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Abstract

The joint statistics of partial sums of ordered random \deés (RVs) are often needed for the
accurate performance characterization of a wide varietywiodless communication systems. A unified
analytical framework to determine the joint statistics @rtfal sums of ordered independent and
identically distributed (i.i.d.) random variables waseaetly presented. However, the identical distribution

assumption may not be valid in several real-world applicati With this motivation in mind, we consider
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in this paper the more general case in which the random Jeasare independent but not necessarily
identically distributed (i.n.d.). More specifically, weterd the previous analysis and introduce a new
more general unified analytical framework to determine thietjstatistics of partial sums of ordered
i.n.d. RVs. Our mathematical formalism is illustrated wih application on the exact performance
analysis of the capture probability of generalized sedecttombining (GSC)-based RAKE receivers
operating over frequency-selective fading channels witihoa-uniform power delay profile. We also

discussed a couple of other sample applications of the geresults presented in this work.

Index Terms

Order statistics, Joint statistics, Non-identical disition, Moment generating function (MGF),

Probability density function (PDF), Exponential distritoun.

. INTRODUCTION

The subject of order statistics deals with the propertiesdastributions of the ordered random
variables (RVs) and their functions. It has found applmasiin many areas of statistical theory
and practice [1], with examples in life-testing, qualityntl, radar, as well as signal and
image processing [2]-[8]. Order statistics has made owerdbkt decade an increasing number
of appearances in the design and analysis of wireless comatiom systems, specifically for
the performance analysis of advanced diversity technjgaéaptive transmission techniques,
and multiuser scheduling techniques (see for example 22 In these performance analysis
exercises, the joint statistics of partial sums of ordergd Rre often necessary for the accurate
characterization of system performance [12], [19], [23ptd&that even if the original unordered
RVs are independently distributed, their ordered versiares dependent due to the inequality
relations among them, which makes it challenging to suatt jgtiatistics. Recently, a successive
conditioning approach was used to convert dependent atdanelom variables into independent
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unordered ones [10], [11]. However, this approach requs@se case-specific manipulations,
which may not always be generalizable.

Motivated by these facts, we introduced in [24] a unified wiedl framework to determine
the joint statistics of partial sums of ordered independeartt identically distributed (i.i.d.) RVs
by extending the interesting results published in [4], [286]. More specifically, our approach
can be applied not only to the cases when all terdered RVs are involved but also to the
cases when only th&, (N, < N) best RVs are considered. With the proposed approach, we can
systematically derive the joint statistics of any partiais of ordered statistics, in terms of the
moment generating function (MGF) and the probability dgniinction (PDF). These statistical
results can be used for the performance analysis of varioreess communication systems
over generalized fading channels [9]. However, the idahfi@ding assumption on all diversity
branches is not always valid in real-life applications. Hverage fading power may vary from
one path to the other because the branches of a diversitgnsyate sometimes unbalanced
and the communication system is sometimes operating ogquéncy-selective channels with a
non-uniform power delay profile or channel multipath inigngrofile (i.e. the average SNR of
the diversity paths are not necessary the same).

We therefore introduce in this paper an unified analyticaimiework to determine the joint
statistics of partial sums of ordered independent nontidalhy distributed (i.n.d.) RVs by
extending our previous work for i.i.d. fading scenarios][2More specifically, we use an MGF
based systematic analytical approach to investigate time gbatistics of any partial sums of
ordered statistics for general i.n.d. fading, in terms of M@&nd the PDF. We would like to
emphasize that such generalization.The main challengegdaeralizing the work in [24] to

i.n.d. general fading cases is that joint PDF of orderedi.RVs is much more complicated than
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that of ordered i.i.d. RVs. We need to carry out more detaitethipulation and introduce new
mathematical representation to obtain the generic regailgs joint MGF and related joint PDF)
for i.n.d. general cases in a compact form. In addition, wese@nt the closed-form expressions
for the exponential RV special case, which is most widelydusewireless literature. For other
type of RVs, our approach will lead to much simpler resultantithe conventional approach
involving multiple-fold integration. Furthermore, thepoanential distribution is frequently used
in the performance evaluation analysis of networks anccosenunication systems. It is also
used to model the waiting times between occurrences of raetg lifetimes of electrical or
mechanical devices [2], [3], [27], [28]. Finally, as an apation of our analytical framework,
we generalize the performance results of GSC-based RAKé&vess in [23] by maintaining the
assumption of independence among the diversity paths baximg the identically distributed
assumption. We also discussed a couple of other samplecappfis of the generic results

presented in this work.

