
ar
X

iv
:1

30
1.

31
93

v1
 [

cs
.L

G
]

 1
5

Ja
n

20
13

1

Learning Graphical Model Parameters with
Approximate Marginal Inference

Justin Domke, NICTA & Australia National University

✦

Abstract—Likelihood based-learning of graphical models faces chal-

lenges of computational-complexity and robustness to model mis-

specification. This paper studies methods that fit parameters directly

to maximize a measure of the accuracy of predicted marginals, taking

into account both model and inference approximations at training time.

Experiments on imaging problems suggest marginalization-based learn-

ing performs better than likelihood-based approximations on difficult

problems where the model being fit is approximate in nature.

Index Terms—Graphical Models, Conditional Random Fields, Machine

Learning, Inference, Segmentation.

1 INTRODUCTION

G RAPHICAL models are a standard tool in image pro-
cessing, computer vision, and many other fields.

Exact inference and inference are often intractable, due
to the high treewidth of the graph.

Much previous work involves approximations of
the likelihood. (Section 4). In this paper, we suggest
that parameter learning can instead be done using
“marginalization-based” loss functions. These directly
quantify the quality of the predictions of a given marginal
inference algorithm. This has two major advantages.
First, approximation errors in the inference algorithm are
taken into account while learning. Second, this is robust
to model mis-specification.

The contributions of this paper are, first, the general
framework of marginalization-based fitting as implicit
differentiation. Second, we show that the parameter
gradient can be computed by “perturbation”– that is,
by re-running the approximate algorithm twice with the
parameters perturbed slightly based on the current loss.
Third, we introduce the strategy of “truncated fitting”.
Inference algorithms are based on optimization, where
one iterates updates until some convergence threshold is
reached. In truncated fitting, algorithms are derived to fit
the marginals produced after a fixed number of updates,
with no assumption of convergence. We show that this
leads to significant speedups. We also derive a variant of
this that can apply to likelihood based learning. Finally,
experimental results confirm that marginalization based
learning gives better results on difficult problems where
inference approximations and model mis-specification
are most significant.

2 SETUP

2.1 Markov Random Fields

Markov random fields are probability distributions that
may be written as

p(x) =
1

Z

∏

c

ψ(xc)
∏

i

ψ(xi). (1)

This is defined with reference to a graph, with one node
for each random variable. The first product in Eq. 1 is
over the set of cliques c in the graph, while the second
is over all individual variables. For example, the graph

x1 x2

x3 x4

x5 x6

corresponds to the distribution

p(x) =
1

Z
ψ(x1, x2)ψ(x2, x3, x5)ψ(x3, x4)ψ(x5, x6)

× ψ(x1)ψ(x2)ψ(x3)ψ(x4)ψ(x5)ψ(x6).

Each function ψ(xc) or ψ(xi) is positive, but otherwise
arbitrary. The factor Z ensures normalization.

The motivation for these types of models is the Ham-
mersley–Clifford theorem [1], which gives specific condi-
tions under which a distribution can be written as in Eq.
1. Those conditions are that, first, each random variable
is conditionally independent of all others, given its im-
mediate neighbors and, secondly, that each configuration
x has nonzero probability. Often, domain knowledge
about conditional independence can be used to build
a reasonable graph, and the factorized representation in
an MRF reduces the curse of dimensionality encountered
in modeling a high-dimensional distribution.

2.2 Conditional Random Fields

One is often interested in modeling the conditional prob-
ability of x, given observations y. For such problems, it
is natural to define a Conditional Random Field [2]

p(x|y) =
1

Z(y)

∏

c

ψ(xc,y)
∏

i

ψ(xi,y).

http://arxiv.org/abs/1301.3193v1

2

Here, ψ(xc,y) indicates that the value for a particular
configuration xc depends on the input y. In practice, the
form of this dependence is application dependent.

2.3 Inference Problems

Suppose we have some distribution p(x|y), we are given
some input y, and we need to guess a single output
vector x∗. What is the best guess?

The answer clearly depends on the meaning of “best”.
One framework for answering this question is the idea
of a Bayes estimator [3]. One must specify some utility
function U(x,x′), quantifying how “happy” one is to
have guessed x if the true output is x′. One then chooses
x∗ to maximize the expected utility

x∗ = argmax
x

∑

x′

p(x′|y)U(x,x′).

One natural utility function is an indicator function,
giving one for the exact value x′, and zero otherwise. It
is easy to show that for this utility, the optimal estimate
is the popular Maximum a Posteriori (MAP) estimate.

Theorem. If U(x,x′) = I[x = x′], then

x∗ = argmax
x

p(x|y).

Little can be said in general about if this utility
function truly reflects user priorities. However, in high-
dimensional applications, there are reasons for skepti-
cism. First, the actual maximizing probability p(x∗|y)
in a MAP estimate might be extremely small, so much
so that astronomical numbers of examples might be
necessary before one could expect to exactly predict the
true output. Second, this utility does not distinguish
between a prediction that contains only a single error
at some component xj , and one that is entirely wrong.

An alternative utility function, popular for imaging
problems, quantifies the Hamming distance, or the num-
ber of components of the output vector that are correct.
Maximizing this results in selecting the most likely value
for each component independently.

Theorem. If U(x,x′) =
∑

i I[xi = x′i], then
x∗i = argmax

xi

p(xi|y). (2)

This appears to have been originally called Maximum
Posterior Marginal (MPM) inference [4], though it has
been reinvented under other names [5]. From a computa-
tional perspective, the main difficulty is not performing
the trivial maximization in Eq. 2, but rather computing
the marginals p(xi|y). The marginal-based loss functions
introduced in Section 4.2 can be motivated by the idea
that at test time, one will use an inference method similar
to MPM where one in concerned only with the accuracy
of the marginals.

The results of MAP and MPM inference will be similar
if the distribution p(x|y) is heavily “peaked” at a single
configuration x. Roughly, the greater the entropy of
p(x|y), the more there is to be gained in integrating

over all possible configurations, as MPM does. A few
papers have experimentally compared MAP and MPM
inference [6], [7].

2.4 Exponential Family

The exponential family is defined by

p(x; θ) = exp
(

θ · f(x) −A(θ)
)

,

where θ is a vector of parameters, f(x) is a vector of
sufficient statistics, and the log-partition function

A(θ) = log
∑

x

expθ · f(x). (3)

ensures normalization. Different sufficient statistics f(x)
define different distributions. The exponential family is
well understood in statistics. Accordingly, it is useful to
note that a Markov random field (Eq. 1) is a member of
the exponential family, with sufficient statistics consist-
ing of indicator functions for each possible configuration
of each clique and each variable [8], namely,

f(X) = {I[Xc = xc]|∀c,xc} ∪ {I[Xi = xi]|∀i, xi}.

It is useful to introduce the notation θ(xc) to refer
to the component of θ corresponding to the indicator
function I[Xc = xc], and similarly for θ(xi). Then,
the MRF in Eq. 1 would have ψ(xc) = eθ(xc) and
ψ(xi) = eθ(xi). Many operations on graphical models
can be more elegantly represented using this exponential
family representation.

A standard problem in the exponential family is to
compute the mean value of f ,

µ(θ) =
∑

x

p(x; θ)f(x),

called the “mean parameters”. It is easy to show these
are equal to the gradient of the log-partition function.

dA

dθ
= µ(θ). (4)

For an exponential family corresponding to an MRF,
computing µ is equivalent to computing all the marginal
probabilities. To see this, note that, using a similar
notation for indexing µ as for θ above,

µ(xc; θ) =
∑

X

p(X; θ)I[Xc = xc] = p(xc; θ).

Conditional distributions can be represented by think-
ing of the parameter vector θ(y;γ) as being a function of
the input y, where γ are now the free parameters rather
than θ. (Again, the nature of the dependence of θ on y

and γ will vary by application.) Then, we have that

p(x|y;γ) = exp
(

θ(y;γ) · f(x) −A(θ(y;γ))
)

, (5)

sometimes called a curved conditional exponential fam-
ily.

3

2.5 Learning

The focus of this paper is learning of model parameters
from data. (Automatically determining graph structure
remains an active research area, but is not considered
here.) Specifically, we take the goal of learning to be to
minimize the empirical risk

R(θ) =
∑

x̂

L
(

θ, x̂
)

, (6)

where the summation is over all examples x̂ in the
dataset, and the loss function L(θ, x̂) quantifies how
well the distribution defined by the parameter vector
θ matches the example x̂. Several loss functions are
considered in Section 4.

We assume that the empirical risk will be fit by some
gradient-based optimization. Hence, the main technical
issues in learning are which loss function to use and how
to compute the gradient dL

dθ
.

In practice, we will usually be interested in fitting
conditional distributions. Using the notation from Eq.
5, we can write this as

R(γ) =
∑

(ŷ,x̂)

L
(

θ(ŷ,γ), x̂
)

.

Note that if one has recovered dL
dθ
, dL

dγ
is immediate

from the vector chain rule as

dL

dγ
=
dθT

dγ

dL

dθ
. (7)

Thus, the main technical problems involved in fitting
a conditional distribution are similar to those for a
generative distribution: One finds θ = θ(ŷ,γ), computes
the L and dL

dθ
on example x̂ exactly as in the generative

case, and finally recovers dL
dγ

from Eq. 7. So, for simplic-
ity, y and γ will largely be ignored in the theoretical
developments below.

3 VARIATIONAL INFERENCE

This section reviews approximate methods for comput-
ing marginals, with notation based on Wainwright and
Jordan [8]. For readability, all proofs in this section are
postponed to Appendix A.

The relationship between the marginals and the log-
partition function in Eq. 4 is key to defining approx-
imate marginalization procedures. In Section 3.1, the
exact variational principle shows that the (intractable)
problem of computing the log-partition function can be
converted to a (still intractable) optimization problem. To
derive a tractable marginalization algorithm one approx-
imates this optimization, yielding some approximate
log-partition function Ã(θ). The approximate marginals
are then taken as the exact gradient of Ã.

We define the reverse mapping θ(µ) to return some
parameter vector that yields that marginals µ. While this
will in general not be unique [8, sec. 3.5.2], any two
vectors that produce the same marginals µ will also yield
the same distribution, and so p(x; θ(µ)) is unambiguous.

3.1 Exact Variational Principle

Theorem (Exact variational principle). The log-partition
function can also be represented as

A(θ) = max
µ∈M

θ · µ+H(µ), (8)

where
M = {µ′ : ∃θ,µ′ = µ(θ)}

is the marginal polytope, and

H(µ) = −
∑

x

p(x; θ(µ)) log p(x; θ(µ))

is the entropy.

In treelike graphs, this optimization can be solved
efficiently. In general graphs, however, it is intractable in
two ways. First, the marginal polytope M becomes dif-
ficult to characterize. Second, the entropy is intractable
to compute.

Applying Danskin’s theorem to Eq. 8 yields that

µ(θ) =
dA

dθ
= argmax

µ∈M
θ · µ+H(µ). (9)

Thus, the partition function (Eq. 8) and marginals (Eq.
9) can both be obtained from solving the same optimiza-
tion problem. This close relationship between the log-
partition function and marginals is heavily used in the
derivation of approximate marginalization algorithms.
To compute approximate marginals, first, derive an ap-
proximate version of the optimization in Eq. 8. Next,
take the exact gradient of this approximate partition
function. This strategy is used in both of the approximate
marginalization procedures considered here: mean field
and tree-reweighted belief propagation.

