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Abstract

Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base 

kernels to improve clustering performance. However, existing MKC algorithms cannot efficiently 

address the situation where some rows and columns of base kernels are absent. This paper 

proposes a simple while effective algorithm to address this issue. Different from existing 

approaches where incomplete kernels are firstly imputed and a standard MKC algorithm is applied 

to the imputed kernels, our algorithm integrates imputation and clustering into a unified learning 

procedure. Specifically, we perform multiple kernel clustering directly with the presence of 

incomplete kernels, which are treated as auxiliary variables to be jointly optimized. Our algorithm 

does not require that there be at least one complete base kernel over all the samples. Also, it 

adaptively imputes incomplete kernels and combines them to best serve clustering. A three-step 

iterative algorithm with proved convergence is designed to solve the resultant optimization 

problem. Extensive experiments are conducted on four benchmark data sets to compare the 

proposed algorithm with existing imputation-based methods. Our algorithm consistently achieves 

superior performance and the improvement becomes more significant with increasing missing 

ratio, verifying the effectiveness and advantages of the proposed joint imputation and clustering.

Introduction

The recent years have seen many effort devoted to designing effective and efficient multiple 

kernel clustering (MKC) algorithms (Zhao, Kwok, and Zhang 2009; Yu et al. 2012; Gönen 

and Margolin 2014; Du et al. 2015; Liu et al. 2016; Li et al. 2016; Cao et al. 2015a; Zhang et 
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al. 2015; Cao et al. 2015b; Zhang et al. 2016). They aim to optimally combine a group of 

pre-specified base kernels to perform data clustering. For example, the work in (Zhao, 

Kwok, and Zhang 2009) proposes to find the maximum margin hyperplane, the best cluster 

labeling, and the optimal kernel simultaneously. A novel optimized kernel k-means 

algorithm is presented in (Yu et al. 2012) to combine multiple data sources for clustering 

analysis. In (Günen and Margolin 2014), the kernel combination weights are allowed to 

adaptively change to capture the characteristics of individual samples. Replacing the squared 

error in k-means with an ℓ2,1-norm based one, the work in (Du et al. 2015) develops a robust 

multiple kernel k-means (MKKM) algorithm that simultaneously finds the best clustering 

labels and the optimal combination of kernels. Observing that existing MKKM algorithms 

do not sufficiently consider the correlation among base kernels, the work in (Liu et al. 2016) 

designs a matrix-induced regularization to reduce the redundancy and enhance the diversity 

of the selected kernels. These algorithms have been applied to various applications and 

demonstrated attractive clustering performance (Yu et al. 2012; Gönen and Margolin 2014).

One underlying assumption commonly adopted by the above-mentioned MKC algorithms is 

that all of the base kernels are complete, i.e., none of the rows or columns of any base kernel 

shall be absent. In some practical applications such as Alzheimer’s disease prediction (Xiang 

et al. 2013) and cardiac disease discrimination (Kumar et al. 2013), however, it is not 

uncommon to see that some views of a sample are missing, and this causes the 

corresponding rows and columns of related base kernels unfilled. The presence of 

incomplete base kernels makes it difficult to utilize the information of all views for 

clustering. A straightforward remedy may firstly impute incomplete kernels with a filling 

algorithm and then perform a standard MKC algorithm with the imputed kernels. Some 

widely used filling algorithms include zero-filling, mean value filling, k-nearest-neighbor 

filling and expectation-maximization (EM) filling (Ghahramani and Jordan 1993). Recently, 

more advanced imputation algorithms have been developed (Trivedi et al. 2010; Xu, Tao, 

and Xu 2015; Bhadra, Kaski, and Rousu 2016; Shao, He, and Yu 2015; Liu et al. 2014; 

2015). The work in (Trivedi et al. 2010) constructs a full kernel matrix for an incomplete 

view with the help of the other complete view (or equally, base kernel). By exploiting the 

connections of multiple views, the work in (Xu, Tao, and Xu 2015) proposes an algorithm to 

accomplish multi-view learning with incomplete views, where different views are assumed 

to be generated from a shared subspace. In (Shao, He, and Yu 2015), a multi-incomplete-

view clustering algorithm is proposed. It learns latent feature matrices for all the views and 

generates a consensus matrix so that the difference between each view and the consensus is 

minimized. In addition, by modelling both within-view and between-view relationships 

among kernel values, an approach is proposed in (Bhadra, Kaski, and Rousu 2016) to predict 

missing rows and columns of a base kernel. Though demonstrating promising clustering 

performance in various applications, the above “two-stage” algorithms share a drawback that 

they disconnect the processes of imputation and clustering, and this prevents the two 

learning processes from negotiating with each other to achieve the optimal clustering. Can 
we design a clustering-oriented imputation algorithm to enhance a kernel for clustering?

