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Learning the Information Divergence

Onur Dikmen, Zhirong Yang, and Erkki Oja,

Abstract—Information divergence that measures the difference

Compared to the rich set of available information diver-

between two nonnegative matrices or tensors has found its gences, there is little research on how to select the best one

use in a variety of machine learning problems. Examples are

Nonnegative Matrix/Tensor Factorization, Stochastic Nejhbor
Embedding, topic models, and Bayesian network optimizatio.

for a given application. This is an important issue because
the performance of a given divergence-based estimation or

The success of such a learning task depends heavily on amodeling method in a particular task very much depends on

suitable divergence. A large variety of divergences have ke
suggested and analyzed, but very few results are availablerf
an objective choice of the optimal divergence for a given tas
Here we present a framework that facilitates automatic seletion

of the best divergence among a given family, based on standhr

maximum likelihood estimation. We first propose an approxi-
mated Tweedie distribution for the S-divergence family. Selecting

the divergence used. Formulating a learning task in a faafily
divergences greatly increases the flexibility to handléedét
types of noise in data. For example, Euclidean distance is
suitable for data with Gaussian noise; Kullback-Leibleredi
gence has shown success for finding topics in text documents
[7]; and Itakura-Saito divergence has proven to be suitable

the best § then becomes a machine learning problem solved for audio signal processing [21]. A conventional workardun

by maximum likelihood. Next, we reformulate «-divergence in
terms of §-divergence, which enables automatic selection ak

by maximum likelihood with reuse of the learning principle for

B-divergence. Furthermore, we show the connections betweeyt

and S-divergences as well as Rényi- andv-divergences, such
that our automatic selection framework is extended to non-
separable divergences. Experiments on both synthetic anckal-

world data demonstrate that our method can quite accurately
select information divergence across different learning pblems

and various divergence families.

Index Terms—information divergence, Tweedie distribution,
maximum likelihood, nonnegative matrix factorization, stochastic
neighbor embedding.

I. INTRODUCTION

is to select among a finite number of candidate divergences
using a validation set. This however cannot be applied to
divergences that are non-separable over tensor entries. Th
validation approach is also problematic for tasks where all
data are needed for learning, for example, cluster analysis
In Section[dll, we propose a new method of statistical
learning for selecting the best divergence among the four
popular parametric families in any given data modeling task
Our starting-point is the Tweedie distribution [22], whigh
known to have a relationship witB-divergence [[23], [[24].
The Maximum Tweedie Likelihood (MTL) is in principle
a disciplined and straightforward method for choosing the
optimal 5 value. However, in order for this to be feasible in
practice, two shortcomings with the MTL method have to be
overcome: 1) Tweedie distribution is not defined for @]12)

Information divergences are an essential element in moder, culation of Tweedie likelihood is complicated and prone

mz:\j(_:hme learning. Trt\re]y 3?'9'F’a.t|ed.t'” E s;umano? theorybmg.?{]umerical problems for largé. To overcome these drawbacks,
a divergence maps the dissimuianty between two probgbilly, o propose here a novel distribution using an exponenti ov
distributions to nonnegative values. Presently, inforamat

di h b tended f fve t the -divergence with a specific augmentation term. The new
Ivergences have been extended Tor honnegative 1ensors glifty, tion has the following nice properties: 1) it is séoto

used in many learning problems where the objective is to mip- Tweedie distribution, especially at four importantcpk

imize the approximation error between the observed data a&\ies; 2) it exists for alk € R; 3) its likelihood can be calcu-

the model. Typical applications include Nonnegative MatriI g .
o ) . ated by standard statistical software. We call the new itiens
Factorization (see e.dJ[1LJ[2L][3]J[4]), Stochastic ebor the Exponential Divergence with Augmentation (EDA). EDA

Embedding [[5], [[6], topic models[]7].[I8], and Bayesiaqs a non-normalized density, i.e., its likelihood includas

network optimization[[p]. normalizing constant which is not analytically availabiait,

S Th.ere exist a large ,Va”ity of mforma;uo? dlve(;gences. IQince the density is univariate the normalizing constanttoa
ectiorll), we summarize the most popularly use paramer@ﬁ‘iciently and accurately estimated by numerical intagrat

families includinga-, 8-, v- and Rényi-divergences [L10L [11], The method of Maximizin . ;
. o g the Exponential Divergence with
[A2], [13], [14] and their combinations (e.d. J15]). The fouAugmentation Likelihood (MEDAL) thus gives a more robust

paramgtri(; famil_ies in tgrn belong to broader ones such Esselection in a wider range than MTI5. estimation on EDA
the Csiszar-Morimotof-divergences([16],[17] and Bregman.,, aiso be carried out using parameter estimation methods,

divergences [18]. Data analysis techniques based on iraforrg. ., Score Matching (SM)[25], specifically proposed fonno
tion divergences have been widely and successfully app“ﬁggrﬁalized densities. In the exberiments section, we shatv t
to \_/ari_ous data such as te19], electroencephalograihy [SM on EDA also performs as accurately as ME,DAL.

facial images([20], and audio spectrograins [21]. Besidesp-divergence, the MEDAL method is extended to
select the best divergence in other parametric families. We
reformulate o-divergence in terms of3-divergence after a
change of parameters so thatcan be optimized using the

The authors are with Department of Information and Comp&er
ence, Aalto University, 00076, Finland. e-mail: onur.dém@aalto.fi; zhi-
rong.yang@aalto.fi; erkki.oja@aalto.fi
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MEDAL method. Our method can also be applied to non-
separable cases. We show the equivalence betyeamd
~-divergences, and between and Rényi divergences by a
connecting scalar, which allows us to choose the hesbr .
Rényi-divergence by reusing the MEDAL method.