3.2 Mean Field

The idea of mean field is to approximate the exact
variational principle by replacingM with some tractable
subset F ⊂ M, such that F is easy to characterize,
and for any vector µ ∈ F we can exactly compute the
entropy. To create such a set F , instead of considering
the set of mean vectors obtainable from any parameter
vector (which characterizes M), consider a subset of
tractable parameter vectors. The simplest way to achieve
this to restrict consideration to parameter vectors θ with
θ(xc) = 0 for all factors c.

F = {µ′ : ∃θ,µ′ = µ(θ), ∀c, θ(xc) = 0}.

It is not hard to see that this corresponds to the set
of fully-factorized distributions. Note also that this is (in
non-treelike graphs) a non-convex set, since it has the
same convex hull as M, but is a proper subset. So, the
mean field partition function approximation is based on
the optimization

Ã(θ) = max
µ∈F

θ · µ+H(µ), (10)

4

with approximate marginals corresponding to the max-
imizing vector µ, i.e.

µ̃(θ) = argmax
µ∈F

θ · µ+H(µ). (11)

Since this is maximizing the same objective as the
exact variational principle, but under a more restricted
constraint set, clearly Ã(θ) ≤ A(θ).

Here, since the marginals are coming from a fully-
factorized distribution, the exact entropy is available as

H(µ) = −
∑

i

∑

xi

µ(xi) log µ(xi). (12)

The strategy we use to perform the maximization in
Eq. 10 is block-coordinate ascent. Namely, we pick a
coordinate j, then set µ(xj) to maximize the objective,
leaving µ(xi) fixed for all i 6= j. The next theorem
formalizes this.

Theorem (Mean Field Updates). A local maximum of Eq.
10 can be reached by iterating the updates

µ(xj)←
1

Z
exp

(

θ(xj) +
∑

c:j∈c

∑

xc\j

θ(xc)
∏

i∈c\j

µ(xi)
)

,

where Z is a normalizing factor ensuring that
∑

xj

µ(xj) = 1.

3.3 Tree-Reweighted Belief Propagation

Whereas mean field replaced the marginal polytope
with a subset, tree-reweighted belief propagation (TRW)
replaces it with a superset, L ⊃ M. This clearly can
only increase the value of the approximate log-partition
function. However, a further approximation is needed,
as the entropy remains intractable to compute for an
arbitrary mean vector µ. (It is not even defined for
µ 6∈ M.) Thus, TRW further approximates the entropy
with a tractable upper bound. Taken together, these two
approximations yield a tractable upper bound on the
log-partition function.

Thus, TRW is based on the optimization problem

Ã(θ) = max
µ∈L

θ · µ+ H̃(µ). (13)

Again, the approximate marginals are simply the maxi-
mizing vector µ, i.e.,

µ̃(θ) = argmax
µ∈L

θ · µ+ H̃(µ). (14)

The relaxation of the local polytope used in TRW is
the local polytope,

L = {µ :
∑

xc\i

µ(xc) = µ(xi),
∑

xi

µ(xi) = 1}. (15)

Since any valid marginal vector must obey these con-
straints, clearly M ⊂ L. However, L in general also
contains unrealizable vectors (though on trees L =M).

Thus, the marginal vector returned by TRW may, in gen-
eral, be inconsistent in the sense that no joint distribution
yields those marginals.

The entropy approximation used by TRW is

H̃(µ) =
∑

i

H(µi)−
∑

c

ρcI(µc), (16)

where H(µi) = −
∑

xi
µ(xi) logµ(xi) is the univariate

entropy corresponding to variable i, and

I(µc) =
∑

xc

µ(xc) log
µ(xc)

∏

i∈c µ(xi)
(17)

is the mutual information corresponding to the variables
in the factor c. The motivation for this approximation is
that if the constants ρc are selected appropriately, this
gives an upper bound on the true entropy.

Theorem (TRW Entropy Bound). Let Pr(G) be a distribu-
tion over tree structured graphs, and define ρc = Pr(c ∈ G).
Then, with H̃ as defined in Eq. 16,

H̃(µ) ≥ H(µ).

Thus, TRW is maximizing an upper bound on the ex-
act variational principle, under an expanded constraint
set. Since both of these changes can only increase the
maximum value, we have that Ã(θ) ≥ A(θ).

Now, we consider how to actually compute the
approximate log-partition function and associated
marginals. Consider the message-passing updates

mc(xi) ∝
∑

xc\i

e
1

ρc
θ(xc)

∏

j∈c\i

eθ(xj)

∏

d:j∈dmd(xj)
ρd

mc(xj)
, (18)

where “∝” is used as an assignment operator to means
assigning after normalization.

Theorem (TRW Updates). Let ρc be as in the previous
theorem. Then, if the updates in Eq. 18 reach a fixed point,
the marginals defined by

µ(xc) ∝ e
1

ρc
θ(xc)

∏

i∈c

eθ(xi)

∏

d:i∈dmd(xi)
ρd

mc(xi)
,

µ(xi) ∝ eθ(xi)
∏

d:i∈d

md(xi)
ρd

constitute the global optimum of Eq. 13.

So, if the updates happen to converge, we have the
solution. Meltzer et al. show [9] that on certain graphs
made up of monotonic chains, an appropriate ordering of
messages does assure convergence. (The proof is essen-
tially that under these circumstances, message passing
is equivalent to coordinate ascent in the dual.)

TRW simplifies into loopy belief propagation by
choosing ρc = 1 everywhere, though the bounding
property is lost.

5

4 LOSS FUNCTIONS

For space, only a representative sample of prior work
can be cited. A recent review [10] is more thorough.

Though, technically, a “loss” should be minimized, we
continue to use this terminology for the likelihood and
its approximations, where one wishes to maximize.

For simplicity, the discussion below is for the genera-
tive setting. Using the same loss functions for training a
conditional model is simple (Section 2.5).

4.1 The Likelihood and Approximations

The classic loss function would be the likelihood, with

L(θ,x) = log p(x; θ) = θ · f(x) −A(θ). (19)

This has the gradient

dL

dθ
= f(x)− µ(θ). (20)

One argument for the likelihood is that it is efficient;
given a correct model, as data increases it converges to
true parameters at an asymptotically optimal rate [11].

Some previous work uses tree structured graphs
where marginals may be computed exactly [12]. Of
course, in high-treewidth graphs, the likelihood and
its gradient will be intractable to compute exactly, due
to the presence of the log-partition function A(θ) and
marginals µ(θ). This has motivated a variety of approx-
imations. The first is to approximate the marginals µ

using Markov chain Monte Carlo [13], [14]. This can
lead to high computational expense (particularly in the
conditional case, where different chains must be run for
each input). Contrastive Divergence [15] further approx-
imates these samples by running the Markov chain for
only a few steps, but started at the data points [16]. If
the Markov chain is run long enough, these approaches
can give an arbitrarily good approximation. However,
Markov chain parameters may need to be adjusted to the
particular problem, and these approaches are generally
slower than those discussed below.

4.1.1 Surrogate Likelihood

A seemingly heuristic approach would be to replace the
marginals in Eq. 20 with those from an approximate
inference method. This approximation can be quite prin-
cipled if one thinks instead of approximating the log-
partition function in the likelihood itself (Eq. 19). Then,
the corresponding approximate marginals will emerge as
the exact gradient of this surrogate loss. This “surrogate
likelihood” [17] approximation appears to be the most
widely used loss in imaging problems, with marginals
approximated by either mean field [18], [19], TRW [20]
or LBP [21], [22], [23], [24], [25]. However, the terminol-
ogy of “surrogate likelihood” is not widespread and in
most cases, only the gradient is computed, meaning the
optimization cannot use line searches.

If one uses a log-partition approximation that pro-
vides a bound on the true log-partition function, the

surrogate likelihood will then bound the true likelihood.
Specifically, mean field based surrogate likelihood is an
upper bound on the true likelihood, while TRW-based
surrogate likelihood is a lower bound.

4.1.2 Expectation Maximization

In many applications, only a subset of variables may be
observed. Suppose that we want to model x = (z,h)
where z is observed, but h is hidden. A natural loss
function here is the expected maximization (EM) loss

L(θ, z) = log p(z; θ) = log
∑

h

p(z,h; θ).

It is easy to show that this is equivalent to

L(θ, z) = A(θ, z)−A(θ), (21)

where A(θ, z) = log
∑

h expθ · f(z,h) is the log-partition
function with z “clamped” to the observed values. If all
variables are observed A(θ, z) reduces to θ · f(z).

If on substitutes a variational approximation for
A(θ, z), a “variational EM” algorithm [8, Sec. 6.2.2] can
be recovered that alternates between computing approx-
imate marginals and parameter updates. Here, because
of the close relationship to the surrogate likelihood, we
designate “surrogate EM” for the case where A(θ, z) and
A(θ) may both be approximated and the learning is done
with a gradient-based method. To obtain a bound on
the true EM loss, care is required. For example, lower-
bounding A(θ, z) using mean field, and upper-bounding
A(θ) using TRW means a lower-bound on the true EM
loss. However, using the same approximation for both
A(θ) and A(θ, z) appears to work well in practice [26].

4.1.3 Saddle-Point Approximation

A third approximation of the likelihood is to search for a
“saddle-point”. Here, one approximates the gradient in
Eq. 20 by running a (presumably approximate) MAP in-
ference algorithm, and then imagining that the marginals
put unit probability at the approximate MAP solution,
and zero elsewhere [27], [28], [21]. This is a heuristic
method, but it can be expected to work well when the
estimated MAP solution is close to the true MAP and
the conditional distribution p(x|y) is strongly “peaked”.

4.1.4 Pseudolikelihood

Finally, there are two classes of likelihood approxima-
tions that do not require inference. The first is the classic
pseudolikelihood [29], where one uses

L(θ,x) =
∑

i

log p(xi|x−i; θ).

This can be computed efficiently, even in high
treewidth graphs, since conditional probabilities are easy
to compute. Besag [29] showed that, under certain con-
ditions, this will converge to the true parameter vector
as the amount of data becomes infinite. The pseudolike-
lihood has been used in many applications [30], [31].

6

Instead of the probability of individual variables given
all others, one can take the probability of patches of
variables given all others, sometimes called the “patch”
pseudolikelihood [32]. This interpolates to the exact
likelihood as the patches become larger, though some
type of inference is generally required.

4.1.5 Piecewise Likelihood

More recently, Sutton and McCallum [33] suggested the
piecewise likelihood. The idea is to approximate the log-
partition function as a sum of log-partition functions of
the different “pieces“ of the graph. There is flexibility in
determining which pieces to use. In this paper, we will
use pieces consisting of each clique and each variable,
which worked better in practice than some alternatives.
Then, one has the surrogate partition function

Ã(θ) =
∑

c

Ac(θ) +
∑

i

Ai(θ),

Ac(θ) = log
∑

xc

eθ(xc), Ai(θ) = log
∑

xi

eθ(xi).

