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Learning the Information Divergence
Onur Dikmen, Zhirong Yang, and Erkki Oja,

Abstract—Information divergence that measures the difference
between two nonnegative matrices or tensors has found its
use in a variety of machine learning problems. Examples are
Nonnegative Matrix/Tensor Factorization, Stochastic Neighbor
Embedding, topic models, and Bayesian network optimization.
The success of such a learning task depends heavily on a
suitable divergence. A large variety of divergences have been
suggested and analyzed, but very few results are available for
an objective choice of the optimal divergence for a given task.
Here we present a framework that facilitates automatic selection
of the best divergence among a given family, based on standard
maximum likelihood estimation. We first propose an approxi-
mated Tweedie distribution for the β-divergence family. Selecting
the best β then becomes a machine learning problem solved
by maximum likelihood. Next, we reformulate α-divergence in
terms of β-divergence, which enables automatic selection ofα
by maximum likelihood with reuse of the learning principle for
β-divergence. Furthermore, we show the connections betweenγ-
and β-divergences as well as Rényi- andα-divergences, such
that our automatic selection framework is extended to non-
separable divergences. Experiments on both synthetic and real-
world data demonstrate that our method can quite accurately
select information divergence across different learning problems
and various divergence families.

Index Terms—information divergence, Tweedie distribution,
maximum likelihood, nonnegative matrix factorization, stochastic
neighbor embedding.

I. I NTRODUCTION

Information divergences are an essential element in modern
machine learning. They originated in estimation theory where
a divergence maps the dissimilarity between two probability
distributions to nonnegative values. Presently, information
divergences have been extended for nonnegative tensors and
used in many learning problems where the objective is to min-
imize the approximation error between the observed data and
the model. Typical applications include Nonnegative Matrix
Factorization (see e.g. [1], [2], [3], [4]), Stochastic Neighbor
Embedding [5], [6], topic models [7], [8], and Bayesian
network optimization [9].

There exist a large variety of information divergences. In
Section II, we summarize the most popularly used parametric
families includingα-, β-, γ- and Rényi-divergences [10], [11],
[12], [13], [14] and their combinations (e.g. [15]). The four
parametric families in turn belong to broader ones such as
the Csiszár-Morimotof -divergences [16], [17] and Bregman
divergences [18]. Data analysis techniques based on informa-
tion divergences have been widely and successfully applied
to various data such as text [19], electroencephalography [3],
facial images [20], and audio spectrograms [21].
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Compared to the rich set of available information diver-
gences, there is little research on how to select the best one
for a given application. This is an important issue because
the performance of a given divergence-based estimation or
modeling method in a particular task very much depends on
the divergence used. Formulating a learning task in a familyof
divergences greatly increases the flexibility to handle different
types of noise in data. For example, Euclidean distance is
suitable for data with Gaussian noise; Kullback-Leibler diver-
gence has shown success for finding topics in text documents
[7]; and Itakura-Saito divergence has proven to be suitable
for audio signal processing [21]. A conventional workaround
is to select among a finite number of candidate divergences
using a validation set. This however cannot be applied to
divergences that are non-separable over tensor entries. The
validation approach is also problematic for tasks where all
data are needed for learning, for example, cluster analysis.

In Section III, we propose a new method of statistical
learning for selecting the best divergence among the four
popular parametric families in any given data modeling task.
Our starting-point is the Tweedie distribution [22], whichis
known to have a relationship withβ-divergence [23], [24].
The Maximum Tweedie Likelihood (MTL) is in principle
a disciplined and straightforward method for choosing the
optimal β value. However, in order for this to be feasible in
practice, two shortcomings with the MTL method have to be
overcome: 1) Tweedie distribution is not defined for allβ; 2)
calculation of Tweedie likelihood is complicated and proneto
numerical problems for largeβ. To overcome these drawbacks,
we propose here a novel distribution using an exponential over
theβ-divergence with a specific augmentation term. The new
distribution has the following nice properties: 1) it is close to
the Tweedie distribution, especially at four important special
cases; 2) it exists for allβ ∈ R; 3) its likelihood can be calcu-
lated by standard statistical software. We call the new density
the Exponential Divergence with Augmentation (EDA). EDA
is a non-normalized density, i.e., its likelihood includesa
normalizing constant which is not analytically available.But,
since the density is univariate the normalizing constant can be
efficiently and accurately estimated by numerical integration.
The method of Maximizing the Exponential Divergence with
Augmentation Likelihood (MEDAL) thus gives a more robust
β selection in a wider range than MTL.β estimation on EDA
can also be carried out using parameter estimation methods,
e.g., Score Matching (SM) [25], specifically proposed for non-
normalized densities. In the experiments section, we show that
SM on EDA also performs as accurately as MEDAL.

Besidesβ-divergence, the MEDAL method is extended to
select the best divergence in other parametric families. We
reformulateα-divergence in terms ofβ-divergence after a
change of parameters so thatα can be optimized using the
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MEDAL method. Our method can also be applied to non-
separable cases. We show the equivalence betweenβ and
γ-divergences, and betweenα and Rényi divergences by a
connecting scalar, which allows us to choose the bestγ- or
Rényi-divergence by reusing the MEDAL method.

We tested our method with extensive experiments, whose re-
sults are presented in Section IV. We have used both synthetic
data with a known distribution and real-world data including
music, stock prices, and social networks. The MEDAL method
is applied to different learning problems: Nonnegative Matrix
Factorization (NMF) [26], [3], [1], Projective NMF [27], [28]
and Symmetric Stochastic Neighbor Embedding for visualiza-
tion [5], [6]. We also demonstrate that our method outperforms
Score Matching on Exponential Divergence distribution (ED),
a previous approach forβ-divergence selection [29]. Conclu-
sions and discussions on future work are given in Section V.

II. I NFORMATION DIVERGENCES

Many learning objectives can be formulated as an approxi-
mation of the formx ≈ µ, wherex > 0 is the observed data
(input) andµ is the approximation given by the model. The
formulation for µ totally depends on the task to be solved.
Consider Nonnegative Matrix Factorization: thenx > 0 is a
data matrix andµ is a product of two lower-rank nonnegative
matrices which typically give a sparse representation for the
columns ofx. Other concrete examples are given in Section
IV.