We tested our method with extensive experiments, whose re-
sults are presented in Sectiod IV. We have used both syatheti
data with a known distribution and real-world data includin
music, stock prices, and social networks. The MEDAL method
is applied to different learning problems: Nonnegative fixat
Factorization (NMF)[[26],[I3],[[1], Projective NMF_[27] "B
and Symmetric Stochastic Neighbor Embedding for visualiza
tion [5], [6]. We also demonstrate that our method outpenfor
Score Matching on Exponential Divergence distribution YED
a previous approach fg#-divergence selection [29]. Conclu-
sions and discussions on future work are given in Seéfion V.

Il. INFORMATION DIVERGENCES

Many learning objectives can be formulated as an approxi-
mation of the formx ~ u, wherex > 0 is the observed data
(input) andp is the approximation given by the model. The
formulation for . totally depends on the task to be solved.
Consider Nonnegative Matrix Factorization: ther> 0 is a
data matrix ang is a product of two lower-rank nonnegative
matrices which typically give a sparse representation ffier t
columns ofx. Other concrete examples are given in Section
v

The approximation error can be measured by various in-
formation divergences. Suppoge is parameterized by®.
The learning problem becomes an optimization procedure
that minimizes the given divergence(x||u(®)) over ©.
Regularization may be applied f@ for complexity control.
For notational brevity we focus on definitions over vectbxia
u, © in this section, while they can be extended to matrices
or higher order tensors in a straightforward manner.

In this work we consider four parametric families of di-
vergences, which are the widely used, 3-, v- and Rényi- *
divergences. This collection is rich because it covers most
commonly used divergences. The definition of the four fami-
lies and some of their special cases are given below.

o a-divergence([10],[[11] is defined as

> f‘,ull Y —ax; + (o — Dy,
ala—1)
The family contains the following special cases:

Do (x[|p) = 1)

where Dy, Dp, Dp, and Dy denote non-normalized
Kullback-Leibler, Pearson Chi-square, inverse Pearson
and Hellinger distances, respectively.
B-divergence([30],[[31] is defined as

el BT — (B4 D]

Ds(x = 2
s(x[|1) 311 ()
The family contains the following special cases:
1
Dp—1(xllp) =Deuv(x|ln) = 5 D (@i — ) 3)

K2

z;
Dl =Ditxl) = 3 (10 2 — i+ 1)

%

(4)

Dieaxl) =Diil) =3 (E - 1)
(5)

Ds=—2(x/|1) :; <2a;? - ui + 2;) , )

where Dy and Dig denote the Euclidean distance and
Itakura-Saito divergence, respectively.

« ~-divergence[[13] is defined as

Dy (x[[p) =

+1 In (Z:ﬂ“) +v1In (Z,ﬂ“)
(341 (Z Mﬂ |

The normalized Kullback-Leibler (KL) divergence is a
special case ofi-divergence:

()

Dyyo(x||p) = Dxr(x[|p) = foz 111 (8)
wherez; = x;/> . x; andfi; = uz/z Wi
Rényi d|vergencaEEZ] is defined a:
1
_ prl=p
Dy(x||n) = —— I (i} ) ©)

for p > 0. The Rényi divergence also includes the
normalized Kullback-Leibler divergence as its special
case wherp — 1.

D IVERGENCE SELECTION BY STATISTICAL LEARNING

Dacalxli) =Detxl) = 5 37 2

Xq
De(xll) =Di(xll) = 3 ( 2 m-)

i

Do p2(x11) =2Du(xl 1) = 2 3 (V7 = Vi)

Hi
Desolxll) =Dy (%) = 3 (uz— g x)

x; — pi)*
D s(xll) =Diple) = § 37 Tt

%

The above rich collection of information divergences basi-
cally allows great flexibility to the approximation framewko
However, practitioners must face a choice probldraw to
select the best divergence in a family@ most existing
applications the selection is done empirically by the human
A conventional automatic selection method is cross-vébda
[33], [34], where the training only uses part of the entries
of x and the remaining ones are used for validation. This
method has a number of drawbacks: 1) it is only applicable
to the divergences where the entries are separable 4e.g.
or 3-divergence). Leaving out some entries ferand Rényi
divergencesis infeasible due to the logarithm or normttna
2) separation of entries is not applicable in some apptioati



where all entries are needed in the learning, for example,2) Maximum Exponential Divergence with Augmentation
cluster analysis. Likelihood (MEDAL): Our answer to the above shortcomings
Our proposal here is to use the familiar and proven tecim MTL is to design an alternative distribution with the
nique of maximum likelihood estimation foautomatic di- following properties: 1) it is close to the Tweedie disttibu,
vergence selectiqrusing a suitably chosen and very flexibleespecially for the four crucial points whehe {—2,—-1,0,1};
probability density model for the data. In the following we?) it should be defined for af € R; 3) its pdf can be evaluated
discuss this statistical learning approach for automatierd more robustly by standard statistical software.
gence selection in the family ¢f -divergences, followed by  From [10) and[(11) the pdf of the Tweedie distribution is
its extensions to the other divergence families. written as

. B 1 xHB N'@H >}
s, 8) = S g esn |5 (2 - £ )] a2)

1) Maximum Tweedie Likelihood (MTLWe start from the w.r.t. 5 instead ofp, using the relatior = 1 — p. This holds
probability density function (pdf) of an exponential disgien when s # 0 and 8 # —1. The extra termsl/(1 — p) and
model (EDM) [22]: 1/(2 —p) in @T) have been absorbed jifz, ¢, 3). The cases

B8 =0or = —1 have to be analyzed separately.
peom(z: 0,6, p) = f(x,é,p)exp F(xg _ 5(9))] (10) To make an explicit connection with-divergence defined
¢ in (@), we suggest a new distribution given in the following
| form:

