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Decentralized RLS with Data-Adaptive Censoring

for Regressions over Large-Scale Networks
Zifeng Wang, Zheng Yu, Qing Ling, Dimitris Berberidis, and Georgios B. Giannakis

Abstract—The deluge of networked data motivates the devel-
opment of algorithms for computation- and communication-
efficient information processing. In this context, three data-
adaptive censoring strategies are introduced to considerably
reduce the computation and communication overhead of decen-
tralized recursive least-squares (D-RLS) solvers. The first relies
on alternating minimization and the stochastic Newton iteration
to minimize a network-wide cost, which discards observations
with small innovations. In the resultant algorithm, each node
performs local data-adaptive censoring to reduce computations,
while exchanging its local estimate with neighbors so as to
consent on a network-wide solution. The communication cost
is further reduced by the second strategy, which prevents a
node from transmitting its local estimate to neighbors when
the innovation it induces to incoming data is minimal. In the
third strategy, not only transmitting, but also receiving estimates
from neighbors is prohibited when data-adaptive censoring is
in effect. For all strategies, a simple criterion is provided for
selecting the threshold of innovation to reach a prescribed
average data reduction. The novel censoring-based (C)D-RLS
algorithms are proved convergent to the optimal argument in
the mean-root deviation sense. Numerical experiments validate
the effectiveness of the proposed algorithms in reducing com-
putation and communication overhead.

Index Terms—Decentralized estimation, networks, recursive
least-squares (RLS), data-adaptive censoring

I. INTRODUCTION

In our big data era, various networks generate massive

amounts of streaming data. Examples include wireless sensor

networks, where a large number of inexpensive sensors

cooperate to monitor, e.g. the environment [21], [22], or

data centers, where a group of servers collaboratively han-

dles dynamic user requests [24]. Since a single node has

limited computational resources, decentralized information

processing is preferable as the network size scales up [7], [9].

In this paper, we focus on a decentralized linear regression

setup, and develop computation- and communication-efficient

decentralized recursive least-squares (D-RLS) algorithms.
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The main tool we adopt to reduce computation and com-

munication costs is data-adaptive censoring, which leverages

the redundancy present especially in big data. Upon receiving

an observation, nodes determine whether it is informative or

not. Less informative observations are discarded, while mes-

sages among neighboring nodes are exchanged only when

necessary. We propose three censoring-based (C)D-RLS al-

gorithms that can achieve estimation accuracy comparable to

D-RLS without censoring, while significantly reducing the

computation and communication overhead.

A. Related works

The merits of RLS algorithms in solving centralized linear

regression problems are well recognized [12], [25]. When

streaming observations that depend linearly on a set of

unknown parameters become available, RLS yields the least-

squares parameter estimates online. RLS reduces the compu-

tational burden of finding a batch estimate per iteration, and

can even allow for tracking time-varying parameters. The

computational cost can be further reduced by data-adaptive

censoring [4], where less informative data are discarded.

On the other hand, decentralized versions of RLS without

censoring have been advocated to solve linear regression

tasks over networks [16]. In D-RLS, a node updates its

estimate that is common to the entire network by fusing its

local observations with the local estimates of its neighbors.

As time evolves, all local estimates consent on the centralized

RLS solution. This paper builds on both [4] and [16] by

developing censoring-based decentralized RLS algorithms,

thus catering to efficient online linear regression over large-

scale networks.

Different from our in-network setting where operation is

fully decentralized and nodes are only able to communicate

with their neighbors, most of the existing distributed censor-

ing algorithms apply to star topology networks that rely on

a fusion center [2], [10], [11], [19], [23]. Their basic idea is

that each node transmits data to the fusion center for further

processing only when its local likelihood ratio exceeds a

threshold [23]; see also [10] where communication con-

straints are also taken into account. Information fusion over

fading channels is considered in [11]. Practical issues such as

joint dependence of sensor decision rules, randomization of

decision strategies as well as partially known distributions are

reported in [2], while [19] also explores quantization jointly

with censoring.

http://arxiv.org/abs/1612.08263v3
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Other than the star topology studied in the aforementioned

works, [20] investigates censoring for a tree structure. If a

node’s local likelihood ratio exceeds a threshold, its local data

is sent to its parent node for fusion. A fully decentralized

setting is considered in [3], where each node determines

whether to transmit its local estimate to its neighbors by

comparing the local estimate with the weighted average of

its neighbors. Nevertheless, [3] aims at mitigating only the

communication cost, while the present work also considers

reduction of the computational cost across the network. Fur-

thermore, the censoring-based decentralized linear regression

algorithm in [14] deals with optimal full-complexity estima-

tion when observations are partially known or corrupted. This

is different from our context, where censoring is deliberately

introduced to reduce computational and communication costs

for decentralized linear regression.

B. Our contributions and organization

The present paper introduces three data-adaptive online

censoring strategies for decentralized linear regression. The

resultant CD-RLS algorithms incur low computational and

communication costs, and are thus attractive for large-scale

network applications requiring decentralized solvers of linear

regressions. Unlike most related works that specifically target

wireless sensor networks (WSNs), the proposed algorithms

may be used in a broader context of decentralized linear

regression using multiple computing platforms. Of particular

interest are cases where a regression dataset is not available

at a single machine, but it is distributed over a network of

computing agents that are interested in accurately estimating

the regression coefficients in an efficient manner.

In Section II, we formulate the decentralized online linear

regression problem (Section II-A), and recast the D-RLS

in [16] into a new form (Section II-B) that prompts the

development of three censoring strategies (Section II-C).

Section III develops the first censoring strategy (Section

III-A), analyzes all three censoring strategies (Section III-B),

and discusses how to set the censoring thresholds (Section

III-C). Numerical experiments in Section IV demonstrate the

effectiveness of the novel CD-RLS algorithms.

Notation. Lower (upper) case boldface letters denote col-

umn vectors (matrices). (·)T , || · ||, || · ||2 and E[·] stand for

transpose, 2-norm, induced matrix 2-norm and expectation,

respectively. Symbols tr(X), λmin(X) and λmax(X) are used

for the trace, minimum eigenvalue and maximal eigenvalue

of matrix X, respectively. Kronecker product is denoted

by ⊗ and the uniform distribution over [a, b] by U(a, b),
and the Gaussian probability distribution function (pdf) with

mean µ and variance σ2 by N (µ, σ2). The standardized

Gaussian pdf is φ(t) = (1/
√
2π)exp(−t2/2), and its the

associated complementary cumulative distribution function is

represented by Q(z) :=
∫ +∞

z
φ(t)dt.

II. CONTEXT AND ALGORITHMS

This section outlines the online linear regression setup over

networks, and takes a fresh look at the D-RLS algorithm.

Three strategies are then developed using data-adaptive cen-

soring to reduce the computational and communication costs

of D-RLS.

A. Problem statement

Consider a bidirectionally connected network with J
nodes, described by a graph G := {V , E}, where V is

the set of nodes with cardinality |V| = J , and E denotes

the set of edges. Each node j only communicates with

its one-hop neighbors, collected in the set Nj ⊂ V . The

decentralized network is deployed to estimate a real vector

s0 ∈ R
p. Per time slot t = 1, 2, . . ., node j receives a

real scalar observation xj(t) involving the wanted s0 with

a regression row h
T
j (t), so that xj(t) = h

T
j (t)s0 + ǫj(t),

with ǫj(t) ∼ N (0, σ2
j ).

Our goal is to devise efficient decentralized online algo-

rithms to solve the following exponentially-weighted least-

squares (EWLS) problem

ŝewls(t) := argmin
s

1

2

t
∑

r=1

J
∑

j=1

λt−r[xj(r) − h
T
j (r)s]

2 (1)

where ŝewls(t) is the EWLS estimate at slot t, and λ ∈ (0, 1]
is a forgetting factor that de-emphasizes the importance of

past measurements, and thus enables tracking of a non-

stationary process. When λ = 1, (1) boils down to a standard

decentralized online least-squares estimate.

B. D-RLS revisited

The D-RLS algorithm of [16] solves (1) as follows. Per

time slot t, node j receives xj(t) and h
T
j (t) and uses them

to update the per-node inverse p× p covariance matrix as

Φ
−1
j (t) = λ−1

Φ
−1
j (t− 1)

−
λ−1

Φ
−1
j (t− 1)hj(t)h

T
j (t)Φ

−1
j (t− 1)

λ+ hT
j (t)Φ

−1
j (t− 1)hj(t)

(2)

along with the per-node p× 1 cross-covariance vector as

ψj(t) = λψj(t− 1) + hj(t)xj(t). (3)

Using Φ
−1
j (t) and ψj(t), node j then updates its local

parameter estimate using

sj(t) = Φ
−1
j (t)

[

ψj(t)−
1

2

∑

j′∈Nj

(

v
j′

j (t− 1)− v
j
j′ (t− 1)

) ]

(4)

where v
j′

j (t− 1) denotes the Lagrange multiplier of node j
corresponding to its neighbor j′ at slot t−1, that captures the
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accumulated differences of neighboring estimates, recursively

obtained as (ρ > 0 is a step-size)

v
j′

j (t− 1) = v
j′

j (t− 2) + ρ
[

sj(t− 1)− sj′(t− 1)
]

. (5)

Next, we develop an equivalent novel form of D-RLS

recursions (2)–(5) that is convenient for our incorporation

of data-adaptive censoring. Detailed derivation of the equiv-

alence can be found in Appendix A. The inverse covariance

matrix is updated as in (2). However, the update of sj(t) in

(4) is replaced by

sj(t) = sj(t− 1) +Φ
−1
j (t)hj(t)

[

xj(t)− h
T
j (t)sj(t− 1)

]

− ρΦ−1
j (t)δj(t− 1) (6)

where δj(t) stands for a Lagrange multiplier conveying

network-wide information that is updated as

δj(t) = δj(t− 1) +
∑

j′∈Nj

[sj(t)− sj′(t)]

− λ
∑

j′∈Nj

[sj(t− 1)− sj′ (t− 1)]. (7)

Observe that δj(t) stores the weighted sum of differences

between the local estimate of node j, and all estimates of

its neighbors. Interestingly, if the network is disconnected

and the nodes are isolated, then δj(t) = 0 so long as

δj(0) = 0, and the update of sj(t) in (6) basically boils

down to the centralized RLS one [12], [25]. That is, the

current estimate is modified from its previous value using the

prediction error xj(t)−h
T
j (t)sj(t−1), which is known as the

incoming data innovation. If on the other hand the network

is connected, nodes can leverage estimates of their neighbors

(captured by δj(t)), which provide new information from the

network other than its own observations {xj(t)}. The term

ρΦ−1
j (t)δj(t − 1) can be viewed as a Laplacian smoothing

regularizer, which encourages all nodes of the graph to reach

consensus on their estimates.