The approximation error can be measured by various in-
formation divergences. Supposeµ is parameterized byΘ.
The learning problem becomes an optimization procedure
that minimizes the given divergenceD(x||µ(Θ)) over Θ.
Regularization may be applied forΘ for complexity control.
For notational brevity we focus on definitions over vectorial x,
µ, Θ in this section, while they can be extended to matrices
or higher order tensors in a straightforward manner.

In this work we consider four parametric families of di-
vergences, which are the widely usedα-, β-, γ- and Rényi-
divergences. This collection is rich because it covers most
commonly used divergences. The definition of the four fami-
lies and some of their special cases are given below.

• α-divergence [10], [11] is defined as

Dα(x||µ) =
∑

i x
α
i µ

1−α
i − αxi + (α − 1)µi

α(α− 1)
. (1)

The family contains the following special cases:

Dα=2(x||µ) =DP(x||µ) =
1

2

∑

i

(xi − µi)
2

µi

Dα→1(x||µ) =DI(x||µ) =
∑

i

(
xi ln

xi

µi
− xi + µi

)

Dα=1/2(x||µ) =2DH(x||µ) = 2
∑

i

(
√
xi −

√
µi)

2

Dα→0(x||µ) =DI(µ||x) =
∑

i

(
µi ln

µi

xi
− µi + xi

)

Dα=−1(x||µ) =DIP(x||µ) =
1

2

∑

i

(xi − µi)
2

xi

where DI , DP, DIP, and DH denote non-normalized
Kullback-Leibler, Pearson Chi-square, inverse Pearson
and Hellinger distances, respectively.

• β-divergence [30], [31] is defined as

Dβ(x||µ) =
∑

i x
β+1
i + βµβ+1

i − (β + 1)xiµ
β
i

β(β + 1)
. (2)

The family contains the following special cases:

Dβ=1(x||µ) =DEU(x||µ) =
1

2

∑

i

(xi − µi)
2 (3)

Dβ→0(x||µ) =DI(x||µ) =
∑

i

(
xi ln

xi

µi
− xi + µi

)

(4)

Dβ→−1(x||µ) =DIS(x||µ) =
∑

i

(
xi

µi
− ln

xi

µi
− 1

)

(5)

Dβ=−2(x||µ) =
∑

i

(
xi

2µ2
i

− 1

µi
+

1

2xi

)
, (6)

whereDEU andDIS denote the Euclidean distance and
Itakura-Saito divergence, respectively.

• γ-divergence [13] is defined as

Dγ(x||µ) =
1

γ(γ + 1)

[
ln

(
∑

i

xγ+1
i

)
+ γ ln

(
∑

i

µγ+1
i

)

−(γ + 1) ln

(
∑

i

xiµ
γ
i

)]
. (7)

The normalized Kullback-Leibler (KL) divergence is a
special case ofγ-divergence:

Dγ→0(x||µ) = DKL(x̃||µ̃) =
∑

i

x̃i ln
x̃i

µ̃i
, (8)

wherex̃i = xi/
∑

j xj and µ̃i = µi/
∑

j µj .
• Rényi divergence [32] is defined as

Dρ(x||µ) =
1

ρ− 1
ln
(
x̃ρ
i µ̃

1−ρ
i

)
(9)

for ρ > 0. The Rényi divergence also includes the
normalized Kullback-Leibler divergence as its special
case whenρ → 1.

III. D IVERGENCE SELECTION BY STATISTICAL LEARNING

The above rich collection of information divergences basi-
cally allows great flexibility to the approximation framework.
However, practitioners must face a choice problem:how to
select the best divergence in a family?In most existing
applications the selection is done empirically by the human.
A conventional automatic selection method is cross-validation
[33], [34], where the training only uses part of the entries
of x and the remaining ones are used for validation. This
method has a number of drawbacks: 1) it is only applicable
to the divergences where the entries are separable (e.g.α-
or β-divergence). Leaving out some entries forγ- and Rényi
divergences is infeasible due to the logarithm or normalization;
2) separation of entries is not applicable in some applications
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where all entries are needed in the learning, for example,
cluster analysis.

Our proposal here is to use the familiar and proven tech-
nique of maximum likelihood estimation forautomatic di-
vergence selection, using a suitably chosen and very flexible
probability density model for the data. In the following we
discuss this statistical learning approach for automatic diver-
gence selection in the family ofβ -divergences, followed by
its extensions to the other divergence families.

A. Selectingβ-divergence

1) Maximum Tweedie Likelihood (MTL):We start from the
probability density function (pdf) of an exponential dispersion
model (EDM) [22]:

pEDM(x; θ, φ, p) = f(x, φ, p) exp

[
1

φ
(xθ − κ(θ))

]
(10)

whereφ > 0 is the dispersion parameter,θ is the canonical
parameter, andκ(θ) is the cumulant function (whenφ = 1 its
derivatives w.r.t.θ give the cumulants). Such a distribution has
meanµ = κ′(θ) and varianceV (µ, p) = φκ′′(θ). This density
is defined forx ≥ 0, thusµ > 0.

A Tweedie distribution is an EDM whose variance has a
special form,V (µ) = µp with p ∈ R\(0, 1). The canonical
parameter and the cumulant function that satisfy this property
are [22]

θ =

{
µ1−p−1
1−p , if p 6= 1

lnµ, if p = 1
, κ(θ) =

{
µ2−p−1
2−p , if p 6= 2

lnµ, if p = 2
.

(11)

Note thatlnµ is the limit of µt−1
t as t → 0. Finite analytical

forms of f(x, φ, p) in Tweedie distribution are generally
unavailable. The function can be expanded with infinite series
[35] or approximated by saddle point estimation [36].

It is known that the Tweedie distribution has a connection to
β-divergence (see, e.g., [23], [24]): maximizing the likelihood
of Tweedie distribution for certainp values is equivalent to
minimizing the corresponding divergence withβ = 1− p. Es-
pecially, the gradients of the log-likelihood of Gamma, Poisson
and Gaussian distributions overµi are equal to the ones ofβ-
divergence withβ = −1, 0, 1, respectively. This motivates aβ-
divergence selection method by Maximum Tweedie Likelihood
(MTL).

