
LAUDs-ResNet-101 (Snet=4-4-7-1, t=0.4) 67.9 27.4 26.2 34.5 340.0 911.4 39.5

LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.8) 112.37 30.6 30.0 42.0 471.6 1264.3 40.2
LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.7) 96.42 27.9 27.3 37.8 400.4 1065.4 40.0
LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.6) 80.73 23.9 24.6 33.9 335.7 884.0 39.7

LAUDl-ResNet-101 (t=0.5) 97.97 24.2 22.1 32.2 409.2 1114.1 40.2
LAUDl-ResNet-101 (t=0.4) 86.71 19.8 18.2 26.5 331.2 899.9 39.5

RetinaNet

ResNet-101 (Baseline) 141.2 33.9 29.8 44.8 586.4 1600.4 38.5

LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.5) 77.8 29.0 32.7 36.7 350.1 937.1 39.3
LAUDs-ResNet-101 (Snet=4-4-7-1, t=0.4) 66.4 28.1 26.0 35.2 335.0 897.1 38.9

LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.6) 79.6 23.7 24.4 33.7 331.2 871.4 39.3
LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.5) 65.5 20.9 22.1 30.4 278.7 724.6 38.5

LAUDl-ResNet-101 (t=0.5) 95.1 23.6 21.5 31.4 397.7 1082.5 39.4
LAUDl-ResNet-101 (t=0.3) 74.4 18.7 17.3 25.0 311.4 846.3 38.6

Deformable-DETR

ResNet-50 (Baseline) 73.3 18.4 16.2 25.0 313.6 851.4

46.9
DINO-DETR 49.0
Rank-DETR 50.2
Stable-DINO 50.4

DDQ-DETR

ResNet-50 (Baseline) 73.3 18.4 16.2 25.0 313.6 851.4 51.1

LAUDs-ResNet-50 (Snet=8-4-7-1, t=0.6) 61.9 21.3 22.7 27.6 287.9 776.4 51.3
LAUDs-ResNet-50 (Snet=8-4-7-1, t=0.5) 56.8 19.9 20.9 25.8 264.5 711.6 51.1

LAUDc-ResNet-50 (Cnet=2-2-2-2, t=0.7) 50.3 15.0 15.2 21.7 222.0 581.1 50.7
LAUDc-ResNet-50 (Cnet=2-2-2-2, t=0.6) 42.5 13.3 13.8 19.6 186.6 488.1 50.5

LAUDl-ResNet-50 (t=0.5) 62.2 15.9 14.5 21.5 265.8 720.8 51.1
LAUDl-ResNet-50 (t=0.3) 54.4 13.5 12.6 18.0 226.1 614.7 50.9

ResNet-101 (Baseline) 141.2 33.9 29.8 44.8 586.4 1600.4 51.8

LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.5) 93.3 33.7 38.3 41.8 417.9 1125.7 52.4
LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.4) 85.7 31.5 35.7 39.2 385.5 1036.7 51.9

LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.8) 111.8 30.8 30.1 42.1 474.1 1271.8 52.3
LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.6) 80.8 24.1 24.7 34.1 338.5 891.9 52.0
LAUDc-ResNet-101 (Cnet=1-1-1-1, t=0.5) 62.4 20.5 21.7 29.9 270.2 701.0 51.8

LAUDl-ResNet-101 (t=0.4) 104.5 26.0 23.6 34.4 439.8 1197.8 52.2
LAUDl-ResNet-101 (t=0.3) 101.9 25.4 23.1 33.6 429.0 1168.3 51.9

ing the complementary strengths of each approach.

4.4 Visualization and interpretability

We present visualization results of LAUDNet to delve into its
interpretability from the perspectives of networks’ structural
redundancy and images’ spatial redundancy.
Activation rate. Fig. 11 (a) illustrates the average activation
rates rs/c/l of each block in LAUDs/c/l-ResNet-101 (t=0.5) on
the ImageNet validation set. The results uncover that

• The activation rate patterns for spatially dynamic con-
volution and layer skipping are similar. The activation
rates rs and rl seem more binarized (close to 0 or 1) in
stages 1, 2, and 4. The dynamic region/layer selection
predominantly occurs in stage 3;

• These two paradigms tend to maintain the entire
feature map (rs/l=1.0) at the first block of stages
2, 3, and 4, where the convolutional stride is 1.
This aligns with the settings in [15], [54], where the
training targets for these blocks are manually set to

1. Notably, we train our LAUDNet to meet an overall
computational target, rather than confining the targets
for different blocks as done in [15], [54].

