
1

Extracting 3D Parametric Curves
from 2D Images of Helical Objects

Chris G. Willcocks, Philip T. G. Jackson, Carl J. Nelson, and Boguslaw Obara∗

Abstract—Helical objects occur in medicine, biology, cosmetics,
nanotechnology, and engineering. Extracting a 3D parametric
curve from a 2D image of a helical object has many practical
applications, in particular being able to extract metrics such
as tortuosity, frequency, and pitch. We present a method that is
able to straighten the image object and derive a robust 3D helical
curve from peaks in the object boundary. The algorithm has a
small number of stable parameters that require little tuning, and
the curve is validated against both synthetic and real-world data.
The results show that the extracted 3D curve comes within close
Hausdorff distance to the ground truth, and has near identical
tortuosity for helical objects with a circular profile. Parameter
insensitivity and robustness against high levels of image noise are
demonstrated thoroughly and quantitatively.

Index Terms—Helical Curves, Shape Analysis, Feature Extrac-
tion, Geometry, Modeling, Skeletonization.

I. INTRODUCTION

HELICAL curves occur in many natural and artificial
structures. Evolution has exploited such geometrical

shapes to provide living organisms, at various scales, with
different functions. Similarly, human technology has used
helical structures, from micro to macro scale, in a wide range
of applications. Some examples of such helical designs in a
variety of domains are:
• At a micro scale:

– Biology and medicine (e.g. Spirulina [1], Spirochaetes
[2], sperm [3], bacterial macrofibers, microtubules,
keratin, DNA, dynamin [4]).

– Nanotechnology (e.g. helical nanostructures, such as:
nanosprings and graphitic carbon microtubules [5]).

• At a macro scale:
– Medicine (e.g. umbilical cord).
– Biology (e.g. climbing plants, twining vines [6],

twisted trees, seashells, Arabidopsis root [7]).
– Cosmetics industry (e.g. hair [8]).
– Engineering (e.g. screws, coils, springs, synthetic fiber

ropes [9]).
Extracting a representative 3D helical curve of an object has

applications in quality control on manufacturing lines, making
rapid decisions in high-throughput experimentation in plant
sciences, modeling hair in cosmetics, and in the geometric mod-
eling and understanding of microscopic structures in medicine,
biology and nanotechnology. A representative 3D helical curve
acts as an important descriptor for a complex helical-shaped

∗ The authors are with the School of Engineering and Computing Sciences,
Durham University, South Road, DH1 3LE, Durham, UK.

∗ E-mail address: boguslaw.obara@durham.ac.uk

object, describing its 3D geometric characteristics including
tortuosity, local pitch, and local radius. However, most imaging
techniques allow only a 2D view of the object, often with
significant noise. Many 3D imaging techniques exist but these
are usually slow, expensive, difficult to apply correctly and
often only applicable to objects of a certain scale. Motivated
by the desire to satisfy such use cases without the need for
3D imaging, we present an automatic method in three stages:
(1) extract the main structural curve, (2) straighten the image
and (3) fit a 3D parametric curve to the straightened image
and map it back to the object’s original shape.

Our approach works by exploiting the fact that most helical
objects show some ‘zig-zag’ structure in their 2D projection,
with the same pitch and radius as the true 3D helix. We detect
the peaks on the object’s external boundary and construct
a helical 3D cubic spline that passes through them, looping
above and below the image plane in-between them. By fitting
a curve through these guide points we can extract a curve
that accurately captures the overall curvature of the helix,
including local variations in radius and pitch, neither of which
would be possible if we only estimated global radius and pitch
parameters.

Throughout our method we use only well-established tech-
niques such as binary morphology, curve fitting and signal
smoothing. Our contribution is in the composition of these
simple steps into a novel pipeline, and in our definition of the
control points that guide the helix. We show the main stages
of our pipeline in Figure 1, and summarize it in Table I at
the end of the Method section, attributing the steps to their
sources where appropriate.

II. RELATED WORK

A. 3D Reconstruction Approaches
There is a large body of research concerned with recon-

structing 3D models from 2D data in the fields of computer
graphics, geometry modeling, and image processing.

The two most similar approaches to ours, which reconstruct
3D helical curves from 2D data, are by [11] and [8]. The
method by [11] involves fitting a piece-wise 3D helix curve to
a 2D polyline curve such that its orthogonal projection matches
the input. In contrast, [8] focuses on providing a compact
characterization of hair geometry using generalized helicoids.
They observe coherency amongst orientation and curvature
in local neighborhoods of hair strands, and present a method
to generate, fit and interpolate hair patterns. In this approach,
they fit piece-wise generalized helicoids to unparametrised 3D
polyline hair strands, and validate their results using a database
of hair samples where each hair is represented by a polyline.

2

Original (a) Skeleton (b) Skel. Curve (c) Straight Fit (d) Top View (e) 3D View (f)

Figure 1: Stages of our pipeline to segment (a-b), straighten (c-d) and extract the 3D helix of a Leptospira image [10] (d-f).

While both [11] and [8]’s methods are equally valid, they
require uniformly sampled polylines as input which greatly
limits their range of applications in real-world datasets such as
encountered in biology, medicine or engineering. Recently, [12]
extract a single 3D helix from a noisy and irregularly sampled
polyline, but they still do not propose a way to extract such a
polyline from raw images which are frequently noisy and self-
occluding. The problem of self-occlusion has been examined by
[13], who extract a 3D shape from a 2D outline self-occluding
sketch. Their approach firsts extracts a 2D skeleton on the
sketching plane, where the 3D skeleton is derived and used to
generate the 3D object, and they approximate the depth at the
self-intersecting points in the 2D skeleton. The idea of using
the skeleton to capture topological information of the image
gives excellent results, therefore we briefly examine the image
skeletonization literature in more detail.

B. Image Skeletonization

Image skeletonization is a large field covering many different
methods and techniques. The first approaches iteratively apply
morphological thinning by removing boundary pixels that do
not affect the local connectedness of a shape until a single pixel
wide ‘skeleton’ remains [14]. These approaches are generally
very sensitive to boundary noise, requiring a pruning post-
process to remove spurious branches [15]. Other approaches
prune edges from the Voronoi diagram of a shape’s boundary
[16], [17]. Smoother and more robust approaches evolve a
wave front over a distance transform from maximal distance
points in the object boundary giving a smooth skeleton that
is insensitive to boundary noise [18]. These approaches all
operate on the shape boundary, e.g. with a binary representation
or surface mesh, and then compute a distance image or use
a gradient vector field [19]. The results in the literature show
that the binary shape boundary provides enough information
to describe the central curve of the shape [20]. The difference
in our case is that the path of a helical curve passes through
prominent features (peaks) of the shape boundary, instead of
always being centered as with the topological skeleton. While
the topological skeleton can act as a guide for the main curve,
we seek to additionally fit our curve through peaks in the
helical structure.

C. Curve Fitting and Representation

Fitting curves through data points is a well studied area,
where a lot of work has focused on the representation of the
underlying curves to provide compact or intuitive parameters
and properties. Relevant representations include polyhelices
[21], which are a sequence of helical segments defined by
curvature, torsion and length, fitting through ordered points.
Similarly [22] approximates an input Bezier spline with N -
piecewise helix elements, which is used to compactly represent
and reconstruct fiberous datasets such as hair, muscular fibers or
magnetic field lines of a star. An alternative approach involves
fitting helices to a curve within a maximal Hausdorff distance.
This is shown by [23] who use an iterative bisecting algorithm
to compute bi-helical arcs from one endpoint to produce near
optimal bi-helical splines, which smoothly connect 2 helices
approximating the curves to the desired accuracy. Instead of
trying to fit exactly to datapoints, [24] present a method for
computing a planar B-spline curve to approximate a target
shape defined by a point cloud. They formulate the curve
fitting problem as a nonlinear least squares problem which
uses a curvature-based approximation to the true Hessian of
the objective function. Furthermore, [25] introduce a weighting
for least-squares fitting in combination with a local arc-length
approximation of the input to estimate curvature and torsion
of planar and spatial curves.