However, MTL has the following two shortcomings. First,
Tweedie distribution is not defined forp ∈ (0, 1). That is, if
the bestβ = 1−p happens to be in the range(0, 1), it cannot
be found by MTL; in addition, there is little research on the
Tweedie distribution withβ > 1 (p < 0). Second,f(x, φ, p)
in Tweedie distribution is not the probability normalizing
constant (note that it depends onx), and its evaluation requires
ad hoc techniques. The existing software using the infinite
series expansion approach [35] (see Appendix A) is prone to
numerical computation problems especially for−0.1 < β < 0.
There is no existing implementation that can calculate Tweedie
likelihood for β > 1.

2) Maximum Exponential Divergence with Augmentation
Likelihood (MEDAL): Our answer to the above shortcomings
in MTL is to design an alternative distribution with the
following properties: 1) it is close to the Tweedie distribution,
especially for the four crucial points whenβ ∈ {−2,−1, 0, 1};
2) it should be defined for allβ ∈ R; 3) its pdf can be evaluated
more robustly by standard statistical software.

From (10) and (11) the pdf of the Tweedie distribution is
written as

pTw(x;µ, φ, β) = f(x, φ, β) exp

[
1

φ

(
xµβ

β
− µβ+1

β + 1

)]
(12)

w.r.t. β instead ofp, using the relationβ = 1− p. This holds
when β 6= 0 and β 6= −1. The extra terms1/(1 − p) and
1/(2− p) in (11) have been absorbed inf(x, φ, β). The cases
β = 0 or β = −1 have to be analyzed separately.

To make an explicit connection withβ-divergence defined
in (2), we suggest a new distribution given in the following
form:

papprox(x;µ, φ, β) = g(x, φ, β) exp

{
− 1

φ
Dβ(x||µ)

}

= g(x, φ, β) exp

[
1

φ

(
− xβ+1

β(β + 1)
+

xµβ

β
− µβ+1

β + 1

)]
.

(13)

Now theβ-divergence for scalarx appears in the exponent, and
g(x, φ, β) will be used to approximate this with the Tweedie
distribution. Ideally, the choice

g(x, φ, β) = f(x, φ, β)/ exp

[
1

φ

(
− xβ+1

β(β + 1)

)]

would result in full equivalence to Tweedie distribution, as
seen from (12). However, becausef(x, φ, β) is unknown in
the general case, suchg is also unavailable.

We can, however, try to approximateg using the fact that
papprox must be a proper density whose integral is equal to one.
From (13) it then follows

exp

[
1

φ

µβ+1

β + 1

]

=

∫
dx g(x, φ, β) exp

[
1

φ

(
− xβ+1

β(β + 1)
+

xµβ

β

)]

(14)

This integral is, of course, impossible to evaluate becausewe
do not even know the function inside. However, the integral
can be approximated nicely by Laplace’s method. Laplace’s
approximation is

∫ b

a

dx f(x)eMh(x) ≈
√

2π

M |h′′(x0)|
f(x0)e

Mh(x0)

wherex0 = argmaxx h(x) andM is a large constant.
In order to approximate (14) by Laplace’s method,1/φ

takes the role ofM and thus the approximation is valid for
small φ. We need the maximizer of the exponentiated term
h(x) = − xβ+1

β(β+1) +
xµβ

β . This term has a zero first derivative
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and negative second derivative, i.e., it is maximized, atx = µ.
Thus, Laplace’s method gives us

exp

[
1

φ

µβ+1

β + 1

]

≈
√

2πφ

| − µβ−1| g(µ, φ, β) exp
[
1

φ

(
− µβ+1

β(β + 1)
+

µβ+1

β

)]

=

√
2πφ

µβ−1
g(µ, φ, β) exp

[
1

φ

µβ+1

β + 1

]
.

The approximation givesg(µ, φ, β) = 1√
2πφ

µ(β−1)/2 which
suggests the function

g(x, φ, β) =
1√
2πφ

x(β−1)/2 =
1√
2πφ

exp

[
(β − 1)

2
lnx

]
.

Putting this result into (13) as such does not guarantee a
proper pdf however, because it is an approximation, only valid
at the limit φ → 0. To make it proper, we have to add a
normalizing constant into the density in (13).

The pdf of the final distribution, for a scalar argumentx,
thus becomes

papprox(x;µ, β, φ) =
1

Z(µ, β, φ)
exp

{
R(x, β)− 1

φ
Dβ(x||µ)

}

(15)

where Z(µ, β, φ) is the normalizing constant counting for
the terms which are independent ofx, and R(x, β) is an
augmentation term given as

R(x, β) =
β − 1

2
lnx . (16)

This pdf is a proper density for allβ ∈ R, which is
guaranteed by the following theorem.

Theorem 1:Let f(x) = exp
{

β−1
2 lnx− 1

φDβ(x||µ)
}

.

The improper integral
∫∞
0

f(x)dx converges.

Proof: Let q =
∣∣∣β−1

2

∣∣∣ + 1 + ǫ with any ǫ ∈ (0,∞),

and g(x) = x−q. By these definitions, we haveq >
∣∣∣β−1

2

∣∣∣,
and then forx ≥ 1,

(
β−1
2 + q

)
φ lnx ≤ 0 ≤ Dβ(x||µ),

i.e. 0 ≤ f(x) ≤ g(x). By Cauchy convergence test, we
know that

∫∞
1 g(x)dx is convergent becauseq > 1, and so

is
∫∞
1 f(x)dx. Obviouslyf(x) is continuous and bounded for

x ∈ [0, 1]. Therefore, forx ≥ 0,
∫∞
0

f(x)dx =
∫ 1

0
f(x)dx +∫∞

1
f(x)dx also converges.

Finally, for vectorialx, the pdf is a product of the marginal
densities:

pEDA(x;µ, β, φ) =
1

Z(µ, β, φ)
exp

{
R(x, β) − 1

φ
Dβ(x||µ)

}

(17)

whereDβ(x||µ) is defined in (2) and

R(x, β) =
β − 1

2

∑

i

lnxi . (18)

We call (17) the Exponential Divergence with Augmentation
(EDA) distribution, because it applies an exponential overan
information divergence plus an augmentation term.