It is not too hard to show that A(θ) ≤ Ã(θ). In practice,
it is sometimes best to make some heuristic adjustments
to the parameters after learning to improve test-time
performance [34], [35].

4.2 Marginal-based Loss Functions

Given the discussion in Section 4.1, one might conclude
that the likelihood, while difficult to optimize, is an
ideal loss function since, given a well-specified model,
it will converge to the true parameters at asymptotically
efficient rates. However, this conclusion is complicated
by two issues. First, of course, the maximum likelihood
solution is computationally intractable, motivating the
approximations above.

A second issue is that of model mis-specification. For
many types of complex phenomena, we will wish to fit
a model that is approximate in nature. This could be true
because the conditional independencies asserted by the
graph do not exactly hold, or because the parametriza-
tion of factors is too simplistic. These approximations
might be made out of ignorance, due to a lack of knowl-
edge about the domain being studied, or deliberately
because the true model might have too many degrees of
freedom to be fit with available data.

In the case of an approximate model, no “true” param-
eters exist. The idea of marginal-based loss functions is
to instead consider how the model will be used. If one
will compute marginals at test-time – perhaps for MPM
inference (Section 2.3) – it makes sense to maximize the
accuracy of these predictions. Further, if one will use
an approximate inference algorithm, it makes sense to
optimize the accuracy of the approximate marginals. This
essentially fits into the paradigm of empirical risk min-
imization [36], [37]. The idea of training a probabilistic
model using an alternative loss to the likelihood goes
back at least to Bahl et al. in the late 1980s [38].

There is reason to think the likelihood is somewhat
robust to model mis-specification. In the infinite data
limit, it finds the “closest” solution in the sense of KL-
divergence since, if q is the true distribution, then

KL(q||p) = const.− E
q
log p(x; θ).

4.2.1 Univariate Logistic Loss

The univariate logistic loss [39] is defined by

L(θ,x) = −
∑

i

log µ(xi; θ),

where we use the notation µ to indicate that the loss is
implicitly defined with respect to the marginal predic-
tions of some (possibly approximate) algorithm, rather
than the true marginals. This measures the mean accu-
racy of all univariate marginals, rather than the joint
distribution. This loss can be seen as empirical risk
minimization of the KL-divergence between the true
marginals and the predicted ones, since

∑

i

KL(qi||µi) =
∑

i

∑

xi

q(xi) log
q(xi)

µ(xi; θ)

= const.− E
q

∑

i

logµ(xi; θ).

If defined on exact marginals, this is a type of composite
likelihood [40].

4.2.2 Smoothed Univariate Classification Error

Perhaps the most natural loss in the conditional setting
would be the univariate classification error,

L(θ,x) =
∑

i

S
(

max
x′
i 6=xi

µ(xi; θ)− µ(xi; θ)
)

,

where S(·) is the step function. This exactly measures the
number of components of x that would be incorrectly
predicted if using MPM inference. Of course, this loss
is neither differentiable nor continuous, which makes it
impractical to optimize using gradient-based methods.
Instead Gross et al. [5] suggest approximating with a
sigmoid function S(t) = (1 + exp(−αt))−1, where α
controls approximation quality.

There is evidence [36], [5] that the smoothed classifi-
cation loss can yield parameters with lower univariate
classification error under MPM inference. However, our
experience is that it is also more prone to getting stuck in
local minima, making experiments difficult to interpret.
Thus, it is not included in the experiments below. Our
experience with the univariate quadratic loss [41] is
similar.

4.2.3 Clique Losses

Any of the above univariate losses can be instead taken
based on cliques. For example, the clique logistic loss is

L(θ,x) = −
∑

c

logµ(xc; θ),

7

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

training data

m
e

a
n

 t
e

s
t

e
rr

o
r

shift of 0

10
0

10
1

10
2

10
3

training data

shift of 3

10
0

10
1

10
2

10
3

training data

shift of 10

likelihood
clique logistic
univariate logistic

Figure 1: Mean test error of various loss functions
trained with exact inference. In the case of a well-
specified model (shift of zero), the likelihood performs
essentially identically to the marginal-based loss func-
tions. However, when mis-specification is introduced,
quite different estimates result.

which may be seen as empirical risk minimization of
the mean KL-divergence of the true clique marginals to
the predicted ones. An advantage of this with an exact
model is consistency. Simple examples show cases where
a model predicts perfect univariate marginals, despite
the joint distribution being very inaccurate. However, if
all clique marginals are correct, the joint must be correct,
by the standard moment matching conditions for the
exponential family [8].

4.2.4 Hidden variables

Marginal-based loss functions can accommodate hidden
variables by simply taking the sum in the loss over the
observed variables only. A similar approach can be used
with the pseudolikelihood or piecewise likelihood.

4.3 Comparison with Exact Inference

To compare the effects of different loss functions in the
presence of model mis-specification, this section contains
a simple example where the graphical model takes the
following “chain” structure:

. . .

x1 x2 x3 x4 xn

y1 y2 y3 y4 yn

Here, exact inference is possible, so comparison is not
complicated by approximate inference.

All variables are binary. Parameters are generated by
taking θ(xi) randomly from the interval [−1,+1] for all i
and xi. Interaction parameters are taken as θ(xi, xj) = t
when xi = xj , and θ(xi, xj) = −t when xi 6= xj , where
t is randomly chosen from the interval [−1,+1] for all
(i, j). Interactions θ(yi, yj) and θ(xi, yi) are chosen in the
same way.

To systematically study the effects of differing
“amounts” of mis-specification, after generating data,
we apply various circular shifts to x. Thus, the data
no longer corresponds exactly the the structure of the
graphical model being fit.

Thirty-two different random distributions were cre-
ated. For each, various quantities of data were generated

by Markov chain Monte Carlo, with shifts introduced
after sampling. The likelihood was fit using the closed-
form gradient (Sec. 4.1), while the logistic losses were
trained using a gradient obtained via backpropagation
(Sec. 7). Fig. 1 shows the mean test error (estimated on
1000 examples), while Fig. 2 shows example marginals.
We see that the performance of all methods deteriorates
with mis-specification, but the marginal-based loss func-
tions are more resistant to these effects.

4.4 MAP-Based Training

Another class of methods explicitly optimize the perfor-
mance of MAP inference [42], [43], [44], [45], [25]. This
paper focuses on applications that use marginal infer-
ence, and that may need to accommodate hidden vari-
ables, and so concentrates on likelihood and marginal-
based losses.

5 IMPLICIT FITTING

We now turn to the issue of how to train high-treewidth
graphical models to optimize the performance of a
marginal-based loss function, based on some approxi-
mate inference algorithm. Now, computing the value of
the loss for any of the marginal-based loss functions is
not hard. One can simply run the inference algorithm
and plug the resulting marginal into the loss. However,
we also require the gradient dL

dθ
.

Our first result is that the loss gradient can be obtained
by solving a sparse linear system. Here, it is useful to
introduce notation to distinguish the loss L, defined in
terms of the parameters θ from the loss Q, defined di-
rectly in terms of the marginals µ. (Note that though the
notation suggests the application to marginal inference,
this is a generic result.)

Theorem. Suppose that

µ(θ) := argmax
µ:Bµ=d

θ · µ+H(µ). (22)

Define L(θ,x) = Q(µ(θ),x). Then, letting D = d2H
dµdµT ,

dL

dθ
=

(

D−1BT (BD−1BT)−1BD−1 −D−1
)dQ

dµ
.

A proof may be found in Appendix B. This theorem
states that, essentially, once one has computed the pre-
dicted marginals, the gradient of the loss with respect
to marginals dQ

dµ
can be transformed into the gradient

of the loss with respect to parameters dL
dθ

through the
solution of a sparse linear system.

The optimization in Eq. 22 takes place under linear
constraints, which encompasses the local polytope used
in TRW message-passing (Eq. 15). This theorem does not
apply to mean field, as F is not a linear constraint set
when viewed as a function of both clique and univariate
marginals.

In any case, the methods developed below are simpler
to use, as they do not require explicitly forming the
constraint matrix B or solving the linear system.

8

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
true marginals

eplacements
p
(y

i
=

1
|x
)

i

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
shift of 3

p
(y

i
=

1
|x
)

i

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1
shift of 10

p
(y

i
=

1
|x
)

i

Figure 2: Exact and predicted marginals for an example input. Predicted marginals are trained using 1000 data.
With low shifts, all loss functions lead to accurate predicted marginals. However, the univariate and clique logistic
loss are more resistant to the effects of model mis-specification. Legends as in Fig. 1.

6 PERTURBATION

This section observes that variational methods have a
special structure that allows derivatives to be calculated
without explicitly forming or inverting a linear system.
We have, by the vector chain rule, that

dL

dθ
=
dµT

dθ

dQ

dµ
. (23)

A classic trick in scientific computing is to efficiently
compute Jacobian-vector products by finite differences.
The basic result is that, for any vector v,

dµ

dθT
v = lim

r→0

1

r

(

µ(θ + rv) − µ(θ)
)

,

which is essentially just the definition of the derivative of
µ in the direction of v. Now, this does not immediately
seem helpful, since Eq. 23 requires dµT

dθ
, not dµ

dθT . How-
ever, with variational methods, these are symmetric. The
simplest way to see this is to note that

dµ

dθT
=

d

dθT

(

dA

dθ

)

=
dA

dθdθT
.

Domke [46] lists conditions for various classes of en-
tropies that guarantee that A will be differentiable.

Combining the above three equations, the loss gradi-
ent is available as the limit

dL

dθ
= lim

r→0

1

r

(

µ(θ + r
dQ

dµ
)− µ(θ)

)

. (24)

In practice, of course, the gradient is approximated
using some finite r. The simplest approximation, one-
sided differences, simply takes a single value of r in
Eq. 24, rather than a limit. More accurate results at the

cost of more calls to inference, are given using two-sided
differences, with

dL

dθ
≈

1

2r

(

µ(θ + r
dQ

dµ
)− µ(θ − r

dQ

dµ
)
)

,

which is accurate to order o(r2). Still more accurate
results are obtained with “four-sided” differences, with

dL

dθ
≈

1

12r

(

−µ(θ + 2r
dQ

dµ
) + 8µ(θ + r

dQ

dµ
)

− 8µ(θ − r
dQ

dµ
) + µ(θ − 2r

dQ

dµ
)
)

,

which is accurate to order o(r4) [47].
Alg. 1 shows more explicitly how the loss gradient

could be calculated, using two-sided differences.
The issue remains of how to calculate the step size

r. Each of the approximations above becomes exact
as r → 0. However, as r becomes very small, nu-
merical error eventually dominates. To investigate this
issue experimentally, we generated random models on a
10×10 binary grid, with each parameter θ(xi) randomly
chosen from a standard normal, while each interaction
parameter θ(xi, xj) was chosen randomly from a normal
with a standard deviation of s. In each case, a random
value x was generated, and the “true” loss gradient
was estimated by standard (inefficient) 2-sided finite
differences, with inference re-run after each component
of θ is perturbed independently. To this, we compare
one, two, and four-sided perturbations. In all cases,
the step size is, following Andrei [48], taken to be
r = mǫ

1

3

(

1+ ||θ||∞
)

/||dQ
dµ
||∞, where ǫ is machine epsilon,

and m is a multiplier that we will vary. Note that the
optimal power of ǫ will depend on the finite difference
scheme; 1

3 is optimal for two-sided differences [49, Sec.
8.1]. All calculations take place in double-precision with

9

Algorithm 1 Calculating dL
dθ

by perturbation (two-sided).