Remark 1. In D-RLS, (2) incurs computational complexity

O(p2), since calculating the products Φ
−1
j (t − 1)hj(t) and

Φ
−1
j (t − 1)ψj(t) requires O(p2) multiplications. Similarly,

(6) incurs computational complexity O(p2), that is domi-

nated by the matrix-vector multiplications Φ
−1
j (t)hj(t) and

Φ
−1
j (t)δj(t − 1). The cost of carrying out (7) is relatively

minor. Regarding communication cost per slot t, node j
needs to transmit its local estimate sj(t) to its neighbors

and receive estimates sj′(t) from all neighbors j′ ∈ Nj .

The computational burden of D-RLS recursions (2)–(5) is

comparable to that of (2), (6) and (7), with the cost of (4)

being the same as what (6) requires. Meanwhile, the original

form requires neighboring nodes j and j′ to exchange vj(t)
and vj′(t) in addition to sj(t) and sj′(t), which doubles the

communication cost relative to (6) and (7).

C. Censoring-based D-RLS strategies

The D-RLS algorithm has well documented merits for

decentralized online linear regression [16]. However, its com-

putational and communication costs per iteration are fixed,

regardless of whether observations and/or the estimates from

neighboring nodes are informative or not. This fact motivates

our idea of permeating benefits of data-adaptive censoring

to decentralized RLS, through three novel censoring-based

(C)D-RLS strategies. They are different from the RLS algo-

rithms in [4], where the focus is on centralized online linear

regression.

Our first censoring strategy (CD-RLS-1) can be intuitively

motivated as follows. If a given datum (xj(t),hj(t)) is

not informative enough, we do not have to use it since its

contribution to the local estimate of node j, as well as to those

of all network nodes, is limited. With {τσj(t)} specifying

proper thresholds to be discussed later, this intuition can be

realized using a censoring indicator variable

cj(t) :=

{

0, if |xj(t)− h
T
j (t)sj(t− 1)| ≤ τσj(t)

1, if |xj(t)− h
T
j (t)sj(t− 1)| > τσj(t).

(8)

If the absolute value of the innovation is less than τσj(t),
then (xj(t),hj(t)) is censored; otherwise (xj(t),hj(t)) is

used. Section III-C will provide rules for selecting the

threshold τ along with the local noise variance σ2
j (t), whose

computations are lightweight. If data censoring is in effect,

we simply throw away the current datum by letting hj(t) = 0

in (2), to obtain

Φ
−1
j (t) = λ−1

Φ
−1
j (t− 1). (9)

Likewise, letting xj(t) = 0 and hj(t) = 0 in (6), yields

sj(t) = sj(t− 1)− ρΦ−1
j (t)δj(t− 1). (10)

CD-RLS-1 is summarized in Algorithm 1. If censoring is

in effect, computation cost per node and per slot is a fraction

2/7 of the D-RLS in (4) and (7) without censoring. To

recognize why, observe that the scalar-matrix multiplication

λ−1
Φ

−1
j (t−1) in (9) is not necessary as the update of Φ−1

j (t)
can be merged to wherever it is needed, e.g., in (10) and the

next slot. In addition, carrying out the O(p2) multiplications

to obtain Φ
−1
j (t)hj(t) is no longer necessary, while the

O(p2) multiplications required to obtain Φ
−1
j (t)δj(t − 1)

remain the same.

The first censoring strategy still requires nodes to com-

municate with neighbors per time slot; hence, the communi-

cation cost remains the same. Reducing this communication

cost, motivates our second censoring strategy (CD-RLS-2),

where each node does not perform extra computations rel-

ative to CD-RLS-1, but only receives neighboring estimates

if its current datum is censored. The intuition behind this

strategy is that if a datum is censored, then very likely the

current local estimate is sufficiently accurate, and the node

does not need to account for estimates from its neighbors.
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Algorithm 1 CD-RLS-1

1: Initialize δj(0), {sj(0)}
J
j=1 and {Φ−1

j (0)}Jj=1

2: for t = 1, 2, . . . do
3: All j ∈ V:
4: if |xj(t)− h

T
j (t)sj(t− 1)| ≤ τσj(t) then

5: update Φ
−1

j (t) using (9)

6: update sj(t) using (10)
7: else
8: update Φ

−1

j (t) using (2)

9: update sj(t) using (6)
10: end if
11: transmit sj(t) to and receive sj′(t) from all j′ ∈ Nj

12: compute δj(t) using (7)
13: end for

Algorithm 2 CD-RLS-2

1: Initialize δj(0), {sj(0)}
J
j=1 and {Φ−1

j (0)}Jj=1

2: for t = 1, 2, . . . do
3: All j ∈ V:
4: if |xj(t)− h

T
j (t)sj(t− 1)| ≤ τσj(t) then

5: receives sj′(t) from all j′ ∈ Nj

6: else
7: set sj′(t− 1) as recently received ones from all j′ ∈ Nj

8: update Φ
−1

j (t) using (2)

9: update sj(t) using (6)
10: transmit sj(t) to and receive sj′(t) from all j′ ∈ Nj

11: compute δj(t) using (7)
12: end if
13: end for

Estimates from neighbors, are only stored for future usage.

Likewise, neighbors in Nj do not need node j’s current

estimate either, because they have already received a very

similar estimate. CD-RLS-2 is summarized in Algorithm 2.

The third censoring strategy (CD-RLS-3) given by Algo-

rithm 3 is more aggressive than the second one. If a node

has its datum censored at a certain slot, then it neither

transmits to nor receives from its neighbors, and in that

sense it remains “isolated” from the rest of the network

in this slot. Apparently, we should not allow any node to

be forever isolated. To this end, we can force each node

to receive the local estimate from any of its neighbors at

least once every dmax slots, which upper bounds the delay

of information exchange to dmax. Interestingly, the ensuing

section will prove convergence of all three strategies to the

optimal argument in the mean-square deviation sense under

mild conditions.

III. DEVELOPMENT AND PERFORMANCE ANALYSIS

This section starts with a criterion-based development

of CD-RLS-1. Convergence analysis of all three censoring

strategies will follow, before developing practical means of

setting the censoring threshold τσj(t).

Algorithm 3 CD-RLS-3

1: Initialize δj(0), {sj(0)}
J
j=1 and {Φ−1

j (0)}Jj=1

2: for t = 1, 2, . . . do
3: All j ∈ V:
4: if |xj(t)− h

T
j (t)sj(t− 1)| ≤ τσj(t) then

5: stay idle
6: else
7: set sj′(t− 1) as recently received ones from all j′ ∈ Nj

8: update Φ
−1

j (t) using (2)

9: update sj(t) using (6)
10: transmit sj(t) to and receive sj′(t) from all j′ ∈ Nj

11: compute δj(t) using (7)
12: end if
13: if do not receive from any j′ ∈ Nj for dmax time then
14: receive sj′(t)
15: end if
16: end for

A. Derivation of censoring-based D-RLS-1

Consider the following truncated quadratic cost that is

similar to the one used in the censoring-based but centralized

RLS [4]

fj,t(s) := (11)
{

0, |xj(t)− h
T
j (t)s| ≤ τσj(t)

1
2 [xj(t)− h

T
j (t)s]

2 − 1
2τ

2σj(t)
2, |xj(t)− h

T
j (t)s| > τσj(t)

which is convex, but non-differentiable on {s : |xj(t) −
h
T
j (t)s| = τσj(t)}. Using (11) to replace the quadratic loss

[xj(τ) − h
T
j (τ)s]

2 in (1), our CD-RLS-1 criterion is

min
s

t
∑

r=1

J
∑

j=1

λt−rfj,r(s). (12)

To solve (12) in a decentralized manner, we introduce a

local estimate sj per node j, along with auxiliary vectors z̄
j′

j

and z̃
j′

j per edge (j, j′). By constraining all local estimates

of neighbors to consent, we arrive at the following equivalent

separable convex program per slot t

min
{sj}j∈V

t
∑

r=1

J
∑

j=1

λt−rfj,r(sj) (13)

s.t. sj = z̄
j′

j , sj′ = z̃
j′

j , z̄
j′

j = z̃
j′

j , j ∈ V , j′ ∈ Nj .