The log-likelihood of the EDA density can be written as

ln p(x;µ, β, φ) =
∑

i

ln p(xi;µi, β, φ)

=
∑

i

[
β − 1

2
lnxi −

1

φ
Dβ(xi||µi)− lnZ(µi, β, φ)

]
(19)

due to the fact thatDβ(x||µ) in Eq. (2) and the augmentation
term in (18) are separable overxi, (i.e. xi are independent
givenµi). The bestβ is now selected by

β∗ = argmax
β

[
max
φ

ln p(x;µ, β, φ)

]
, (20)

whereµ = argminη Dβ(x||η). We call the new divergence
selection methodMaximum EDA Likelihood(MEDAL).

Let us look at the four special cases of Tweedie distribu-
tion: Gaussian (N ), Poisson (PO), Gamma (G) and Inverse
Gaussian (IN ). They correspond toβ = 1, 0,−1,−2. For
simplicity of notation, we may drop the subscripti and write
x andµ for one entry inx andµ. Then, the log-likelihoods
of the above four special cases are

ln pN (x;µ, φ) =− 1

2
ln(2πφ)− 1

2φ
(x− µ)2,

ln pPO(x;µ) =x lnµ− µ− ln Γ(x + 1),

≈x lnµ− µ− ln(2πx)/2− x lnx+ x,

ln pG(x; 1/φ, φµ) =(1/φ− 1) lnx− x

φµ

− (1/φ) ln(φµ)− ln Γ(1/φ),

ln pIN (x;µ, 1/φ) =− 1

2
ln(2πφx3)− 1

φ

(
1

2

x

µ2
− 1

µ
+

1

2x

)
,

where in the Poisson case we employ Stirling’s approxima-
tion1. To see the similarity of these four special cases with the
general expression for the EDA log-likelihood in Eq. (19),
let us look at one term in the sum there. It is a fairly
straightforward exercise to plug in theβ-divergences from
Eqs. (3,4,5,6) and the augmentation term from Eq. (18) and
see that the log-likelihoods coincide. The normalizing term
lnZ(µ, β, φ)] for these special cases can be determined from
the corresponding density.

In general, the normalizing constantZ(µ, β, φ) is in-
tractable except for a few special cases. Numerical evaluation
of Z(µ, β, φ) can be implemented by standard statistical
software. Here we employ the approximation with Gauss-
Laguerre quadratures (details in Appendix B).

Finally, let us note that in addition to the maximum likeli-
hood estimator, Score Matching (SM) [25], [37] can be applied
to estimation ofβ as a density parameter (see Section IV-A). In
a previous effort, Lu et al. [29] proposed a similar exponential
divergence (ED) distribution

pED(x;µ, β) ∝ exp [−Dβ(x||µ)] , (21)

but without the augmentation. It is easy to show that ED also
exists for allβ by changingq = 1+ǫ in the proof of Theorem

1The caseβ = 0 andφ 6= 1 does not correspond to Poisson distribution,
but the transformationpEDM(x;µ, φ, 1) = pPO(x/φ;µ/φ)/φ can be used
to evaluate the pdf.
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1. We will empirically illustrate the discrepancy between ED
and EDA in Section IV-A, showing that the selection based
on ED is however inaccurate, especially forβ ≤ 0.

B. Selectingα-divergence

We extend the MEDAL method toα-divergence selection.
This is done by relatingα-divergence toβ-divergence with a
nonlinear transformation betweenα andβ. Let yi = xα

i /α
2α,

mi = µα
i /α

2α andβ = 1/α− 1 for α 6= 0. We have

Dβ(yi||mi) =
1

β(β + 1)

(
yβ+1
i + βmβ+1

i − (β + 1)yim
β
i

)

=
−α2

α− 1

(
xi

α2
+

1− α

α

µi

α2
− 1

α

xα
i

α2α

µ1−α
i

α2(1−α)

)

=Dα(xi||µi)

This relationship allows us to evaluate the likelihood ofµ
andα usingyi andβ:

p(xi;µi, α, φ) = p(yi;mi, β, φ)

∣∣∣∣
dyi
dxi

∣∣∣∣

= p(yi;mi, β, φ)
xα−1
i

α2(α−1/2)

= p(yi;mi, β, φ)y
−β
i |β + 1|

In vectorial form, the bestα for Dα(x||µ) is then given by
α∗ = 1/(β∗ + 1) where

β∗ =argmax
β

{
max
φ

[
ln p(y;m, β)

− β ln yi + ln |β + 1|
]}

, (22)

wherem = argminη Dβ(y||η). This transformation method
can handle allα exceptα → 0 since it corresponds toβ → ∞.

C. Selectingγ- and Rényi divergences

Above we presented the selection methods for two families
where the divergence is separable over the tensor entries. Next
we consider selection amongγ- and Rényi divergence families
where their members are not separable. Our strategy is to
reduceγ-divergence toβ-divergence with aconnecting scalar.
This is formally given by the following result.

Theorem 2:For x ≥ 0 andτ ∈ R,

argmin
µ≥0

Dγ→τ (x||µ) = argmin
µ≥0

[
min
c>0

Dβ→τ (x||cµ)
]

(23)

The proof is done by zeroing the derivative right hand side
with respect toc (details in Appendix C).

Theorem 2 states that with a positive scalar, the learning
problem formulated by aγ-divergence is equivalent to the
one by the correspondingβ-divergence. The latter is separable
and can be solved by the methods described in the Section
III-A. An example is between normalized KL-divergence (in
γ-divergence) and the non-normalized KL-divergence (inβ-
divergence) with the optimal connecting scalarc =

∑
i xi∑
i µi

.
Example applications on selecting the bestγ-divergence are
given in Section IV-D.

Similarly, we can also reduce a Rényi divergence to its
correspondingα-divergence with the same proof technique
(see Appendix C).