[I. PROBLEM STATEMENT AND MAIN IDEA

Order statistics deals with the distributions and statiproperties of the new random
variables obtained after ordering the realizations of soemelom variables. Le{y;}, i, =
1,2,---, N denoteN i.n.d. nonnegative random variables with Ppf(-) and CDFPF,, (-). Let
u; denote the random variable corresponding to sfle largest observation of th& original
random variables (also calledth order statistics), such that, > u, > -+ > uy. The N-

dimensional joint PDF of the ordered R\{ﬂi}fil is given by [1]

1,2,...,N
g (ur,ug,...,un) = Z Piy (u1) pi (u2) -+ piy (un). (1)

11,82,..0s IN

i1F#i27F AN
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Similarly, the N,-dimensional joint PDF oi{ul} is given by [1]

1,2, ,N
g(ur,uz, -+ ,un,) = Z piy (u1) piy (u2) -+ Piy, H Pi; (un,)
01,09, j=Ns+1
11#12# #ZN
or
1,2,,N 1,2, ,N N
= D p () pi (u2) iy, (uny) Y II Py @
01,12, ,IN INg+1," »IN I=Ns+1
iFi2FE N, iNg41F - FiN {INg+1, N T

INg+1701,02, " ,iN,

INFD1,82, N

The objective is to derive the joint PDF of partial sums imnog either all N or the first/V,
(Ns < N) ordered RVs for the more general case in which the divesitys are independent

but not necessarily identically distributed. Similar t@lJ2we adopt a general two-step approach:

e Step I: Obtain the analytical expressions of the joint MGPpaftial sums (not necessarily
the partial sums of interest as will be seen later).
e Step Il: Apply inverse Laplace transform to derive the jdMF of partial sums (additional

integration may be required to obtain the desired joint PDF)

In step I, by interchanging the order of integration, whiles@ring each pair of limits is
chosen to be as tight as possible, the multiple integral earelritten into compact equivalent
representations. After obtaining the joint MGF in a compfactm, we can derive joint PDF
of selected partial sum through inverse Laplace transféton.most cases of our interest, the
joint MGF involves basic functions, for which the inverseplace transform can be calculated
analytically. In the worst case, we may rely on the Bromwiomtour integral. In most of the
case, the result involves a single one-dimensional contdagration, which can be easily and
accurately evaluated numerically with the help of intedgeddles [29], [30] or using standard
mathematical packages such as Mathematica and Matlab.

The above general steps can be directly applied whew alkdered RVs are considered and
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the RVs in the partial sums are continuous. When either adettmnditions do not hold, we
need to apply some extra steps in the analysis in order tanohtaalid joint MGF [24]. For

example, when the RVs involved in one partial sum is not cwmaus, i.e., separated by the
other RVs, we need to divide these RVs into smaller sums. k@amele in Fig[ll, we consider

3-dimensional joint PDF ofvi.x, Y2k, V5. Yok }r {7V3:60 Yaic by @nd{yz.i, vs.5 } for K > 8.

Note that the first group is not continuous. As a result, wé @élive 5-dimensional joint MGF

in step |,{’}/1:K,’}/2:K}, {’73:[(,’}/4:](}, {75:[(776:](}1 {77;[(}, {VS:K}- After the jOint PDF of the new
substituted partial sums are derived with inverse Lapleastorm in step I, we can transform

it to a lower dimensional desired joint PDF with finite intagon.

IIl. CoMMON FUNCTIONS AND USEFUL RELATIONS

In the following sections, we present several examplesltstiate the proposed analytical
framework. Our focus is on how to obtain compact expressathe joint MGFs for i.n.d.
general fading conditions, which can be greatly simplifigthwhe application of the following

function and relations.

A. Common Functions

i) A mixture of a CDF and an MGF;, (7, A):
Y
() = [ @) exp () @)

wherep;, (z) denotes the PDF of the RV of interest. Note tha{~,0) = ¢; (v) is the
CDF andc;, (o0, \) leads to the MGF. Here, the variabjes real, while\ can be complex.

i) A mixture of an exceedance distribution function (EDF)daan MGF.e;, (7, A):

e, (7, A) = /OO pi, (x) exp (\z) dx. (4)
v
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Note thate;, (,0) = ¢;, () is the EDF whilee;, (0, \) gives the MGF.

i) An interval MGF 11, (Ya, 75, A):

iy (Zas 20, /\) = /Zb Piy (CL‘) exp (Ar) da. ®)

a

Note thatyu;, (0,00, \) gives the MGF.

Note that the functions defined ibl (3]l (4) and (5) are relasdollows:

M, (Zav Zb; )‘) = Gy (va )‘) — G (Zav )‘) (6)

= € (va /\) — €y (Zav /\) . (7)

B. Smplifying Relationship

i) Integral J,,:

Based on the derivation given in Appendix I, the integfgl defined as:

1,2,..., N Um—1 U
Jn = Z / At pi, (Um)exp (Ay,) /du,mqpim+1 (Um+1) €Xp (Atpyt1)

im7im+l ~~~~~ Z'N 0 0
7;7n7£7:m+1 7&757/N
U #0102,y 0m—1
7:Tn«%»l 7&7;1 ai2 ~~~~~ 7;77171