To address this issue, we propose an absent multiple kernel k-means algorithm that 

integrates imputation and clustering into a single optimization procedure. In our algorithm, 

the clustering result at the last iteration guides the imputation of absent kernel elements, and 
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the latter is in turn used to conduct the subsequent clustering. These two procedures are 

alternately performed until convergence. By this way, the imputation and clustering 

processes are seamlessly connected, with the aim to achieve better clustering performance. 

The optimization objective of the proposed absent multiple kernel clustering algorithm is 

carefully designed and an efficient algorithm with proved convergence is developed to solve 

the resultant optimization problem. Extensive experimental study is carried out on four 

multiple kernel learning (MKL) benchmark data sets to evaluate the clustering performance 

of the proposed algorithm. As indicated, our algorithm significantly outperforms existing 

two-stage imputation methods, and the improvement is particularly significant at high 

missing ratios, which is desirable. It is expected that the simplicity and effectiveness of this 

clustering algorithm will make it a good option to be considered for practical applications 

where incomplete views or kernels are encountered.

Related Work

Kernel k-means clustering (KKM)

Let xi i = 1
n ⊆ 𝒳 be a collection of n samples, and ϕ( ⋅ ):x ∈ 𝒳 ℋ be a feature mapping 

that maps x onto a reproducing kernel Hilbert space ℋ. The objective of kernel k-means 

clustering is to minimize the sum-of-squares loss over the cluster assignment matrix Z ∈ {0, 

1}n×k, which can be formulated as the following optimization problem,

min
Z ∈ 0, 1 n × k∑i = 1, c = 1

n, k Zic ϕ xi − μc 2
2 s . t . ∑c = 1

k Zic = 1, (1)

where nc = ∑i = 1
n Zic and μc = 1

nc
∑i = 1

n Zicϕ xi  are the size and centroid of the c-th cluster.

The optimization problem in Eq.(1) can be rewritten as the following matrix-vector form,

min
Z ∈ 0, 1 n × k Tr(K) −  Tr  L

1
2Z⊤KZL

1
2  s . t .  Z1k = 1n, (2)

where K is a kernel matrix with Kij = ϕ(xi)⊤ϕ(xj), L =  diag  n1
−1, n2

−1, ⋯, nk
−1  and 1𝓁 ∈ ℝ𝓁

is a column vector with all elements being 1.

The variable Z in Eq.(2) is discrete, and this makes the optimization problem difficult to 

solve. A common approach is to relax Z to take real values. Specifically, by defining 

H = ZL
1
2  and letting H take real values, a relaxed version of the above problem can be 

obtained as

minH Tr  K In − HH⊤  s . t .  H ∈ ℝn × k, H⊤H = Ik, (3)
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where Ik is an identity matrix with size k × k. The optimal H for Eq.(3) can be obtained by 

taking the k eigenvectors having the larger eigenvalues of K (Jegelka et al. 2009).

Multiple kernel k-means clustering (MKKM)

In a multiple kernel setting, each sample has multiple feature representations defined by a 

group of feature mappings ϕp( ⋅ )
p = 1
m

. Specifically, each sample is represented as ϕβ(x) = 

[β1ϕ1(x)⊤, ⋯, βmϕm(x)⊤]⊤, where β = [β1, ⋯, βm]⊤ consists of the coefficients of the m 
base kernels. These coefficients will be optimized during learning. Based on the definition of 

ϕβ(x), a kernel function can be expressed as

κβ xi, x j = ϕβ xi
⊤ϕβ x j = ∑p = 1

m βp
2κp xi, x j . (4)

By replacing the kernel matrix K in Eq.(3) with Kβ computed via Eq.(4), the objective of 

MKKM can be written as

minH, β Tr  Kβ In − HH⊤ s . t . H ∈ ℝn × k, H⊤H = Ik, β⊤1m = 1, βp ≥ 0, ∀ p . (5)