Theorem 3:For x ≥ 0 andτ > 0,

argmin
µ≥0

Dρ→τ (x||µ) = argmin
µ≥0

[
min
c>0

Dα→τ (x||cµ)
]
. (24)

IV. EXPERIMENTS

In this section we demonstrate the proposed method on
various data types and learning tasks. First we provide the
results on synthetic data, whose density is known, to compare
the behavior of MTL, MEDAL and the score matching method
[29]. Second, we illustrate the advantage of the EDA density
over ED. Third, we apply our method onα- andβ-divergence
selection in Nonnegative Matrix Factorization (NMF) on real-
world data including music and stock prices. Fourth, we test
MEDAL in selecting non-separable cases (e.g.γ-divergence)
for Projective NMF and s-SNE visualization learning tasks
across synthetic data, images, and a dolphin social network.

A. Synthetic data

1) β-divergence selection:We use here scalar data gen-
erated from the four special cases of Tweedie distributions,
namely, Inverse Gaussian, Gamma, Poisson, and Gaussian
distributions. We simply fit the best Tweedie, EDA or ED
density to the data using either the maximum likelihood
method or score matching (SM).

In Fig. 1 (first row), the results of the Maximum Tweedie
Likelihood (MTL) are shown. Theβ value that maximizes
the likelihood in Tweedie distribution is consistent with the
true parameters, i.e., -2, -1, 0 and 1 respectively for the above
distributions. Note that Tweedie distributions are not defined
for β ∈ (0, 1), butβ-divergence is defined in this region, which
will lead to discontinuity in the log-likelihood overβ.

The second and third rows in Fig. 1 present results of the
exponential divergence density ED given in Eq. (21). The log-
likelihood and negative score matching objectives [29] on the
same four datasets are shown. The estimates are consistent
with the ground truth Gaussian and Poisson data. However, for
Gamma and Inverse Gaussian data, bothβ estimates deviate
from the ground truth. Thus, estimators based on ED do
not give as accurate estimates as the MTL method. The ED
distribution [29] has an advantage that it is defined also for
β ∈ (0, 1). In the above, we have seen thatβ selection by
using ED is accurate whenβ → 0 or β = 1. However, as
explained in Section III-A2, in the other cases ED and Tweedie
distributions are not the same because the terms containing
the observed variable in these distributions are not exactly the
same as those of the Tweedie distributions.

EDA, the augmented ED density introduced in Sec-
tion III-A, not only has both the advantage of continuity but
also gives very accurate estimates forβ < 0. The MEDAL log-
likelihood curves overβ based on EDA are given in Fig. 1
(fourth row). In the β selection of Eq. (20), theφ value
that maximizes the likelihood withβ fixed is found by a
grid search. The likelihood values are the same as those of
special Tweedie distributions and there are no abrupt changes
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a) Inverse Gaussian b) Gamma c) Poisson d) Gaussian

Fig. 1. β selection using (from top to bottom) Tweedie likelihood, EDlikelihood, negative SM objective of ED, EDA likelihood, and negative SM objective
of EDA. Data were generated using Tweedie distribution withβ = −2,−1, 0, 1 (from left to right).

or discontinuities in the likelihood surface. We also estimated
β for the EDA density using Score Matching, and curves of
the negative SM objective are presented in the bottom row of
Fig. 1. They also recover the ground truth accurately.

2) α-divergence selection:There is only one known gen-
erative model for which the maximum likelihood estima-
tor corresponds to the minimizer of the correspondingα
divergence. It is the Poisson distribution. We thus reused
the Poisson-distributed data of the previous experiments with
the β-divergence. In Fig. 2a, we present the log-likelihood
objective overα obtained with Tweedie distribution (MTL)

and the transformation from Section III-B. The ground truth
α → 1 is successfully recovered with MTL. However, there
are no likelihood estimates forα ∈ (0.5, 1), corresponding
to β ∈ (0, 1) for which no Tweedie distributions are defined.
Moreover, to our knowledge there are no studies concerning
the pdf’s of Tweedie distributions withβ > 1. For that reason,
the likelihood values forα ∈ [0, 0.5) are left blank in the plot.

It can be seen from Fig. 2b and 2c, that the augmentation
in the MEDAL method also helps inα selection. Again, both
ED and EDA solve most of the discontinuity problem except
α = 0. Selection using ED fails to find the ground truth
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Fig. 2. Log-likelihood of (a) Tweedie, (b) ED, and (c) EDA distributions forα-selection. In the Tweedie plot, blanks correspond toβ = 1/α− 1 values for
which a Tweedie distribution pdf does not exist or cannot be evaluated, i.e.,β ∈ (0, 1) ∪ (1,∞). In (d), negative SM objective function values are plotted
for EDA.

which equals 1, which is however successfully found by the
MEDAL method. SM on EDA recovers the ground truth as
well (Fig. 2d).

B. Divergence selection in NMF

The objective in nonnegative matrix factorization (NMF)
is to find a low-rank approximation to the observed data
by expressing it as a product of two nonnegative matrices,
i.e., V ≈ V̂ = WH with V ∈ R

F×N
+ , W ∈ R

F×K
+

and H ∈ R
K×N
+ . This objective is pursued through the

minimization of an information divergence between the data
and the approximation, i.e.,D(V||V̂). The divergence can be
any appropriate one for the data/application such asβ, α, γ,
Rényi, etc. Here, we chose theβ andα divergences to illustrate
the MEDAL method for realistic data.

The optimization ofβ-NMF was implemented using the
standard multiplicative update rules [23], [38]. Similar mul-
tiplicative update rules are also available forα-NMF [23].
Alternatively, the algorithm forβ-NMF can be used forα-
divergence minimization as well, using the transformation
explained in Section III-B.

1) A Short Piano Excerpt:We consider the piano data used
in [21]. It is an audio sequence recorded in real conditions,
consisting of four notes played all together in the first measure
and in all possible pairs in the subsequent measures. A
power spectrogram with analysis window of size 46 ms was
computed, leading toF = 513 frequency bins andN = 676
time frames. These make up the data matrixV, for which a
matrix factorizationV̂ = WH with low rankK = 6 is sought
for.