• Channel skipping results in activation rates that are
more centered around 0.5 throughout the network.

Dynamic patch selection. We visualize the spatial masks gen-
erated by our third block of a LAUDs-ResNet-101 (Snet=4-4-
2-1) in Fig. 11 (b). The highlighted areas denote the locations
of 1 elements in a mask, while computations in the dimmed
regions are skipped by our dynamic model. It becomes
evident that the masker is adept at pinpointing the most
task-related areas, even minutiae such as the tiny aircraft at
the corner, thereby trimming unnecessary computations in
background zones. Such findings imply that, a granularity of
S=4 is aptly flexible for identifying crucial regions, paving
the way for a harmonious balance between accuracy and
efficiency. Intriguingly, the masker is able to pick out objects
which are not labeled for that particular sample - for instance,
the flower next to the hummingbird or the person clutching
the camera. This signals that our spatially dynamic networks
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TABLE 3: Instance Segmentation results on the COCO dataset.
Segmentation Backbone Backbone Backbone Latency (ms) APmask APbox

Framework FLOPs (G) V100 3090 3060 TX2 Nano (%) (%)

Mask R-CNN

ResNet-101 (Baseline) 141.2 33.9 29.8 44.8 586.4 1600.4 36.1 40.0

LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.5) 80.5 29.7 33.5 37.5 361.9 969.9 37.0 41.0
LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.4) 69.2 26.4 29.6 33.7 314.3 838.8 36.1 40.0

LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.8) 112.7 30.7 30.0 42.1 473.1 1269.3 36.9 40.9
LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.7) 95.9 27.1 27.2 37.7 397.8 1057.5 36.6 40.6
LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.6) 80.8 23.9 24.6 33.9 335.7 883.9 36.4 40.3

LAUDl-ResNet-101 (t=0.5) 101.7 25.1 22.9 33.3 424.4 1155.7 36.7 40.7
LAUDl-ResNet-101 (t=0.4) 91.8 22.8 20.9 30.4 384.3 1045.4 36.4 40.4
LAUDl-ResNet-101 (t=0.3) 82.2 20.6 18.9 27.5 345.3 938.5 36.2 40.0

Mask2Former

ResNet-101 (Baseline) 141.2 33.9 29.8 44.8 586.4 1600.4 44.0 46.7

LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.5) 109.7 37.2 43.8 47.1 481.8 1301.9 44.0 47.1
LAUDs-ResNet-101 (Snet=4-4-2-1, t=0.4) 98.8 34.0 39.9 43.2 436.0 1176.1 43.8 46.7

LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.8) 111.9 30.5 29.9 41.8 469.0 1257.6 44.0 46.9
LAUDc-ResNet-101 (Cnet=2-2-2-2, t=0.7) 94.9 26.8 27.0 37.4 393.1 1044.5 43.9 46.8

LAUDl-ResNet-101 (t=0.5) 112.8 27.7 25.1 36.6 469.4 1279.2 44.0 47.0
LAUDl-ResNet-101 (t=0.4) 109.9 27.0 24.5 35.7 457.5 1246.6 43.9 46.8

inherently discern regions imbued with semantic significance,
and their prowess isn’t shackled by mere classification labels.
Such a trait is invaluable for a slew of downstream tasks, like
object detection and instance segmentation (Sec. 4.5), tasks
which necessitate the identification of various classes and
objects within an image. For a broader range of visualization
results, readers can refer to Appendix C.3.