This problem can be solved by alternately updating H and β: i) Optimizing H given β. With 

the kernel coefficients β fixed, H can be obtained by solving a kernel k-means clustering 

optimization problem shown in Eq.(3); ii) Optimizing β given H. With H fixed, β can be 

optimized via solving the following quadratic programming with linear constraints,

minβ∑p = 1
m βp

2 Tr  Kp In − HH⊤ s . t . β⊤1m = 1, βp ≥ 0, ∀ p . (6)

As noted in (Yu et al. 2012; Gönen and Margolin 2014), using a convex combination of 

kernels ∑p = 1
m βpKp to replace Kβ in Eq.(5) is not a viable option, because this could make 

only one single kernel be activated and all the others assigned with zero weights. Other 

recent work using ℓ2-norm combination can be found in (Kloft et al. 2011; 2009; Cortes, 

Mohri, and Rostamizadeh 2009; Liu et al. 2013).

The Proposed Algorithm

Formulation

Let sp (1 ≤ p ≤ m) denote the sample indices for which the p-th view is present and Kp
(cc) be 

used to denote the kernel sub-matrix computed with these samples. Note that this setting is 

consistent with the literature, and it is even more general since it does not require that there 

be at least one complete view across all the samples, as assumed in (Trivedi et al. 2010).

The absence of rows and columns from base kernels makes clustering challenging. Existing 

two-stage approaches first impute these base kernels and then apply a conventional 
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clustering algorithm with them. We have the following two arguments. Firstly, although such 

imputation is sound from the perspective of “general-purpose”, it may not be an optimal 

option when it has been known that the imputed kernels are used for clustering. This is 

because for most, if not all, practical tasks a belief holds that these pre-selected base kernels 

or views (when in their complete form) shall, more or less, be able to serve clustering. 

However, such a belief was not exploited by these two-stage approaches as prior knowledge 

to guide the imputation process. Secondly, from the perspective that the ultimate goal is to 

appropriately cluster data, we shall try to directly pursue the clustering result, by treating the 

absent kernel elements as auxiliary unknowns during this course. In other words, imputed 

kernels could be merely viewed as the by-products of clustering.

These two arguments motivate us to seek a more natural and reasonable manner to deal with 

the absence in multiple kernel clustering. That is to perform imputation and clustering in a 

joint way: 1) impute the absent kernels under the guidance of clustering; and 2) update the 

clustering with the imputed kernels. By this way, the above two learning processes can be 
seamlessly coupled and they are allowed to negotiate with each other to achieve better 
clustering. In specific, we propose the multiple kernel k-means algorithm with incomplete 

kernels as follows,

min
H, β, Kp p = 1

m  Tr  Kβ In − HH⊤ s . t . H ∈ ℝn × k, H⊤H = Ik, β⊤1m = 1, βp ≥ 0,

Kp sp, sp = Kp
(cc), Kp ≽ 0, ∀ p,

(7)

The only difference between the objective function in Eq.(7) and that of traditional MKKM 

in Eq.(5) lies at the incorporation of optimizing Kp p = 1
m

. Note that the constraint 

Kp sp, sp = Kp
(cc) is imposed to ensure that Kp maintains the known entries during the 

course. Though the model in Eq.(7) is simple, it admits the following advantages: 1) Our 

objective function is more direct and well targets the ultimate goal, i.e., clustering, by 

integrating kernel completion and clustering into one unified learning framework, where the 

kernel imputation is treated as a by-product; 2) Our algorithm works in a MKL scenario 

(Rakotomamonjy et al. 2008), which is able to naturally deal with a large number of base 

kernels and adaptively combine them for clustering; 3) Our algorithm does not require any 

base kernel to be completely observed, which is however necessary for some of the existing 

imputation algorithms such as (Trivedi et al. 2010). Besides, our algorithm is parameter-free 

once the number of clusters to form is specified.

Alternate optimization

Although Eq.(7) is not difficult to understand, the positive semi-definite (PSD) constraints 

on Kp p = 1
m

 make it difficult to optimize. In the following, we design an efficient algorithm 

to solve it. In specific, we design a three-step algorithm to solve this problem in an alternate 

manner:
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i) Optimizing H with fixed β and Kp p = 1
m .—Given β and Kp p = 1

m
, the optimization 

in Eq.(7) for H reduces to a standard kernel k-means problem, which can be efficiently 

solved as Eq.(3);

Algorithm 1

Proposed Multiple Kernel k-means with Incomplete Kernels

1:
Input: Kp

cc
p = 1
m

, Sp p = 1
m

 and ϵ0

2: Output: H, β and Kp p = 1
m

.