In Fig. 3a and 3b, we show the log-likelihood values of
the MEDAL method forβ and α, respectively. For each
parameter valueβ andα, the multiplicative algorithm for the
respective divergence is run for 100 iterations and likelihoods
are evaluated with mean values calculated from the returned
matrix factorizations. For each value ofβ andα, the highest
likelihood w.r.t.φ (see Eq. (20)) is found by a grid search.

The found maximum likelihood estimateβ = −1 corre-
sponds to Itakura-Saito divergence, which is in harmony with
the empirical results presented in [21] and the common belief
that IS divergence is most suitable for audio spectrograms.The
optimalα value value was 0.5 corresponding to Hellinger dis-
tance. We can also see that the log likelihood value associated
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Fig. 3. (a, b) Log likelihood values forβ and α for the spectrogram of
a short piano excerpt withF = 513, N = 676, K = 6. (c) Negative SM
objective forβ.

with α = 0.5 is still much less than the one forβ = −1. SM
also findsβ = −1 as can be seen from Fig. 3c.

C. Stock Prices

Next, we repeat the same experiment on a stock price dataset
which contains Dow Jones Industrial Average. There are 30
companies included in the data. They are major American
companies from various sectors such as services (e.g., Wal-
mart), consumer goods (e.g., General Motors) and healthcare
(e.g., Pfizer). The data was collected from 3rd January 2000
to 27th July 2011, in total 2543 trading dates. We setK = 5
in NMF and masked 50% of the data by following [39]. The
stock data curves are displayed in Fig. 4 (left).

The EDA likelihood curve withβ ∈ [−2, 2] is shown in
Figure 4 (bottom left). We can see that the best divergence
selected by MEDAL isβ = 0.4. The corresponding best
φ = 0.006. These results are in harmony with the findings
of Tan and Févotte [39] using the remaining 50% of the
data as validation set, where they found thatβ ∈ [0, 0.5]
(mind that ourβ values equal theirs minus one) performs
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Fig. 4. Top: thestock data. Bottom left: the EDA log-likelihood forβ ∈
[−2, 2]. Bottom right: negative SM objective function forβ ∈ [−2, 2].

well for a large range ofφ’s. Differently, our method is more
advantageous because we do not need additional criteria nor
data for validations. In Figure 4 (bottom right), negative SM
objective function is plotted forβ ∈ [−2, 2]. With SM, the
optimalβ is found to be 1.

D. Selectingγ-divergence

In this section we demonstrate that the proposed method
can be applied to applications beyond NMF and to non-
separable divergence families. To our knowledge, no other
existing methods can handle these two cases.

1) Multinomial data: We first exemplifyγ-divergence se-
lection for synthetic data drawn from a multinomial dis-
tribution. We generated a 1000-dimensional stochastic vec-
tor p from the uniform distribution. Next we drewx ∼
Multinomial(n,p) with n = 107. The MEDAL method is
applied to find the bestγ-divergence for the approximation
of x by p.

Fig. 6 (1st row, left) shows the MEDAL log-likelihood.
The peak appears whenγ = 0, which indicates that the
normalized KL-divergence is the most suitable one among the
γ-divergence family. Selection using score matching of EDA
gives the bestγ also close to zero (Fig. 6 1st row, right). The
result is expected, because the maximum likelihood estimator
of p in multinomial distribution is equivalent to minimizing
the KL-divergence overp. Our finding also justifies the
usage of KL-divergence in topic models with the multinomial
distribution [40], [7].

2) Projective NMF: Next we apply the MEDAL method
to Projective Nonnegative Matrix Factorization (PNMF) [27],
[28] based onγ-divergence [13], [19]. Given a nonnegative
matrix V ∈ R

F×N
+ , PNMF seeks a low-rank nonnegative

matrix W ∈ R
F×K
+ (K < F ) that minimizesDγ

(
V||V̂

)
,

where V̂ = WWTV. PNMF is able to produce a highly
orthogonalW and thus finds its applications in part-based
feature extraction and clustering analysis, etc. Different from
conventional NMF (or linear NMF) where each factorizing

matrix only appears once in the approximation, the matrix
W occurs twice inV̂. Thus it is a special case of Quadratic
Nonnegative Matrix Factorization (QNMF) [41].

We choose PNMF for two reasons: 1) we demonstrate
the MEDAL performance on QNMF besides the linear NMF
already shown in Section IV-B; 2) PNMF contains only one
variable matrix in learning, without the issue of how to
interleave the updates of different variable matrices.

We first tested MEDAL on a synthetic dataset. We generated
a diagonal blockwise data matrixV of size50×30, where two
blocks are of sizes30× 20 and20× 10. The block entries are
uniformly drawn from[0, 10]. We then added uniform noise
from [0, 1] to the all matrix entries. For eachγ, we ran the
multiplicative algorithm of PNMF by Yang and Oja [28], [42]
to obtainW andV̂. The MEDAL method was then applied to
select the bestγ. The resulting approximated log-likelihood for
γ ∈ [−2, 2] is shown in Fig. 6 (2nd row). We can see MEDAL
and score matching of EDA give similar results, where the best
γ appear at−0.76 and−0.8, respectively. Both resultingW ’s
give perfect clustering accuracy of data rows.

We also tested MEDAL on theswimmer dataset [43] which
is popularly used in the NMF field. Some example images
from this dataset are shown in Fig. 5 (left). We vectorized
each image in the dataset as a column and concatenated the
columns into a1024× 256 data matrixV. This matrix is then
fed to PNMF and MEDAL as in the case for the synthetic
dataset. Here we empirically set the rank toK = 17 according
to Tan and Févotte [44] and Yang et al. [45]. The matrixW

was initialized by PNMF based on Euclidean distance to avoid
poor local minima. The resulting approximated log-likelihood
for γ ∈ [−1, 3] is shown in Figure 6 (3rd row, left). We can see
a peak appearing around1.7. Zooming in the region near the
peak shows the bestγ = 1.69. The score matching objective
over γ values (Fig. 6 3rd row, right) shows a similar peak
and the bestγ very close to the one given by MEDAL. Both
methods result in excellent and nearly identical basis matrix
(W) of the data, where the swimmer body as well as four
limbs at four angles are clearly identified (see Fig. 5 bottom
row).