D. Semi-automatic Approaches

Besides curve fitting and skeletonization approaches, there
is a large body of research that relies on user interaction
to reconstruct 3D curves and objects from 2D images. In
particular sketch-based approaches are a popular choice for
3D reconstruction given their simplicity and humans’ natural
2D drawing ability. An interesting method was proposed by
[26], who let the user draw the curve from the current view
perspective, then draw the shadow on a floor plane, which is
used to generate the 3D curve used in modeling applications.
Similarly, [27] let the user sketch an initial 2D curve, but
they compose it into bounding boxes by zero-crossings of the
principal axis. They use the bounding boxes to infer properties
of a generated 3D helix, however this leads to some poor quality
approximation. A more complex solution is considered by [28],
who interpret drawings of 2D line segments by minimizing the

3

entropy of angle distribution between line segments in a 3D
wireframe using a genetic algorithm. While these approaches
have good results, their applications are limited by their need for
user-generated input data, such as a sketch image or polyline.

E. Image-based Approaches

Extracting curves from grayscale image data is much more
challenging than from binary image or polyline data, given
that real-world image datasets often have weak and broken
boundaries and/or severely noisy, i.e. blurred or distorted
edges, while still representing shapes with complex topology
and large curvature variations. One of the most significant
contributions was given by [29], who present a method for
detecting curvilinear structures in images using scale-space
analysis on the profile of asymmetrical bar-shaped lines. Their
method is robust, however requires some parameter to be set
on the line widths capturing a range of scale-space features.
More noisy images can be improved in a pre-processing stage,
for example using a technique by [30] who calculate the
eigenvalues of the Hessian matrix at every pixel at multiple
scale-spaces to enhance the vessel features.

There are approaches that also try and fit curves to edges
in the image, however they rely on more than one view of
the data to achieve good results. The work by [31] relies on
edge detection and template matching to extract data points
on road lines, then use colinearity between multiple-images to
determine 3D data points before fitting a least-squares B-spline
in the 2D and 3D space. Similarly [32] propose an approach
to reconstruct a 3D curve from two different views of the data,
however they deform an elastic curve in order to adapt to the
projections of the two data views.

In diffusion MRI, [33] introduce ‘co-helicity’ to estimate
local trace, tangent, curvature and torsion fields of curves in
3D images. This is an extension of ‘co-circularity’ in the 2D
case [34] and has applications in streamline fibre tracking,
which has been demonstrated in 3D brain datasets. While such
approaches produce high-quality curves, they rely on input
datasets of the same dimension.

There is a large body of local regression literature [35] which
deals with the problem of separating a signal from noise, with
excellent results in cleaning and reproducing a good curve
from a large amount of variation. In particular, the popular
LOESS approach uses a quadratic model to do the local fitting
[36], which can be further improved by a robust weighting
scheme to reduce the influence of outliers.

F. Proposed Approach

In our approach, we detect the object’s centerline from its
binary silhouette and interpret undulations in the centerline as
corresponding to helical revolutions. We infer depth information
by assuming the helix has a circular profile, and output a 3D
helical cubic spline whose diameter and pitch adapt locally to
the object’s width and pitch. The 3D curve passes through the
peaks on the object’s boundary, transitioning above or below
the image plane as it does so.

In conclusion, while there exist a number of 3D curve
estimating approaches, there does not appear to exist a fully

automatic solution for producing a 3D curve from a single
2D image. Other approaches require additional help in the
form of 2D polylines, multiple image views from different
angles, or user interaction. While better results are probably
possible with more input data, our proposed method produces
reliable results that satisfy a number of validation criteria from a
single segmented image, using only standard image processing
operations.

III. METHOD

A. Overview

The proposed method involves three main conceptual stages,
discussed in more detail in subsections III-B, III-C, and III-D
respectively.

1) Segment the object and extract its main structural curve.
2) Straighten the image by its structural curve.
3) Derive a 3D parametric curve from the straightened image

and map it back to the original object.
The first stage extracts the structural ‘spine’ of the object

(red line in Figure 1c) which describes the main object shape,
but does not capture finer features of the helix. The second
stage straightens the image by straightening the spine and
warping the image such that every image point maintains the
same position relative to the closest points on the spine. This
produces an image of the straightened object that still has the
helical structure of the target object (image in Figure 1d).

The third stage generates a helical curve by computing
four 3D control points per helical revolution directly from
the straightened image, and obtaining a parametric spline
curve that interpolates cubically between them. The underlying
assumption used to infer 3D geometry from a 2D image is
that the cross-section of the helix is circular, therefore the
maximum z-axis displacement from the image plane equals
the radius of the helix. The control points we extract are the
local extrema of the helix curve along its x and z axes (with the
y-axis oriented along the object and the x-axis across it). Once
the control points are calculated we perform the straightening
transformation on them in reverse such that the 3D spline is
mapped correctly back onto the original image (Figure 1e-
f). The resulting curve, including its frequency, pitch, and
tortuosity, are validated against synthetic and real-world data
of both macro and microscopic scale.

B. Segmentation of the Main Structural Curve

Because helical objects often exhibit a macro level curvature
in addition to their helical winding (see Table VII), we
first straighten the image at the macro level (see Figure 2).
This begins with extracting the object’s macro-level spine,
via a series of operations on a binary image of the object
(Algorithm 1 and Figure 2a-d). In all our results, we obtain
this segmentation using Otsu’s intensity thresholding method
[37]. We then select the largest connected component and fill
any holes using a morphological algorithm [38] to ensure that
we have a single binary representation of the object, separated
from background noise, to process. The morphological skeleton
is then calculated (Algorithm 1, line 4), which is well-known

4

a b c d e f g

Figure 2: To straighten the image, we capture the main curve by finding the longest path between extrema in the binary skeleton
(Algorithm 1), and calculate a local weighted mean transform from the original and deformed control points (Algorithm 2).
Original image (a), largest thresholded object (b), skeleton (c), main curve (d), control points (e), and straightening (f-g).

to contain spurious branches [39] (Figure 2c), however we
do not need a pruning heuristic as we only need to capture
the main path through the skeleton. We take this main curve
to be the diameter path through the skeleton, in other words
the longest of shortest paths between two nodes. We find this
path using the algorithm proved in [40] by first choosing an
arbitrary seed endpoint, s0, then finding s1, the most distant
endpoint to s0 by quasi-Euclidean geodesic distance in the
binary image [38] (Algorithm 1, lines 5 to 7). We then find s2
as the most distant node to s1, and use Dijkstra’s algorithm
with 8-connectivity to find the shortest path between s1 and
s2. This results in a single path with no spurious branches that
describes the spine of the complete object (Figure 2d).