3:
Initialize β(0) = 1m/m, Kp

(0)
p = 1
m

 and t = 1.

4: repeat

5:
 Kβ

(t) = ∑p = 1
m βp

(t − 1) 2Kp
(t − 1) .

6:  Update H(t) by solving Eq.(3) with Kβ
(t)

.

7:
 Update Kp

(t)
p = 1
m

 with H(t) by Eq.(12).

8:
 Update β(t) by solving Eq.(6) with H(t) and Kp

(t)
p = 1
m

.

9:  t = t + 1.

10: until (obj(t−1) − obj(t))/obj(t) ≤ ϵ0

ii) Optimizing Kp p = 1
m  with fixed β and H.—Given β and H, the optimization in Eq.

(7) with respect to Kp p = 1
m

 is equivalent to the following optimization problem,

min
Kp p = 1

m ∑p = 1
m βp

2Tr  Kp In − HH⊤ s . t . Kp sp, sp = Kp
(cc), Kp ≽ 0, ∀ p . (8)

Directly solving the optimization problem in Eq.(8) appears to be computationally 

intractable because it involves multiple kernel matrices. Looking into this optimization 

problem, we can find that the constraints are separately defined on each Kp and that the 

objective function is a sum over each Kp. Therefore, we can equivalently rewrite the 

problem in Eq.(8) as m independent sub-problems, as stated in Eq.(9),

minKp
 Tr  KpU  s . t .  Kp sp, sp = Kp

(cc), Kp ≽ 0, (9)

where U = In − HH⊤ and p = 1, ⋯, m.
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Considering that Kp is PSD, we can decompose Kp as ApAp
⊤. Inspired by the work in 

(Trivedi et al. 2010), we write Ap = Ap
(c); Ap

(m)  with Ap
(c)Ap

(c)⊤ = Kp
(cc). In this way, the 

optimization problem in Eq.(9) can be rewritten as

min
Ap

(m) Tr  Ap
(c); Ap

(m) ⊤ U(cc) U(cm)

U(cm)⊤ U(mm)
Ap

(c); Ap
(m) , (10)

where the matrix U is expressed in a blocked form as

U(cc) U(cm)

U(cm)⊤ U(mm) .

By taking the derivative of Eq.(10) with respect to Ap
(m) and letting it vanish, we can obtain 

an analytical solution to the optimal Ap
(m) as

Ap
(m) = U(mm) −1U(cm)⊤Ap

(c) . (11)

Correspondingly, we have a closed-form expression for the optimal Kp in Eq.(9):

Kp
(cc) −Kp

(cc)U(cm) U(mm) −1

− U(mm) −1U(cm)⊤Kp
(cc) U(mm) −1U(cm)⊤Kp

(cc)U(cm) U(mm) −1
. (12)

iii) Optimizing β with fixed H and Kp p = 1
m .—Given H and Kp p = 1

m
, the 

optimization in Eq.(7) for β is a quadratic programming with linear constraints, which can 

be efficiently solved as in Eq.(6).

In sum, our algorithm for solving Eq.(7) is outlined in Algorithm 1, where the absent 

elements of Kp
(0)

p = 1
m

 are initially imputed with zeros and obj(t) denotes the objective value 

at the t-th iteration. It is worth pointing out that the objective of Algorithm 1 is guaranteed to 

be monotonically decreased when optimizing one variable with others fixed at each iteration. 

At the same time, the objective is lower-bounded by zero. As a result, our algorithm is 

guaranteed to converge. Also, as shown in the experimental study, it usually converges in 

less than 30 iterations. As MKKM, our algorithm solves an eigen-decomposition and a QP 

problem per iteration, which brings no much extra computation since imputation is done 

analytically in Eq.(12).
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Experimental Result

Experimental settings

The proposed algorithm is experimentally evaluated on four widely used MKL benchmark 

data sets shown in Table 1. They are Oxford Flower171, Oxford Flower1022, Columbia 

Consumer Video (CCV)3 and Caltech1024. For Flower17, Flower102 and Caltech102 data 

sets, all kernel matrices are pre-computed and can be publicly downloaded from the above 

websites. For Caltech102, we use its first ten base kernels for evaluation. For CCV data set, 

we generate six base kernels by applying both a linear kernel and a Gaussian kernel on its 

SIFT, STIP and MFCC features, where the widths of the three Gaussian kernels are set as 

the mean of all pairwise sample distances, respectively.