3) Symmetric Stochastic Neighbor Embedding:Finally, we
show an application beyond NMF, where MEDAL is used to
find the bestγ-divergence for the visualization using Symmet-
ric Stochastic Neighbor Embedding (s-SNE) [5], [6].

Suppose there aren multivariate data samples{xi}ni=1 with
xi ∈ R

D and their pairwise similarities are represented by
an n × n symmetric nonnegative matrixP wherePii = 0
and

∑
ij Pij = 1. The s-SNE visualization seeks a low-

dimensional embeddingY = [y1,y2, . . . ,yn]
T ∈ R

n×d such
that pairwise similarities in the embedding approximate those
in the original space. Generallyd = 2 or d = 3 for easy
visualization. Denoteqij = q(‖yi − yj‖2) with a certain
kernel functionq, for exampleqij =

(
1 + ‖yi − yj‖2

)−1
.

The pairwise similarities in the embedding are then given by
Qij = qij/

∑
kl:k 6=l qkl. The s-SNE target is thatQ is as

close toP as possible. To measure the dissimilarity between
P andQ, the conventional s-SNE uses the Kullback-Leibler
divergenceDKL (P||Q). Here we generalize s-SNE to the
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Fig. 5. Swimmer dataset: (top) example images; (bottom) thebest PNMF
basis (W) selected by using (bottom left) MEDAL and (bottom right) score
matching of EDA. The visualization reshapes each column ofW to an image
and displays it by the Matlab functionimagesc.

whole family of γ-divergences as dissimilarity measures and
select the best divergence by our MEDAL method.

We have used a real-worlddolphins dataset2. It is the
adjacency matrix of the undirected social network between
62 dolphins. We smoothed the matrix by PageRank random
walk in order to find its macro structures. The smoothed
matrix was then fed to s-SNE based onγ-divergence, with
γ ∈ [−2, 2]. The EDA log-likelihood is shown in Fig. 6
(4th row, left). By the MEDAL principle the best divergence
is γ = −0.6 for s-SNE and thedolphins dataset. Score
matching of EDA also indicates the bestγ is smaller than
0. The resulting visualizations created by s-SNE with the
respective bestgamma-divergence are shown in Fig. 7, where
the node layouts by both methods are very similar. In both
visualizations we can clearly see two dolphin communities.

V. CONCLUSIONS

We have presented a new method called MEDAL to au-
tomatically select the best information divergence in a para-
metric family. Our selection method is built upon a statistical
learning approach, where the divergence is learned as the
result of standard density parameter estimation. Maximizing
the likelihood of the Tweedie distribution is a straightforward
way for selectingβ-divergence, which however has some
shortcomings. We have proposed a novel distribution, the
Exponential Divergence with Augmentation (EDA), which
overcomes these shortcomings and thus can give a more robust

2available at http://www-personal.umich.edu/~mejn/netdata/
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Fig. 6. Selecting the bestγ-divergence: (1st row) for multinomial data,
(2nd row) in PNMF for synthetic data, (3rd row) in PNMF for theswimmer
dataset, and (4th row) in s-SNE for thedolphins dataset; (left column)
using MEDAL and (right column) using score matching of EDA. The red star
highlights the peak and the small subfigures in each plot shows the zoom-in
around the peak. The sub-figures in the 3rd row zoom in the areanear the
peaks.

selection for the parameter over a wider range. The new
method has been extended toα-divergence selection by a
nonlinear transformation. Furthermore, we have provided new
results that connect theγ- and β-divergences, which enable
us to extend the selection method to non-separable cases.
The extension also holds for Rényi divergence with similar
relationship toα-divergence. As a result, our method can be
applied to most commonly used information divergences in
learning.

We have performed extensive experiments to show the
accuracy and applicability of the new method. Comparison
on synthetic data has illustrated that our method is superior to
Maximum Tweedie Likelihood, i.e., it finds the ground truth
as accurately as MTL, while being defined on all values ofβ
and being less prone to numerical problems (no abrupt changes
in the likelihood). We also showed that a previous estimation

http://www-personal.umich.edu/~mejn/netdata/
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Fig. 7. Visualization of thedolphins social network with the bestγ using
(top) MEDAL and (bottom) score matching of EDA. Dolphins andtheir social
connections are shown by circles and lines, respectively. The background
illustrates the node density by the Parzen method [46].

approach by Score Matching on Exponential Divergence dis-
tribution (ED, i.e., EDA before augmentation) is not accurate,
especially forβ < 0. In the application to NMF, we have
provided experimental results on various kinds of data includ-
ing audio and stock prices. In the non-separable cases, we
have demonstrated selectingγ-divergence for synthetic data,
Projective NMF, and visualization by s-SNE. In those cases
where the correct parameter value is known in advance for the
synthetic data, or there is a wide consensus in the application
community on the correct parameter value for real-world data,
the MEDAL method gives expected results. These results show
that the presented method has not only broad applications but
also accurate selection performance. In the case of new kinds
of data, for which the appropriate information divergence is
not known, the MEDAL method provides a disciplined and
rigorous way to compute the optimal parameter values.

In this paper we have focused on information divergence for
vectorial data. There exist other divergences for higher-order
tensors, for example, LogDet divergence and von Newmann
divergence (see e.g. [47]) that are defined over eigenvaluesof
matrices. Selection among these divergences remains an open
problem.

Here we mainly consider a positive data matrix and selecting
the divergence parameter in(∞,+∞). Tweedie distribution
has no support for zero entries whenβ < 0 and thus gives
zero likelihood of the whole matrix/tensor by independence. In
future work, extension of EDA to accommodate nonnegative
data matrices could be developed forβ ≥ 0.

MEDAL is a two-phase method: theβ selection is based
on the optimization result ofµ. Ideally, both variables should
be selected by optimizing the same objective. For maximum
log-likelihood estimator, this requires that the negativelog-
likelihood equals theβ-divergence, which is however infea-

sible for all β due to intractability of integrals. Non-ML
estimators could be used to attack this open problem.