A. Selectings-divergence

where¢ > 0 is the dispersion parametet,is the canonica

parameter, and(6) is the cumulant function (whep =1 its 1
derivatives w.r.td give the cumulants). Such a distribution has Papprod 3 11, ¢, ) = g(x, ¢, B) exp {_5Dﬁ (x”“)}
meanyu = «'(0) and variancd’ (u, p) = ¢k (). This density 1 LB S
is defined forz > 0, thuspu > 0. =g(z, ¢, B) exp b (—m + 7 — i 1)] .
A Tweedie distribution is an EDM whose variance has a (13)

special form,V(u) = u? with p € R\(0,1). The canonical
parameter and the cumulant function that satisfy this pitgpeNow the3-divergence for scalar appears in the exponent, and

are [22] g(z, ¢, ) will be used to approximate this with the Tweedie
oy . distribution. Ideally, the choice
= . I—p !f p#1 . k(0) = #2—17 ’ !f p#F2 . B+1
e, ifp=1 iy =2 (2,6, 8) = (. 6,5)/ [1< . )]
’ - ’ - z, o, = Z, ), X -\ ara ., 1y
(11) g Ple\ BB+

] o L o ) would result in full equivalence to Tweedie distributiors a
Note thatln i is the I_|m|t of b= as_t — 0._ Finite analytical gseen from [IR). However, becaugér, ¢, 3) is unknown in
forms of f(z,¢,p) in Tweedie distribution are generallyine general case, sughis also unavailable.
unavailable. The function can be expanded with infiniteeseri  \wve can. however try to approximateusing the fact that
[35] or approximated by sao.ldle-polmt ?St'mat'@[%]- _ papproxmust be a proper density whose integral is equal to one.
It is known that the Tweedie distribution has a connection {gom [I3) it then follows

B-divergence (see, e.g., [23], [24]): maximizing the likelod
of Tweedie distribution for certaip values is equivalent to oxc 1 Pt
minimizing the corresponding divergence wjth= 1 — p. Es- P pB+1

pecially, the gradients of the log-likelihood of Gamma,$30in 1 2B+ zpP
and Gaussian distributions ovegy are equal to the ones ¢F = /du’C g(x, ¢, B) exp b <—m + 7)}
divergence with3 = —1, 0, 1, respectively. This motivates/& (14)
divergence selection method by Maximum Tweedie Likelihood

(MTL). This integral is, of course, impossible to evaluate becavese

However, MTL has the following two shortcomings. Firstdo not even know the function inside. However, the integral
Tweedie distribution is not defined for € (0,1). That is, if can be approximated nicely by Laplace’s method. Laplace’s
the best3 = 1 — p happens to be in the range, 1), it cannot approximation is
be found by MTL; in addition, there is little research on the )

Tweedle @stnput_lon _Wlth@ >1(p <0). Sec.o.nd,f(x,¢,p). / dx f(2)eMh®) ~ 27 F(wo)eMh (o)

in Tweedie distribution is not the probability normalizing a MIh" ()]

constant (note that it depends @)y and its evaluation requires .

ad hoc techniques. The existing software using the infinitgerezo = argmax, h(z) and M is a large constant.

series expansion approa¢h][35] (see Appefdix A) is prone toln order to approximate[{14) by Laplace’s methdd
numerical Computation pr0b|ems especia”y:ﬁd].l < B < 0. takes the role ofA/ and thus the apprOXimation is valid for
There is no existing implementation that can calculate Hiee Small 9. We need the maximizer of the exponentiated term

likelihood for 5 > 1. h(z) = —% + % This term has a zero first derivative



and negative second derivative, i.e., it is maximized; at p. The log-likelihood of the EDA density can be written as
Thus, Laplace’s method gives us

1 MIB+1 lnp(xap’aﬂaqs) :Zlnp('rwﬂ’uﬂaqs)
|3 :
¢ B+ J g1 1
27 1 Lt B+ = Z [ 7 Inwi - EDB(%'HM) —InZ(w;, B, ¢)] (19)
e sto e [ (gt + )| l . .
due to the fact thaDs(x||p) in Eq. (2) and the augmentation
2w 1 P+t term in [I8) are separable ovet, (i.e. z; are independent
—\ A 9(u, ¢, B) exp 6B+1] given ;;). The bests is now selected by
The approximation giveg(u, ¢, 3) = ﬁu(ﬂ‘lw which B* = arg max {maxlnp(x;u,ﬂ,gb)] 7 (20)
suggests the function B 4
1 5oy 1 (B—1) wherep = argmin,, Dg(x||n). We call the new divergence
9(x, 6, B) = \/mx = 27 exp [ 5 1“4 selection methodlaximum EDA LikelihoodMEDAL).

Putting this result into[{13) as such does not guaranteeﬁ aLet us look at the four special cases of Tweedie distribu-

o S . on: Gaussian /), Poisson PO), Gamma ¢) and Inverse
proper pdf however, because it is an appromma‘uon,onlgdvalGaussian TN). They correspond t& = 1,0,—1,—2. For
at the limit ¢ — 0. To make it proper, we have to add : y P R

normalizing constant into the density B113). a5|mpI|C|ty of notation, we may drop the subscripand write

The pdf of the final distribution, for a scalar argument v andy. for one entry nx and . Then, the log-likelihoods
thus becomes of the above four special cases are