4.5 Dense prediction tasks
Our LAUDNet is further put to test on downstream tasks, i.e.
COCO [61] object detection (as seen in Table 2) and instance
segmentation (presented in Table 3). For object detection,
the mean average precision (mAP) stands as the barometer
for network efficacy. For instance segmentation, the APmask

dives deeper to gauge the nuance of dense prediction. The
average backbone FLOPs, and the average backbone latency
on the validation set are used to measure the network
efficiency. Due to LAUDNet’s versatile nature, we can
seamlessly replace the backbones in various detection and
segmentation frameworks with our pre-trained models on
ImageNet, then fine-tune them on the COCO dataset under
the standard protocol for 12 epochs—except for models
based on Mask2Former [62], which are trained for 50 epochs
in line with the baseline configurations (detailed settings
are elaborated in Appendix B.3). In the domain of object
detection, our experimentation covers three frameworks: the
two-stage Faster R-CNN [63] with Feature Pyramid Network
[64], the one-stage RetinaNet [65], and a DETR [66]-based
model, namely Dense Distinct Query (DDQ)-DETR [67]. We
compare our results against a range of recent advancements,
such as Deformable DETR [68], DINO-DETR [69], Rank-
DETR [70], and Stable-DINO [71]. For instance segmentation,
we utilize the well-established Mask R-CNN [72] and the
query-based Mask2Former [62]. The results are presented
in Tab. 2 (for object detection) and Tab. 3 (for instance
segmentation), unequivocally demonstrating that LAUD-
Net consistently boosts both mAP and efficiency across
classic and state-of-the-art (SOTA) frameworks. Notably,
while channel and layer skipping generally surpass spatial-
wise dynamic computation in efficiency, the ideal dynamic

paradigm may vary depending on the specific detection
framework, backbone architecture, and hardware platforms.

5 CONCLUSION

In this paper, we propose to build latency-aware unified
dynamic networks (LAUDNet) under the guidance of a
latency prediction model. By collectively considering the al-
gorithm, scheduling strategy, and hardware properties, we
can accurately estimate the practical latency of different
dynamic operators on any computing platforms. Based on an
empirical analysis of the correlation between latency and the
granularity of spatial-wise and channel-wise adaptive infer-
ence, the algorithm and scheduling strategies are optimized
to attain realistic speedup on a range of multi-core processors,
such as Tesla V100 and Jetson TX2. Our experiments on image
classification, object detection, and instance segmentation
tasks affirm that the proposed method markedly boosts the
practical efficiency of deep CNNs and surpasses numerous
competing approaches. We believe our research brings useful
insights into the design of dynamic networks. Future works
include explorations on more types of model architectures
(e.g. Transformers, large language models) and tasks (e.g.
low-level vision tasks and vision-language tasks).
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APPENDIX A
LATENCY PREDICTION MODEL.
As the dynamic operators in our method have not been
supported by current deep learning libraries, we propose a
latency prediction model to efficiently estimate the real latency
of these operators on hardware device. The inputs of the latency
prediction model include: 1) the structural configuration and
dynamic paradigm of a convolution block, 2) its activation rate r
which decides the computation amount, 3) the spatial (channel)
granularity S (G), and 4) the hardware properties mentioned in
Table 4. The latency of a dynamic block is predicted as follows.

Input/output shape definition. The first step of predicting
the latency of an operation is to calculate the shape of input and
output. Taking the gather-conv2 operation in LAUDs-ResNets as
an example, the input of this operation is the activation with the
shape of Cin×H×W , where Cin is the number of input channels,
and H and W are the resolution of the feature map. The shape
of the output tensor is P × Cout×S×S, where P is the number
of output patches, Cout is the number of output channels and S
is the spatial granularity. Note that P is obtained based on the
output of our maskers.

Operation-to-hardware mapping. Next, we map the opera-
tions to hardware. As illustrated in Fig. 4, we model a hardware

TABLE 4: Hardware properties.

Name #PE #FP32 Frequency Bandwidth

Nvidia Tesla V100 80 64 1500MHz 700G
Nvidia RTX3090 82 128 1695MHz 936G
Nvidia RTX3060 28 128 1777MHz 360G

Nvidia Jetson TX2 2 128 1300MHz 59.7G
Nvidia Nano 1 128 921MHz 25.6G
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Fig. 12: Relationship between the inference latency per image
and batch size of LAUD-ResNet-50 on RTX3060.

device as multiple processing engines (PEs). We assign the
computation of each element in the output feature map to a PE.
Specifically, we consecutively split the output feature map into
multiple tiles. The shape of each tile is TP × TC × TS1 × TS2.
These split tiles are assigned to multiple PEs. The computation
of the elements in each tile is executed in a PE. We can configure
different shapes of tiles. In order to determine the optimal shape
of the tile, we make a search space of different tile shapes. The
tile shape has 4 dimensions. The candidates of each dimension
are power-of-2 and do not exceed the corresponding dimension
of the feature map.

