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Errata to ”Asymptotic Achievability of the Cramér-Rao Bound
for Noisy Compressive Sampling”

Rémy Boyer, Behtash Babadi, Nicholas Kalouptsidis, and Vahid Tarokh

Abstract—Given N noisy measurements denoted by y and an overcom-
plete Gaussian dictionary, A, the authors in [1] establish the existence and
the asymptotic statistical efficiency of an unbiased estimator unaware of
the locations of the non-zero entries, collected in set I, in the deterministic
L-sparse signal x. More precisely, there exists an estimator x̂(y,A)
unaware of set I with a variance reaching the oracle-CRB (Cramér-
Rao Bound) in the doubly asymptotic scenario, i.e., for N,L → ∞
and L/N → α ∈ (0, 1). As was noted in [2] the result remains true
even though the proposed closed-form expression of the variance of the
estimator x̂(y,A) is incorrect. In this note, we correct this expression by
providing an explicit formula and discuss its practical usefulness. Finally,
the new expression allows to correct the misleading comprehension of the
sparse signal estimation performance suggested in [1].

I. MAIN RESULT OF [1]

Let y be the N × 1 noisy measurement vector given by

y = Ax+ n

where A is a non-stochastic N ×M matrix with controlled growing
dimensions according to limN,L→∞ L/N = α ∈ (0, 1). An entry
of matrix A is generated as a single realization of an i.i.d. Normal
distribution N (0, 1), x is a deterministic L-sparse vector on set I
and n is a centered circular white Gaussian noise of variance σ2. The
definition of the oracle (doubly) asymptotic CRB is given hereafter.

Definition 1.1: The oracle-CRB in the doubly asymptotic scenario
is defined according to

C∞ def.
= lim

N,L→∞
CI s.t.

L

N
→ α ∈ (0, 1)

where CI stands for the oracle-CRB for finite N and L on vector xI
consisting of the L non-zero values in x. The term ”oracle” means
that the knowledge of support I is a priori provided thanks to a
genie.

Definition 1.2: For an unbiased oracle-estimator, denoted by
x̂(y,AI), and for an unbiased estimator x̂(y,A) unaware of the
set I, their MSE are respectively defined according to

eG
def.
= lim

N,L→∞
Ey|x,AI ‖xI − x̂(y,AI)‖2

eδ
def.
= lim

N,L→∞
Ey|x,A ‖x− x̂(y,A)‖2

subject to L
N
→ α ∈ (0, 1).

Using the above definitions, the following relation holds
eδ ≥ eG ≥ C∞. As an analytical expression of eδ cannot be directly
derived, the authors in [1] show that an upper bound on eδ is
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given by C∞. As a consequence, it is proved that the MSE for an
estimator unaware of set I is lower and upper bounded by the doubly
asymptotic oracle-CRB given in definition 1.1. This proves the
important result that there exists a sparse-based estimator unaware
of set I that meats the oracle-CRB in the doubly asymptotic scenario.

In this comment note, a corrected expression for the oracle-CRB,
C∞, is proposed. Note that this comment correspondance is also of
interest for reference [3] which suffers from the same problem.

II. CORRECTED ORACLE-CRB

A. Oracle-CRB derivation

The oracle-CRB for finite N and L admits the following relation
[4,5]: CI

def.
= Tr[F−1

I ] in which FI is the L×L Fisher Information
Matrix (FIM). The FIM is defined as the variance of the score
function according to

[FI ]ij =

[
Var

(
∂ log p(y|xI ,AI)

∂xI

)]
ij

def.
= Ey|xI ,AI

(
∂ log p(y|xI ,AI)

∂xi

∂ log p(y|xI ,AI)
∂xj

)
− Ey|xI ,AI

(
∂ log p(y|xI ,AI)

∂xi

)
× Ey|xI ,AI

(
∂ log p(y|xI ,AI)

∂xj

)
,

where i, j ∈ I and p(y|xI ,AI) is assumed to be of class
C1. Thanks to the model assumptions in [1], y|xI ,AI ∼
N (AIxI , σ

2I) and the score function is zero-mean and of class
C2. Consequently, the oracle-CRB can be simplified according to

CI = Tr
[
F−1
I
]
= Tr

[(
Ey|xI ,AI

(
−∂

2 log p(y|AI ,xI)
∂xI∂xTI

))−1
]

= σ2Tr

[(
AT
IAI

)−1
]
. (1)

The last expression is obtained thanks to the Slepian-Bang formula
[2,5,6].