Next, we employ alternating minimization and the stochas-

tic Newton iteration to derive our first censoring-based solver

of (13). To this end, consider the Lagrangian of (13) that is

given by

L(s, z,v,u) =
∑

j∈V

t
∑

r=1

λt−rfj,r(sj)

+

J
∑

j=1

∑

j′∈Nj

[

(vj′

j )
T (sj − z̄

j′

j ) + (uj′

j )
T (sj′ − z̃

j′

j )
]

(14)
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where s := {sj}j∈V and z := {z̄j
′

j , z̃
j′

j }
j′∈Nj

j∈V are primal

variables, while v := {vj′

j ∈ R
p}j

′∈Nj

j∈V and u := {uj′

j ∈
R

p}j
′∈Nj

j∈V are dual variables. Consider also the augmented

Lagrangian of (13), namely

Lρ(s, z,v,u) = L(s, z,u,v)

+
ρ

2

J
∑

j=1

∑

j′∈Nj

[

||sj − z̄
j′

j ||2 + ||sj′ − z̃
j′

j ||2
]

(15)

where ρ is a positive regularization scale. Note that the

constraints on z are not dualized, but they are collected in

the set Cz := {z|z̄j
′

j = z̃
j′

j , j ∈ V , j′ ∈ Nj , j 6= j′}.

To minimize (13) per slot t > 0, we rely on alternating

minimization [27] in an online manner, which entails an

iterative procedure consisting of three steps.

[S1] Local estimate updates:

s(t) = argmin
s

L(s, z(t− 1),v(t− 1),u(t− 1))

[S2] Auxiliary variable updates:

z(t) = arg min
z∈Cz

Lρ(s(t), z,v(t − 1),u(t− 1))

[S3] Multiplier updates:

v
j′

j (t) = v
j′

j (t− 1) + ρ
[

sj(t)− z̄
j′

j (t)
]

u
j′

j (t) = u
j′

j (t− 1) + ρ
[

sj′(t)− z̃
j′

j (t)
]

.

Observe that [S2] is a linearly constrained quadratic pro-

gram, for which if v
j′

j (t − 1) + u
j′

j (t − 1) = 0, we always

have

sj′(t) + sj(t) = z̃
j′

j (t) + z̄
j′

j (t) and z̃
j′

j (t) = z̄
j′

j (t).

Therefore, the initial values of v
j′

j and u
j′

j in [S3] are

selected to satisfy v
j′

j (0) + u
j′

j (0) = 0 (the simplest choice

is v
j′

j (0) = u
j′

j (0) = 0). It then holds for t ≥ 0 that

v
j′

j (t) + u
j′

j (t) = 0.

Using the latter to eliminate u
j′

j in [S3], we obtain

v
j′

j (t) = v
j′

j (t− 1) +
ρ

2

[

sj(t)− z̄
j′

j (t)− sj′(t) + z̃
j′

j (t)
]

= v
j′

j (t− 1) +
ρ

2

[

sj(t)− sj′ (t)
]

(16)

where the first equality comes from subtracting the two lines

in [S3], and the second equality is due to z̃
j′

j (t) = z̄
j′

j (t).

The auxiliary variables z̃
j′

j and z̄
j′

j can be also eliminated.

When v
j′

j is initialized by v
j′

j (0) = 0, summing up both

sides of (16) from r = 1 to r = t, we arrive, after telescopic

cancellation, at

v
j′

j (t) =
ρ

2

t
∑

r=1

[

sj(r)− sj′ (r)
]

. (17)

Moving on to [S1], observe that it can be split into J per-

node subproblems

sj(t) = argmin
sj

t
∑

r=1

λt−rfj,r(sj)

+
∑

j′∈Nj

[vj′

j (t− 1)− v
j
j′ (t− 1)]T sj .

Before solving (11) with the stochastic Newton iteration [1],

eliminate v
j′

j using (17) to obtain

sj(t) = argmin
sj

t
∑

r=1

λt−rfj,r(sj)

+ ρ

t−1
∑

r=1

∑

j′∈Nj

[

sj(r)− sj′(r)
]T

sj

which after manipulating the double sum yields

sj(t) = argmin
sj

t
∑

r=1

λt−rfj,r(sj)

+

t
∑

r=1

λt−rρ
∑

j′∈Nj

[

sj(r − 1)− sj′(r − 1)

+ (1 − λ)
r−1
∑

ξ=1

(

sj(ξ − 1)− sj′(ξ − 1)
)

]T

sj .

If the update in (7) is initialized with δj(0) = 0, summing up

both sides from ξ = 1 to ξ = r − 1, we find after telescopic

cancellation

δj(r − 1) =
∑

j′∈Nj

[

sj(r − 1)− sj′(r − 1)

+ (1− λ)

r−1
∑

ξ=1

(

sj(ξ − 1)− sj′(ξ − 1)
)

]

. (18)

Thus, optimization of sj(t) reduces to

sj(t) = argmin
sj

t
∑

r=1

λt−rgj,r(sj) (19)

where the instantaneous cost per slot t is

gj,t(sj) := fj,t(sj) + ρδTj (t− 1)sj. (20)

The stochastic gradient of the latter is given by

∇gj,t(sj(t− 1))

=− cj(t)
[

(

xj(t)− hj(t)sj(t− 1)
)

hj(t)
]

+ ρδj(t− 1).

In the stochastic Newton method, the Hessian matrix is given

by

Mj(t) = E[∇2gj,t(sj(t− 1))] = E[cj(t)hj(t)h
T
j (t)]

where the second equality comes from (11) and (8). A

reasonable approximation of the expectation is provided by
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sample averaging. However, presence of λ 6= 1 affects

attenuation of regressors, which leads to

Mj(t) =
1

t

t
∑

r=1

λt−rcj(r)hj(r)h
T
j (r)

= λ
t− 1

t
Mj(t− 1) +

1

t
cj(t)hj(t)h

T
j (t).

Applying the matrix inversion lemma, we obtain

M
−1
j (t) =

t

t− 1

[

λ−1
M

−1
j (t− 1) (21)

− cj(t)
λ−1

M
−1
j (t− 1)hj(t)h

T
j (t)M

−1
j (t− 1)

(t− 1)λ− hT (t)M−1
j (t− 1)hj(t)

]

and after adopting a diminishing step size 1/t, the stochastic

Newton update becomes

sj(t) = sj(t− 1)− 1

t
M

−1
j (t)∇gj,t(sj(t− 1)).

For rational convenience, let Φ
−1
j (t) := M

−1
j (t)/t, and

rewrite (21) as (cf. (2))

Φ
−1
j (t) = λ−1

Φ
−1
j (t− 1) (22)

− cj(t)
λ−1

Φ
−1
j (t− 1)hj(t)h

T
j (t)Φ

−1
j (t− 1)

λ+ hT
j (t)Φ

−1
j (t− 1)hj(t)

.

Substituting ∇gj,t(sj(t− 1)) and Φ
−1
j (t) into the stochastic

Netwon iteration yields (cf. (6))

sj(t) = sj(t− 1) + cj(t)Φ
−1
j (t)hj(t)

[

xj(t)− h
T
j (t)sj(t− 1)

]

− ρΦ−1
j (t)δj(t− 1)

which completes the development of CD-RLS-1.

B. Convergence analysis

Here we establish convergence of all three novel strategies

for λ = 1. With λ < 1, the EWLS estimator can even adapt

to time-varying parameter vectors, but analyzing its tracking

performance goes beyond the scope of this paper. For the

time-invariant case (λ = 1), we will rely on the following

assumption.

(as1) Observations obey the linear model xj(t) = hj(t)s0 +
ǫj(t), where ǫj(t) ∼ N (0, σ2

j ) is correlated across j and

t. Rows h
T
j (t) are uniformly bounded and independent

of ǫj(t). Covariance matrices Rhj
:= E[hj(t)h

T
j (t)] ≻

0p×p are time-invariant and positive definite. Process

{cj(t)hj(t)h
T
j (t)} is mean ergodic, while {ǫj(t)} and

{cj(t)} are uncorrelated. Eigenvalues of Φj(t)/t, which

approximate the true positive definite Hessian matrices

E[cj(t)hj(t)h
T
j (t)], are bounded below by a positive con-

stant when t is large enough.

We will assess convergence of our iterative algorithms us-

ing the squared mean-root deviation (SMRD) metric, defined

as

SMRD(t) :=







E
[(

J
∑

j=1

||sj(t)− s0||2
)

1

2

]







2

. (23)

Letting ej(t) := sj(t) − s0 ∈ R
p denote the estimation

error of node j and e(t) := [eT1 (t), . . . , e
T
J (t)]

T ∈ R
Jp

the estimation error across all nodes, one can see that

SMRD(t) = {E[‖e(t)‖]}2. Observe that SMRD(t) is a

lower-bound approximation of the mean-square deviation

(MSD) metric MSD(t) := E[‖e(t)‖2] [15], [26], since by

Jensen’s inequality {E[‖e(t)‖]}2 ≤ E[‖e(t)‖2].
Under (as1), convergence of CD-RLS-1 and CD-RLS-2 is

asserted as follows; see Appendix B for the proof.

Theorem 1. For CD-RLS-1 and CD-RLS-2 Algorithms 1

and 2, set σj(t) = σj and Φ
−1
j (0) = γIp per node j.

Let µ := min{λmin(Rhj
), j ∈ V}, and suppose 0 <

ρ < 1/(γλmax(L)) for CD-RLS-1 and correspondingly

0 < ρ < ρ0 for CD-RLS-2, while L is the network Laplacian

and the constant ρ0 depends on λmax(L), γ, τ, µ, and the

upper bound of hj(t). Under (as1), there exists t0 > 0 for

which it holds for t > t0 that







E
[(

J
∑

j=1

||sj(t)− s0||2
)

1

2

]







2

≤
J
∑

j=1

γ−1||sj(0)− s0||2 + γt0σ
2
j tr(Rhj

)

2Q(τ)µt

+
γσ2

jλmax(R
−1
hj

)tr(Rhj
) ln(t)

4Q2(τ)µt
. (24)

Theorem 1 establishes that the SMRD in (23) converges

to zero at a rate O(ln(t)/t). The constant of the convergence

rate is related to Rhj
through λmax(R

−1
hj

), tr(Rhj
) and µ;

the noise covariance σ2
j , and the threshold τ through Q(τ).