Latency estimation. Then, we evaluate the latency of each
tile shape in the search space and select the optimal tile shape
with the lowest latency. The latency includes the data movement
latency and the computation latency:

ℓ = ℓdata + ℓcomputation. (4)

1) Data movement latency ℓdata. The estimation of the latency
for data movement requires us to model the memory system of a
hardware device. We model the memory system of hardware as
a three-level architecture [58]: off-chip memory, on-chip global
memory, and local memory in PE. The input data and weight
data are first transferred from the off-chip memory to the on-
chip global memory. We assume the hardware can make full
use of the off-chip memory bandwidth to simplify the latency
prediction model.

After that, the data used to compute the output tiles is
transferred from on-chip global memory to the local memory
of each PE. The latency of data movement to local memory is
estimated by its bandwidth and efficiency. We assume each PE
only moves the corresponding input feature maps and weights
once to compute a output tile so as to simplify the prediction
model. The input data movement latency ℓin is calculated by
adding the time from off-chip memory to on-chip global memory
and the time from on-chip global memory to local-memory
together: ℓin = ℓoff2on + ℓglobal2local. Contrary to the input data,
the output data ℓout are moved from local memory to on-chip
global memory and then to off-chip memory: ℓout = ℓlocal2global+
ℓon2off . We calculate the total data movement latency by adding
the input and output data movement latency together:

ℓdata = ℓin + ℓout. (5)
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TABLE 5: Ablation study of channel masker.

Stage 1 2 3 4
Latency (ms) Ratio Latency (ms) Ratio Latency (ms) Ratio Latency (ms) Ratio

1-layer 0.21 14.9% 0.29 16.5% 0.58 21.7% 0.72 33.6%
2-layer (ours) 0.22 15.8% 0.27 15.6% 0.31 12.8% 0.19 11.6%

(b) LAUD-RegNetY

(a) LAUD-ResNet

Fig. 13: Additional results on more hardware devices. (a) for ResNets and (b) for RegNets.

The latency of data movement is affected by the granularity
S or G: when the granularity is small, the same input data
has a higher probability of being sent to multiple PEs to
compute different output patches, which significantly increases
the number of on-chip memory movement. And due to the small
amount of data transmitted each time and the data is randomly
distributed, the efficiency of data movement will be low. This
accounts for our experiment results in the paper that a larger S
will effectively improve the practical efficiency.

2) Computation latency ℓcomputation. The computation latency
of each tile is estimated using the PE’s maximum throughput of
FP32 computation and the FLOPs of computing an output tile.
The total computation latency can be obtained according to the
number of tiles and the number of PEs.

To summarize, our latency prediction model can predict
the real latency of dynamic operators by considering both the
data movement cost and the computation cost. Guided by the
latency prediction model, we propose our LAUDNet with coarse-
grained spatially adaptive inference (S > 1 and G > 1). It is
validated in our paper that LAUDNet achieve better efficiency
than previous approaches [20], [21] (S = 1), as it effectively
reduces the data movement latency, which is rarely considered
by other researchers.

APPENDIX B
DETAILED EXPERIMENTAL SETTINGS

In this section, we present the detailed experiment settings
which are not provided in the main paper due to the page limit.

B.1 Latency prediction
Hardware properties considered by our latency prediction
model include the number of processing engines (#PE), the
floating-point computation in a processing engine (#FP32), the

frequency and the bandwidth. We test four types of hardware
devices, and their properties are listed in Table 4.

It could be found that the server-end GPUs V100 and
RTX3090 are more powerful hardware devices, especially with
the largest number of processing engines (#PE). Therefore,
spatially adaptive inference and dynamic channel skipping
could easily fall into a memory-bounded operation on these GPUs.
Our experiment results in Fig. 6 and Fig. 9 in the paper can
reflect this phenomenon: the more flexibility the computation is,
the harder to improve the practical efficiency.
Operator fusion.

1) Fusing the masker and the first convolution. We mentioned in
Sec. 3.4 of the paper that the masker operation is fused with the
first 1×1 convolution in a block to reduce the cost on memory
access. This is feasible because the two operators share the same
input feature, and their convolution kernel sizes are both 1×1.