Algorithm 1: Extract a curve c and binary image B from
a greyscale input image of a helical object I .
Data: I
Result: c, B

1 B = I > threshold(I); . Otsu’s thresholding [37]
2 B = fill(B); . Fill holes [38]
3 B = largest component(B);
4 S = skel(B); . Morphological skeleton [39]
5 s0 = index1 of(S = 1); . Initial seed (any set pixel in S)
6 D = dist(S, s0) ; . Geodesic distance from s0 [38]
7 s1 = index of max(D); . Seed point 1 (curve start)
8 D = dist(S, s1);
9 s2 = index of max(D); . Seed point 2 (curve end)

10 c = dijkstra(S, s1, s2); . Shortest path (8-connectivity)

C. Image Straightening

To straighten the image, we based our method on the
unfolding approach presented in [41], originally developed
to straighten 3D vertex meshes. The procedure begins by
transforming the centerline curve (defined by a discrete chain
of 2D points) into a horizontal line. Adapting the authors’ work
(Algorithm 2, line 6), the straightened curve is given by:

c′j .x = c′j−1.x+ ‖cj − cj−1‖ (1)

c′.y = 0 (2)

where cj and c′j are the j’th points of the original and
straightened curves, and c′j .x means “the x-component of the

vector c′j”. We now need to warp the image such that image
points maintain their position relative to their nearest centerline
points. To prevent the appearance of holes in the transformed
image, we require an inverse geometric transform, which maps
each pixel p′ in the transformed image to a location p in the
original image. In [41], a forward transformation is defined on
mesh vertices, which are pulled along with the centerline to
create a straightened object mesh. This transformation keeps
the vertex in the same place relative to its nearest centerline
point’s frame of reference as the centerline is straightened. The
transformed position of vertex v is given by:

v′i = c′j +M−1j (vi − cj) (3)

where vi and v′i are the original and transformed vertex
points, cj is the closest centerline point to vi and Mj is a
transformation matrix whose columns are the basis vectors of
cj’s frame of reference. To form this basis, we simply take
the centerline’s tangent and normal vectors (by rotating the
tangent 90◦).

To apply this transformation in reverse to each pixel in the
warped image, we first create a regular grid of control points
in the original image (Figure 3a: green crosses), and transform
them as described above (Figure 3b). We then use the original
and transformed control point pairs to estimate a continuous
inverse transformation function, using the local weighted mean
(LWM) approximation scheme [42] (this is a technique from
the image registration community implemented as a MATLAB
library function). As in [41], the transformation of each
control point is smoothed by considering a neighbourhood
of δ centerline points either side of cj , whose influence is
inversely proportional to their distance to vi (see Algorithm 2,
lines 8, 11, and 12).

The straightening process introduces three parameters: the
transform smoothing neighbourhood size δ, the control point
spacing ω and the LWM neighbourhood size o (where each
control point uses the nearest o neighbours to estimate a
local quadratic transformation function). In our experiments,
discussed in the validation section, we find these parameters
to be stable and can be set as constants δ = 50, ω = 20, and
o = 30 in most cases. Setting ω to be too small results in
over-straightening (Figure 3c) which removes the finer helical
structure from the object.

Prior to helical extraction, we rotate the horizontally straight-
ened binary image by 90-degrees such that we can work more

5

cj+δ

cj
cj−δ

ω
ω

vi

cj+δ

cj
cj−δ

ω
ω

vi

(a) Before straightening

vi

cj cj+δcj−δ

vi

cj cj+δcj−δ

(b) After straightening

(c) Over-straightening example

Figure 3: A pictoral representation of the control point
transformation, as described in Algorithm 2, lines 1 - 12. A
selected control point vi is highlighted in red, and only its
nearest centerline point cj (along with its δ neighbours) are
shown. The centerline points (red dots) are arranged into a
straight line, ‘pulling’ the control points (green crosses) with
them. The weights of the centerline points (Algorithm 2, lines
11-12) on vi are shown by the size of the dots.

Algorithm 2: Straighten the n × m input image B by
a curve c, giving a straightened image B′, subject to
straightening parameters δ, ω and o. Here we denote by V
the set of regularly spaced control points.
Data: B, c, δ, ω, o
Result: B′

1 V = grid points over B with bnω c rows and bmω c cols;
2 c′1.x = c1.x;
3 c′1.y = 0;
4 q = number of centerline points;
5 for j = 2..q do
6 c′j .x = c′j−1.x+ ‖cj − cj−1‖ ; . Straighten c to c′

7 c′j .y = 0;

8 Di,k = ‖vi − ck‖ ; .
Distance matrix between vertices

vi ∈ V and centerline points
9 foreach vi ∈ V do . Transform vi

10 let cj be the nearest centerline point to vi ;
11 a =

∑k=j+δ
k=j−δD

−1
i,k ; . Weight normalization

12 v′i =
∑k=j+δ
k=j−δ

D−1
i,k

a (c′k +M−1k (vi − ck));

13 B′ =local weighted mean(B,V,V ′, o) ; . Transform [42]

intuitively vertically for the next section, and we then crop the
result such that the object tightly fits the image borders.

D. Helical Extraction

From an n × m binary input image B of a straightened
vertical helical object, which is cropped to fit the object’s
bounding box, we define a new centerline as a 1D array:

c[i] =

∑m
j=1 j ·Bij∑m
j=1Bij

, i ∈ [1, n] (4)

where c[i] is the mean x-coordinate of the foreground pixels
along the i’th row in the binary image. This array describes
a centerline path which stays equidistant to the left and right
boundaries of the straightened object (see Figure 4b), and
is distinct from the macro-level centerline of the previous

sub-section, which was used to straighten the object whilst
preserving its helical structure. The object’s helical structure
will be derived primarily by detecting oscillation in this new
centerline. This is preferable to measuring undulations in the
object’s boundary, since such boundary features will be present
even in axially symmetric objects with no helical structure.

The extracted centerline is sensitive to the noise on the
object boundary, therefore we smooth it using robust local
regression [36] (Figure 4c) subject to a span parameter σ,
yielding a smoothed 1D signal r[i]. We then find the positive
and negative peaks (i.e. local maxima and minima in r[i],
see Figure 4d) subject to an optional minimum peak distance
parameter d. These points will become the z = 0 control points,
lying in the plane of the image. Setting d > 0 is useful to
improve the peak detection in extremely noisy images, when
prior knowledge about the helices’ pitch can be exploited.
For example, in microscale imaging techniques, we can often
approximate how many peaks to expect within a given distance
and set d to be a large enough minimum distance to prevent
over-detection. In practice, we can typically rely solely on the
smoothing parameter σ, and leave d = 0, where σ is set to be
a value such as 0.1 to represent a span of 10% of the signal.

Depending on application, we sometimes wish the 3D helix
to have the same width as the object, but the x-axis amplitude
of the centerline is often much less than the width of the object.
In these cases we can ‘push’ the z = 0 points along the x-axis
until they reach the object boundary (Algorithm 3, lines 8 to 10
and Figure 4e).

Finally we calculate the other half of the control points;
these are roughly midpoints between the z = 0 points and
have alternating positive and negative z coordinates. Each
midpoint’s y coordinate p.y is halfway between those of its
adjacent z = 0 peaks (line 14), however the x component is
set to be the corresponding position along the robust centerline
(i.e. p.x = r[p.y]), ensuring that it is centered in the object
(line 15). In keeping with our assumption that the helix has
a circular profile, we approximate the local z amplitude of
the midpoint as the local width amplitude, approximated by
half the x-distance of the locally adjacent points, with sign
alternating from one midpoint to the next. In this way, our z
amplitude adapts to the local width of the object, just as the x
amplitude does. Bringing this all together, if pi is a midpoint
and its adjacent points are z = 0 points then:

pi.y =
1

2
(pi−1.y + pi+1.y) (5)

pi.x = r[pi.y] (6)

pi.z =
1

2
(pi+1.x− pi−1.x) (7)

A diagrammatic explanation of the control points and how
they relate to the centerline curve is shown in Figure 5.