Theorem 1 also indicates the impact of the initial states

(determined by γ and sj(0)), which disappears at a faster

rate of O(1/t). To guarantee convergence, the step size ρ
must be small enough.

The proof for CD-RLS-3 is more challenging. Because a

node does not receive any information from its neighbors

when censoring is in effect, it has to rely on outdated

neighboring estimates when the incoming datum is not

censored. This delay in percolating information may cause

computational instability. For this reason, we will impose

an additional constraint to guarantee that all local estimates

do not grow unbounded. In practice, this can be realized

by truncating local estimates when they exceed a certain

threshold.

(as2) Local estimates {sj(t)}Jj=1 are uniformly bounded

∀t ≥ 0.

Convergence of CD-RLS-3 is then asserted as follows.

Similar to CD-RLS-1 and CD-RLS-2, the SMRD of CD-
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RLS-3 converges to zero with rate O(ln(t)/t), as stated in

the following theorem.

Theorem 2. For CD-RLS-3 given by Algorithms 3, set

σj(t) = σj and Φ
−1
j (−1) = γIp per node j. Under (as1)

and (as2) with 0 < ρ < ρ0 as in Theorem 1, there exists

t0 > 0 for which it holds ∀t > t0, that






E
[(

J
∑

j=1

||sj(t)− s0||2
)

1

2

]







2

≤ a+ b ln(t)

t
(25)

where a and b are positive constants that depend on the

upper bounds of hj(t) and sj(t), parameters ρ and τ , the

covariance Rhj
(t), the Laplacian matrix L, and t0.

Although the bounds asserted by Theorems 1 and 2 could

be loose, they demonstrate that lim supt→∞ SMRD(t) = 0,

which establishes that the decentralized estimates converge

to the ground truth asymptotically.

C. Threshold setting and variance estimation

The threshold τ influences considerably the performance

of all CD-RLS algorithms. Its value trades off estimation

accuracy for computation and communication overhead. We

provide a simple criterion for setting τ using the average

censoring ratio π∗, which is defined as the number of

censored data over the total number of data [19]. The goal is

to choose τ so that the actual censoring ratio approaches π∗

as t goes to infinity – since we are dealing with streaming

big data, such an asymptotic property is certainly relevant.

When t is large enough, s is very close to s0; thus, the

innovation xj(t) − h
T
j (t)sj(t − 1) ≈ xj(t) − h

T
j (t)s0 =

ǫj(t) ∼ N (0, σ2
j ). As a consequence, Pr(cj(t) = 0) =

Pr(|xj(t) − h
T
j (t)sj(t − 1)| ≤ τσj) ≈ Pr(|ǫj(t)| ≤

τσj) = Pr(|ǫj(t)/σj | ≤ τ) = 1 − 2Q(τ), where the

last equality holds because ǫj(t)/σj ∼ N (0, 1). Therefore,

π∗ = limt→∞
1
t

∑t

τ=0 E[cj(τ)] ≈ 1−2Q(τ), which implies

that

τ = Q−1((1− π∗)/2) .

Given the average censoring ratio π∗, Table I compares the

average per step per node communication and computational

costs of D-RLS and the proposed CD-RLS algorithms. We

assume that transmitting or receiving a p-dimensional local

estimate vector to or from a neighboring node incurs a

cost of p. Thus, for D-RLS and CD-RLS-1, the average

communication costs are both 2p|E|/J . In CD-RLS-2, a

node does not transmit to its neighbors when it censors a

datum, which leads to an average communication cost of

2p|E|(1 − π∗)/J . CD-RLS-3 avoids communication over a

link as long as one of the two end nodes censors a datum,

and hence reduces the cost to 2p|E|(1−π∗)2/J . As discussed

in Section II-C, the computational costs of CD-RLS-1 for

the non-censoring and censoring cases are O(7p2/2) and

O(p2), respectively. For the censoring case, CD-RLS-2 and

TABLE I
AVERAGE PER STEP PER NODE COMMUNICATION AND COMPUTATIONAL

COSTS, GIVEN THE AVERAGE CENSORING RATIO π∗ .

Algorithm Communication Computation

D-RLS 2p|E|/J 7p2/2 +O(p)
CD-RLS-1 2p|E|/J 7p2(1 − π∗)/2 + p2π∗ + O(p)
CD-RLS-2 2p|E|(1− π∗)/J 7p2(1− π∗)/2 + O(p)
CD-RLS-3 2p|E|(1− π∗)2/J 7p2(1− π∗)/2 + O(p)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1. The network topology used in the numerical experiments.

CD-RLS-3 reduce their computational costs to O(p), and are

more computationally efficient.

If the variances {σ2
j } were known, one could simply

choose σj(t) = σj . However, σj in practice is often

unknown. In this case, we consider the running average

σ2
j (t+1) ≈ t−1

∑t+1
τ=1[xj(τ)−h

T
j (τ)s0]

2 = (t−1)σ2
j (t)/t+

[xj(t + 1) − h
T
j (t + 1)s0]

2/t, which suggests the recursive

variance estimate

σ2
j (t+1) = (t−1)σ2

j (t)/t+[xj(t+1)−h
T
j (t+1)sj(t)]

2/t .

IV. NUMERICAL EXPERIMENTS

This section provides numerical results to validate the

effectiveness of our novel censoring strategies. We simulate

a network of J = 15 nodes, which are uniformly randomly

deployed over a 1×1 square. Two nodes within communica-

tion range 0.3 are deemed as being neighbors. The resultant

network topology is depicted in Fig. 1. We compare six

algorithms: the centralized adaptive censoring (AC)-RLS that

runs in every node independently, the distributed diffusion

least mean-square (Diffusion-LMS) algorithm [5], [17], D-

RLS without censoring [18], and the three censoring-based

D-RLS algorithms, namely CD-RLS-1, CD-RLS-2 and CD-

RLS-3. All algorithms are evaluated on two data sets, one

synthetic and one real. The empirical SMRD is used as

performance metric.

For the synthetic data set, the unknown s0 is p-dimensional

with p = 4. The setting is the one in [18], where WSN-

based decentralized power spectrum estimation is sought for
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Fig. 2. SMRD of the six algorithms versus number of iterations.

a signal modeled as an autoregressive process. In this context,

consider an auxiliary sequence rj(t) that evolves according

to rj(t) = (1−q)βjrj(t−1)+
√
qωj(t). Starting from rj(t),

the row h
T
j (t) is formed by taking the next p observations,

namely h
T
j (t) = [rj(t + p − 1); . . . ; rj(t)]. Parameters are

selected as q = 0.5, βj ∼ U(0, 1), and also uniformly

distributed driving white noise ωj(t) ∼ U(−
√
3σωj

,
√
3σwj

)
with σ2

ωj
∼ U(0, 2). Observation of node j is subject to

additive white Gaussian noise, with covariance σ2
j = 10−3αj ,

where αj ∼ U(0, 1). The true signal vector is s0 = 1p, for

which λ = 1 is set for all algorithms. For D-RLS, CD-RLS-

1, CD-RLS-2 and CD-RLS-3, the step size ρ = 0.01 and

Φ
−1
j (0) = γIp where γ = 30, leading to fastest convergence

of D-RLS. Regarding the four censoring-based algorithms

AC-RLS, CD-RLS-1, CD-RLS-2 and CD-RLS-3, we set the

average censoring ratio to π∗ = 0.6, which is approached

using τ = Q−1((1 − π∗)/2) ≈ 0.84. The variances σ2
j

are estimated in an online manner as described in Section

III-C. AC-RLS uses Φ
−1
j (0) = γIp, where γ = 105 leads

to the fastest convergence. Diffusion-LMS uses the nearest-

neighbor diffusion matrix and 1.5/
√
t step size, which is

tuned to obtain fastest convergence. For all curves obtained

by running the algorithms, the ensemble averages are approx-

imated via sample averaging over 100 Monte Carlo runs.

Fig. 2 depicts the SMRD versus the number of iterations.

Not surprisingly, since D-RLS does not censor data, its

convergence rate with respect to the number of iterations

is the fastest. Among the three proposed CD-RLS algo-

rithms, CD-RLS-2 and CD-RLS-3 are slower than CD-RLS-

1, because the former two incur smaller communication cost

than the latter. Though CD-RLS-3 adopts a more aggressive

censoring strategy than CD-RLS-2, its convergence does not

degrade as confirmed by Fig. 2. AC-RLS is the slowest

among all except for Diffusion-LMS, because it is run at

all nodes independently, without sharing information over the

network. Even though the SMRD of Diffusion-LMS vanishes
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Fig. 3. SMRD of the five algorithms versus computational cost, defined as
the number of multiplications.
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Fig. 4. SMRD of the four decentralized algorithms versus amount of data
transmission in the unicast mode.

as t → ∞ (with rate 1/t), its finite-sample SMRD decays

slower than our CD-RLS schemes for which SMRD also

vanishes as t → ∞ (with rate upper bounded by ln(t)/t).
This is analogous to centralized LMS that for finite samples

exhibits SMRD decaying slower than that of centralized RLS.