Note that during the inference stage, we only need to
perform argmax along the channel dimension of a mask
M ∈ R2×H×W to obtain the positions of the gathered pixels.
Therefore, we can reduce the output channel number of our
maskers from 2 to 1 since the convolution is a linear operation:

[x ∗W]:,:,0 > [x ∗W]:,:,1 ⇐⇒ x ∗ (W:,:,0 −W:,:,1) > 0. (6)

Afterwards, we fuse the masker with the first convolution
by performing once convolution whose output channel number
is C + 1, where C is the original output width of the first
convolution. The output of this step is split into a feature map
(for further computation) and a mask (for obtaining the index
for gathering). Such operator fusion avoids the repeated reading
the input feature, and helps reduce the inference latency (Tab. 1).

2) Fusing the gather operation and the dynamic convolution. To
facilitate the scheduling on hardware devices with multiple PEs,
the masker generates the indices of activated patches instead of
sparse mask at inference time. In this way, it is easy to evenly
distribute the computation of output patches to different PEs,
thus avoiding unbalanced computation of PEs. Each element in
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Fig. 14: Additional visualization results of LAUDs-ResNet-101.

the indices represents the index of an activated patch. PE fetches
the input data from the corresponding positions on the feature
map according to the index. The output patches could be densely
stored in memory. Such operator fusion benefits the contiguous
memory access and parallel computation on multiple PEs.

3) Fusing the scatter operation and the add operation. Similar to
the previous operation, each PE fetches a tile of data from the
residual feature map according to the index, adds them with the
corresponding feature map from previous dynamic convolution,
and then stores the results to the corresponding position on the
residual feature map according to the index. This optimization
can significantly reduce the costs on memory access.

Speed test. We test the latency on real hardware devices to
evaluate the accuracy of our latency prediction model. On GPUs,
we use Nvidia Cutlass (https://github.com/NVIDIA/cutlass)
and CUDA (version 11.6) for code generation and compilation

respectively. The results in Fig. 5 of the paper validate that the
predictions obtained from our latency predictor effectively align
with the real-test values.

B.2 ImageNet classification
We use pre-trained CNN models in the official torchvision
website to initialize our backbone parameters, and finetune
the overall models for 100 epochs. The initial learning rate is
set as 0.01×batch size/128, and decays with a cosine shape. The
training batch size is determined on the model size and the GPU
memory. For example, we train our LAUD-ResNet-101 on 8 RTX
3090 GPUs with the batch size of 512, and the batch size for
LAUD-ResNet-50 is doubled. We use the same weight decay
and the standard data augmentation as in the RegNet paper
[24]. For our own hyper-parameter τ in Eq. (1) of the paper, this
Gumbel temperature τ exponentially decreases from 5 to 0.1 in

https://github.com/NVIDIA/cutlass
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the training procedure. For the training hyper-parameter in Eq.
(2), we simply fix α = 10, β = 0.5 and T = 4.0 for all dynamic
models. We conduct a very simple grid search with a RegNet
for β ∈ {0.3, 0.5} and T ∈ {1.0, 4.0} to determine their values.

B.3 COCO object detection & instance segmentation
We use the standard setting suggested in [62], [64], [65], [67],
[72], except that we decrease the learning rate for our pre-trained
backbone network. We simply set a learning rate multiplier 0.5
for Faster R-CNN [63], 0.2 for RetinaNet [65] and 0.5 for Mask
R-CNN [72]. For DDQ-DETR and Mask2Former, we follow the
standard setting and set the learning rate multiplier to 0.1. As
for the additional loss items, the hyper-parameters are kept
the same as training our classification models, except that the
temperature is fixed as 0.1 in the 12 training epochs. The input
images are resized to a short side of 800 with a long side not
exceeding 1333.

APPENDIX C
MORE EXPERIMENTAL RESULTS
In this section, we report more experimental results which are
not presented in the main paper.