1 1
1 1 . - _ - )2
Papprod T3 1, B, §) = 200 5.9) exp {R(%ﬁ) - 5D6(~’C||H) p (i, ¢) = 2 In(2mg) 2¢ (= n)"
(15) Inppo(z;p) =rlnp —p—InT(z + 1),
where Z (i1, 3,4) is the normalizing constant counting for rrlnp —p—In(27r2)/2 — ez +,
the terms which are independent of and R(z, ) is an Inpg(x;1/p, ¢u) =(1/¢p — 1) Inz — <
augmentation term given as Pp
51 ~ (1/6) In(gp) — InT(1/6),
R(x,8) = Inz. (16)
) 2 Inpza(w; p,1/0) = — %1H(2W¢$3) -l (%% 2 2i> ,
This pdf is a proper density for alB € R, which is p\Zp* p 2w
guaranteed by the following theorem. where in the Poisson case we employ Stirling’s approxima-
Theorem 1:Let f(x) = exp {% Inz— %Dﬁ (x||u)}. tiorfl. To see the similarity of these four special cases with the
The improper integrayooo f(z)da converges. general expression for the EDA log-likelihood in E§.](19),

let us look at one term in the sum there. It is a fairly

straightforward exercise to plug in thé-divergences from

and g(z) = =~ 2. By these definitions, we have > ‘%‘ Egs. [AE6) and the augmentation term from Egl (18) and
see that the log-likelihoods coincide. The normalizingrter

_ In Z (1, B8, ¢)] for these special cases can be determined from
i.e. 0 < f(x) < g(xz). By Cauchy convergence test, Wepe corresponding density.

know thatffog(“’)d“’ is convergent because > 1, and SO |5 general, the normalizing consta(u,3,4) is in-
is [, f(z)dz. Obviouslyf(x) is CSOI’IIII’IUOUS andlbounded foriractable except for a few special cases. Numerical evafuat
x € [0,1]. Therefore, forz > 0, [* f(z)dx = [ f(z)dz + of Z(u,B,¢) can be implemented by standard statistical

Proof: Let ¢ = }%‘ + 1+ ¢ with any e € (0,00),

and then forz > 1, (%—i—q)gbln:z: < 0 < Dg(x||p),

J77 f(x)dx also converges. B software. Here we employ the approximation with Gauss-
Finally, for vectorialx, the pdf is a product of the marginall_aguerre quadratures (details in Appendix B).
densities: Finally, let us note that in addition to the maximum likeli-

hood estimator, Score Matching (SM) [25], [37] can be amplie

_ B 1 1 to estimation of3 as a density parameter (see Sedfion IV-A). In
PEDA(X; 11, B, 9) = Zn 50 P {R(X, B) — ng (XH”)} a previous effort, Lu et al[[29] proposed a similar expoiant
(17) divergence (ED) distribution
where D (x||p) is defined in[[2) and pep(x; i, B) o exp [—Dp(x||p)] , (21)
R(x,8) = p-1 Zln ;. (18) but without the augmentation. It is easy to show that ED also
2 = exists for all5 by changing; = 1+ ¢ in the proof of Theorem

We call [17) the Exponential Divergence with Augmentation | , o
The case3 = 0 and ¢ # 1 does not correspond to Poisson distribution,

(EDA) distribl_Jtion, because it applies an e_xponential QT 1yt the transformatiomeom («; 1, &, 1) = ppo (x/d; 1/é)/é can be used
information divergence plus an augmentation term. to evaluate the pdf.



[@. We will empirically illustrate the discrepancy betweebd E  Similarly, we can also reduce a Rényi divergence to its
and EDA in Section IV-A, showing that the selection basecbrrespondingn-divergence with the same proof technique
on ED is however inaccurate, especially fox 0. (see Appendik ).

Theorem 3:Forx > 0 andr > 0,
B. Selectingx-divergence argmin D, (x||p) = argmin |min D, (x||cp) | . (24)
We extend the MEDAL method te-divergence selection. #20 20| c>0
This is done by relatinge-divergence ta3-divergence with a

nonlinear transformation betweenand 3. Let y; = z& /a2, . .
mi = p¢ /a2 and B = 1/a — 1 for a # 0. We have In this section we demonstrate the proposed method on
g .

various data types and learning tasks. First we provide the

(yi,@-ﬁ-l i ﬁmfﬂ (B 1)yimf) results on_synthetlc data, whose density is known_, to coenpar

BB +1) the behavior of MTL, MEDAL and the score matching method
—a? (:vi l—ap 1 a2 M}—a ) [29]. Second, we illustrate the advantage of the EDA density

IV. EXPERIMENTS

D,@(yiHmi) =

Ta—1\a2 a o2  aa2eq2l-a) over ED. Third, we apply our method en and s-divergence
=D (i|12) selection in Nonnegative Matrix Factorization (NMF) onlrea
world data including music and stock prices. Fourth, we test
This relationship allows us to evaluate the likelihoodwof MEDAL in selecting non-separable cases (eyedivergence)
and« usingy; andg: for Projective NMF and s-SNE visualization learning tasks

4 across synthetic data, images, and a dolphin social network
Yi

d:vi

P(Iz‘;ui,a, ¢) = p(yi;mi,ﬂ, ¢)

A. Synthetic data

a—1
:p(yi;mi,ﬁ,@% 1) p-divergence selectionWe use here scalar data gen-
O‘_ﬂ erated from the four special cases of Tweedie distributions
= p(yisma, B, 9)y; 7|5 + 1 namely, Inverse Gaussian, Gamma, Poisson, and Gaussian
In vectorial form, the best for D, (x||x) is then given by distri_butions. We simply_ fit th_e best Tweed_ie, EDA or ED
a* =1/(B* + 1) where density to the data using either the maximum likelihood
method or score matching (SM).