1) Do inference. µ∗ ← arg max
µ∈M

θ · µ+H(µ)

2) At µ∗, calculate the gradient
dQ

dµ
.

3) Calculate a perturbation size r.
4) Do inference on perturbed parameters.

a) µ+ ← arg max
µ∈M

(θ + r
dQ

dµ
) · µ+H(µ)

b) µ− ← arg max
µ∈M

(θ − r
dQ

dµ
) · µ+H(µ)

5) Recover full derivative as
dL

dθ
←

1

2r
(µ+ − µ−).

10
0

10
2

10
4

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Perturbation Multiplier

G
ra

d
ie

n
t
E

rr
o
r

r = 1

1−sided
2−sided
4−sided

10
0

10
2

10
4

10
6

10

10

10

10

10

10

10

Perturbation Multiplier

r = 2

10
0

10
2

10
4

10
6

10

10

10

10

10

10

10

Perturbation Multiplier

r = 3

10
0

10
2

10
4

10
6

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Perturbation Multiplier

G
ra

d
ie

n
t
E

rr
o
r

r = 1

1−sided
2−sided
4−sided

10
0

10
2

10
4

10
6

10

10

10

10

10

10

10

Perturbation Multiplier

r = 2

10
0

10
2

10
4

10
6

10

10

10

10

10

10

10

Perturbation Multiplier

r = 3

Figure 3: An evaluation of perturbation multipliers m.
Top: TRW. Bottom: Mean field. Two effects are in play
here: First, for too small a perturbation, numerical errors
dominate. Meanwhile, for too large a perturbation, ap-
proximation errors dominate. We see that using 2- or 4-
sided differences differences reduce approximation error,
leading to better results with larger perturbations.

inference run until marginals changed by a threshold
of less than 10−15. Fig. 3 shows that using many-sided
differences leads to more accuracy, at the cost of needing
to run inference more times to estimate a single loss
gradient. In the following experiments, we chose two-
sided differences with a multiplier of 1 as a reasonable
tradeoff between accuracy, simplicity, and computational
expense.

Welling and Teh used sensitivity of approximate be-
liefs to parameters to approximate joint probabilities of
non-neighboring variables [50].

7 TRUNCATED FITTING

The previous methods for computing loss gradients
are derived under the assumption that the inference
optimization is solved exactly. In an implementation, of
course, some convergence threshold must be used.

Different convergence thresholds can be used in the
learning stage and at test time. In practice, we have
observed that too loose a threshold in the learning stage
can lead to a bad estimated risk gradient, and learning

terminating with a bad search direction. Meanwhile, a
loose threshold can often be used at test time with few
consequences. Usually, a difference of 10−3 in estimated
marginals has little practical impact, but this can still be
enough to prevent learning from succeeding [51].

It seems odd that the learning algorithm would spend
the majority of computational effort exploring tight
convergence levels that are irrelevant to the practical
performance of the model. Here, we define the learning
objective in terms of the approximate marginals obtained
after a fixed number of iterations. To understand this,
one may think of the inference process not as an op-
timization, but rather as a large, nonlinear function.
This clearly leads to a well-defined objective function.
Inputting parameters, applying the iterations of either
TRW or mean field, computing predicted marginals,
and finally a loss are all differentiable operations. Thus,
the loss gradient is efficiently computable, at least in
principle, by reverse-mode automatic differentiation (au-
todiff), an approach explored by Stovanov et al. [36],
[52]. In preliminary work, we experimented with autod-
iff tools, but found these to be unsatisfactory for our
applications for two reasons. Firstly, these tools impose a
computational penalty over manually derived gradients.
Secondly, autodiff stores all intermediate calculations,
leading to large memory requirements. The methods
derived below use less memory, both in terms of con-
stant factors and big-O complexity. Nevertheless, some
of these problems are issues with current implementations
of reverse-mode autodiff, avoidable in theory.

Both mean field and TRW involve steps where we first
take a product of a set of terms, and then normalize. We
define a “backnorm” operator, which is useful in taking
derivatives over such operations, by

backnorm(g, c) = c⊙ (g − g · c).

This will be used in the algorithms here. More discussion
on this point can be found in Appendix C.

7.1 Back Mean Field

The first backpropagating inference algorithm, back
mean field, is shown as Alg. 2. The idea is as follows:
Suppose we start with uniform marginals, run N itera-
tions of mean field, and then– regardless of if mean field
has converged or not– take predicted marginals and plug
them into one of the marginal-based loss functions. Since
each step in this process is differentiable, this specifies
the loss as a differentiable function of model parameters.
We want the exact gradient of this function.

Theorem. After execution of back mean field,

←−
θ (xi) =

dL

dθ(xi)
and
←−
θ (xc) =

dL

dθ(xc)
.

A proof sketch is in Appendix C. Roughly speaking,
the proof takes the form of a mechanical differentiation
of each step of the inference process.

10

Algorithm 2 Back Mean Field
1) Initialize µ uniformly.
2) Repeat N times for all j:

a) Push the marginals µj onto a stack.

b) µ(xj) ∝ exp
(

θ(xj) +
∑

c:j∈c

∑

xc\j

θ(xc)
∏

i∈c\j

µ(xi)
)

3) Compute L, ←−µ (xj) =
dL

dµ(xj)
and ←−µ (xc) =

dL
dµ(xc)

.

4) Initialize
←−
θ (xi)← 0,

←−
θ (xc)← 0.

5) Repeat N times for all j (in reverse order):
a) ←−νj ← backnorm(←−µj , µj)

b)
←−
θ (xj)←

←−
θ (xj) +

←−ν (xj)

c)
←−
θ (xc)←

←−
θ (xc) +

←−ν (xj)
∏

i∈c\j

µ(xi) ∀c : j ∈ c

d) ←−µ (xi)←
←−µ (xi) +

∑

xc\i

←−ν (xj)θ(xc)
∏

k∈c\{i,j}

µ(xk)

∀c : j ∈ c, ∀i ∈ c\j

e) Pull marginals µj from the stack.

f) ←−µj(xj)← 0

Note that, as written, back mean field only produces
univariate marginals, and so cannot cope with loss func-
tions making use of clique marginals. However, with
mean field, the clique marginals, are simply the product
of univariate marginals: µ(xc) =

∏

i∈c µ(xi). Hence, any
loss defined on clique marginals can equivalently be
defined on univariate marginals.

7.2 Back TRW

Next, we consider truncated fitting with TRW inference.
As above, we will assume that some fixed number N
of inference iterations have been run, and we want to
define and differentiate a loss defined on the current
predicted marginals. Alg. 3 shows the method.

Theorem. After execution of back TRW,

←−
θ (xi) =

dL

dθ(xi)
and
←−
θ (xc) =

dL

dθ(xc)
.

Again, a proof sketch is in Appendix C.
If one uses pairwise factors only, uniform appearance

probabilities of ρ = 1, removes all reference to the stack,
and uses a convergence threshold in place of a fixed
number of iterations, one obtains essentially Eaton and
Ghahramani’s back belief propagation [53, extended
version, Fig. 5]. Here, we refer to the general strategy
of using full (non-truncated) inference as “backpropaga-
tion”, either with LBP, TRW, or mean field.

7.3 Truncated Likelihood & Truncated EM

Applying the truncated fitting strategies to any of the
marginal-based loss functions is simple. Applying it to
the likelihood or EM loss, however, is not so straightfor-
ward. The reason is that these losses (Eqs. 19 and 21) are

Algorithm 3 Back TRW.
1) Initialize m uniformly.
2) Repeat N times for all pairs (c, i), with i ∈ c:

a) Push the messages mc(xi) onto a stack.

b) mc(xi) ∝
∑

xc\i
e

1

ρc
θ(xc)

∏

j∈c\i e
θ(xj)

∏

d:j∈d

md(xj)
ρd

mc(xj)

3) µ(xc) ∝ e
1

ρc
θ(xc)

∏

i∈c e
θ(xi)

∏

d:i∈d

md(xi)
ρd

mc(xi)
∀c

4) µ(xi) ∝ eθ(xi)
∏

d:i∈dmd(xi)
ρd ∀i

5) Compute L, ←−µ (xi) =
dL

dµ(xi)
and ←−µ (xc) =

dL
dµ(xc)

.
6) For all c,

a) ←−ν (xc) ← backnorm(←−µc, µc)

b)
←−
θ (xc)

+
← 1

ρc

←−ν (xc)

c)
←−
θ (xi)

+
←

∑

xc\i

←−ν (xc) ∀i ∈ c

d) ←−md(xi)
+
← ρd−Ic=d

md(xi)

∑

xc\i

←−ν ∀i ∈ c, ∀d : i ∈ d

7) For all i,
a) ←−ν (xi) ← backnorm(←−µi, µi)

b) ←−θ (xi)
+
←←−ν (xi)

c) ←−md(xi)
+
← ρd

←−ν (xi)
md(xi)

∀d : i ∈ d

8) Repeat N times for all pairs (c, i) (in reverse order)

a) s(xc) ← e
1

ρc
θ(xc)

∏

j∈c\i e
θ(xj)

∏

d:j∈d

md(xj)
ρd

mc(xj)

b) ←−ν (xi) ← backnorm(←−−mci,mci)

c)
←−
θ (xc)

+
← 1

ρc
s(xc)

←−ν (xi)
mc(xi)

d)
←−
θ (xj)

+
←

∑

xc\j
s(xc)

←−ν (xi)
mc(xi)

∀j ∈ c\i

e) ←−md(xj)
+
← ρd−Ic=d

md(xj)

∑

xc\j
s(xc)

←−ν (xi)
mc(xi)

∀j ∈ c\i, ∀d : j ∈ d
f) Pull messages mc(xi) from the stack.

g) ←−mc(xi)← 0

defined, not in terms of predicted marginals, but in terms
of partition functions. Nevertheless, we wish to compare
to these losses in the experiments below. As we found
truncation to be critical for speed, we instead derive a
variant of truncated fitting.

The basic idea is to define a “truncated partition func-
tion”. This is done by taking the predicted marginals,
obtained after a fixed number of iterations, and plugging
them into the entropy approximations used either for
mean field (Eq. 12) or TRW (Eq. 16). The approximate
entropy H̃ is then used in defining a truncated partition
function as

Ã(θ) = θ · µ(θ)− H̃(µ(θ)).

As we will see below, with too few inference iterations,
using this approximation can cause the surrogate likeli-
hood to diverge. To see why, imagine an extreme case
where zero inference iterations are used. This results in
the loss L(θ,x) = θ·(f(x)−µ0)+H̃(µ0), where µ0 are the

11

initial marginals. As long as the mean of f(x) over the
dataset is not equal to µ0, arbitrary loss can be achieved.
With hidden variables, A(θ, z) is defined similarly, but
with the variables z “clamped” to the observed values.
(Those variables will play no role in determining µ(θ)).