There are some helical objects that are very thin, such as the
Spring and Pseudomonas fluorescens in Table VIIIb and f. In
such thin cases, pushing the peaks to the object boundary will
not improve the curve and may even cause overfitting if the
curve is pushed to noise adjoined to the boundary. Therefore
we leave ‘pushing’ to be optional, but enable it by default
given the rarity of such cases (Algorithm 3, line 6).

6

a b c d e f g

Figure 4: To extract the helical curve from a straightened image (a), we extract a 1D signal called the ‘centerline’ from the
width profile (b), and fit a smooth curve using robust local regression (c). We then extend the peaks and find the midpoints
(d-e) before fitting our final curve (f), which is projected back onto the original image (g). (Algorithm 3).

peak
midpoint

Figure 5: A small section of the helical curve for the Spirulina
object (Table VIIb), showing how the control points (green
dots) are related to the centerline peaks and midpoints (yellow
dots). The helical curve itself (red) passes through all control
points.

The control points p of the helical curve are the union of the
midpoints with the positive and negative peaks, sorted along
the y-axis (Algorithm 3, line 17). These control points are then
transformed back onto the original (non-straightened) image
by applying the relevant inverse transforms in reverse order;
specifically we invert the cropping and 90-degree rotation
before applying the inverse of the local weighted means
transform (Figure 4g). With the extrema and midpoints correctly
located on the original image, we can now compute a piecewise
cubic spline that passes through these points by choosing
interpolation nodes under a centripetal parameterization [43]
(implemented in the MATLAB library function cscvn). This
yields a smooth parametric curve which is locally adapted
to fit the helical object’s shape. A summary of our pipeline,
techniques attributed to their original sources where appropriate,
is provided in Table I.

Having obtained a parametric 3D helical curve, we can now
estimate a number of useful high-level properties that may
be required for application specific reasons. These include
(but are not limited to) radius, pitch, length and tortuosity.
Length can be estimated to arbitrary precision by summing
the distance between densely sampled points on the curve;
tortuosity is then defined as the curve’s total length divided
by the Euclidean distance between its endpoints. Radius and
pitch can be calculated prior to un-straightening the curve,

Table I: An ordered list of the steps in our pipeline, with
reference to their original source where applicable.

Step Source
Otsu thresholding Standard technique [37]
Morphological thinning Standard technique [39]
Longest path selection Proposed in [40]
Centerline straightening and control
point transformation

Proposed in [41]

Continuous transform estimation
and image warping

Local weighted mean approxima-
tion scheme [42]

Helical centerline extraction Novel
Centerline smoothing Robust local regression [36]
Centerline peak detection Detection of local maxima
Control point calculation Novel
Spline fitting Centripetal parameterization [43]

Algorithm 3: Extract the curve points p from an n×m
straightened binary image B, with smoothing σ, minimum
peak distance d, and an edge condition push = true.

Data: B, σ, d, push
Result: p

1 for i = 1..n do
2 c[i] =

∑m
j=1 j ·Bij/

∑m
j=1Bij ; . Get centerline

3 r = robust local regression(c, σ) ; . Smooth centerline
4 {t+i } = local maxima(r, d);
5 {t−i } = local minima(r, d) ; . Ordered by y-coordinate
6 if push then
7 foreach t+i do
8 t+i .x = max j : Bij = 1; . Extend all peaks

9 foreach t−i do
10 t−i .x = min j : Bij = 1;

11 {ti} = sort ({t+i } ∪ {t
−
i }) ; . Maintain y-axis ordering

12 ti.z = 0 ∀ ti;
13 foreach i ∈ 1 .. (|{ti}| − 1) do
14 mi.y = 1

2 (ti.y + ti+1.y); . Midpoint height
15 mi.x = r[mi.y]; . Midpoint width
16 mi.z =

1
2 (ti+1.x− ti.x); . Midpoint depth

17 {pi} = sort({ti} ∪ {mi}); . Merge and sort in y

and are defined not just globally but per control point, since
the object described by the image need not necessarily have
a fixed radius or pitch. Pitch can be obtained as the y-axis

7

displacement between two control points pi and pi+4, since
our algorithm extracts four control points per helix period.
Radius, finally, is the distance of a control point to the line
where z = 0 and y = mean(r).

IV. RESULTS

In this section, we provide quantitative and qualitative
validation against both synthetic data and real-world data. In
particular, we measure how well our generated curve fits to
the helical object in extreme data scenarios, and how sensitive
the algorithm is to its input parameters.

A. Synthetic Validation: Comparison to Analytical Helix Curve

Beginning with an analytical 3D helix equation specifying
a helix as a path through 3D space, we generate our synthetic
data. The 3D helix path is projected orthographically onto a
plane to capture a single 2D image which forms our input test
data. Using synthetic data allows us to compare our extracted
tortuosity τ with the ground truth τ∗, and allows us to compute
the Hausdorff distance h between the analytical 3D curve and
the extracted 3D curve. In our initial experiment, we use the
equation of a spherical helix using a fixed number of twists,
but vary the bulge amount b (Table II). This is a worse-case for
inferring the depth within a circular helical profile, as it yields
a large change of both increasing and decreasing amplitudes
within a fixed distance between the ends of the curve and a
small number of twists.

In Table II, we can see that the extracted 3D curve in red
gives a good approximation of the analytical 3D curve shown
in blue, however there is a slight noticeable deviation from the
curve in the extreme bulge shown on the right. To examine this
relation, we run 250 experiments of increasing bulge amount
and plot the results in Figure 6. Despite some initial noise

Table II: The analytical helix curve (blue) is compared to the
generated curve (red) from a 2D rasterized image view of
the analytical curve. We show four different bulge amounts b,
where τ is the resulting tortuosity compared to the ground truth
tortuosity τ∗ of the analytical curve, and h is the Hausdorff
distance between the two curves. More results in Figure 6.

b 2 8 32 128
τ 1.040 1.470 4.275 16.406
τ∗ 1.039 1.482 4.304 16.603
h 1.052 1.629 2.076 7.7876

10

20

30

To
rt

uo
si

ty

50 100 150 200 250

10

20

30

Spherical helix bulge amount (b in Table II)

H
au

sd
or

ff
di

st
an

ce
[p

ix
el

s]

Metrics
Hausdorff distance [pixels]
Ground truth tortuosity
Our tortuosity

Figure 6: Comparing the Hausdorff distance between an
analytical helix curve of increasing bulge amount b and our
3D construction from a single 2D view of the analytical curve.

from the discrete 3D rasterization, the results show that we
can obtain an excellent approximation of the ground truth
tortuosity τ∗, and we obtain a good fitting as measured by
the Hausdorff distance h between a dense sampling of points
on both curves. It is worth noting that this experiment for
capturing the Hausdorff distance is extreme; in the real-world
data we have collected we rarely find such local variation
in amplitude above 30 pixels. The largest local change in
amplitude we encountered is shown in the central section of
the Leptospira image in Figure 1, whereby the local helical
amplitude significantly deviates from its mean value, however
our method captures this variation well and therefore we can
expect a good fitting in most scenarios given the correctly
chosen input parameters.