We compare the proposed algorithm with several commonly used imputation methods, 

including zero filling (ZF), mean filling (MF), k-nearest-neighbor filling (KNN) and the 

alignment-maximization filling (AF) proposed in (Trivedi et al. 2010). The algorithms in 

(Xu, Tao, and Xu 2015; Shao, He, and Yu 2015; Zhao, Liu, and Fu 2016) are not 

incorporated into our experimental comparison since they only consider the absence of input 

features while not the rows/columns of base kernels. Compared with (Bhadra, Kaski, and 

Rousu 2016), the imputation algorithm in (Trivedi et al. 2010) is much simpler and more 

computationally efficient. Therefore, we choose (Trivedi et al. 2010) as a representative 

algorithm to demonstrate the advantages and effectiveness of joint optimization on 

imputation and clustering. The widely used MKKM (Gönen and Margolin 2014) is applied 

with these imputed base kernels. These two-stage methods are termed ZF+MKKM, MF

+MKKM, KNN+MKKM and AF+MKKM in this experiment, respectively. We do not 

include the EM-based imputation algorithm due to its high computational cost, even for 

small-sized samples. The Matlab codes of kernel k-means and MKKM are publicly 

downloaded from https://github.com/mehmetgonen/lmkkmeans.

Following the literature (Cortes, Mohri, and Rostamizadeh 2012), all base kernels are 

centered and scaled so that we have κp(xi, xi) = 1 for all i and p. For all data sets, it is 

assumed that the true number of clusters is known and it is set as the true number of classes. 

To generate incomplete kernels, we create the index vectors Sp p = 1
m

 as follows. We first 

randomly select round(ε ∗ n) samples, where round(·) denotes a rounding function. For each 

selected sample, a random vector v = (v1, ⋯, vm) ∈ [0, 1]m and a scalar v0 (v0 ∈ [0, 1]) are 

then generated, respectively. p-th view will be present for this sample if vp ≥ v0 is satisfied. 

In case none of v1, ⋯, vm can satisfy this condition, we will generate a new v to ensure that 

at least one view is available for a sample. Note that this does not mean that we require a 

complete view across all the samples. After the above step, we will be able to obtain the 

index vector sp listing the samples whose p-th view is present. The parameter ε, termed 

missing ratio in this experiment, controls the percentage of samples that have absent views, 

and it affects the performance of the algorithms in comparison. Intuitively, the larger the 

1http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/
2http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/
3http://www.ee.columbia.edu/ln/dvmm/CCV/
4http://files.is.tue.mpg.de/pgehler/projects/iccv09/
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value of ε is, the poorer the clustering performance that an algorithm can achieve. In order to 

show this point in depth, we compare these algorithms with respect to ε. Specifically, ε on 

all the four data sets is set as [0.1 : 0.1 : 0.9].

The widely used clustering accuracy (ACC), normalized mutual information (NMI) and 

purity are applied to evaluate the clustering performance. For all algorithms, we repeat each 

experiment for 50 times with random initialization to reduce the affect of randomness 

caused by k-means, and report the best result. Meanwhile, we randomly generate the 

“incomplete” patterns for 30 times in the abovementioned way and report the statistical 

results. The aggregated ACC, NMI and purity are used to evaluate the goodness of the 

algorithms in comparison. Taking the aggregated ACC for example, it is obtained by 

averaging the averaged ACC achieved by an algorithm over different ε.

Experimental results

Figure 1 presents the ACC, NMI and purity comparison of the above algorithms with 

different missing ratios on the four data sets. To help understand the performance achieved 

by our algorithm, we also provide MKKM as a reference. Note that there is not any absence 

in the base kernels of MKKM. As observed: 1) The proposed algorithm (in red) consistently 

demonstrates the overall best performance among the MKKM methods with absent kernels 

in all the sub-figures; 2) The improvement of our algorithm is more significant with the 

increase of missing ratio. For example, it improves the second best algorithm (AF+MKKM) 

by nearly five percentage points on Flower102 in terms of clustering accuracy when the 

missing ratio is 0.9 (see Figure 1(c)); 3) The variation of our algorithm with respect to the 

missing ratio is relatively smaller when compared with other algorithms, demonstrating its 

stability in the case of intensive absence; and 4) The performance of our algorithm is the 

closest one to or even better than the performance of MKKM (in green) in multiple cases.