8 EXPERIMENTS

These experiments consider three different datasets with
varying complexity. In all cases, we try to keep the
features used relatively simple. This means some sac-
rifice in performance, relative to using sophisticated
features tuned more carefully to the different problem
domains. However, given that our goal here is to gauge
the relative performance of the different algorithms,
we use simple features for the sake of experimental
transparency.

We compare marginal-based learning methods to
the surrogate likelihood/EM, the pseudolikelihood and
piecewise likelihood. These comparisons were chosen
because, first, they are the most popular in the literature
(Sec. 4). Second, the surrogate likelihood also requires
marginal inference, meaning an “apples to apples” com-
parison using the same inference method. Third, these
methods can all cope with hidden variables, which
appear in our third dataset.

In each experiment, an “independent” model, trained
using univariate features only with logistic loss was
used to initialize others. The smoothed classification loss,
because of more severe issues with local minima, was
initialized using surrogate likelihood/EM.

8.1 Setup

All experiments here will be on vision problems, us-
ing a pairwise, 4-connected grid. Learning uses the L-
BFGS optimization algorithm. The values θ are linearly
parametrized in terms of unary and edge features. For-
mally, we will fit two matrices, F and G, which deter-
mine all unary and edge features, respectively. These can
be expressed most elegantly by introducing a bit more
notation. Let θi denote the set of parameter values θ(xi)
for all values xi. If u(y, i) denotes the vector of unary
features for variable i given input image y, then

θi = Fu(y, i).

Similarly, let θij denote the set of parameter values
θ(xi, xj) for all xi, xj . If v(y, i, j) is the vector of edge
features for pair (i, j), then

θij = Gv(y, i, j).

Once dL
dθ

has been calculated (for whichever loss and
method), we can easily recover the gradients with re-
spect to F and G by

dL

dF
=

∑

i

dL

dθi

u(y, i)T ,
dL

dG
=

∑

ij

dL

dθij

v(y, i, j)T .

n = 1.25 n = 1.5 n = 5

Loss Train Test Train Test Train Test
surrogate likelihood .149 .143 .103 .097 .031 .030
univariate logistic .133 .126 .102 .096 .031 .030

clique logistic .132 .126 .102 .096 .031 .030
univariate quad .132 .126 .102 .096 .031 .030

smooth class. α = 5 .136 .129 .105 .099 .032 .030
smooth class. α = 15 .132 .126 .102 .096 .031 .030
smooth class. α = 50 .132 .125 .102 .096 .030 .030

pseudo-likelihood .207 .204 .117 .112 .032 .030
piecewise .466 .481 .466 .481 .063 .058

independent .421 .424 .367 .368 .129 .129

Table 1: Binary denoising error rates for different noise
levels n. All methods use TRW inference with back-
propagation based learning with a threshold of 10−4.

n = 1.25 n = 1.5 n = 5

input

surrogate
likelihood

univariate
logistic

clique
logistic

sm. class
α = 50

pseudo-
likelihood

inde-
pendent

Figure 4: Predicted marginals for an example binary
denoising test image with different noise levels n.

8.2 Binary Denoising Data

In a first experiment, we create a binary denoising
problem using the Berkeley Segmentation Dataset. Here,
we took 132 200 × 300 images from the Berkeley seg-
mentation dataset, binarized them according to if each
pixel is above the image mean. The noisy input values
are then generated as yi = xi(1−tni) + (1−xi)tni , where
xi is the true binary label, and ti ∈ [0, 1] is random.
Here, n ∈ (1,∞) is the noise level, where lower values
correspond to more noise. Thirty-two images were used
for training, and 100 for testing. This is something of a

12

10 iters 20 iters 40 iters
Loss λ Mode Train Test Train Test Train Test

surrogate likelihood 10
−3 TRW .421 .416 .088 .109 .088 .109

univariate logistic 10
−3 TRW .065 .094 .064 .093 .064 .093

clique logistic 10
−3 TRW .064 .094 .062 .093 .062 .092

sm. class. α = 5 10
−3 TRW .068 .097 .067 .097 .067 .096

sm. class. α = 15 10
−3 TRW .065 .097 .064 .096 .063 .096

sm. class. α = 50 10
−3 TRW .064 .096 .063 .095 .062 .095

surrogate likelihood 10
−3 MNF .405 .383 .236 .226 .199 .200

univariate logistic 10
−3 MNF .078 .108 .077 .106 .078 .106

clique logistic 10
−3 MNF .073 .101 .075 .105 .079 .107

pseudolikelihood 10
−4 TRW .222 .249

piecewise 10
−4 TRW .202 .236

independent 10
−4 .095 .125

Table 2: Training and test errors on the horses dataset,
using either TRW on mean-field (MNF) inference. With
too few iterations, the surrogate likelihood diverges.

toy problem, but the ability to systematically vary the
noise level is illustrative.

As unary features u(y, i), we use only two features: a
constant of 1, and the noisy input value at that pixel.

For edge features v(y, i, j), we also use two features:
one indicating that (i, j) is a horizontal edge, and one
indicating that (i, j) is a vertical edge. The effect is
that vertical and horizontal edges have independent
parameters.

For learning, we use full back TRW and back
mean field (without message-storing or truncation) for
marginal-based loss functions, and the surrogate likeli-
hood with the gradient computed in the direct form (Eq.
20). In all cases, a threshold on inference of 10−4 is used.

Error rates are shown in Tab. 1, while predicted
marginals for an example test image are shown in Fig.
4. We compare against an independent model, which
can be seen as truncated fitting with zero iterations or,
equivalently, logistic regression at the pixel level. We see
that for low noise levels, all methods perform well, while
for high noise levels, the marginal-based losses outper-
form the surrogate likelihood and pseudolikelihood by
a considerable margin. Our interpretation of this is that
model mis-specification is more pronounced with high
noise, and other losses are less robust to this.

8.3 Horses

Secondly, we use the Weizman horse dataset, consisting
of 328 images of horses at various resolutions. We use
200 for training and 128 for testing. The set of possible
labels xi is again binary– either the pixel is part of a
horse or not.

For unary features u(y, i), we begin by computing the
RGB intensities of each pixel, along with the normalized
vertical and horizontal positions. We expand these 5 ini-
tial features into a larger set using sinusoidal expansion
[54]. Specifically, denote the five original features by s.
Then, we include the features sin(c·s) and cos(c·s) for all
binary vectors c of the appropriate length. This results
in an expanded set of 64 features. To these we append

(a) Input (b) True Labels

(c) Surr. Like. TRW (d) U. Logistic TRW (e) Sm. Class λ=50 TRW

(f) Surr. Like. MNF (g) U. Logistic MNF (h) Independent

Figure 5: Predicted marginals for a test image from the
horses dataset. Truncated learning uses 40 iterations.

a 36-component Histogram of Gradients [55], for a total
of 100 features.

For edge features between i and j, we use a set of
21 “base” features: A constant of one, the l2 norm of
the difference of the RGB values at i and j, discretized
as above 10 thresholds, and the maximum response of
a Sobel edge filter at i or j, again discretized using 10
thresholds. To generate the final feature vector v(y, i, j),
this is increased into a set of 42 features. If (i, j) is
a horizontal edge, the first half of these will contain
the base features, and the other half will be zero. If
(i, j) is a vertical edge, the opposite situation occurs.
This essentially allows for different parametrization of
vertical and horizontal edges.

In a first experiment, we train models with truncated
fitting with various numbers of iterations. The pseudo-
likelihood and piecewise likelihood use a convergence
threshold of 10−5 for testing. Several trends are visible
in Tab. 2. First, with less than 20 iterations, the trun-
cated surrogate likelihood diverges, and produces errors
around 0.4. Second, TRW consistently outperforms mean
field. Finally, marginal-based loss functions outperform
the others, both in terms of training and test errors.
Fig. 5 shows predicted marginals for an example test
image. On this dataset, the pseudolikelihood, piecewise
likelihood, and surrogate likelihood based on mean field
are outperformed by an independent model, where each
label is predicted by input features independent of all
others.

8.4 Stanford Backgrounds Data

Our final experiments consider the Stanford back-
grounds dataset. This consists of 715 images of resolu-

13

5 iters 10 iters 20 iters
Loss λ Train Test Train Test Train Test

surrogate EM 10
−3 .876 .877 .239 .249 .238 .248

univariate logistic 10
−3 .210 .228 .202 .224 .201 .223

clique logistic 10
−3 .206 .226 .198 .223 .195 .221

pseudolikelihood 10
−4 .516 .519

piecewise 10
−4 .335 .341

independent 10
−4 .293 .299

Table 3: Test errors on the backgrounds dataset using
TRW inference. With too few iterations, surrogate EM
diverges, leading to very high error rates.

(a) Input Image (b) True Labels

(c) Surrogate EM (d) Univ. Logistic (e) Clique Logistic

(f) Pseudolikelihood (g) Piecewise (h) Independent

Figure 6: Example marginals from the backgrounds
dataset using 20 iterations for truncated fitting.

tion approximately 240× 320. Most pixels are labeled as
one of eight classes, with some unlabeled.

The unary features u(y, i) we use here are identical to
those for the horses dataset. In preliminary experiments,
we tried training models with various resolutions. We
found that reducing resolution to 20% of the original
after computing features, then upsampling the predicted
marginals yielded significantly better results than using
the original resolution. Hence, this is done for all the
following experiments. Edge features are identical to
those for the horses dataset, except only based on the
difference of RGB intensities, meaning 22 total edge
features v(y, i, j).

In a first experiment, we compare the performance
of truncated fitting, perturbation, and back-propagation,
using 100 images from this dataset for speed. We train
with varying thresholds for perturbation and back-
propagation, while for truncated learning, we use vari-
ous numbers of iterations. All models are trained with
TRW to fit the univariate logistic loss. If a bad search-
direction is encountered, L-BFGS is re-initialized. Results
are shown in Fig. 7. We see that with loose thresholds,
perturbation and back-propagation experience learning
failure at sub-optimal solutions. Truncated fitting is far

10
1

10
2

10
3

10
4

0.3

0.4

0.5

0.6

0.7

time (s)

tr
a
in

in
g
 r

is
k

perturbation

t = 10
−4

t = 10
−3

t = 10
−2

10
1

10
2

10
3

10
4

time (s)

back−propagation

t = 10
−4

t = 10
−3

t = 10
−2

10
1

10
2

10
3

10
4

time (s)

truncated fitting

N=20
N=10
N=5

Figure 7: Comparison of different learning methods on
the backgrounds dataset with 100 images. All use an 8-
core 2.26 Ghz PC.

more successful; using more iterations is slower to fit,
but leads to better performance at convergence.