B. Closed-form expression in the doubly asymptotic scenario

In this section, we leverage on random matrix results to propose
the corrected expression of the oracle-CRB.

Result 2.1: The oracle-CRB in the doubly asymptotic scenario
takes the following closed-form expression:

C∞ = σ2 α

1− α (2)

in almost sure convergence.

Proof Define the matrix ZI = 1√
N
AI where the i.i.d. entries of

matrix ZI follow the distribution N (0, 1/N). According to [7],
the empirical distribution of the eigenvalues of ZTIZI converges
almost surely to the Marcenko-Pastur distribution on the interval[
(1−

√
α)2, (1 +

√
α)2
]
. This implies that the ZTIZI in the doubly
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asymptotic scenario is almost surely full-rank, and thus its matrix
inverse exists. Using eq. (1), observe that

C∞ = lim
N,L→∞

σ2

N
Tr
[
(ZTIZI)

−1
]
.

Finally, according to [8], the asymptotic inverse moment is given
by Tr

[
(ZTIZI)

−1
]
/L→ 1/(1−α) in almost sure convergence and

the claim is thus proved. �

C. Validity of eq. (20) in [1]

The validity of eq. (20) in [1] in the derivation of the upper bound
on the MSE is crucial. So, there is a need to make the assumptions
more precise on CI for the validity of eq. (20) in [1]. Note that
CI converges almost surely to C∞. This implies the convergence
in probability [9]. In addition, if we assume that CI is uniformly
integrable, then thanks to the generalized dominated convergence
theorem [10], the convergence in mean holds, i.e.,

lim
N,L→∞

EAICI = EAI

(
lim

N,L→∞
CI
)

= EAIC
∞ = σ2 α

1− α
since C∞ is not a function of AI but only of the asymptotic ratio α.

D. Qualitative analysis and numerical illustrations

In [1], it is claimed that the oracle-CRB is given by σ2α. This
expression would mean that the variance of the estimator x̂(y,A) is
always lower or equal to the noise variance for any α. In particular,
for α→ 1 and σ2 → 0, the variance of the estimator x̂(y,A) would
converge to zero while the degree of freedom (DoF) per measure-
ment1 tends to zero. So, the incorrect oracle-CRB expression suggests
the too optimistic and misleading idea that the considered estimator
always exhibits a low and finite estimation accuracy even for low
DoF where the number of unknown parameters and measurements
are almost identical. Conversely, the corrected oracle-CRB given in
Result 2.1 allows a correct qualitative analysis of the underlying
sparse estimation problem as shown in Fig. 1.

In Fig. 2, the oracle-CRB expression given in eq. (1) is compared to
the expression in eq. (2) with respect to 1/σ2 in dB and for relatively
small numerical values of L and N . Note that the two bounds are
in good agreement and thus the corrected oracle-CRB remains an
accurate analytical expression even if the doubly asymptotic scenario
is not rigorously respected. This numerical illustration, in our view,
is important from an operational point of view.

III. CONCLUSION

In this note, a corrected explicit formula for the doubly asymptotic
oracle-CRB involved in [1] is derived. Regarding the original article,
the main result on the existence and the efficiency of an unbiased
estimator unaware of the locations of the nonzero elements remains
correct but the derivation of its variance, given by the oracle-CRB,
is incorrect. As illustrated in this comment correspondence, this
erroneous variance was too optimistic and always lower bounded by
the noise variance even for a low DoF. This produces a fundamentally
misleading comprehension of the estimation performance limit of
sparse signals. The corrected expression solves this issue and its
practical usefulness is illustrated.

1Each unknown parameter can be seen as an additional DoF while each
measurement can be viewed as a constraint that restricts the DoF. The asymp-
totic DoF per measurement of a linear system is given by 1− L

N
→ 1−α. An

unfavorable DoF is close to zero meaning that the number of unknown/desired
parameters and measurements are almost equal. In contrast, a DoF close to
one means that we dispose of a large number of measurements to estimate
few unknown parameters.
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Fig. 1. Comparaison of the corrected and the erroneous oracle-CRB vs. the
asymptotic DoF per measurement with σ2 = 1e − 2 with M = 300 and
N = 100.
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Fig. 2. Lower bounds vs. 1/σ2 in dB with M = 50, N = 20 and L = 10.
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