B :argmax{max [1np(y;m,5) In Fig.[d (first row), the results of the Maximum Tweedie

B ¢ Likelihood (MTL) are shown. The3 value that maximizes

—BIny; +1In|B + 1|]}, (22) the likelihood in Tweedie distribution is consistent withet

true parameters, i.e., -2, -1, 0 and 1 respectively for tfevab
wherem = arg min,, Dg(y||n). This transformation method distributions. Note that Tweedie distributions are not rukedi
can handle altr excepto — 0 since it corresponds t6 — oco.  for 3 € (0, 1), but -divergence is defined in this region, which
will lead to discontinuity in the log-likelihood oves.
The second and third rows in Figl 1 present results of the
exponential divergence density ED given in Hg.l(21). The log
Above we presented the selection methods for two familiggelihood and negative score matching objectives [29] fum t
where the divergence is separable over the tensor entrés. Nsame four datasets are shown. The estimates are consistent
we consider selection among and Rényi divergence families with the ground truth Gaussian and Poisson data. Howewer, fo
where their members are not separable. Our strategy isd@mma and Inverse Gaussian data, hétastimates deviate
reducey-divergence tgs-divergence with @onnecting scalar from the ground truth. Thus, estimators based on ED do
This is formally given by the following result. not give as accurate estimates as the MTL method. The ED
Theorem 2:Forx > 0 andr € R, distribution [29] has an advantage that it is defined also for
B € (0,1). In the above, we have seen thatselection by
arggl;g Dyor(x|[p) = arggl;g min Dg_yr(x|lcp)| (23) using ED is accurate whefi — 0 or 3 = 1. However, as
- - explained in Section TI[=AP, in the other cases ED and Tweedi
The proof is done by zeroing the derivative right hand sidgistributions are not the same because the terms containing
with respect tac (details in Appendix ). the observed variable in these distributions are not ex#od
Theorem[ P states that with a positive scalar, the learniggme as those of the Tweedie distributions.
problem formulated by ay-divergence is equivalent to the EDA, the augmented ED density introduced in Sec-
one by the correspondingdivergence. The latter is separablgion [[lI=A] not only has both the advantage of continuity but
and can be solved by the methods described in the Sectil§o gives very accurate estimatesfot. 0. The MEDAL log-
[I-A] An example is between normalized KL-divergence (inikelihood curves over3 based on EDA are given in Figl 1
v-divergence) and the non-normalized KL-divergencefin (fourth row). In the 3 selection of Eq.[(20), the) value
divergence) with the optimal connecting scatar= %—z that maximizes the likelihood withs fixed is found by a
Example applications on selecting the bestlivergence are grid search. The likelihood values are the same as those of
given in Section TV-D. special Tweedie distributions and there are no abrupt @sng

C. Selectingy- and Rényi divergences
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Fig. 1. B selection using (from top to bottom) Tweedie likelihood, Et2lihood, negative SM objective of ED, EDA likelihood, @megative SM objective
of EDA. Data were generated using Tweedie distribution viite- —2, —1,0, 1 (from left to right).

or discontinuities in the likelihood surface. We also estied and the transformation from Sectién 11l-B. The ground truth
(5 for the EDA density using Score Matching, and curves af — 1 is successfully recovered with MTL. However, there
the negative SM objective are presented in the bottom row afe no likelihood estimates far € (0.5,1), corresponding
Fig.[d. They also recover the ground truth accurately. to 5 € (0,1) for which no Tweedie distributions are defined.
Moreover, to our knowledge there are no studies concerning
2) a-divergence selectionThere is only one known gen-the pdf's of Tweedie distributions with > 1. For that reason,

erative model for which the maximum likelihood estimathe likelihood values for € [0,0.5) are left blank in the plot.
tor corresponds to the minimizer of the corresponding

divergence. It is the Poisson distribution. We thus reusedIt can be seen from Fidl] 2b ahdl 2c, that the augmentation
the Poisson-distributed data of the previous experimeitts win the MEDAL method also helps in selection. Again, both
the 3-divergence. In Fig[]2a, we present the log-likelihoo&D and EDA solve most of the discontinuity problem except
objective overa obtained with Tweedie distribution (MTL) o = 0. Selection using ED fails to find the ground truth
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Piano excerpt Piano excerpt

which equals 1, which is however successfully found by the —4x°

><10
MEDAL method. SM on EDA recovers the ground truth as 5 , )
well (Fig.[2d). . .
g2 g~
B. Divergence selection in NMF » »
The objective in nonnegative matrix factorization (NMF) -s

log-likelihood (EDA)
Iog—llkellhood (EDA)

-2 -1 0 1 2
is to find a low-rank approximation to the observed data P(bestP==y) “‘bes“’j‘“)
by expressing it as a product of two nonnegative matrices, a) g div. b) o div.
|e V ~ V — WH with V c RFXN AV.Y2 c RFXK 4x105 Piano excerpt