In a second experiment, we train on the entire dataset,
with errors estimated using five-fold cross validation.
Here, an incremental procedure was used, where first a
subset of 32 images was trained on, with 1000 learn-
ing iterations. The number of images was repeatedly
doubled, with the number of learning iterations halved.
In practice this reduced training time substantially. Re-
sults are shown in Fig. 6. These results use a ridge
regularization penalty of λ on all parameters. (This is
relative to the empirical risk, as measured per pixel.)
For EM, and marginal based loss functions, we set this
as λ = 10−3. We found in preliminary experiments that
using a smaller regularization constant caused truncated
EM to diverge even with 10 iterations. The pseudolike-
lihood and piecewise benefit from less regularization,
and so we use λ = 10−4 there. Again the marginal
based loss functions outperform others. In particular,
they also perform quite well even with 5 iterations,
where truncated EM diverges.

9 CONCLUSIONS

Training parameters of graphical models in a high
treewidth setting involves several challenges. In this
paper, we focus on three: model mis-specification, the
necessity of approximate inference, and computational
complexity.

The main technical contribution of this paper is sev-
eral methods for training based on the marginals pre-
dicted by a given approximate inference algorithm.
These methods take into account model mis-specification
and inference approximations. To combat computational
complexity, we introduce “truncated” learning, where
the inference algorithm only needs to be run for a fixed
number of iterations. Truncation can also be applied,
somewhat heuristically, to the surrogate likelihood.

Among previous methods, we experimentally find the
surrogate likelihood to outperform the pseudolikelihood
or piecewise learning. By more closely reflecting the
test criterion of Hamming loss, marginal-based loss
functions perform still better, particularly on harder
problems (Though the surrogate likelihood generally
displays smaller train/test gaps.) Additionally marginal-
based loss functions are more amenable to truncation, as
the surrogate likelihood diverges with too few iterations.

14

REFERENCES

[1] J. Besag, “Spatial interaction and the statistical analysis of lattice
systems,” Journal of the Royal Statistical Society. Series B (Method-
ological), vol. 36, no. 2, pp. 192–236, 1974.

[2] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” in ICML, 2001.

[3] M. Nikolova, “Model distortions in bayesian MAP reconstruc-
tion,” Inverse Problems and Imaging, vol. 1, no. 2, pp. 399–422, 2007.

[4] J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solution
of ill-posed problems in computational vision,” Journal of the
American Statistical Association, vol. 82, no. 397, pp. 76–89, 1987.

[5] S. S. Gross, O. Russakovsky, C. B. Do, and S. Batzoglou, “Training
conditional random fields for maximum labelwise accuracy,” in
NIPS, 2007.

[6] S. Kumar, J. August, and M. Hebert, “Exploiting inference for
approximate parameter learning in discriminative fields: An em-
pirical study,” in EMMCVPR, 2005.

[7] P. Kohli and P. Torr, “Measuring uncertainty in graph cut solu-
tions,” Computer Vision and Image Understanding, vol. 112, no. 1,
pp. 30–38, 2008.

[8] M. Wainwright and M. Jordan, “Graphical models, exponential
families, and variational inference,” Found. Trends Mach. Learn.,
vol. 1, no. 1-2, pp. 1–305, 2008.

[9] T. Meltzer, A. Globerson, and Y. Weiss, “Convergent message
passing algorithms - a unifying view,” in UAI, 2009.

[10] S. Nowozin and C. H. Lampert, “Structured learning and pre-
diction in computer vision,” Foundations and Trends in Computer
Graphics and Vision, vol. 6, pp. 185–365, 2011.

[11] H. Cramér, Mathematical methods of statistics. Princeton University
Press, 1999.

[12] S. Nowozin, P. V. Gehler, and C. H. Lampert, “On parameter
learning in CRF-based approaches to object class image segmen-
tation,” in ECCV, 2010.

[13] L. Stewart, X. He, and R. S. Zemel, “Learning flexible features for
conditional random fields,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 8, pp. 1415–1426, 2008.

[14] C. Geyer, “Markov chain monte carlo maximum likelihood,” in
Symposium on the Interface, 1991.

[15] M. Carreira-Perpinan and G. Hinton, “On contrastive divergence
learning,” in AISTATS, 2005.

[16] S. Roth and M. J. Black, “Fields of experts,” International Journal
of Computer Vision, vol. 82, no. 2, pp. 205–229, 2009.

[17] M. J. Wainwright, “Estimating the “wrong” graphical model:
benefits in the computation-limited setting,” Journal of Machine
Learning Research, vol. 7, pp. 1829–1859, 2006.

[18] J. J. Weinman, L. C. Tran, and C. J. Pal, “Efficiently learning
random fields for stereo vision with sparse message passing,”
in ECCV, 2008, pp. 617–630.

[19] T. Toyoda and O. Hasegawa, “Random field model for integration
of local information and global information,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 8, pp. 1483–1489, 2008.

[20] A. Levin and Y. Weiss, “Learning to combine bottom-up and
top-down segmentation,” International Journal of Computer Vision,
vol. 81, no. 1, pp. 105–118, 2009.

[21] S. Kumar, J. August, and M. Hebert, “Exploiting inference for
approximate parameter learning in discriminative fields: An em-
pirical study,” in EMMCVPR, 2005.

[22] X. Ren, C. Fowlkes, and J. Malik, “Figure/ground assignment in
natural images,” in ECCV, 2006.

[23] S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and
K. P. Murphy, “Accelerated training of conditional random fields
with stochastic gradient methods,” in ICML, 2006.

[24] X. Ren, C. Fowlkes, and J. Malik, “Learning probabilistic models
for contour completion in natural images,” International Journal of
Computer Vision, vol. 77, no. 1-3, pp. 47–63, 2008.

[25] J. Yuan, J. Li, and B. Zhang, “Scene understanding with discrim-
inative structured prediction,” in CVPR, 2008.

[26] J. J. Verbeek and B. Triggs, “Scene segmentation with crfs learned
from partially labeled images,” in NIPS, 2007.

[27] D. Scharstein and C. Pal, “Learning conditional random fields for
stereo,” in CVPR, 2007.

[28] P. Zhong and R. Wang, “Using combination of statistical models
and multilevel structural information for detecting urban areas
from a single gray-level image,” IEEE T. Geoscience and Remote
Sensing, vol. 45, no. 5-2, pp. 1469–1482, 2007.

[29] J. Besag, “Statistical analysis of non-lattice data,” Journal of the
Royal Statistical Society. Series D (The Statistician), vol. 24, no. 3,
pp. 179–195, 1975.

[30] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán, “Multiscale
conditional random fields for image labeling,” in CVPR, 2004.

[31] S. Kumar and M. Hebert, “Discriminative random fields,” Interna-
tional Journal of Computer Vision, vol. 68, no. 2, pp. 179–201, 2006.

[32] S. C. Zhu and X. Liu, “Learning in gibbsian fields: How accurate
and how fast can it be?” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, pp. 1001–1006, 2002.

[33] C. Sutton and A. McCallum, “Piecewise training for undirected
models,” in UAI, 2005.

[34] S. Kim and I.-S. Kweon, “Robust model-based scene interpreta-
tion by multilayered context information,” Computer Vision and
Image Understanding, vol. 105, no. 3, pp. 167–187, 2007.

[35] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi, “Textonboost
for image understanding: Multi-class object recognition and seg-
mentation by jointly modeling texture, layout, and context,” Int.
J. of Comput. Vision, vol. 81, no. 1, pp. 2–23, 2009.

[36] V. Stoyanov, A. Ropson, and J. Eisner, “Empirical risk minimiza-
tion of graphical model parameters given approximate inference,
decoding, and model structure,” in AISTATS, 2011.

[37] J. Domke, “Learning convex inference of marginals,” in UAI, 2008.
[38] L. R. Bahl, P. F. Bron, P. V. de Souza, and R. L. Mercer, “A new al-

gorithm for the estimation of hidden markov model parameters,”
in ICASSP, 1988.

[39] S. Kakade, Y. W. Teh, and S. Roweis, “An alternate objective
function for Markovian fields,” in ICML, 2002.

[40] B. G. Lindsay, “Composite likelihood methods,” Contemporary
Mathematics, vol. 80, pp. 221–239, 1988.

[41] J. Domke, “Learning convex inference of marginals,” in UAI, 2008.
[42] C. Desai, D. Ramanan, and C. C. Fowlkes, “Discriminative models

for multi-class object layout,” International Journal of Computer
Vision, vol. 95, no. 1, pp. 1–12, 2011.

[43] M. Szummer, P. Kohli, and D. Hoiem, “Learning CRFs using
graph cuts,” in ECCV, 2008.

[44] J. J. McAuley, T. E. de Campos, G. Csurka, and F. Perronnin,
“Hierarchical image-region labeling via structured learning,” in
BMVC, 2009.

[45] W. Yang, B. Triggs, D. Dai, and G.-S. Xia, “Scene segmentation
via low-dimensional semantic representation and conditional ran-
dom field,” HAL, Tech. Rep., 2009.

[46] J. Domke, “Implicit differentiation by perturbation,” in NIPS,
2010.

[47] A. Boresi and K. Chong, Approximate Solution Methods in Engineer-
ing Mechanics. Elsevier Science Inc., 1991.

[48] N. Andrei, “Accelerated conjugate gradient algorithm with fi-
nite difference hessian/vector product approximation for uncon-
strained optimization,” J. Comput. Appl. Math., vol. 230, no. 2, pp.
570–582, 2009.

[49] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.
Springer, 2006.

[50] M. Welling and Y. W. Teh, “Linear response algorithms for
approximate inference in graphical models,” Neural Computation,
vol. 16, pp. 197–221, 2004.

[51] J. Domke, “Parameter learning with truncated message-passing,”
in CVPR, 2011.

[52] V. Stoyanov and J. Eisner, “Minimum-risk training of approximate
CRF-based NLP systems,” in Proceedings of NAACL-HLT.

[53] F. Eaton and Z. Ghahramani, “Choosing a variable to clamp,” in
AISTATS, 2009.

[54] G. Konidaris, S. Osentoski, and P. Thomas, “Value function ap-
proximation in reinforcement leanring using the fourier basis,” in
AAAI, 2011.

[55] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005.

10 BIOGRAPHY

Justin Domke obtained a PhD degree in Computer Sci-
ence from the University of Maryland, College Park in
2009. From 2009 to 2012, he was an Assistant Professor
at Rochester Institute of Technology. Since 2012, he is a
member of the Machine Learning group at NICTA.

15

11 APPENDIX A: VARIATIONAL INFERENCE

Theorem (Exact variational principle). The log-partition
function can also be represented as

A(θ) = max
µ∈M

θ · µ+H(µ),

where

M = {µ′ : ∃θ,µ′ = µ(θ)}

is the marginal polytope, and

H(µ) = −
∑

x

p(x; θ(µ)) log p(x; θ(µ))

is the entropy.

Proof of the exact variational principle: As A is convex,
we have that

A(θ) = sup
µ

θ · µ−A∗(µ)

where
A∗(µ) = inf

θ
θ · µ−A(θ)

is the conjugate dual.
Now, since dA/dθ = µ(θ), if µ 6∈ M, then the infimum

for A∗ is unbounded above. For µ ∈ M, the infimum
will be obtained at θ(µ). Thus

A∗(µ) =

{

∞ µ 6∈ M

θ(µ) · µ−A(θ(µ)) µ ∈M
.