B. Noise Experiment

As before, we create a synthetic 3D spring-like object that is
projected onto a 2D plane. This time we create a thicker line, so
we can apply more noise while still presenting the algorithm
a fair chance to succeed. This 2D image is corrupted with
multiple different types of noise with a decreasing peak signal-
to-noise ratio (PSNR). We measure the algorithm’s robustness
to Gaussian, salt & pepper and speckle noise types, as well
as its robustness to structured multi-frequency noise. The 3D
curve is extracted from the corrupted 2D image, and it is
compared with the analytical 3D curve from the helix equation.
We measure the Hausdorff distance (Figure 7) as well as the
difference in tortuosity (Figure 8), where a selection of the
results are shown in Table III.

The results in Figures 7 and 8 show that our method is
accurate for multiple types of noise, heavily corrupting the
object to a PSNR of about 11. The method is also shown
to retain precision across the noise types, however there is a
small amount of constant error where the peaks are pushed
to the object boundary instead of following the center of the
spring cross-section. These results can be improved in specific

8

Table III: A section of results from our noise experiments in Figure 7 and 8: a synthetic 3D helix is generated with a thickness
radius of 5 and projected onto a 2D plane. The resulting 2D image is corrupted with different levels and types of noise. We
then apply our segmentation algorithm (Algorithm 1) and show the segmentation boundary in blue. The extracted curve is
shown in red (Algorithm 3).

PSNR
20 15 10 5 1

Gaussian

Salt &
Pepper

Speckle

Multi-
frequency

(clouds)

5 10 15 20
0

50

100

150

200

PSNR [dB]

H
au

sd
or

ff
di

st
an

ce
[p

ix
el

s]

Noise Types:
Gaussian
Salt & Pepper
Speckle
Multi-frequency

Figure 7: The Hausdorff distance from the ground truth
synthetic helix with a thickness of 5 corrupted with different
types and levels of noise (shown in Table III) using the same
parameters σ = 0.15 and d = 0. The standard deviation is
shown in the error bars (transparent shaded regions).

cases by disabling or even interpolating the amount of ‘peak-
pushing’, however such behaviour is not always desirable in
cases such as the hair in Table VIII, and we leave this optional
(Algorithm 3 line 6).

5 10 15 20
0

2

4

6

8

10

PSNR [dB]

D
iff

er
en

ce
in

to
rt

uo
si

tie
s

Noise Types:
Gaussian
Salt & Pepper
Speckle
Multi-frequency

Figure 8: The difference between the analytical helix tortuosity
and the tortuosity of the helix extracted from a 2D image
corrupted with different types and levels of noise (shown in
Table III) using the same parameters σ = 0.15 and d = 0.

C. Straightening experiment

The straightening process (Algorithm 2) introduces three
parameters: ω, δ, and o. We measure the algorithm’s stability to
these parameters in a large synthetic experiment; we generate
four synthetic helices which are (1) straight or curved, and (2)
dense or sparse in terms of their number of coils. We then vary

9

ω = [1, 256], δ = [1, 256], o = [6, 85] and plot the Hausdorff
distance for each of the four synthetic objects, which results in
four 3D parameter spaces accordingly. We found that there is a
large, low, flat region in the results indicating that our method
is stable to these parameters. We choose ω = 20, δ = 50, and
o = 30 as default parameters at the center of this region, which
typically require little-to-no tuning. We plot cross-sections of
this parameter space at fixed o = 30 for the four test cases in
Table IV, alongside images of the synthetic helix, analytical
curve (blue), and extracted curve (red) for the proposed default
parameters. To see how o affects the results, we also show a
plot of o = [6, 85] with ω = 20 and δ = 50, showing a local
minimum in the range o = [20, 40] (Figure 9).

Table IV: We generate synthetic straight and croissant-shaped
helices with a varying number of coils. The Hausdorff distance
between the analytical ground truth (blue curve) and the
extracted helix (red curve) are plotted as a surface; varying
the straightening parameters ω and δ from 1 .. 256 in 262,144
experiments for incremental values o = 6, 7, ... 85. Choosing
o = 30 gives low and smooth Hausdorff distances (Figure 9).
We show a cropped relevant region of the results with large, low,
flat regions which suggest ω = 20, δ = 50 (dashed red lines) as
default parameter values that work in most cases; results using
these parameters are shown alongside the Hausdorff plots.

Straight Curved

5 coils

H
au

sd
or

ff
di

st
an

ce
[p

ix
el

s]

ω δ

5 coils

H
au

sd
or

ff
di

st
an

ce
[p

ix
el

s]

ω δ

15 coils

H
au

sd
or

ff
di

st
an

ce
[p

ix
el

s]

δ ω

15 coils

H
au

sd
or

ff
di

st
an

ce
[p

ix
el

s]

ω δ

10 20 30 40 50 60 70 80
0

20

40

60

80

100

o

H
au

sd
or

ff
di

st
an

ce
[p

ix
el

s]

Straight (5 coils)
Straight (15 coils)
Curved (5 coils)
Curved (15 coils)

Figure 9: We plot the Hausdorff distance for o = [6, 85] with
ω and δ held constant at the suggested values ω = 20 and
δ = 50 for the synthetic helices shown in Table IV. Generally
for o = [12..40] the Hausdorff distance is flat, low, and stable;
however choosing too many or too few control points results in
poor locality of the weighted geometric transform. We suggest
o = 30 based on the flat region in this experiment.

D. Projection experiment

We assess our algorithm in cases where the helix is viewed
from increasingly oblique angles until its 2D projection is a
complete circle (Table V). We show the extracted 3D curve (red)
compared to the analytical curve (blue) and plot the torutosity
compared to the ground truth in Figure 10. The results show
that our method can correctly capture the number of coils at
highly oblique angles, but the length decreases according to
the viewing angle. The straightened curve can be stretched by
diving its length by cos(θ) if the viewing angle θ is known
beforehand, e.g. from the imaging setup. This produces far
more accurate tortuosity measurements, plotted in blue.

E. Real-World Validation: Parameter Sensitivity

The smoothing parameter σ is used to clean the noisy
boundary of real-world images of helical objects. To measure
its sensitivity, we run a hundred experiments on three different

Table V: Synthetic experiment to evaluate the extracted curve
from different viewing angles. An analytical helix is rotated
away from the viewing plane and projected onto a 2D image,
of which we extract the 3D curve shown in red. The tortuosities
are compared to the analytical helix and plotted in Figure 10.

70◦ Diagram θ Top-down orthographic projection

θ

camera

0◦

10◦

20◦

30◦

40◦

50◦

60◦

70◦

80◦

90◦

10

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

Viewing angle θ in degrees

To
rt

uo
si

ty

Tortuosity
Adjusted tortuosity
Ground truth

Figure 10: Extracted tortuosities from different viewing angles
(shown in Table V). If θ is known beforehand, e.g. from the
imaging setup, we adjust the straightened curve by dividing
its length by cos(θ). This stretches the extracted curve to
approximately the true 3D length of the target object, correcting
much of the distortion caused by non-perpendicular viewing
angles and yielding a far more accurate tortuosity.

10−2 10−1 100

101

102

Smoothing parameter σ

Pe
ak

s
in

ex
tr

ac
te

d
cu

rv
e

Ground truth peaks
Spirulina (124)

Leptospira (49)

Screw (21)

Figure 11: Parameter sensitivity for our main smoothing
parameter σ = 0.01 to 1 in three different noisy helical objects,
showing the number of peaks detected as σ varies accordingly.

macro and microscopic real-world images (Table VIIa & b,
and Table VIIIa) plotting σ = 0.01 through to 1 and count
the number of peaks in the generated 3D curve. We then
compare these peaks to a ground truth, which we have manually
counted for each image, and plot the results in Figure 11. In
this experiment, all of the other parameters were set to their
defaults as discussed in the previous sections.