and H € RN, This objective is pursued through the
minimization of an information divergence between the date
and the approximation, i.e)(V|[V). The divergence can be
any appropriate one for the data/application sucltas, ~,
Rényi, etc. Here, we chose tlieanda divergences to illustrate
the MEDAL method for realistic data. 4 5 -
The optimization of 5-NMF was implemented using the B (best p=-1)
standard multiplicative update rulds [23], [38]. Similaulm c) 5 div.
tiplicative update rules are also available fefNMF [23].
AIternativer, the algorithm for3-NMF can be used for- Fig. 3. (a, b) Log likelihood values foB and « for the spectrogram of
. LT . a short piano excerpt witll’ = 513, N = 676, K = 6. (c) Negative SM
divergence minimization as well, using the transformatiofpjective for 3.
explained in Sectiop 1I=B.
1) A Short Piano ExcerptWe consider the piano data used
in [21]. It is an audio sequence recorded in real conditiongith « = 0.5 is still much less than the one for= —1. SM
consisting of four notes played all together in the first nueas also finds3 = —1 as can be seen from Figl 3c.
and in all possible pairs in the subsequent measures. A
power spectrogram with analysis window of size 46 ms was
computed, leading t@" = 513 frequency bins andV = 676 C- Stock Prices
time frames. These make up the data maWwixfor which a Next, we repeat the same experiment on a stock price dataset
matrix factorizationV = WH with low rank K = 6 is sought which contains Dow Jones Industrial Average. There are 30
for. companies included in the data. They are major American
In Fig. [3a andBb, we show the log-likelihood values ofompanies from various sectors such as services (e.g., Wal-
the MEDAL method for3 and «, respectively. For each mart), consumer goods (e.g., General Motors) and hea&hcar
parameter valug and«, the multiplicative algorithm for the (e.g., Pfizer). The data was collected from 3rd January 2000
respective divergence is run for 100 iterations and liladiths to 27th July 2011, in total 2543 trading dates. We Ket 5
are evaluated with mean values calculated from the returneadNMF and masked 50% of the data by followirig [39]. The
matrix factorizations. For each value @Gfand«, the highest st ock data curves are displayed in Fig. 4 (left).
likelihood w.r.t. ¢ (see Eq.[(20)) is found by a grid search. = The EDA likelihood curve with3 € [—2,2] is shown in
The found maximum likelihood estimaté = —1 corre- Figure[4 (bottom left). We can see that the best divergence
sponds to Itakura-Saito divergence, which is in harmony wiselected by MEDAL is3 = 0.4. The corresponding best
the empirical results presented in[21] and the commonbeli¢ = 0.006. These results are in harmony with the findings
that IS divergence is most suitable for audio spectrogrdims. of Tan and Févotte[[39] using the remaining 50% of the
optimal a value value was 0.5 corresponding to Hellinger didata as validation set, where they found thiate [0, 0.5]
tance. We can also see that the log likelihood value assatiaimind that our values equal theirs minus one) performs

negative SM objective (EDA)




matrix only appears once in the approximation, the matrix
‘W occurs twice inV. Thus it is a special case of Quadratic
Nonnegative Matrix Factorization (QNMF)_[41].

We choose PNMF for two reasons: 1) we demonstrate
the MEDAL performance on QNMF besides the linear NMF
9 already shown in Sectidn IViB; 2) PNMF contains only one
50 1000 1500 2000 2500 variable matrix in learning, without the issue of how to
«10° stock prices interleave the updates of different variable matrices.

We first tested MEDAL on a synthetic dataset. We generated
a diagonal blockwise data matr of size50 x 30, where two
blocks are of size80 x 20 and20 x 10. The block entries are
uniformly drawn from([0, 10]. We then added uniform noise
from [0, 1] to the all matrix entries. For each, we ran the
multiplicative algorithm of PNMF by Yang and Oja [28], [42]
2 to obtainW andV. The MEDAL method was then applied to
select the best. The resulting approximated log-likelihood for
Fig. 4. Top: thest ock data. Bottom left: the EDA log-likelihood fof € 7 € [—2,2] is shown in Fig[b (2nd row). We can see MEDAL
[—2,2]. Bottom right: negative SM objective function fgr € [—2, 2]. and score matching of EDA give similar results, where thé bes
~ appear at-0.76 and —0.8, respectively. Both resulting’’s
give perfect clustering accuracy of data rows.

We also tested MEDAL on thewi nmer dataset{[43] which
f%%opularly used in the NMF field. Some example images
from this dataset are shown in Figl 5 (left). We vectorized
each image in the dataset as a column and concatenated the
columns into al024 x 256 data matrixV. This matrix is then
fed to PNMF and MEDAL as in the case for the synthetic
D. Selectingy-divergence dataset. Here we empirically set the rankifo= 17 according

In this section we demonstrate that the proposed methmdTan and Févotte [44] and Yang et al.[45]. The maWk
can be applied to applications beyond NMF and to nom¥as initialized by PNMF based on Euclidean distance to avoid
separable divergence families. To our knowledge, no othgoor local minima. The resulting approximated log-likelid
existing methods can handle these two cases. for v € [-1, 3] is shown in Figur€le (3rd row, left). We can see

1) Multinomial data: We first exemplifyy-divergence se- a peak appearing arourid7. Zooming in the region near the
lection for synthetic data drawn from a multinomial dispeak shows the best= 1.69. The score matching objective
tribution. We generated a 1000-dimensional stochastic vexver v values (Fig[b 3rd row, right) shows a similar peak
tor p from the uniform distribution. Next we drew ~ and the best very close to the one given by MEDAL. Both
Multinomial(n, p) with n = 107. The MEDAL method is methods result in excellent and nearly identical basis imatr
applied to find the best-divergence for the approximation(W) of the data, where the swimmer body as well as four
of x by p. limbs at four angles are clearly identified (see [Eilg. 5 bottom

Fig. [@ (1st row, left) shows the MEDAL log-likelihood. row).