Now, for µ ∈M, we can see by substitution that

A∗(µ) =θ(µ) ·
∑

x

p(x; θ(µ))f(x) −A(θ(µ))

=
∑

x

p(x; θ(µ))(θ(µ) · f(x) −A(θ(µ)))

=
∑

x

p(x; θ(µ)) log p(x; θ(µ)) = −H(µ).

And so, finally,

A∗(µ) =

{

∞ µ 6∈ M

−H(µ) µ ∈ M
, (25)

which is equivalent to the desired result.

Theorem (Mean Field Updates). A local maximum of Eq.
14 can be reached by iterating the updates

µ(xj)←
1

Z
exp

(

θ(xj) +
∑

c:j∈c

∑

xc\j

θ(xc)
∏

i∈c\j

µ(xi)
)

,

where Z is a normalizing factor ensuring that
∑

xj
µ(xj) = 1.

Proof of Mean Field Updates: The first thing to note is
that for µ ∈ F , several simplifying results hold, which
are easy to verify, namely

p(x; θ(µ)) =
∏

i

µ(xi)

H(µ) =−
∑

i

∑

xi

µ(xi) log µ(xi).

µ(xc) =
∏

i∈c

µ(xi).

Now, let Ã denote the approximate partition function
that results from solving Eq. 8 with the marginal poly-
tope replaced by F . By substitution of previous results,
we can see that this reduces to an optimization over
univariate marginals only.

Ã(θ) = max
{µ(xi)}

∑

i

∑

xi

θ(xi)µ(xi) +
∑

c

∑

xc

θ(xc)µ(xc)

−
∑

i

∑

xi

µ(xi) logµ(xi). (26)

Now, form a Lagrangian, enforcing that
∑

xj
µ(xj) = 1.

L =
∑

j

∑

xj

θ(xj)µ(xj) +
∑

c

∑

xc

θ(xc)
∏

i∈c

µ(xi)

−
∑

j

∑

xj

µ(xj) log µ(xj) +
∑

j

λj(1 −
∑

xj

µ(xj)).

Setting dL/dµ(xj) = 0, solving for µ(xj), we obtain

µ(xj) ∝ exp
(

θ(xj) +
∑

c:j∈c

∑

xc\j

θ(xc)
∏

i∈c\j

µ(xi)
)

,

meaning this is a local minimum. Normalizing by Z
gives the result.

Note that only a local maximum results since the
mean-field objective is non-concave[8, Sec. 5.4].

Two preliminary results are needed to prove the TRW
entropy bound.

Lemma. Let µG be the “projection” of µ onto a subgraph G,
defined by

µG = {µ(xi)∀i} ∪ {µ(xc)∀c ∈ G}.

Then, for µ ∈ M,

H(µG) ≥ H(µ).

Proof: First, note that, by Eq. 25, for µ ∈ M,

H(µ) = −A∗(µ) = − inf
θ
(θ · µ−A(θ)).

Now, the entropy of µG could be defined as an infi-
mum only over the parameters θ corresponding to the
cliques in G. Equivalently, however, we can define it as
a constrained optimization

H(µG) = − inf
θ:θc=0
∀c 6∈G

(

θ · µG −A(θ)
)

.

Since the infimum for H(µG) takes place over a more
constrained set, but µ and µG are identical on all the

16

components where θ may be nonzero, we have the
result.

Our next result is that the approximate entropy con-
sidered in Eq. 16 is exact for tree-structured graphs,
when ρc = 1.

Lemma. For µ ∈M for a marginal polytopeM correspond-
ing to a tree-structured graph,

H(µ) =
∑

i

H(µi)−
∑

c

I(µc).

Proof: First, note that for any any tree structured
distribution can be factored as

p(x) =
∏

i

p(xi)
∏

c

p(xc)
∏

i∈c p(xi)
.

(This is easily shown by induction.) Now, recall our
definition of H :

H(µ) = −
∑

x

p(x; θ(µ)) log p(x; θ(µ))

Substituting the tree-factorized version of p into the
equation yields

H(µ) = −
∑

x

p(x; θ(µ)) log p(x; θ(µ))

= −
∑

x

∑

i

p(x; θ(µ)) log p(xi; θ(µ))

−
∑

x

∑

c

p(x; θ(µ)) log
p(xc; θ(µ))

∏

i∈c p(xi; θ(µ))

= −
∑

i

∑

xi

µ(xi) logµ(xi)

−
∑

c

∑

xc

µ(xc) log
µ(xc)

∏

i∈c µ(xi)

Finally, combining these two lemmas, we can show the
main result, that the TRW entropy is an upper bound.

Theorem (TRW Entropy Bound). Let Pr(G) be a distribu-
tion over tree structured graphs, and define ρc = Pr(c ∈ G).
Then, with H̃ as defined in Eq. 16,

H̃(µ) ≥ H(µ).

Proof: The previous Lemma shows that for any
specific tree G,

H(µG) ≥ H(µ).

Thus, it follows that

H(µ) ≤
∑

G

Pr(G)H(µG)

=
∑

G

Pr(G)
(

∑

i

H(µi)−
∑

c∈G

I(µc)
)

=
∑

i

H(µi)−
∑

c

ρcI(µc)

Theorem (TRW Updates). Let ρc be as in the previous
theorem. Then, if the updates in Eq. 18 reach a fixed point,
the marginals defined by

µ(xc) ∝ e
1

ρc
θ(xc)

∏

i∈c

eθ(xi)

∏

d:i∈dmd(xi)
ρd

mc(xi)
,

µ(xi) ∝ eθ(xi)
∏

d:i∈d

md(xi)
ρd

constitute the global optimum of Eq. 13.
Proof: The TRW optimization is defined by

Ã(θ) = max
µ∈L

θ · µ+ H̃(µ).

Consider the equivalent optimization

maxµ θ · µ+ H̃(µ)

s.t. 1 =
∑

xi

µ(xi)

µ(xi). =
∑

xc\i

µ(xc)

which makes the constraints of the local polytope ex-
plicit

First, we form a Lagrangian, and consider derivatives
with respect to µ, for fixed Lagrange multipliers.

L =θ · µ+H(µ) +
∑

i

λi(1−
∑

xi

µ(xi))

+
∑

c

∑

xi

λc(xi)
(

∑

xc\i

µ(xc)− µ(xi)
)

dL

dµ(xc)
=θ(xc) + ρc

(

∑

i∈c

(

1 + log
∑

x′
i

µ(xi,x
′
−i)

)

− 1− log µ(xc)
)

+
∑

i∈c

λc(xi)

dL

dµ(xi)
=θ(xi)− 1− logµ(xi)− λi −

∑

c:i∈c

λc(xi)

Setting these derivatives equal to zero, we can solve
for the log-marginals in terms of the Lagrange multipli-
ers:

ρc logµ(xc) =θ(xc) + ρc
(

∑

i∈c

(

1 + log
∑

x′
i

µ(xi,x
′
−i)

)

− 1
)

+
∑

i∈c

λc(xi)

logµ(xi) =θ(xi)− 1− λi −
∑

c:i∈c

λc(xi)

Now, at a solution, we must have that µ(xi) =
∑

xc\i
µ(xc). This leads first to the the constraint that

17

logµ(xc) =
1

ρc
θ(xc) +

∑

i∈c

(

1 + logµ(xi) +
1

ρc
λc(xi)

)

− 1

=
1

ρc
θ(xc) +

∑

i∈c

(

1 + θ(xi)− 1− λi −
∑

c:i∈c

λc(xi)

+
1

ρc
λc(xi)

)

− 1.

Now, define the “messages” in terms of the Lagrange
multipliers as

mc(xi) = e−
1

ρc
λc(xi).

If the appropriate values of the messages were known,
then we could solve for the clique-wise marginals as

µ(xc) ∝ e
1

ρc
θ(xc)

∏

i∈c

eθ(xi) exp
(1

ρc
λc(xi)

)

×
∏

d:i∈d

exp
(

−λd(xi))
)

= e
1

ρc
θ(xc)

∏

i∈c

eθ(xi)

∏

d:i∈dmd(xi)
ρd

mc(xi)
.

The univiariate marginals are available simply as

µ(xi) ∝ exp
(

θ(xi)−
∑

d:i∈d

λd(xi)
)

= eθ(xi)
∏

d:i∈d

exp(−λd(xi)
)

= eθ(xi)
∏

d:i∈d

md(xi)
ρd .

We may now derive the actual propagation. At a
valid solution, the Lagrange multipliers (and hence the
messages) must be selected so that the constraints are
satisfied. In particular, we must have that µ(xi) =
∑

xc\i
µ(xc). From the constraint, we can derive con-

straints on neighboring sets of messages.

µ(xi) =
∑

xc\i

µ(xc)

eθ(xi)
∏

d:i∈d

md(xi)
ρd ∝

∑

xc\i

e
1

ρc
θ(xc)

×
∏

i∈c

eθ(xi)

∏

d:i∈dmd(xi)
ρd

mc(xi)
(27)

Now, the left hand side of this equation cancels one
term from the product on line 27, except for the denom-
inator of mc(xi). This leads to the constraint of

mc(xi) ∝
∑

xc\i

e
1

ρc
θ(xc)

∏

j∈c\i

eθ(xj)

∏

d:j∈dmd(xj)
ρd

mc(xj)
.

This is exactly the equation used as a fixed-point equa-
tion in the TRW algorithm.

12 APPENDIX B: IMPLICIT DIFFERENTIATION

Theorem. Suppose that

µ(θ) := argmax
µ:Bµ=d

θ · µ+H(µ).

Define L(θ,x) = Q(µ(θ),x). Then, letting D = d2H
dµdµT ,

dL

dθ
=

(

D−1BT (BD−1BT)−1BD−1 −D−1
)dQ

dµ
.

Proof: First, recall the implicit differentiation theo-
rem. If the relationship between a and b is implicitly
determined by f(a,b) = 0, then

dbT

da
= −

dfT

da

(dfT

db

)−1
.

In our case, given the Lagrangian

L = θ · µ+H(µ) + λT (Bµ− d),

Our implicit function is determined by the constraints
that dL

dµ
= 0 and dL

dλ
= 0. That is, it must be true that

dL

dµ
= θ +

dH

dµ
+BTλ = 0

dL

dλ
= Bµ− d = 0.

Thus, our implicit function is

f

([

µ

λ

])

=

[

θ + dH
dµ

+BTλ

Bµ− d

]

=

[

0

0

]

Taking derivatives, we have that

d

[

µ

λ

]T

dθ
= −

(dfT

dθ

)

(dfT

d

[

µ

λ

]

)−1

Taking the terms on the right hand side in turn, we
have

dfT

dθ
=

d

[

θ + dH
dµ

+BTλ

Bµ− d

]T

dθ
=

[

I
0

]T

dfT

d

[

µ

λ

] =

[

d2H
dµdµT BT

B 0

]

d

[

µ

λ

]T

dθ
= −

[

I
0

]T
[

d2H
dµdµT BT

B 0

]−1

(28)

This means that − dµT

dθ
is the upper-left block of the

inverse of the matrix on the right hand side of Eq. 28. It
is well known that if

M =

[

E F
G H

]

,

18

then the upper-left block of M−1 is

E−1 + E−1F (H−GE−1F)−1GE−1.