In Figure 11 we see substantial noise in the results; in partic-
ular before or after the ground truth there is often a noticeable
dip or peak in the results. The general decrease in the number
of detected peaks is caused by peaks becoming indiscernible
due to smoothing. The occasional increase meanwhile is caused
by more subtle effects, where excessive robust local regression
smoothing changes the number of first order derivative zero
crossings in regions where the signal becomes almost constant.

However we can see a clear phase of delay for each of the
three sample images at the ground truth; this plateau indicates
the stability of our algorithm over the range of σ.

F. Real-World Validation: Discussion

We ran our algorithm on a wide range of image types and
show the results in Table VII. Additionally, we ran the algorithm
without the unwrapping process on naturally straight images in
Table VIII. All of the results were gathered with little tuning of
σ and δ and otherwise default parameters were set as discussed
in the previous sections; we show the values chosen for σ and
d for each of the images in Table VI. Our algorithm achieves
a good visual fitting of the helical curve for the image types;
in particular it can robustly handle noisy images, as shown in
Table VIId and Table VIIIf. Table VIIIe was the most noisy
scenario, imaging a DNA fibre, where we required finer tuning
of d compared to the other scenarios to correctly identify the
peaks. With the default straightening parameters some minor
underfitting occurs in cases such as the top end of Table VIIc;
this can be improved by increasing the density of control points
ω in the straightening phase. Our algorithm extracts 3D curves
with the correct number of coils from images taken at oblique
angles, however the central axis of the resulting 3D curve will
always be parallel to the image plane whether or not the object
itself is, as shown in Table VIIc, Table VIIIa & d.

Table VI: Parameters used for the extracted curve in the images
in Table VII and Table VIII, and their resulting tortuosities τ .
We also show the number of extracted peaks which in all cases
are the same as the ground truth. We improve the fitting by
setting d according to the number of rows n in the straightened
image B, and use the default values δ = 50 and ω = 20.

Table VII Table VIII
Image a b c d a b c d e f

σ 0.01 0.01 0.07 0.05 0.1 0.05 0.1 0.09 0.01 0.1
d n/20 0 0 0 0 n/5 0 0 n/12 0

τ 3.19 2.87 3.49 2.74 5.86 5.55 1.27 19.23 15.28 1.36
peaks 49 124 19 13 21 8 7 29 19 7

G. Performance

The algorithm performance is shown in Table IX for each of
the images in Tables VII and VIII. Our unoptimized MATLAB
implementation performs reasonably quickly; the slowest part
is the straightening process, in particular evaluating the local
weighted mean transform for the nearest o = 30 control points.

V. LIMITATIONS

The limitations of our approach are intuitively simple and
are mostly a product of the method’s underlying assumptions:

1) The object is assumed to have a circular cross-section;
the method will never produce an elliptical helix.

2) The helical object cannot wrap over itself or intersect
with other helical objects at a macro-level; the skeleton
of the segmented helical object must have a tree structure
otherwise the straightening results are undefined.

11

Table VII: Different views of our result (middle columns) and the intermediate straightened image (right column) for Leptospira:
(a) [10] and a busy scenario (d) [44]. Spirulina image types: (b) with a large number of curls [45] and (c) a skewed view [46].

Original Top View Side View Straightened Image

a

b

c

d

Table VIII: Different output views of macro- and microscale straight image types, without the straightening process (Algorithm 2).
Images of screws (a,d) [47] [48], springs (b), hair (c), and noisy images of: DNA (e) [49] and Pseudomonas fluorescens (f) [50].

Original Top View Side View Original Top View Side View

a d

b e

c f

12

Table IX: Performance timings (seconds) for the segmentation
of the structural curve (Algorithm 1), the straightening process
(Algorithm 2), and the fitting of the final 3D curve (Algorithm
3) for each of the images in Table VII and Table VIII.

Table VII Table VIII
Image a b c d a b c d e f

X Size 653 771 352 304 169 971 1,702 212 280 220
Y Size 539 590 264 191 269 999 4,039 380 380 280

Alg. 1 0.16 0.14 0.12 0.11 0.13 0.22 0.38 0.16 0.26 0.13
Alg. 2 15.4 24.7 1.69 0.85 - - - - - -
Alg. 3 0.34 0.35 0.24 0.19 0.21 0.32 0.83 0.21 0.21 0.17

Total (s) 15.9 25.2 2.05 1.15 0.34 0.54 1.21 0.37 0.47 0.3

3) The object must first be segmented, and this segmentation
must be unbroken and must accurately capture the
undulations in the object’s boundary. In all of our
experiments we have found intensity thresholding by
Otsu’s method, followed by largest connected component
selection, to be sufficient.

4) The object is assumed to lie parallel with the image
plane, with its axis orthogonal to the viewing direction.
If the object is inclined too steeply when imaged then
its coils will appear to self-intersect; the resulting helix
curve will still have the correct radius and number of
coils, but the length and pitch will be underestimated
since the boundary peaks will appear closer together
now. If the viewing angle θ is known (see Table V), the
straightened helix curve can be corrected by dividing its
length by cos(θ).

Limitation 1 occurs because it is extremely difficult to
infer depth information from a single 2D image without prior
knowledge of the imaging modality and lighting conditions.

Limitation 2 occurs because our macro-level spine extraction
(Algorithm 1) works by finding the diameter path (i.e. longest
shortest path) through the object’s morphological skeleton; if
such a path self-intersected then it would contain a loop, and
so could not be a diameter path, as it could be made shorter
by bypassing the loop.

To keep our approach generic across all 2D imaging
modalities, we ignore the object’s gray level information and
work purely with its binary image, hence limitation 3. We
consider it reasonable that some such pre-processing step be
required in order to extract the object’s geometry from the
image. Segmentation is a very large field which has been
intensely researched, therefore if segmentation is an issue then
the less researched problem of helix extraction is likely to be
harder still.

Finally, limitation 4 is a direct consequence of the post-
straightening centerline detection. We estimate the centerline
as staying equidistant to the object’s left and right extrema, and
express it as a 1D function of position along the object’s long
axis. Such a function cannot accurately model the centerline
of an object such as Table VIIc, because it would need to be
many-valued in some places. Replacing this function with a
more flexible parametric curve of the form (x(t), y(t)) is a
possible extension to our method, which may improve results
on objects whose images self-intersect.

VI. FUTURE WORK

As a possible extension, it would be worth seeing if this
work could be extended to handle images of multiple helical
objects. This would be a matter of replacing the Otsu threshold
step with a more powerful segmentation algorithm able to
reliably identify multiple objects, and iterating our method
over those objects.

For each sample image in Figure 11 we observed an interval
of values for the smoothing parameter σ in which the correct
number of peaks is detected. It may be possible to find this
interval automatically by testing a range of values for σ
and looking for the flat regions in Figure 11, thus removing
the need for the user to tune σ. Furthermore, it may be
possible to simplify and optimize the straightening process, thus
eliminating some of the straightening parameters, by adapting
the mean width profile (Equation 4) to sample the image along
the profile which is normal to the macro curve.

The algorithm approach may fail to identify the parity of
the depth of the extracted curve; for example in Table VIId,
the top view of the 3D curve would look like a better fit if
the sign of all z values were flipped. In our experiments, we
attempted to automatically set the sign of the z value based on
the mean of the intensity profile across alternating segments of
the curve. We expected regions of the curve further away from
the camera to be darker due to shadowing from foreground
parts of the object, however due to shine and other image
artifacts this is often not the case. For future work, it would be
worth investigating how to improve the curve fitting in such
cases using image intensity and gradient information, and for
offsetting the skew in oblique angles.