The EDA distribution family includes the exact Gaussian,
Gamma, and Inverse Gaussian distributions, and approximated
Poisson distribution. In the approximation we used the first-
order Stirling expansion. One could apply higher-order expan-
sions to improve the approximation accuracy. This could be
implemented by further augmentation with higher-order terms
aroundβ → 0.
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APPENDIX A
INFINITE SERIES EXPANSION INTWEEDIE DISTRIBUTION

In the series expansion, an EDM random variable is repre-
sented as a sum ofG independent Gamma random variables
x =

∑G
g yg, whereG is Poisson distributed with parameter

λ = µ2−p

φ(2−p) ; and the shape and scale parameters of the Gamma

distribution are−a andb, with a = 2−p
1−p andb = φ(p−1)µp−1.

The pdf of the Tweedie distribution is obtained analytically

at x = 0 as e−
µ2−p

φ(2−p) . For x > 0 the functionf(x, φ, p) =
1
x

∑∞
j=1 Wj(x, φ, p), where for1 < p < 2

Wj =
x−ja(p− 1)ja

φj(1−a)(2 − p)jj!Γ(−ja)
(25)

and forp > 2

Wj =
1

π

Γ(1 + ja)φj(a−1)(p− 1)ja

Γ(1 + j)(p− 1)jxja
(−1)j sin(−πja). (26)

This infinite summation needs approximation in practice.
Dunn and Smyth [35] described an approach to select a subset
of these infinite terms to accurately approximatef(x, φ, p).
In their approach, Stirling’s approximation of the Gamma
functions are used to find the indexj which gives the highest
value of the function. Then, in order to find the most significant
region, the indices are progressed in both directions until
negligible terms are reached.

APPENDIX B
GAUSS-LAGUERRE QUADRATURES

This method (e.g. [48]) can evaluate definite integrals of the
form

∫ ∞

0

e−zf(z)dz ≈
n∑

i

f(zi)wi, (27)

wherezi is theith root of then-th order Laguerre polynomial
Ln(z), and the weights are given by

wi =
zi

(n+ 1)2L2
n(zi)

. (28)

The recursive definition ofLn(z) is given by

Ln+1(z) =
1

n+ 1
[(2n+ 1− z)Ln(z)− nLn−1(z)] , (29)
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with L0(z) = 1 andL1(z) = 1 − z. In our experiments, we
used the Matlab implementation by Winckel3 with n = 5000.

APPENDIX C
PROOFS OFTHEOREMS2 AND 3

Lemma 4:argminz af(z) = argminz a ln f(z) for a ∈ R

andf(z) > 0.
The proof of the lemma is simply by the monotonicity ofln.

Next we prove Theorem 2. Forβ ∈ R\{−1, 0}, zeroing
∂Dβ(x||cµ)

∂c gives

c∗ =

∑
i xiµ

β
i∑

i µ
1+β
i

. (30)

Putting it back tominµmincDβ(x||cµ), we obtain:

min
µ

min
c

Dβ(x||cµ)

=min
µ

1

β(1 + β)



∑

i

x1+β
i + β

∑

i

(∑
j xjµ

β
j∑

j µ
1+β
j

µi

)1+β

−(1 + β)
∑

i

xi

(∑
j xjµ

β
j∑

j µ
1+β
j

µi

)β



=min
µ

1

β(1 + β)



∑

i

x1+β
i −

(∑
i xiµ

β
i

)1+β

(∑
j µ

1+β
j

)β




Dropping the constant, and by Lemma 4, the above is
equivalent to minimizing

1

β(1 + β)


β ln


∑

j

µ1+β
j


− (1 + β) ln

(
∑

i

xiµ
β
i

)


Adding a constant 1
β(1+β) ln

(∑
i x

1+β
i

)
, the objective be-

comes minimizingγ-divergence (replacingβ with γ; see Eq.
(7)).

We can apply the similar technique to prove Theorem 3.
For α ∈ R\{0, 1}, zeroing ∂Dα(x||cµ)

∂c gives

c∗ =

(∑
i x

α
i µ

1−α
i∑

i µi

)1/α

(31)

Putting it back, we obtain

Dα(x||c∗µ) (32)

=
1

α(1− α)

∑

i



αxi + (1 − α)

(∑
j x

α
j µ

1−α
j∑

j µj

)1/α

µi

(33)

−xα
i



(∑

j x
α
j µ

1−α
j∑

j µj

)1/α

µi



1−α





(34)

=
1

α− 1


∑

i

xα
i

(
µi∑
j µj

)1−α


1/α

+

∑
i xi

1− α
. (35)

3available at http://www.mathworks.se/matlabcentral/fileexchange/

Dropping the constant
∑

i xi

1−α , and by Lemma 4, minimizing
the above is equivalent to minimization of (forα > 0)

1

α− 1
ln


∑

i

xα
i

(
µi∑
j µj

)1−α

 (36)

Adding a constant α
1−α ln

∑
i xi to the above, the objective

becomes minimizing Rényi-divergence (replacingα with ρ;
see Eq. (9)).

The proofs for the special cases are similar, where the main
steps are given below

• β = γ → 0 (or α = ρ → 1): zeroing ∂Dβ→0(x||cµ)
∂c gives

c∗ =
∑

i xi∑
i µi

. Putting it back, we obtainDβ→0(x||c∗µ) =
(
∑

i xi)Dγ→0(x||µ).
• β = γ → −1: zeroing ∂Dβ→−1(x||cµ)

∂c gives c∗ =
1
M

∑
i
xi

µi
, whereM is the length ofx. Putting it back,

we obtainDβ→−1(x||c∗µ) = MDγ→−1(x||µ).
• α = ρ → 0: zeroing ∂Dα→0(x||cµ)

∂c gives

c∗ = exp

(
−
∑

i µi ln
µi

xi∑
i µi

)
.

Putting it back, we obtain

Dα→0(x||c∗µ) = − exp

(
−
∑

i

µ̃i ln
µ̃i

xi

)
+
∑

i

xi,

where µ̃i = µi/
∑

j µj . Dropping the constant
∑

i xi,
minimizingDα→0(x||c∗µ) is equivalent to minimization
of
∑

i µ̃i ln
µ̃i

xi
. Adding the constantln

∑
j xj to the

latter, the objective becomes identical toDρ→0(x||µ),
i.e. DKL (µ||x).
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