So, we have that

dµT

dθ
= D−1BT (BD−1BT)BD−1 −D−1, (29)

where D := d2H
dµdµT .

The result follows simply from substituting Eq. 29 into
the chain rule

dL

dθ
=
dµT

dθ

dQ

dµ
.

13 APPENDIX C: TRUNCATED FITTING

Several simple lemmas will be useful below. A first one
considers the case where we have a “product of powers”.

Lemma (Products of Powers). Suppose that b =
∏

i a
pi

i .
Then

db

dai
=
pi
ai
b.

Next, both mean-field and TRW involve steps where
we first take a product of a set of terms, and then
normalize. The following lemma is useful in dealing
with such operations.

Lemma (Normalized Products). Suppose that bi =
∏

j aij
and ci = bi/

∑

j aij . Then,

dci
dajk

=
(

Ii=j − ci
) cj
ajk

.

Corollary. Under the same conditions,

dL

dajk
=

cj
ajk

(dL

dcj
−
∑

i

dL

dci
ci
)

.

Accordingly, we find it useful to define the operator

backnorm(g, c) = c⊙ (g − g · c).

This can be used as follows. Suppose that we have
calculated←−c = dL

dc
. Then, if we set←−ν = backnorm(←−c , c),

and we have that dL
dajk

=
←−νj
ajk

.
An important special case of this is where ajk =

exp fjk. Then, we have simply that dL
dfjk

=←−νj .

Another important special case is where ajk = fρ
jk.

Then, we have that dajk

dfjk
= ρfρ−1

jk , and so dL
dfjk

= ρ
←−νj
fjk

.

Theorem. After execution of back mean field,

←−
θ (xi) =

dL

dθ(xi)
and
←−
θ (xc) =

dL

dθ(xc)
.

Proof sketch: The idea is just to mechanically dif-
ferentiate each step of the algorithm, computing the
derivative of the computed loss with respect to each
intermediate quantity. First, note that we can re-write
the main mean-field iteration as

µ(xj) ∝ exp
(

θ(xj)
)

∏

c:j∈c

∏

xc\j

exp
(

θ(xc)
∏

i∈c\j

µ(xi)
))

. (30)

Now, suppose we have the derivative of the loss
with respect to this intermediate vector of marginals←−µj .
We wish to “push back” this derivative on the values
affecting these marginals, namely θ(xj), θ(xc) (for all
c such that j ∈ c), and µ(xi) (for all i 6= j such that
∃c : {i, j} ∈ c). To do this, we take two steps:

1) Calculate the derivative with respect to the value
on the righthand side of Eq. 30 before normalization.

2) Calculate the derivative of this un-normalized
quantity with respect to θ(xj), θ(xc) and µ(xi).

Now, define νj to be the vector of marginals produced
by Eq. 30 before normalization. Then, by the discussion
above, ←−νj = backnorm(←−µj ,µj). This completes step 1.

Now, with ←−νj in hand, we can immediately calculate
the backpropagation of ←−µj on θ as

←−
θ (xj) =

←−ν (xj).

This, follows from the fact that dL
da

= dL
dea

ea, where θ(xj)
plays the role of a, and ea plays the role of ν(xj).

Similarly, we can calculate that

dL

dθ(xc)
∏

i∈c\j µ(xi)
=←−ν (xj).

Thus, since

dθ(xc)
∏

i∈c\j µ(xi)

dθ(xc)
=

∏

i∈c\j

µ(xi),

we have that

←−
θ (xc) =

←−ν (xj)
∏

i∈c\j

µ(xi).

Similarly, for any xc that “matches” xi (in the sense
that the same value xi is present as the appropriate
component of xc),

dθ(xc)
∏

k∈c\j µ(xk)

dµ(xi)
= θ(xc)

∏

k∈c\{i,j}

µ(xk).

From which we have

←−µ (xi) =
∑

xc\i

←−ν (xj)θ(xc)
∏

k∈c\{i,j}

µ(xk),

meaning this is a local minimum. Normalizing by Z
gives the result.

Theorem. After execution of back TRW,

←−
θ (xi) =

dL

dθ(xi)
and
←−
θ (xc) =

dL

dθ(xc)
.

Proof sketch: Again, the idea is just to mechani-
cally differentiate each step of the algorithm. Since the
marginals are derived in terms of the messages, we

19

must first take derivatives with respect to the marginal-
producing steps. First, consider step 3, where predicted
clique marginals are computed. Defining ←−ν (xc) =
backnorm(←−µc, µc), we have that

←−
θ (xc) =

1

ρc

←−ν (xc)

←−
θ (xi) =

∑

xc\i

←−ν (xc)

←−md(xi) =
ρd − I[c = d]

md(xi)

∑

xc\i

←−ν

Next, consider step 4, where predicted univari-
ate marginals are computed. Defining, ←−ν (xi) =
backnorm(←−µi, µi), we have

←−
θ (xi) = ←−ν (xi)

←−md(xi) = ρd

←−ν (xi)

md(xi)
.

Finally, we consider the main propagation, in step 2.
Here, we recompute the intermediate quantity

s(xc) = e
1

ρc
θ(xc)

∏

j∈c\i

eθ(xj)

∏

d:j∈d

md(xj)
ρd

mc(xj)
.

After this, consider the step where when pair (c, i) is
being updated. We first compute

dL

dm0
c(ci)

=
←−ν (xi)

mc(xi)
,

where m0
c(xi) is defined as the value of the marginal

before normalization, and

←−ν (xi) = backnorm(←−−mci,mci).

(See the Normalized Products Lemma above.) Given
this, we can consider the updates required to gradients
of θ(xc), θ(xi) and md(xj) in turn.
First, we have that the update to

←−
θ (xc) should be

dL

dm0
c(xi)

dm0
c(xi)

dθ(xc)

=
←−ν (xi)

mc(xi)

1

ρc
s(xc),

which is the update present in the algorithm.
Next, the update to

←−
θ (xj) should be

∑

xi

dL

dm0
c(xi)

dm0
c(xi)

dθ(xj)

=
∑

xi

←−ν (xi)

mc(xi)

∑

xc\{i,j}

s(xc)

=
∑

xc\j

←−ν (xi)

mc(xi)
s(xc).

In terms of the incoming messages, consider the up-
date to ←−md(xj), where j 6= i, j ∈ d, and d 6= c. This will
be

∑

xi

dL

dm0
c(xi)

dm0
c(xi)

dmd(xj)

=
∑

xi

←−ν (xi)

mc(xi)

∑

xc\{i,j}

ρd
md(xj)

s(xc)

=
ρd

md(xj)

∑

xc\j

s(xc)
←−ν (xi)

mc(xi)
.

Finally, consider the update to ←−mc(xj), where j 6= i.
This will have the previous update, plus the additional
term, considering the presence of mc(xj) in the denom-
inator of the main TRW update, of

∑

xi

←−ν (xi)

mc(xi)

∑

xc\{i,j}

ρd
md(xj)

s(xc)

=
ρd

md(xj)

∑

xc\j

←−ν (xi)

mc(xi)
s(xc).

Now, after the update has taken place, the messages
mc(xi) are reverted to their previous values. As these
values have not (yet) influenced any other variables,
they are initialized with ←−mc(xi) = 0.

20

n = 1.25 n = 1.5 n = 5

input

surrogate
likelihood

univariate
logistic

clique
logistic

sm. class
λ = 5

sm. class
λ = 15

sm. class
λ = 50

pseudo-
likelihood

piecewise

inde-
pendent

Figure 8: Predicted marginals for an example binary
denoising test image with different noise levels n.

n = 1.25 n = 1.5 n = 5

input

surrogate
likelihood

univariate
logistic

clique
logistic

sm. class
λ = 5

sm. class
λ = 15

sm. class
λ = 50

pseudo-
likelihood

piecewise

inde-
pendent

Figure 9: Predicted marginals for an example binary
denoising test image with different noise levels n.

21

n = 1.25 n = 1.5 n = 5

input

surrogate
likelihood

univariate
logistic

clique
logistic

sm. class
λ = 5

sm. class
λ = 15

sm. class
λ = 50

pseudo-
likelihood

piecewise

inde-
pendent

Figure 10: Predicted marginals for an example binary
denoising test image with different noise levels n.

(a) Input (b) True Labels

(c) Surr. Like. TRW (d) U. Logistic TRW (e) Sm. Class λ=50 TRW

(f) Surr. Like. MNF (g) U. Logistic MNF (h) Independent

Figure 11: Predicted marginals for a test image from the
horses dataset. Truncated learning uses 40 iterations.

(a) Input (b) True Labels

(c) Surr. Like. TRW (d) U. Logistic TRW (e) Sm. Class λ=50 TRW

(f) Surr. Like. MNF (g) U. Logistic MNF (h) Independent

Figure 12: Predicted marginals for a test image from the
horses dataset. Truncated learning uses 40 iterations.

22

(a) Input Image (b) True Labels

(c) Surrogate EM (d) Univ. Logistic (e) Clique Logistic

(f) Pseudolikelihood (g) Piecewise (h) Independent

Figure 13: Example marginals from the backgrounds
dataset using 20 iterations for truncated fitting.

(a) Input Image (b) True Labels

(c) Surrogate EM (d) Univ. Logistic (e) Clique Logistic

(f) Pseudolikelihood (g) Piecewise (h) Independent

Figure 14: Example marginals from the backgrounds
dataset using 20 iterations for truncated fitting.

(a) Input Image (b) True Labels

(c) Surrogate EM (d) Univ. Logistic (e) Clique Logistic

(f) Pseudolikelihood (g) Piecewise (h) Independent

Figure 15: Example marginals from the backgrounds
dataset using 20 iterations for truncated fitting.

	1 Introduction
	2 Setup
	2.1 Markov Random Fields
	2.2 Conditional Random Fields
	2.3 Inference Problems
	2.4 Exponential Family
	2.5 Learning

	3 Variational Inference
	3.1 Exact Variational Principle
	3.2 Mean Field
	3.3 Tree-Reweighted Belief Propagation

	4 Loss Functions
	4.1 The Likelihood and Approximations
	4.1.1 Surrogate Likelihood
	4.1.2 Expectation Maximization
	4.1.3 Saddle-Point Approximation
	4.1.4 Pseudolikelihood
	4.1.5 Piecewise Likelihood

	4.2 Marginal-based Loss Functions
	4.2.1 Univariate Logistic Loss
	4.2.2 Smoothed Univariate Classification Error
	4.2.3 Clique Losses
	4.2.4 Hidden variables

	4.3 Comparison with Exact Inference
	4.4 MAP-Based Training

	5 Implicit Fitting
	6 Perturbation
	7 Truncated Fitting
	7.1 Back Mean Field
	7.2 Back TRW
	7.3 Truncated Likelihood & Truncated EM

	8 Experiments
	8.1 Setup
	8.2 Binary Denoising Data
	8.3 Horses
	8.4 Stanford Backgrounds Data

	9 Conclusions
	References
	10 Biography
	11 Appendix A: Variational Inference
	12 Appendix B: Implicit Differentiation
	13 Appendix C: Truncated Fitting