VII. CONCLUSION

We have proposed a robust method to automatically extract
a 3D helix curve from a single 2D image of a 3D helical object.
We straighten the input image object at a large scale, before
fitting a finer helical curve to peaks in the object boundary. Our
approach has been shown to produce stable results in noisy
real-world data without requiring extensive parameter tuning.
The experimental results show that depth information can be
inferred from the object’s 2D projection, assuming that the
helical object has a circular profile. We find that, for synthetic
data, the extracted 3D curve is close to the ground truth in
terms of Hausdorff distance and tortuosity. In our results, we
show that helical objects in real-world 2D image data often
exhibit curve structure at a macro-level in addition to the
helical coils themselves. In the future, we would like to see
a simpler algorithm for fitting 3D parametric curves to noisy
2D data without the straightening process, which would speed
the algorithm up and remove the need for several parameters.

AVAILABILITY AND IMPLEMENTATION

The software has been implemented in MATLAB and is
made available at: https://github.com/cwkx/extract-3d-curve

ACKNOWLEDGMENT

This work was supported by research grants from Dyson
Ltd, UK (RF080296) and The Royal Society, UK (RF080232).

https://github.com/cwkx/extract-3d-curve

13

REFERENCES

[1] D. Wu, S. Wang, K. Liu, X. Yu, Y. He, and Z. Wang, “Rapid measurement
of morphological features of spirulina microalgae filaments using
microscopy and image processing algorithms,” Biosystems Engineering,
vol. 112, no. 1, pp. 35–41, 2012.

[2] C. Li, C. Wolgemuth, M. Marko, D. Morgan, and N. Charon, “Genetic
analysis of spirochete flagellin proteins and their involvement in motility,
filament assembly, and flagellar morphology,” Journal of Bacteriology,
vol. 190, no. 16, pp. 5607–5615, 2008.

[3] S. Vazquez and A. M. J. Flores-Alonso, “Confocal microscopy and image
analysis indicates a region-specific relation between active caspases and
cytoplasm in ejaculated and epididymal sperm,” PLoS ONE, vol. 7, no. 4,
p. e35477, 2012.

[4] A. Kruchten and M. McNiven, “Dynamin as a mover and pincher during
cell migration and invasion,” Journal of Cell Science, vol. 119, no. 9,
pp. 1683–1690, 2006.

[5] P. Bandaru, C. Daraio, K. Yang, and A. Rao, “A plausible mechanism
for the evolution of helical forms in nanostructure growth,” Journal of
Applied Physics, vol. 101, no. 9, p. 094307, 2007.

[6] A. Goriely and M. Tabor, “The mechanics and dynamics of tendril
perversion in climbing plants,” Physical Review A, vol. 250, pp. 311–318,
1998.

[7] F. Migliaccio, A. Fortunati, and P. Tassone, “Arabidopsis root growth
movements and their symmetry: Progress and problems arising from
recent work,” Plant Signaling & Behavior, vol. 4, no. 3, pp. 183–190,
2007.

[8] E. Piuze, P. Kry, and K. Siddiqi, “Generalized helicoids for modeling
hair geometry,” Comput Graph Forum, vol. 30, no. 2, pp. 247–256, 2011.

[9] S. R. Ghoreishi, P. Cartraud, P. Davies, and T. Messager, “Analytical
modeling of synthetic fiber ropes subjected to axial loads. part i: A
new continuum model for multilayered fibrous structures,” International
Journal of Solids and Structures, vol. 44, no. 9, pp. 2924–2942, 2007.

[10] L. Slamti, M. A. de Pedro, E. Guichet, and M. Picardeau, “Deciphering
morphological determinants of the helix-shaped leptospira,” Journal of
Bacteriology, vol. 193, no. 22, pp. 6266–6275, November 2011.

[11] N. Cherin, F. Cordier, and M. Melkemi, “Modeling piecewise helix
curves from 2d sketches,” Computer-Aided Design, vol. 46, pp. 258–262,
2014.

[12] F. Cordier, M. Melkemi, and H. Seo, “Reconstruction of helices from
their orthogonal projection,” Computer Aided Geometric Design, vol. 46,
pp. 1–15, 2016.

[13] F. Cordier and S. Hyewon, “Free-form sketching of self-occluding objects,”
IEEE Comput Graph & Appl, vol. 27, no. 1, pp. 50–59, 2007.

[14] P. Maragos and R. Schafer, “Morphological skeleton representation and
coding of binary images,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 34, no. 5, pp. 1228–1244, 1986.

[15] X. Bai, L. Latecki, and W. Liu, “Skeleton pruning by contour partitioning
with discrete curve evolution,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 3, pp. 449–462, 2007.

[16] R. Ogniewicz and O. Kubler, “Hierarchic voronoi skeletons,” Pattern
Recognition, vol. 28, no. 3, pp. 343–359, 1995.

[17] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust, unions of
balls, and the medial axis transform,” Computational Geometry, vol. 19,
no. 23, pp. 127–153, 2001.

[18] M. S. Hassouna and A. Farag, “Robust centerline extraction framework
using level sets,” in IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, 20-25 June 2005, pp. 458–465.

[19] M. S. Hassouna, A. Farag et al., “Variational curve skeletons using
gradient vector flow,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31, no. 12, pp. 2257–2274, 2009.

[20] L. Lam, S.-W. Lee, and C. Suen, “Thinning methodologies-a com-
prehensive survey,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 14, no. 9, pp. 869–885, Sep 1992.

[21] A. Goriely, S. Neukirch, and A. Hausrath, “Polyhelices through n points,”
International Journal of Bioinformatics Research and Applications, vol. 5,
no. 2, pp. 118–132, 2009.

[22] A. Derouet-Jourdan, F. Bertails-Descoubes, and J. Thollot, “Floating
tangents for approximating spatial curves with piecewise helices,”
Computer Aided Geometric Design, vol. 30, no. 5, pp. 490–520, 2013.

[23] S. Ghosh, “Geometric approximation of curves and singularities of secant
maps: a differential geometric approach,” Ph.D. dissertation, University
of Groningen, 2010.

[24] W. Wang, H. Pottmann, and Y. Liu, “Fitting b-spline curves to
point clouds by curvature-based squared distance minimization,” ACM
Transactions on Graphics, vol. 25, no. 2, pp. 214–238, 2006.

[25] T. Lewiner, J. D. G. Jr., H. Lopes, and M. Craizer, “Curvature and torsion
estimators based on parametric curve fitting,” Computers and Graphics,
vol. 29, no. 5, pp. 641–655, 2005.

[26] J. Cohen, L. Markosian, R. Zeleznik, J. Hughes, and R. Barzel, “An
interface for sketching 3d curves,” in Proceedings of the Symposium on
Interactive 3D Graphics, 26-29 April 1999, pp. 17–21.

[27] J. Wither, F. Bertails, and M. Cani, “Realistic hair from a sketch,” in
IEEE Conference on Shape Modeling International, 13-15 June 2007,
pp. 33–42.

[28] K. Shoji, K. Kato, and F. Toyama, “3-d interpretation of single line
drawings based on entropy minimization principle,” in IEEE Conference
on Computer Vision and Pattern Recognition, vol. 2, 8-14 December
2001, pp. 90–95.

[29] C. Steger, “An unbiased detector of curvilinear structures,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20,
no. 2, pp. 113–125, 1998.