C.1 Latency prediction
Design of channel masker. We mentioned in Sec. 3.2 that our
channel maskers are designed as a 2-layer MLP with reduced
hidden units. This design is determined under the guidance of
our latency predictor. Specifically, we compare the latency of two
choices with a a LAUDc-ResNet-101 on TX2: 1 linear layer and
our 2-layer MLP. The latency numbers of the channel maskers in
4 stages and their ratios to those of ResNet blocks are reported
in Table 5. The results reveal that in late stages where channel
numbers are large, our 2-layer MLP with reduced hidden units
significantly reduces the latency.
Batch size. The relationship between inference latency and batch
size of LAUD-ResNet-50 on the desktop-level GPU, RTX3060, is
presented in Fig. 12. The phenomenon is similar to the serven-
end GPUs we present in the main paper (Figure 8).

C.2 ImageNet classification
Results on more hardware devices. In Fig. 10 of the paper, we
report the ImageNet classification results of LAUD-ResNet on
V100 and TX2, and those of LAUD-RegNet-Y on TX2 and Nano.
Here we present the results on other hardware platforms. From
the results in Fig. 13, we can find that the optimal dynamic-
inference paradigms can depend on the backbone and hardware
devices. For example, channel skip demonstrate its advantages
on Nano for LAUD-ResNet-50 and ResNet-101, while layer
skipping significantly outperform the other two schemes on the
more powerful devices, RTX3060 and RTX3090.

C.3 Visualization results
Here we present more visualization results of the regions
selected by our masker in the 3-rd block of a LAUDs-ResNet-101
(Snet=4-4-2-1) in Fig. 14, which demonstrate that our spatially
adaptive inference paradigm can effectively locate the most
task-related areas in image features, and reduce the unnecessary
computation on those background areas.

Yizeng Han received the B.S. degree from the
Department of Automation, Tsinghua University,
Beijing, China, in 2018. He is currently pursuing
the Ph.D. degree in control science and engineer-
ing with the Department of Automation, Institute
of System Integration in Tsinghua University.
His current research interests include computer
vision and deep learning, especially in dynamic
neural networks.

Zeyu Liu is an undergraduate student at the De-
partment of Computer Science and Technology,
Tsinghua University, Beijing, China. His current
research interests include computer vision, deep
learning and general AI.

Zhihang Yuan received his Bachelor’s degree
in 2017 and his Ph.D. in Computer Science in
2022 from Peking University. He currently focuses
on AI research, with a specific interest in the
compression of neural networks, and software-
hardware co-optimization. In 2021, he joined
Houmo AI and has since contributed to the design
of AI accelerators.

Yifan Pu received the B.S. degree in automation
from Beihang University, Beijing, China, in 2020.
He is currently pursuing the M.S. degree with the
Department of Automation, Tsinghhua University,
Beijing, China. His research interests include
computer vision, machine learning and deep
learning.

Shiji Song (SM’17) received the Ph.D. degree
in mathematics from the Department of Mathe-
matics, Harbin Institute of Technology, Harbin,
China, in 1996. He is currently a Professor with
the Department of Automation, Tsinghua Univer-
sity, Beijing, China. He has authored over 180
research papers. His current research interests
include pattern recognition, system modeling,
optimization and control.

Gao Huang received the B.S. degree from the
School of Automation Science and Electrical
Engineering, Beihang University, in 2009, and the
Ph.D. degree from the Department of Automation,
Tsinghua University, in 2015. He was was a
Post-Doctoral Researcher with the Department
of Computer Science, Cornell University, Ithaca,
USA from 2015 to 2018. He is currently an
associate professor at the Department of Automa-
tion, Tsinghua University. His research interests
include machine learning and computer vision.


	Introduction
	Related works
	Method
	Preliminaries
	LAUDNet architecture
	Latency predictor
	Scheduling optimization
	Training

	Experiments
	Experiment setup
	Latency prediction results
	ImageNet classification
	Comparison of spatial/channel granularities
	Comparison of dynamic paradigms

	Visualization and interpretability
	Dense prediction tasks

	Conclusion
	References
	Appendix A: Latency prediction model.
	Appendix B: Detailed experimental settings
	Latency prediction
	ImageNet classification
	COCO object detection & instance segmentation 

	Appendix C: More experimental results
	Latency prediction
	ImageNet classification
	Visualization results

	Biographies
	Yizeng Han
	Zeyu Liu
	Zhihang Yuan
	Yifan Pu
	Shiji Song
	Gao Huang