The peak appears whep = 0, which indicates that the  3) Symmetric Stochastic Neighbor Embeddifinally, we
normalized KL-divergence is the most suitable one among tBrow an application beyond NMF, where MEDAL is used to
~-divergence family. Selection using score matching of EDfind the besty-divergence for the visualization using Symmet-
gives the besty also close to zero (Fifll 6 1st row, right). Thejc Stochastic Neighbor Embedding (s-SNE) [5], [6].

result is expected, because the maximum likelihood estimat Suppose there are multivariate data samplesc; }™_, with

of p in multinomial distribution is equivalent to minimizing x; € RP and their pairwise similarities are reprlgslented by
the KL-divergence overp. Our finding also justifies the 5, « 5 symmetric nonnegative matri® where P;; = 0
usage of KL-divergence in topic models with the multinomia,q S ..P; = 1. The s-SNE visualization seeks a low-

distribution [40], [7]. . J L T onxd
2) Projective NMF: Next we apply the MEDAL method dlmens_loqal er_nb_edgil_ng’-_ y1, 2, ’Y"] €R . such
L . . L that pairwise similarities in the embedding approximatesth
to Projective Nonnegative Matrix Factorization (PNME)[[27 in the original space. Generally — 2 or d — 3 for eas
[28] based omy-divergencel[13],[[19]. Given a nonnegative g pace. o N Y

. . Visualization. Denotey;; = ; — y;]|?) with a certain
matrix V. € RN, PNMF seeks a low-rank nonnegativ o = alllyi = v50%)

. —1
. . 98V ernel functiong, for exampleq;; = (1+ [ly; —y;[?) .
FxK 1] i 7
matrix W € R3™% (K < F) that minimizesD, (V”V)’ The pairwise similarities in the embedding are then given by

where V.= WWZV. PNMF is able to produce a highly @;; = qij/zkl:k# qxi- The s-SNE target is thaf) is as
orthogonalW and thus finds its applications in part-basedlose toP as possible. To measure the dissimilarity between
feature extraction and clustering analysis, etc. Diffefeom P and Q, the conventional s-SNE uses the Kullback-Leibler
conventional NMF (or linear NMF) where each factorizinglivergence Dk (P||Q). Here we generalize s-SNE to the

stock prices

10° stock prices

®

o))

N

log-likelihood (EDA)
negative SM objective (EDA)
S

N
lo
N

0 1 0
B (best B=0.4) B (best B=1)

well for a large range 0f's. Differently, our method is more
advantageous because we do not need additional criteria
data for validations. In Figuriel 4 (bottom right), negativid S
objective function is plotted fo € [—2,2]. With SM, the
optimal 3 is found to be 1.
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Fig. 5. Swimmer dataset: (top) example images; (bottom)btst PNMF
basis W) selected by using (bottom left) MEDAL and (bottom rightpee

matching of EDA. The visualization reshapes each columWbfo an image 12000 y-NE 000 y-NE

0 1 2 0 1 2
y (best y=1.69) y (best y=1.63)

and displays it by the Matlab functiomagesc
1310000 % 6000
§ -_g—SOOO
whole family of y-divergences as dissimilarity measures andg 800 & 4000
select the best divergence by our MEDAL method. g 6000 -§3000
We have used a real-worldol phi ns datasék It is the £ 2000
adjacency matrix of the undirected social network betweer 4000,—— 1000;—— >

1 0 1 1 0 1
y (best y=-0.60) y (best y=-1.04)

62 dolphins. We smoothed the matrix by PageRank randor.,
Walk. in order to find its macro StrUCture.S' The SmOpﬂﬁlelgilg 6. Selecting the best-divergence: (1st row) for multinomial data
matrix was then fed to s-SNE based ordivergence, with (2nd rbw) in PNMF for synthetic data, (Sfd row) in PNMF for thei nmer ’
v € [-2,2]. The EDA log-likelihood is shown in Figll6 dataset, and (4th row) in s-SNE for til phi ns dataset; (left column)
(4th row, Ieft). By the MEDAL principle the best divergencel_sing MEDAL and (right column) using_score matching of EDA€Tlred stgr
S 7 = 0.6 for S-SNE and theol phi ns dataset. Score O e el and te smal subfigures in ach lt it z00m
matching of EDA also indicates the besgtis smaller than peaks.
0. The resulting visualizations created by s-SNE with the
respective besjamma-divergence are shown in Figl. 7, where
the node layouts by both methods are very similar. In bo#ielection for the parameter over a wider range. The new
visualizations we can clearly see two dolphin communities.method has been extended éedivergence selection by a
nonlinear transformation. Furthermore, we have providad n
V. CONCLUSIONS results that connect the- and -divergences, which enable

We have presented a new method called MEDAL to ays to extend the selection method to non-separable cases.
The extension also holds for Rényi divergence with similar

tomatically select the best information divergence in aapar , ) :
metric family. Our selection method is built upon a statisti relationship toa-divergence. As a result, our method can be

learning approach, where the divergence is learned as ?rﬁpli?d to most commonly used information divergences in
result of standard density parameter estimation. Maximgjizi '€8MiNg- , ,

the likelihood of the Tweedie distribution is a straightiard e have performed extensive experiments to show the
way for selectings-divergence, which however has som&ccuracy and applicability of the new method. Comparison
shortcomings. We have proposed a novel distribution, tQ& Synthetic data has illustrated that our method is suptio
Exponential Divergence with Augmentation (EDA), whictMaximum Tweedie Likelihood, i.e., it finds the ground truth

overcomes these shortcomings and thus can give a more roff§spccurately as MTL, while being defined on all valuesof
and being less prone to numerical problems (no abrupt clsange

2available af http://www-personal.umich.edu/~mejn/a&d in the likelihood). We also showed that a previous estinmtio


http://www-personal.umich.edu/~mejn/netdata/
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sible for all 5 due to intractability of integrals. Non-ML
estimators could be used to attack this open problem.

The EDA distribution family includes the exact Gaussian,
Gamma, and Inverse Gaussian distributions, and approgdnat
Poisson distribution. In the approximation we used the-first
order Stirling expansion. One could apply higher-orderagxp
sions to improve the approximation accuracy. This could be
implemented by further augmentation with higher-ordemter
aroundg — 0.
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APPENDIXA
INFINITE SERIES EXPANSION INTWEEDIE DISTRIBUTION

In the series expansion, an EDM random variable is repre-
Fig. 7. Visualization of thelol phi ns social network with the best using sented as a sum @ independent Gamma random variables

(top) MEDAL and (bottom) score matching of EDA. Dolphins ahéir social _ G ; ; fotr :
connections are shown by circles and lines, respectivee BHackground v Zzgpyg’ whereG is Poisson distributed with parameter

illustrates the node density by the Parzen method [46]. = h; and the shape and scale parameters of the Gamma
distribution are-a andb, with a = 2=2 andb = ¢(p—1)uP~".