We attribute the superiority of our algorithm to its joint optimization on imputation and 

clustering. On one hand, the imputation is guided by the clustering results, which makes the 

imputation more directly targeted at the ultimate goal. On the other hand, this meaningful 

imputation is beneficial to refine the clustering results. These two learning processes 

negotiate with each other, leading to improved clustering performance. In contrast, ZF

+MKKM, MF+MKKM, KNN+MKKM and AF+MKKM algorithms do not fully take 

advantage of the connection between the imputation and clustering procedures. This could 

produce imputation that does not well serve the subsequent clustering as originally expected, 

affecting the clustering performance. The aggregated ACC, NMI and purity, and the 

standard deviation are reported in Table 2, where the one with the highest performance is 

shown in bold. Again, we observe that the proposed algorithm significantly outperforms ZF

+MKKM, MF+MKKM, KNN+MKKM and AF+MKKM algorithms, which is consistent 

with our observations in Figure 1.

Besides comparing the above-mentioned algorithms in terms of clustering performance, we 

would like to gain more insight on how close the imputed base kernels (as a byproduct of 

our algorithm) are to the ground-truth, i.e., the original, complete base kernels. To do this, 

we calculate the alignment between the ground-truth kernels and the imputed ones. The 

kernel alignment, a widely used criterion to measure the similarity of two kernel matrices, is 
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used to serve this purpose (Cortes, Mohri, and Rostamizadeh 2012). We compare the 

alignment resulted from our algorithm with those from existing imputation algorithms. The 

results under various missing ratios are shown in Figure 2. As observed, the kernels imputed 

by our algorithm align with the ground-truth kernels much better than those obtained by the 

existing imputation algorithms. In particular, our algorithm wins the second best one (KNN

+MKKM) by more than 22 percentage points on Caltech102 when the missing ratio is 0.9. 

The aggregated alignment and the standard deviation are reported in Table 3. We once again 

observe the significant superiority of our algorithm to the compared ones. These results 

indicate that our algorithm can not only achieve better clustering performance, but is also 

able to produce better imputation result by exploiting the prior knowledge of “serve 

clustering”.

From the above experiments, we conclude that the proposed algorithm: 1) effectively 

addresses the issue of row/columns absence in multiple kernel clustering; 2) consistently 

achieves performance superior to the comparable ones, especially in the presence of 

intensive absence; and 3) can better recover the incomplete base kernels by taking into 

account the goal of clustering. In short, our algorithm well utilizes the connection between 

imputation and clustering procedures, bringing forth significant improvements on clustering 

performance. In addition, our algorithm is theoretically guaranteed to converge to a local 

minimum according to (Bezdek and Hathaway 2003). In the above experiments, we observe 

that the objective value of our algorithm does monotonically decrease at each iteration and 

that it usually converges in less than 30 iterations. Two examples of the evolution of the 

objective value on Flower17 and Flower102 are demonstrated in Figure 3.

Conclusion

While MKC algorithms have recently demonstrated promising performance in various 

applications, they are not able to effectively handle the scenario where base kernels are 

incomplete. This paper proposes to jointly optimize the kernel imputation and clustering to 

address this issue. It makes these two learning procedures seamlessly integrated to achieve 

better clustering. The proposed algorithm effectively solves the resultant optimization 

problem, and it demonstrates well improved clustering performance via extensive 

experiments on benchmark data sets, especially when the missing ratio is high. In the future, 

we plan to further improve the clustering performance by considering the correlations of 

different base kernels (Bhadra, Kaski, and Rousu 2016).
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Figure 1: 
Clustering accuracy, NMI and purity comparison with the variation of missing ratios on four 

data sets. Note that MKKM (in green) is provided as a reference. There is not any 
absence in its base kernels.
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Figure 2: 
Kernel alignment between the original kernels and the imputed kernels by different 

algorithms under different missing ratios.
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Figure 3: 
Evolution of the objective value in our algorithm.
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Table 1:

Datasets used in our experiments.

Dataset #Samples #Kernels #Classes

Flower17 1360 7 17

Flower102 8189 4 102

Caltech102 3060 10 102

CCV 6773 6 20
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