Note that contrary to the analysis in [5] and [6], the cost

function here is not differentiable and thus the Diffusion-

LMS does not achieve the traditional linear rate. We shall

not compare with Diffusion-LMS in the rest of the numerical

experiments.

The merits of censoring are further appreciated when one

considers computational costs. Recall that the target average

censoring ratio is π∗ = 0.6, meaning that 3/5 of the

data are discarded (actual values are 0.6320 for AC-RLS,

0.6292 for CD-RLS-1, 0.6277 for CD-RLS-2, and 0.6237
for CD-RLS-3, averaged over 100 runs). As confirmed by

Fig. 3, the three CD-RLS algorithms consume considerably
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Fig. 5. Computational cost of the four decentralized algorithms for variable
censoring ratios when target SMRD is 0.015.
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Fig. 6. Amount of data transmission of the four decentralized algorithms
for variable censoring ratios when target SMRD is 0.015.

less computational resources relative to D-RLS that does

not censor data. Indeed, whenever a datum is censored,

CD-RLS-1 only requires 2/7 of the computations relative

to D-RLS, while CD-RLS-2 and CD-RLS-3 incur minimal

computational overhead. Although AC-RLS is the most com-

putationally efficient algorithm at the beginning, absence of

collaboration undermines its performance in steady state.

Regarding the amount of data exchanged to communi-

cate local estimates in a unicast mode, CD-RLS-1 is the

worst because nodes need to transmit their local estimate

to neighbors, no matter whether local data are censored or

not. Fig. 4 corroborates that CD-RLS-2 and CD-RLS-3 show

significant improvement over D-RLS, demonstrating their

potential for reducing both communication and computation

costs in solving decentralized linear regression problems over

large-scale networks.

We further numerically quantify the savings of compu-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 7. SMRD after 500 iterations of the four censoring algorithms for
variable censoring ratios.

tation and communication that the three censoring-based

D-RLS algorithms enjoy over RLS without censoring. We

set the target SMRD to 0.015 and plot the computational

and communication costs required to reach it. According to

Fig. 5, the computational costs of the three censoring-based

algorithms decrease to about half of that of D-RLS as the

censoring ratio grows to 0.7, while CD-RLS-2 outperforms

the other two. Though CD-RLS-2 uses more iterations (hence

more data) to achieve the target SMRD than CD-RLS-1

(see Fig. 2), it requires less computation when a datum is

censored. On the other hand, CD-RLS-3 uses more iterations

to achieve the target SMRD than CD-RLS-2, and hence it

incurs more computational cost. The saving of CD-RLS-3

over CD-RLS-2 is mainly in the communication cost. In

Fig. 6, the communication cost of CD-RLS-2 and CD-RLS-3

decreases as the censoring ratio grows, but that of CD-RLS-1

increases and is larger than that of D-RLS when the censoring

ratio exceeds 0.5. CD-RLS-3 exhibits best performance in

terms of communication cost.

Next, we vary π and evaluate its impact on SMRD, as

shown in Fig. 7. The SMRD here is computed after 500

iterations. When π is close to 0.5, meaning about 1/2 of

the data is censored, the three proposed CD-RLS algorithms

are still able to reach SMRD of 10−4, which is the limit of

D-RLS without censoring. Among the three algorithms, CD-

RLS-1 exhibits the best SMRD curve, but its computation

and communication costs are the highest. AC-RLS does not

perform well especially for low censoring ratios due to the

lack of network-wide collaboration. CD-RLS-2 and CD-RLS-

3 perform comparably in this experiment.

The effectiveness of the novel censoring-based strategies

is further assessed on a real data set of protein tertiary

structures [13]. The premise here is that a given dataset is

not available at a single location, but it is distributed over

a network whose nodes are interested in obtaining accurate
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Fig. 9. First entries in the vector estimates of the four algorithms versus
number of iterations when λ = 0.95.

regression coefficients while suppressing the communication

and computational overhead. Again, the graph in Fig. 1 is

used to model the network of regression-performing agents.

The number of control variables is p = 9. The first 45, 720
(out of 45, 730) observations are normalized and divided

evenly into J = 15 parts, one per node. For CD-RLS-1, CD-

RLS-2 and CD-RLS-3, we set ρ = 0.05 and Φ
−1
j (0) = 5Ip,

while for AC-RLS we choose γ = 10. The ground truth

vector s0 is estimated by solving a batch least-squares

problem on the entire data set. Similar to what we deduced

from Fig. 7 in the synthetic data set, the novel CD-RLS

algorithms outperform AC-RLS in terms of SMRD, as one

varies the average censoring ratio from 15% to nearly 100%
in Fig. 8.

When λ < 1, the three censoring-based strategies are

also able to track time-varying signals well. Note that to

track the signal dynamics in this case, the censoring ratio

cannot be too large. We use the same setting of the synthetic

data but change the true s0 such that its ith element is

β̃i sin(3πt/500) when t ≤ 1000/3, and remains constant

after t = 1000/3. The magnitudes β̃i are i.i.d. and follow

U(0, 1). The parameters of the four decentralized algorithms

are the same as those in the previous synthetic experiments,

except that the censoring ratio is 0.3 when the censoring

strategies are applied. Fig. 9 depicts the evolution of the first

entries in the vector estimates of the four algorithms. They

show similar tracking performance, but the censoring-based

algorithms incur lower communication and computation costs

over D-RLS.

V. CONCLUDING REMARKS

This paper introduced three data-adaptive censoring strate-

gies that significantly reduce the computation and communi-

cation costs of the RLS algorithm over large-scale networks.

The basic idea behind these strategies is to avoid inefficient

computation and communication when the local observations

and/or the neighboring messages are not informative. We

proved convergence of the resulting algorithms in the mean-

square deviation sense. Numerical experiments validated the

merits of the novel schemes.

The notion of identifying and discarding less informative

observations can be widely used in various large-scale online

machine learning tasks including nonlinear regression, matrix

completion, clustering and classification, to name a few.

These constitute our future research directions.

APPENDIX A

EQUIVALENT FORM OF D-RLS

Here we prove that D-RLS recursions (2) - (5) are equiv-

alent to (2), (6) and (7). It follows from (4) that

Φj(t)sj(t)− λΦj(t− 1)sj(t− 1) (26)

=
[

ψj(t)−
1

2

∑

j′∈Nj

(vj′

j (t− 1)− v
j
j′ (t− 1))

]

− λ
[

ψj(t− 1)− 1

2

∑

j′∈Nj

(vj′

j (t− 2)− v
j
j′(t− 2))

]

.

Applying the matrix inversion lemma to (2) yields

Φj(t) = λΦj(t− 1) + hj(t)h
T
j (t). (27)

Substituting ψj(t)− λψj(t− 1) = hj(t)xj(t) from (3) and

λΦj(t− 1) = Φj(t)−hj(t)h
T
j (t) from (27) into (26), leads

to

Φj(t)
[

sj(t)− sj(t− 1)
]

= hj(t)
[

xj(t)− h
T
j (t)sj(t− 1)

]

− 1

2

∑

j′∈Nj

(vj′

j (t− 1)− λvj′

j (t− 2))

+
1

2

∑

j′∈Nj

(vj
j′ (t− 1)− λvj

j′ (t− 2)). (28)
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Next, we will show that if δ(t) is defined as

δ(t) :=
1

2ρ

∑

j′∈Nj

(vj′

j (t)− λvj′

j (t− 1))

− 1

2ρ

∑

j′∈Nj

(vj
j′ (t)− λvj

j′ (t− 1)) (29)

then its update is exactly (7). This can be done by taking the

difference between slots t and t−1 for (29), and substituting

the update of v
j′

j in (5). Due to (29), it follows that (28) is

equivalent to

Φj(t)
[

sj(t)− sj(t− 1)
]

= hj(t)
[

xj(t)− h
T
j (t)sj(t− 1)

]

− ρδ(t− 1). (30)

Left multiplying (30) with Φ
−1
j (t), yields the update of sj

in (6), and completes the proof.

APPENDIX B

PROOF OF THEOREM 1

Proof: We need the following lemma in [8, Chapter 7,

Theorem 4].

Lemma 1. Let X,X1, X2, ... be random variables on some

probability space. If Xn → X in probability and Pr(|Xn| ≤
k) = 1 for all n and some k, then Xn → X in rth mean for

all r ≥ 1.

Starting with CD-RLS-1, the proof proceeds in five stages.

Stage 1. We first investigate the spectral properties of

Φj(t) when t is sufficiently large. Letting λ = 1 and applying

the matrix inversion lemma to the censoring form (2), we

have

Φj(t) = Φj(t− 1) + cj(t)hj(t)h
T
j (t). (31)

Summing up from r = 1 to r = t and using the telescopic

cancellation, (31) yields

Φj(t) =

t
∑

r=1

cj(r)hj(r)h
T
j (r) + γ−1

Ip. (32)

Thanks to the strong law of large numbers, Φj(t)/t converges

to E[cj(t)hj(t)h
T
j (t)] almost surely as t → ∞. Observe that

E[cj(t)hj(t)h
T
j (t)] (33)

=E
[

hj(t)h
T
j (t)E[cj(t)|hj(t), sj(t− 1)]

]

=E[hj(t)h
T
j (t) Pr(cj(t) = 1|hj(t), sj(t− 1))].

=E

[

hj(t)h
T
j (t)

(

1−
∫ τ+σ−1

j
[hT

j (t)(sj(t−1)−s0)]

−τ+σ
−1

j
[hT

j
(t)(sj(t−1)−s0)]

φ(x)dx

)]

.