[30] A. Frangi, W. Niessen, K. Vincken, and M. Viergever, “Multiscale vessel
enhancement filtering,” in Medical Image Computing and Computer-
Assisted Interventation, 1998, vol. 1496, pp. 130–137.

[31] R. Y. Li, C. Y. Hsieh, and Y. H. Tseng, “3d b-spline curve fitting with
mms image features of road lines,” 18-23 October 2009.

[32] C. Canero, P. Radeva, R. Toledo, J. Villanueva, and J. Mauri, “3d curve
reconstruction by biplane snakes,” in International Conference on Pattern
Recognition, vol. 4, 3-7 September 2000, pp. 563–566.

[33] P. Savadjiev, J. S. Campbell, G. B. Pike, and K. Siddiqi, “3D curve
inference for diffusion MRI regularization and fibre tractography,”
Medical Image Analysis, vol. 10, no. 5, pp. 799–813, October 2006.

[34] P. Parent and S. W. Zucker, “Trace inference, curvature consistency, and
curve detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 8, pp. 823–839, August 1989.

[35] C. Loader, Local Regression and Likelihood, ser. Statistics and Computing.
Springer New York, 2006.

[36] W. Cleveland, “Robust locally weighted regression and smoothing
scatterplots,” Journal of the American Statistical Association, vol. 74,
no. 368, pp. 829–836, 1979.

[37] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans Syst, Man, Cybern, Syst, vol. 9, no. 1, pp. 62–66, 1979.

[38] P. Soille, Morphological Image Analysis: Principles and Applications,
ser. Engineering online library. Springer, 2004.

[39] L. Lam, S.-W. Lee, and C. Suen, “Thinning methodologies-a com-
prehensive survey,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 14, no. 9, pp. 869–885, 1992.

[40] R. W. Bulterman, F. W. van der Sommen, G. Zwaan, T. Verhoeff, A. J. M.
van Gasteren, and W. H. J. Feijen, “On computing a longest path in a
tree,” Inf. Process. Lett., vol. 81, no. 2, pp. 93–96, Jan. 2002.

[41] J. Yao, A. Chowdhury, J. Aman, and R. Summers, “Reversible projection
technique for colon unfolding,” vol. 57, no. 12, 2010, pp. 2861–2869.

[42] A. Goshtasby, “Image registration by local approximation methods,”
Image Vision Computing, vol. 6, no. 4, pp. 255–261, 1988.

[43] E. T. Lee, “Choosing nodes in parametric curve interpolation,” Computer-
Aided Design, vol. 21, no. 6, pp. 363–370, 1989.

[44] J. Chen, J. Bergevin, R. Kiss, G. Walker, T. Battistoni, P. Lufburrow,
H. Lam, and A. Vinther, “Case study: A novel bacterial contamination
in cell culture production-leptospira licerasiae,” PDA J Pharm Sci Tech,
vol. 66, no. 6, pp. 580–591, 2012.

[45] (2015) Forensic lab supply, cyanophycota: Spirulina. Accessed: 2015-09-
07. [Online]. Available: http://grauhall.com/catalog/product_info.php?
products_id=1672

[46] (2015) Algatarifa spirulina. Accessed: 2015-09-07. [Online]. Available:
http://www.algatarifa.com/Benvenuto.html

[47] (2015) Zinc plated countersink pozi screws. Accessed: 2015-09-
07. [Online]. Available: http://www.ukpictureframingsupplies.co.uk/
zinc-plated-countersink-pozi-screws-4-x-38-10mm-320-p.asp

[48] (2015) Spring plungers with grub screw. Accessed:
2015-09-07. [Online]. Available: http://www.cotel.co.uk/p/493/
spring-plunger-with-grub-screw-and-plastic-nose-pin

[49] F. Gentile, M. Moretti, T. Limongi, A. Falqui, G. Bertoni, A. Scarpellini,
S. Santoriello, L. Maragliano, R. P. Zaccaria, and E. di Fabrizio, “Direct
imaging of dna fibers: The visage of double helix,” Nano Letters, vol. 12,
no. 12, pp. 6453–6458, 2012.

[50] (2007) Imaging bacteria, biopolymers, and colloidal particles. Accessed:
2015-09-07. [Online]. Available: https://www.wpi.edu/academics/che/
BA/imagingbacteria.html

http://grauhall.com/catalog/product_info.php?products_id=1672
http://grauhall.com/catalog/product_info.php?products_id=1672
http://www.algatarifa.com/Benvenuto.html
http://www.ukpictureframingsupplies.co.uk/zinc-plated-countersink-pozi-screws-4-x-38-10mm-320-p.asp
http://www.ukpictureframingsupplies.co.uk/zinc-plated-countersink-pozi-screws-4-x-38-10mm-320-p.asp
http://www.cotel.co.uk/p/493/spring-plunger-with-grub-screw-and-plastic-nose-pin
http://www.cotel.co.uk/p/493/spring-plunger-with-grub-screw-and-plastic-nose-pin
https://www.wpi.edu/academics/che/BA/imagingbacteria.html
https://www.wpi.edu/academics/che/BA/imagingbacteria.html

14

Chris G. Willcocks received a PhD in Computer
Science at Durham University in 2013 where he
specialized in real-time GPGPU rendering and defor-
mation of large volumetric datasets. He researched
object deformation at Newcastle University Game
Lab before accepting a post-doctoral research position
at Durham University in 2015.

His interdisciplinary research aims to enable ele-
gant solutions to otherwise challenging or computa-
tionally expensive problems in the fields of computer
graphics and bioimage informatics.

Philip T. G. Jackson received a BSc degree in Com-
puter Science & Physics within the Natural Sciences
Programme from Durham University followed by an
MSc in Computer Science, and is currently reading
for a PhD degree in Computer Science, also from
Durham University, UK.

His research investigates the use of recurrent neural
networks for multi-object localisation.

Carl J. Nelson received an MSci degree in Biology
& Physics within the Natural Sciences Programme
from Durham University and is currently reading
for a PhD degree in Computing Science, also from
Durham University, UK.

His interdisciplinary research focuses on devel-
oping advanced and novel quantification techniques
for bioimaging. The tools are used to further the
understanding of biological processes that can be
gleaned through bioimaging techniques.

Boguslaw Obara received an MSc in Physics from
the Jagiellonian University and PhD in Computer Sci-
ence from the AGH University of Science and Tech-
nology, Krakow, Poland. He has been a researcher
at the Polish Academy of Sciences (2001-2007),
a Fulbright fellow (2006-2007) and a postdoctoral
researcher at the University California, USA (2007-
2009) and the University of Oxford, UK (2007-2009).
He is currently a senior lecturer in Computer Science
at the University of Durham, UK.

His interdisciplinary research focuses on advancing
the state of the art in bioimage informatics technologies aimed at a better
understanding of the complex biological processes, from nano to macro.

	Introduction
	Related Work
	3D Reconstruction Approaches
	Image Skeletonization
	Curve Fitting and Representation
	Semi-automatic Approaches
	Image-based Approaches
	Proposed Approach

	Method
	Overview
	Segmentation of the Main Structural Curve
	Image Straightening
	Helical Extraction

	Results
	Synthetic Validation: Comparison to Analytical Helix Curve
	Noise Experiment
	Straightening experiment
	Projection experiment
	Real-World Validation: Parameter Sensitivity
	Real-World Validation: Discussion
	Performance

	Limitations
	Future Work
	Conclusion
	References
	Biographies
	Chris G. Willcocks
	Philip T. G. Jackson
	Carl J. Nelson
	Boguslaw Obara