The pdf of the Tweedie distribution is obtained analytigall
approach by Score Matching on Exponential Divergence dig- —

2—p
b X e W2 =0ase ?@». Forz > 0 the function f(x, ¢, p) =
tribution (ED, i.e., EDA before augmentation) is not actera 1 E;il W, (x, &, p), where forl < p < 2

especially forg < 0. In the application to NMF, we have *

provided experimental results on various kinds of datavidcl W r=I(p —1)7e

ing audio and stock prices. In the non-separable cases, we T $il=a)(2 — p)ijIT(—ja)

have demonstrated selectingdivergence for synthetic data,and forp > 2

Projective NMF, and visualization by s-SNE. In those cases ‘ ‘

where the correct parameter value is known in advance for they, _ 1 I'(1+ ja)¢e=V (p —1)i* (=1)7 sin(—rja). (26)

synthetic data, or there is a wide consensus in the applicati ° 7 I'(1+j)(p—1)izie '

community on the correct parameter value for real-worlddat This infinite summation needs approximation in practice.

the MEDAL method gives expected results. These results Shgﬂnn and SmytH:BS] described an approach to select a subset

that the presented method has not only broad applications bgl these infinite terms to accurately approximater, ¢, p).

also accurate selection performance. In the case of neveking their approach, Stirling’s approximation of the Gamma

of data, for which the appropriate information divergense functions are used to find the indgxwhich gives the highest

not known, the MEDAL method provides a disciplined angalue of the function. Then, in order to find the most significa

rigorous way to compute the optimal parameter values.  region, the indices are progressed in both directions until
In this paper we have focused on information divergence faegligible terms are reached.

vectorial data. There exist other divergences for highideo

(25)

tensors, for example, LogDet divergence and von Newmann APPENDIXB
divergence (see e.d. [47]) that are defined over eigenvalues GAUSS-LAGUERRE QUADRATURES
matrices. Selection among these divergences remains an operhis method (e.g[48]) can evaluate definite integrals ef th
problem. form

Here we mainly consider a positive data matrix and selecting o0 n
the divergence parameter {0, +00). Tweedie distribution / e f(z2)dz =~ Zf(zi)wi, (27)
has no support for zero entries whgn< 0 and thus gives 0 i

zero likelihood of the whole matrix/tensor by independemee wherez; is theith root of then-th order Laguerre polynomial

future work, extension of EDA to accommodate nonnegati\lgn(z), and the weights are given by

data matrices could be developed foe> 0. 2
MEDAL is a two-phase method: thg selection is based Wi = (n+1)2L2 (%)

on the optimization result gf. Ideally, both variables should . _— L

be selected by optimizing the same objective. For maximu-me recursive definition of...(2) is given by

log-likelihood estimator, this requires that the negativg- Lngi(2) = 1 (20 41— 2)Ln(2) — nLu_1(2)], (29)

likelihood equals thes-divergence, which is however infea- 1 ’

(28)
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with Lo(z) = 1 and L1(z) = 1 — z. In our experiments, we Dropping the constanf:— and by Lemmadl4, minimizing
used the Matlab implementation by Windketith » = 5000. the above is equwalent to minimization of (far> 0)

11—«
APPENDIXC
PROOFS OFTHEOREMSZIAND 3] i Zx (Z M) (36)
Lemma 4:argmin, af(z) = argmin, aln f(z) for a € R
and f(z) > 0. Adding a constant“~1In}, z; to the above, the objective

The proof of the lemma is simply by the monotonicitylaf becomes minimizing Rényi-divergence (replacingwith p;
Next we prove Theorerll 2. Fo# € R\{—1,0}, zeroing Ssee Eq.[(9)).

aDagcllcu) gives The proofs for the special cases are similar, where the main
¢ steps are given below
o — 2 x;’fﬂ (30) ¢ B=7—0(ra=p-—1): zeroingwﬂ+(x”c“) gives
2 i = %; Putting it back, we obtai_.o(x||c*pn) =
Putting it back tomin,, min. Dg(x||cu), we obtain: (>, i) Dvﬂo(xn,u)
. B = v — —1: zeroing 2Pe=—1llew) giveg o+ =

min min Dg(x||cp)

u c

. 1 1+[5 7/'LJ
=min —— +

o St oy (22

B * 22 piIn £
Zw.'/ﬁ ¢ = exp <—7. .
9 Ve L

i Ky L .
ZJ ! Putting it back, we obtain

M Y E e where M is the length ofx. Putting it back,
1+ we obtalnDﬂ_> 1(x||c*p) = M D1 (x]|p).
) e« a=p—0: zeroing 2Pezolxllew) gives

%

Z 5 1+
1 143 ( leul ) B :&’
R Te) > T Lt Daso(x|[c"p) = —exp (=D fuln = |+ i,
g (Z 1y ) i ¢ i
Dropping the constant, and by Lemria 4, the above is Wherefi; = y;/ 3", pu;. Dropping the constan}; z;,
equivalent to minimizing minimizing Do (x||c*p) is equivalent to minimization
of >, i;In£. Adding the constanin}; z; to the
1 1 latter, the objectlve becomes identical m~>0(x||u)
- 1 +8 1 1 P
5(1+ﬁ ﬂ n Z,LL +B H<sz‘ul> i.e. DKL(H”X)-
Adding a constantﬁ(lw In (Z x1+6), the objective be- REFERENCES
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