Observing the integral in (33), we know that

1 >1−
∫ τ+σ

−1

j
[hT

j (t)(sj(t−1)−s0)]

−τ+σ
−1

j
[hT

j
(t)(sj(t−1)−s0)]

φ(x)dx

≥1−
∫ τ

−τ

φ(x)dx = 2Q(τ) (34)

where the event set that the second inequality strictly holds

(namely, “≥” becomes “>”) is with nonzero measure. Thus,

substituting (34) into (33) yields

E[cj(t)hj(t)h
T
j (t)] ≺ E[hj(t)h

T
j (t)] = Rhj

and

E[cj(t)hj(t)h
T
j (t)] ≻ 2Q(τ)E[hj(t)h

T
j (t)] = 2Q(τ)Rhj

.

Since Φj(t)/t converges to E[cj(t)hj(t)h
T
j (t)] almost

surely as t → ∞ and hj(t) is uniformly bounded such that

Φj(t)/t is also bounded (cf. (32)), we have E[‖Φj(t)/t‖2]
converges to E[‖cj(t)hj(t)h

T
j (t)‖2] as t → ∞ by lemma 1.

Therefore, 2Q(τ)Rhj
≺ E[cj(t)hj(t)h

T
j (t)] ≺ Rhj

implies

that there exists t1 > 0, for which it holds ∀t ≥ t1 that

2Q(τ)‖Rhj
‖2 < E[‖Φj(t)/t‖2] < ‖Rhj

‖2
and consequently the expected maximum eigenvalue of Φj(t)
satisfies

2Q(τ)λmax(Rhj
)t < E[λmax(Φj(t))] < λmax(Rhj

)t. (35)

Observe that tΦ−1
j (t) converges to

{

E[cj(t)hj(t)h
T
j (t)]

}−1

almost surely as t → ∞ due to the convergence of Φj(t)/t
to E[cj(t)hj(t)h

T
j (t)]. Since eigenvalues of Φj(t)/t are

bounded below by a positive constant when t is large enough,

there exists t2 > 0 such that tΦ−1
j (t) is bounded ∀t ≥ t2.

Following the same analysis to obtain (35), it holds ∀t ≥ t2
that

λmax(R
−1
hj

)/t < E[λmax(Φ
−1
j (t))] < λmax(R

−1
hj

)/(2Q(τ)t).

(36)

Letting t0 := max(t1, t2), (35) and (36) hold ∀t ≥ t0.

Stage 2. Rewrite the update of sj as

sj(t) = sj(t− 1) + cj(t)Φ
−1
j (t)hj(t)

[

xj(t)− h
T
j (t)sj(t− 1)

]

− ρΦ−1
j (t)δj(t− 1).

Note also that for λ = 1, the update of δj is equivalent to

(cf. (18))

δj(t− 1) =
∑

j′∈Nj

[

sj(t− 1)− sj′(t− 1)
]

.

Letting ej(t) := sj(t)− s0, the estimation error obeys the

recursion

ej(t) = ej(t− 1) + cj(t)Φ
−1
j (t)hj(t)[xj(t)− h

T
j (t)sj(t− 1)]

− ρΦ−1
j (t)

∑

j′∈Nj

[

ej(t− 1)− ej′(t− 1)
]

.

Substituting xj(t) = hj(t)s0 + ǫj(t) to eliminate sj(t − 1),
we obtain

ej(t) = ej(t− 1)− cj(t)Φ
−1
j (t)hj(t)h

T
j (t)ej(t− 1)

+ cj(t)Φ
−1
j (t)hj(t)ǫj(t)

− ρΦ−1
j (t)

∑

j′∈Nj

[

ej(t− 1)− ej′ (t− 1)
]

. (37)



12

Left multiplying (37) with Φj(t) yields

Φj(t)ej(t) (38)

=Φj(t)ej(t− 1)− cj(t)hj(t)h
T
j (t)ej(t− 1)

+cj(t)hj(t)ǫj(t)− ρ
∑

j′∈Nj

[

ej(t− 1)− ej′(t− 1)
]

=Φj(t− 1)ej(t− 1)

+cj(t)hj(t)ǫj(t)− ρ
∑

j′∈Nj

[

ej(t− 1)− ej′(t− 1)
]

.

Our convergence analysis result will rely on a ma-

trix form of (38) that accounts for all nodes j. Define

vectors e(t) := [eT1 (t), . . . , e
T
J (t)]

T ∈ R
Jp, ǫ(t) :=

[ǫT1 (t), . . . , ǫ
T
J (t)]

T ∈ R
J , as well as block-diagonal matrices

Φ(t) := diag({Φj(t)}) ∈ R
Jp×Jp, C(t) := diag({cj(t)}) ∈

R
J×J , and H(t) := diag({hj(t)}) ∈ R

Jp×J . Then (38) can

be written in matrix form as

Φ(t)e(t)

=
[

Φ(t− 1)− ρL⊗ Ip

]

e(t− 1) +H(t)C(t)ǫ(t) (39)

which after left multiplication with Φ
− 1

2 (t) yields

Φ
1

2 (t)e(t) =Φ
− 1

2 (t)
[

Φ(t− 1)− ρL⊗ Ip

]

e(t− 1)

+Φ
− 1

2 (t)H(t)C(t)ǫ(t). (40)

From (40), we have (⊗ denotes Kronecker product)

E[eT (t)Φ(t)e(t)]

=E[eT (t− 1)(Φ(t− 1)− ρL⊗ Ip)
T
Φ

−1(t)

× (Φ(t− 1)− ρL⊗ Ip)e(t− 1)]

+2E[eT (t− 1)(Φ(t− 1)− ρL⊗ Ip)
T
Φ

−1(t)H(t)C(t)ǫ(t)]

+E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)].

Since C(t) and ǫ(t) are irrelevant under (as1), the second

term on the right hand side is zero; hence,

E[eT (t)Φ(t)e(t)]

=E[eT (t− 1)(Φ(t− 1)− ρL⊗ Ip)
T
Φ

−1(t)

×(Φ(t− 1)− ρL⊗ Ip)e(t− 1)]

+E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]. (41)

Stage 3. Consider the first term on the right hand side of

(41). Since L is positive semi-definite, we can find a matrix

U = (L ⊗ Ip)
1

2 such that L ⊗ Ip = U
T
U. By the matrix

inversion lemma, it holds that

(Φ(t− 1)− ρL⊗ Ip)
−1

=(Φ(t− 1)− ρUT
U)−1

=Φ
−1(t− 1) + ρΦ−1(t− 1)UT

×(IJp − ρUΦ
−1(t− 1)UT )−1

UΦ
−1(t− 1). (42)

For λ = 1, it follows from (2) that Φ−1(t− 1)−Φ
−1(t) �

0Jp. Since Φ
−1(0) = γIJp, it holds that Φ−1(t−1) � γIJp

for all t ≥ 1, and consequently

IJp − ρUΦ
−1(t− 1)UT � IJp − ργUU

T = IJp − ργL⊗ Ip.

If 0 < ρ < 1/(γλmax(L)), then for all t ≥ 1 it follows that

IJp − ρUΦ
−1(t− 1)UT � 0Jp.

This implies that the second term of (42) is positive definite.

Thus, we have

Φ
−1(t) � Φ

−1(t− 1) � (Φ(t− 1)− ρL⊗ Ip)
−1 (43)

and hence, the first term on the right hand side of (41) is

bounded by

E[eT (t− 1)(Φ(t− 1)− ρL⊗ Ip)
T
Φ

−1(t)

× (Φ(t− 1)− ρL⊗ Ip)e(t− 1)]

≤E[eT (t− 1)(Φ(t− 1)− ρL⊗ Ip)
T
e(t− 1)]

≤E[eT (t− 1)Φ(t− 1)T e(t− 1)]. (44)

Stage 4. Now consider the second term on the right hand

side of (41). Manipulating the expectation yields

E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]

=E[tr(ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t))]

=E[tr(CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)ǫT (t))]

=E[tr(CT (t)HT (t)Φ−1(t)H(t)C(t)diag({σ2
j })].

where diag({σ2
j }) ∈ R

J×J is a diagonal matrix constructed

with {σ2
j }Jj=1 on its diagonal. Expanding the matrix multi-

plications and noting that cj(t) ≤ 1, we obtain

E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]

≤
J
∑

j=1

σ2
jE[hT

j (t)Φ
−1
j (t)hj(t)].

Because Φ
−1
j (t− 1) � Φ

−1
j (t) due to (22), we further have

E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]

≤
J
∑

j=1

σ2
jE[hT

j (t)Φ
−1
j (t− 1)hj(t)]

≤
J
∑

j=1

σ2
jE[λmax(Φ

−1
j (t− 1))‖hj(t)‖2]. (45)

Since Φ
−1
j (t−1) and hj(t) are independent, it holds ∀t > t0

that

E[λmax(Φ
−1
j (t− 1))‖hj(t)‖2]

=E[λmax(Φ
−1
j (t− 1))]E[‖hj(t)‖2]

<
λmax(R

−1
hj

)

2Q(τ)(t− 1)
tr(Rhj

). (46)
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The inequality is due to (36) that shows E[λmax(Φ
−1
j (t))] <

λmax(R
−1
hj

)/(2Q(τ)t), ∀t ≥ t0 and the fact E[‖hj(t)‖2] =
tr(E[hj(t)h

T
j (t)]) = tr(Rhj

). Using (46) allows one to

deduce from (45) that

E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]

≤ 1

2Q(τ)(t− 1)

J
∑

j=1

σ2
jλmax(R

−1
hj

)tr(Rhj
) (47)

holds ∀t > t0.

For t ≤ t0, we have Φ
−1
j (t) � Φ

−1
j (0) = γIp because to

(43), and thus

J
∑

j=1

σ2
jE[hT

j (t)Φ
−1
j (t)hj(t)]

≤
J
∑

j=1

γσ2
jE[hT

j (t)hj(t)] = γ
J
∑

j=1

σ2
j tr(Rhj

).

Therefore, for t ≤ t0 (45) yields

E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]

≤γ
J
∑

j=1

σ2
j tr(Rhj

). (48)

Stage 5. Substituting (44), (47) and (48) into (41) implies

for t > t0 that

E[eT (t)Φ(t)e(t)]

≤E[eT (t− 1)Φ(t− 1)e(t− 1)]

+
1

2Q(τ)(t− 1)

J
∑

j=1

σ2
jλmax(R

−1
hj

)tr(Rhj
) (49)

while for t ≤ t0

E[eT (t)Φ(t)e(t)]

≤E[eT (t− 1)Φ(t− 1)e(t− 1)] + γ

J
∑

j=1

σ2
j tr(Rhj

). (50)

Summing (49) from r = t0+1 to r = t and (50) from r = 1
to r = t0, applying telescopic cancellation, and noticing that

Φ(0) = γ−1
IJp, yields for t > t0

E[eT (t)Φ(t)e(t)] (51)

≤γ−1||e(0)||2 + (γt0 +
t
∑

r=t0+1

λmax(R
−1
hj

)

2Q(τ)(t− 1)
)

J
∑

j=1

σ2
j tr(Rhj

)

≤γ−1||e(0)||2 + (γt0 +
λmax(R

−1
hj

)

2Q(τ)
ln(t))

J
∑

j=1

σ2
j tr(Rhj

).

On the other hand, it holds

E[eT (t)Φ(t)e(t)] ≥ E[‖e(t)‖2/λmax(Φ
−1(t))]

≥ E[‖e(t)‖]2/E[λmax(Φ
−1(t))]

where the last line is due to Cauchy-Schwarz inequality

E[‖e(t)‖2/λmax(Φ
−1(t))]E[λmax(Φ

−1(t))]

=E[
(

‖e(t)‖/λmax(Φ
−1(t))

1

2

)2

]E[
(

λmax(Φ
−1(t))

1

2

)2

]

≥E[‖e(t)‖]2.

From (36), E[λmax(Φ
−1
j (t))] < λmax(R

−1
hj

)/(2Q(τ)t) =

1/(λmin(Rhj
)2Q(τ)t) holds asymptotically. Definining µ :=

min{λmin(Rhj
), j ∈ V}, we establish that

2Q(τ)µtE[||e(t)||2] ≤ E[eT (t)Φ(t)e(t)], t > t0. (52)

Combining (51) and (52) implies

2Q(τ)µtE[||e(t)||]2 (53)

≤γ−1||e(0)||2 + (γt0 +
λmax(R

−1
hj

)

2Q(τ)
ln(t))

J
∑

j=1

σ2
j tr(Rhj

).

Finally, with ||e(t)||2 :=
∑J

j=1 ||ej(t)||2 =
∑J

j=1 ||sj(t) −
s0||2 this leads to (24), which completes the proof of CD-

RLS-1.

Consider next CD-RLS-2. Stage 1 of the proof remains the

same, while for Stage 2, ej(t − 1) − ej′(t − 1) is replaced

by cj(t)
[

ej(t− 1)− ej′(t− 1)
]

in (38) to arrive at

Φj(t)ej(t) (54)

=Φj(t− 1)ej(t− 1)− cj(t)hj(t)h
T
j (t)ej(t− 1)

+cj(t)hj(t)ǫj(t)− ρ
∑

j′∈Nj

cj(t)
[

ej(t− 1)− ej′(t− 1)
]

.

Its matrix form (41) can be expressed as

E[eT (t)Φ(t)e(t)]

=E[eT (t− 1)(Φ(t− 1)− ρ(C(t)L) ⊗ Ip)
T
Φ

−1(t)

× (Φ(t− 1)− ρ(C(t)L)⊗ Ip)e(t− 1)]

+E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]. (55)

Observe that the right hand sides of (41) and (55) are only

different in their first terms. Similar to Stage 3 (cf. (44)), we

need to show that the first term satisfies

E[eT (t− 1)(Φ(t− 1)− ρ(C(t)L) ⊗ Ip)
T
Φ

−1(t)

× (Φ(t− 1)− ρ(C(t)L)⊗ Ip)e(t− 1)]

≤E[eT (t− 1)Φ(t− 1)e(t− 1)]. (56)

Substituting the update (22) with λ = 1 into (56), it suffices

to prove that

E[eT (t− 1)C(t)⊗ IpH(t)HT (t) (57)

× (IJ +H
T (t)Φ−1(t− 1)H(t))−1 ⊗ Ipe(t− 1)]

≥ρE[eT (t− 1)We(t− 1)]
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where

W :=W1 +W
T
1 −W2 − (LC(t)) ⊗ Ip − (C(t)L) ⊗ Ip

+ρL⊗ IpΦ
−1(t− 1)(C(t)L) ⊗ Ip

W1 :=C(t)⊗ IpH(t)HT (t)Φ−1(t− 1)

×((IJ +H
T (t)Φ−1(t− 1)H(t))−1

L)⊗ Ip

W2 :=(LC(t)) ⊗ IpΦ
−1(t− 1)H(t)HT (t)Φ−1(t− 1)

×((IJ +H
T (t)Φ−1(t− 1)H(t))−1

L)⊗ Ip.

For the left hand side of (57), use the lower bound of the

conditional expectation 2Q(τ) ≤ E[cj(t)|hj(t), sj(t− 1)] to

eliminate C(t), and arrive at

E[eT (t− 1)C(t)⊗ IpH(t)HT (t) (58)

× (IJ +H
T (t)Φ−1(t− 1)H(t))−1 ⊗ Ipe(t− 1)]

≥2Q(τ)E[eT (t− 1)H(t)HT (t)

× (IJ +H
T (t)Φ−1(t− 1)H(t))−1 ⊗ Ipe(t− 1)].

By (43), it holds that Φ−1(t − 1) � Φ
−1(0) = γIJp, and

thus

[

IJ +H
T (t)Φ−1(t− 1)H(t)

]−1 �
[

IJ + γHT (t)H(t)
]−1

.

By assumption {hj(t)} are uniformly bounded. If

h
T
j (t)hj(t) ≤ K for all j = 1, . . . , J , we find

[

IJ +H
T (t)Φ−1(t− 1)H(t)

]−1 � 1

1 + γK2
IJ . (59)

Substituting (59) into (58), we obtain a lower bound for the

left hand side of (57) given by

E[eT (t− 1)C(t)⊗ IpH(t)HT (t) (60)

× (IJ +H
T (t)Φ−1(t− 1)H(t))−1 ⊗ Ipe(t− 1)]

≥ 2Q(τ)

1 + γK2
E[eT (t− 1)H(t)HT (t)e(t− 1)]

=
2Q(τ)

1 + γK2
E[eT (t− 1)diag{Rhj

}e(t− 1)]

≥ 2Q(τ)µ

1 + γK2
E[||e(t− 1)||2].

As for the right hand side of (57), it is upper bounded by

ρE[eT (t− 1)We(t− 1)] (61)

≤ρE[(2||W1||2 + ||W2||2 + 2||L||2
+ ρ||L||22||Φ−1(t− 1)||2)||e(t− 1)||2]

where we used that all the diagonal elements cj(t) of C(t)
are within the range [0, 1] while ||W1||2 is upper bounded

by

||W1||2 ≤||C(t)||2||H(t)||22||Φ−1(t− 1)||2
×||(IJ +H

T (t)Φ−1(t− 1)H(t))−1||2||L||2.

Noticing that ||C(t)||2 ≤ 1, ||H(t)||22 ≤ K2 by assumption,

||Φ−1(t − 1)||2 ≤ ||Φ−1(0)||2 = γ, ||(IJ +H
T (t)Φ−1(t −

1)H(t))−1||2 ≤ 1 and ||L||2 ≤ λmax(L), we find that

||W1||2 ≤ γλmax(L)K
2.

Similarly, ||W2||2 is upper bounded by

||W2||2 ≤ γ2λmax(L)
2K2.

Therefore, (61) reduces to

ρE[eT (t− 1)We(t− 1)] (62)

≤ρ(2γλmax(L)K
2 + γ2λmax(L)

2K2 + 2λmax(L)

+ργλmax(L)
2)E[||e(t− 1)||2].

Considering a positive constant

ρ0 :=

√

2Q(τ)µ

γλmax(L)2(1 + γK2)
+ (

γK2

2
+

γK2 + 1

γλmax(L)
)2

−(
γK2

2
+

γK2 + 1

γλmax(L)
)

and combining (60) with (62), we see that if ρ is chosen

within [0, ρ0], then (57) holds for all t ≥ 1; and so does

(56).

Following Stages 4 and 5 in the proof for CD-RLS-1, we

can show that (24) holds almost surely for CD-RLS-2 ∀t >
t0. This completes the proof of the entire theorem.

APPENDIX C

PROOF OF THEOREM 2

Theorem 2 relies on the following lemma.

Lemma 2. There exist constants M > 0 and t0 > 0 such

that

E[||ej(t)− ej(t− 1)||] ≤ M

t
, ∀j = 1, · · · , J, t ≥ t0. (63)

Proof of Lemma 2: The update of ej(t) for CD-RLS-3

is (cf. (37) for CD-RLS-1)

ej(t) = ej(t− 1)− cj(t)Φ
−1
j (t)hj(t)h

T
j (t)ej(t− 1) (64)

+ cj(t)Φ
−1
j (t)hj(t)ǫj(t)

− cj(t)ρΦ
−1
j (t)

∑

j′∈Nj

(ej(t− 1)− ej′(t− dj
′

j (t))).

Per time t, t − dj
′

j (t) is the latest time slot when node j

received information from its neighbor j′. Therefore, dj
′

j (t)
can be viewed as network delay caused by the censoring
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strategy. Then we have

||ej(t)− ej(t− 1)||
=||cj(t)Φ−1

j (t)
[

hj(t)h
T
j (t)ej(t− 1)− hj(t)ǫj(t)

+ ρ
∑

j′∈Nj

(ej(t− 1)− ej′(t− dj
′

j (t)))
]

||

≤||Φ−1
j (t)||2

[

||hj(t)||2||ej(t− 1)||+ ||hj(t)|||ǫj(t)|
+ρ

∑

j′∈Nj

(||ej(t− 1)||+ ||ej′ (t− dj
′

j (t))||)
]

.

In deriving the inequality we use the fact that cj(t) ∈ {0, 1}.

According to (36) in the proof of Theorem 1, which also

holds true for CD-RLS-3, there exists t0 > 0, such that

E[||Φ−1
j (t)||2] is upper bounded by M1/t when t > t0,

where M1 is a positive constant determined by Q(τ) and the

smallest eigenvalue of Rhj
(t). By (as1) and (as2), ||hj(t)||,

||ej(t − 1)|| and ||ej′(t − dj
′

j (t))|| are also upper bounded.

Therefore, there exist constants M2,M3 > 0, such that

||ej(t)− ej(t− 1)|| ≤ ||Φ−1
j (t)||2[M2 +M3|ǫj(t)|].

Taking expectations on both sides yields (63).

Now we turn to prove Theorem 2.

Proof of Theorem 2: Rewrite the update of ej(t) for

CD-RLS-3 in (64) to

ej(t) = ej(t− 1)− cj(t)Φ
−1
j (t)hj(t)h

T
j (t)ej(t− 1)

− cj(t)ρΦ
−1
j (t)

∑

j′∈Nj

(ej(t− 1)− ej′(t− 1))

− cj(t)ρΦ
−1
j (t)

∑

j′∈Nj

(ej′(t− 1)− ej′(t− dj
′

j (t)))

+ cj(t)Φ
−1
j (t)hj(t)ǫj(t).

Multiplying Φj(t) on both sides, we have

Φj(t)ej(t) = Φj(t− 1)ej(t− 1)

− cj(t)ρ
∑

j′∈Nj

(ej(t− 1)− ej′(t− 1))

− cj(t)ρ
∑

j′∈Nj

(ej′(t− 1)− ej′ (t− dj
′

j (t)))

+ cj(t)hj(t)ǫj(t).

Using the same notations as in the proof of Theorem 1, we

obtain an matrix form

Φ(t)e(t) = (Φ(t− 1)− ρ(C(t)L) ⊗ Ip)e(t− 1) (65)

+H(t)C(t)ǫ(t) − ρ(C(t)⊗ Ip)ẽ(t).

where ẽ(t) ∈ R
Jp and its jth block is

∑

j′∈Nj
(ej′ (t− 1)−

ej′(t − dj
′

j (t))). Observe that ẽ(t) contains the differences

between the local estimates and their delayed values, and

hence plays a critical role in the convergence proof. Below

we look for an upper bound for E[||ẽ(t)||].

By the Cauchy-Schwarz inequality, we have

||
∑

j′∈Nj

(ej′(t− 1)− ej′(t− dj
′

j (t)))||

≤
√

|Nj |
√

∑

j′∈Nj

||ej′(t− 1)− ej′(t− dj
′

j (t))||2

=
√

|Nj |

√

√

√

√

√

∑

j′∈Nj

||
d
j′

j
(t)−1
∑

k=1

(ej′ (t− k)− ej′(t− k − 1))||2

≤
√

|Nj |(dmax − 1)

√

√

√

√

∑

j′∈Nj

dmax−1
∑

k=1

||ej′(t− k)− ej′(t− k − 1)||2

≤
√

|Nj |(dmax − 1)
∑

j′∈Nj

dmax−1
∑

k=1

||ej′(t− k)− ej′(t− k − 1)||.

Here we use the fact that dj
′

j (t) is no larger than the maximal

delay dmax. Take expectation and use Lemma 2. There exists

t0 > 0 such that when t ≥ t0 it holds

E[||
∑

j′∈Nj

(ej′ (t− 1)− ej′(t− dj
′

j (t)))||]

≤
√

|Nj |(dmax − 1)
∑

j′∈Nj

dmax−1
∑

k=1

M

t− k

≤(|Nj |(dmax − 1))
3

2

M

t− dmax
.

Therefore, ∀t ≥ t0

E[||ẽ(t)||] = E[

√

√

√

√

J
∑

j=1

||
∑

j′∈Nj

(ej′ (t− 1)− ej′(t− dj
′

j (t)))||2]

≤ E[

J
∑

j=1

||
∑

j′∈Nj

(ej′(t− 1)− ej′(t− dj
′

j (t)))||]

≤ (

J
∑

j=1

|Nj |
3

2 )
(dmax − 1)

3

2M

t− dmax

≤ M0

t

for some constant M0 > 0.

Back to (65), multiplying Φ
− 1

2 (t) on both sides yields

Φ
1

2 (t)e(t) = Φ
− 1

2 (t)(Φ(t − 1)− ρ(C(t)L) ⊗ Ip)e(t− 1)

+Φ
− 1

2 (t)H(t)C(t)ǫ(t) − ρΦ− 1

2 (t)(C(t)⊗ Ip)ẽ(t).

Since H(t) and ǫ(t) are independent as given by (as1), we
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have

E[eT (t)Φ(t)e(t)] (66)

=E[eT (t− 1)(Φ(t− 1)− ρ(C(t)L) ⊗ Ip)
T
Φ

−1(t)

× (Φ(t− 1)− ρ(C(t)L) ⊗ Ip)e(t− 1)]

+E[ǫT (t)CT (t)HT (t)Φ−1(t)H(t)C(t)ǫ(t)]

+ρ2E[ẽT (t)C(t) ⊗ IpΦ
−1(t)C(t)⊗ Ipẽ(t)]

+ρE[ẽT (t)C(t) ⊗ IpΦ
−1(t)

× (Φ(t− 1)− ρ(C(t)L) ⊗ Ip)e(t− 1)].

Observe that (66) is different to (55) for having the last

two terms at the right hand side. Because all the diagonal

elements cj(t) in the diagonal matrix C(t) are within [0, 1],
∀t ≥ t0

ρ2E[ẽT (t)C(t) ⊗ IpΦ
−1(t)C(t) ⊗ Ipẽ(t)]

≤ρ2E[||ẽ(t)||2||Φ−1(t)||2]

≤ρ2M2
0

t2
E[||Φ−1(t)||2].

The right hand side is in the order of O(1/t3) because

E[||Φ−1(t)||2] is no larger than λmax(R
−1
hj

)/(2Q(τ)t) for all

t ≥ t0 as we have shown in Step 1 of the proof of Theorem

1 (cf. (36)). Meanwhile, ∀t ≥ t0

ρE[ẽT (t)C(t)⊗ IpΦ
−1(t)

× (Φ(t− 1)− ρ(C(t)L) ⊗ Ip)e(t− 1)]

≤ρE[‖ẽ(t)‖||Φ−1(t)||2(||Φ(t− 1)||2 + ρ||L||2)||e(t− 1)||].

Observe that E[‖ẽ(t)‖] and E[||Φ−1(t)||2] are in the orders

of O(1/t) and O(1/t), respectively, while E[||Φ(t− 1)||2 +
ρ||L||2] is in the order of O(t) because E[||Φj(t)||2] ≤
tλmax(Rhj

) (cf. (35)). In addition, ||e(t − 1)|| is bounded

by (as2). Therefore, the right hand side is in the order of

O(1/t).

For the first term at the right hand side of (66), similar to

the proof for CD-RLS-2, if ρ is chosen within [0, ρ0] we are

able to show that (cf. (56))

E[eT (t− 1)(Φ(t− 1)− ρ(C(t)L) ⊗ Ip)
T
Φ

−1(t)

× (Φ(t− 1)− ρ(C(t)L) ⊗ Ip)e(t− 1)]

≤E[eT (t− 1)Φ(t− 1)e(t− 1)].

Finally, following Step 4 of the proof of Theorem 1 to handle

the second term at the right hand side of (66), we know that

it is also in the order of O(1/t). Therefore, for all t ≥ t0
(66) yields

E[eT (t)Φ(t)e(t)]

≤E[eT (t− 1)Φ(t− 1)e(t− 1)] +
K1

t
+

K2

t3
.

where K1,K2 > 0 are constants. Summing up both sides

from time r = t0 to r = t, we have

E[eT (t)Φ(t)e(t)] (67)

≤E[eT (t0 − 1)Φ(t0 − 1)e(t0 − 1)] +
t
∑

r=t0

K1

t
+

t
∑

r=t0

K2

t3
.

Observing that E[eT (t0 − 1)Φ(t0 − 1)e(t0 − 1)] is bounded

because ||e(t0−1)|| is bounded by (as2), the right hand side

of (67) is in the order of O(1) + O(ln(t)). Following the

argument in Step 5 of the proof of Theorem 1, E[||Φ−1(t)||2]
is in the order of O(1/t) when t ≥ t0. Therefore, E[||e(t)||]2
is in the order of O(1/t) +O(ln(t)/t), which completes the

proof of Theorem 2.
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