INFT1,82,- 0 im—1

UN—1

-/duNpiN (un) exp (Aun), (8)
0

can be simply expressed in terms of the functigriy, \) as

N

I, = Z H Ci, (Um—1, N). 9

{imyim+1,INYEPN —my1(IN —{i1,92,.yim—1}) ~ l=m

In here, the complicated summation notation used in [dq. {&implified based on the
following power set definition. We define index st as/y = {1,2,--- , N}. The subset
of Iy with n (n < N) elements is denoted b5y, (Iv). The remaining index can be grouped
in the setly — P, (Iy). Based on these definitions, a summatioriin (8) includesoatiple

subsets of the index sét; (Iy = {i1,is, - ,iny}) excluding the subseltiy, is, ..., 0m_1}
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with N — (m — 1) elements and these subsets wkh- (m — 1) elements can be denoted
bY Pn—ms1 (In — {i1, 40, -+ s im—1})-
ii) Integral J! :

Following the similar derivation as given in Appendix Il etiintegral.J/ , defined as

1,2,....N 0 o

S = Z / dumpi,, (Um) exp (A, / dtm—1Piy,  (Um—1) exXp (A1)
ilyﬁim+1,im+2,...,i1\j
iz;ﬁim+1,im+2,...,i1\j
im#im+1-,%m+27m-,iN
oo
[ duspi, (wr)exp (), (10)
uz

can be simply re-written in terms of the functien (v, A) with the help of the definition

of power set used in 1lI-B-i) as

T = > [T e Cumin ). (11)
{il 7i2a"'7im}€PM(1N_{im+l;7;m+27~~~;7;N}) { _l:1 X }
21,225+ 05tm

iii) Integral J7,:

Based on the derivation given in Appendix Ill, the integsd},, defined as

1,2,...,.N Ua Ua

’
Jap = g /dub—lpib,l (up—1) exp (Aup—1) / dup—2pi, , (up—2) exp (Aup—2)

lat1s--tb—1 w wr

fat1Flat2F Flp_1 b

Ta+1701, " ylayibye N

Ta4+2701, ylayib,e N

Gy 1701, s sihseensiN
Uq

/ dUa41Dia sy (Uat1) €XP (Mig1), (12)

Uq+2

can be simply re-written in terms of the functior-, ) as

b—1
J ap = Z H i, (Upy Uy A) for b > a. (13)

{tat1,s0b—1YEPy—at1 (IN—{i1," Jia,ip,..nin})  l=a+l
{fat1ssip—1}
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IV. SAMPLE CASES WHENALL N ORDERED RVS ARE CONSIDERED

N
Theorem 4.1: (PDF of > u,, amongN ordered RVSs)

n=1
N
Let Z; = > u, for convenience. We can derive the PDF0f= [Z;] a
n=1
pz(zn) = Lg {nz(=5)}
N
= Z L§11 H Ci, (007 _Sl) ) (14)
{i1,i2,....in}EPN(IN) =1

{i1,02,...,in }

where L '{-} denotes the inverse Laplace transform with respect;to

Proof: The MGF of Z = [Z;] is given by the expectation

MGFz(\) = E {exp (/\121)}

01,02, N

o0
= /d/ulpu (u1) exp (Arur) /du2p12 uz) exp (Ajuz)
i1 Fiag- 7’511\70 0
1

UN —

X oo X / dunpiy (un)exp (Muy), (15)
0

where E {-} denotes the expectation operator. By applying (9), we caaimbthe MGF of
Zy =" u, as

N
MGFz (\) = > IT e (o0 M) (16)

{ir,i2,..in}ePN(IN) = I=1
{i1,i2,...,in }

Therefore, we can derive the PDF Bf = Zﬁzl u, by applying the inverse Laplace transform

as
pz(z1) = Lg'{nz(=S1)}
N
— > Lg! II  ci(o0—51) ¢ (17)
{i1,i2,....in }EPN(IN) {ilaiéT}JN}
[ ]
Theorem 4.2: (Joint PDF ofz u,, and Z Uy,)
n=1 n=m-+1
N
Let 7, = 2 u, andZ, = > u, for convenience, then we can derive the 2-dimensional joint
n=1 n=m+1
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PDF of Z = [Z,, Z,] as

pz(21,22) = Lg'g,{nz (=51, —S2)}

N 0 m—1

- 3 / Qi (tm) 3 L5 T en (e —S1) exp (= Sium)
m=1 0 {711;~~~7im71}epm—1(IN_{7:m}) {Zlk’L 1}

N

x > £y T e (um—52)

{im41yeriN YEPN — i (IN—{im }—{i1,eesim—1}) Cl=m+1

Tm41yeeey ZN}
for z1 > 2. (18)

—m

Proof: The second order MGF of = [7,, Z,] is given by the expectation

1,2, ,N o0 Um —1
MGFz (M, X2) = Z /dulpil (u1) exp (Aquqg) - / dumpi,,, (Um) exp (A1)
1115}'5;223‘é ¢1N 0

Um UN—1

X /duerlpim+1 (Urnt1) exp (A2Upppr) « - - / dunpiy (un)exp (A2uyn).  (19)
0

0
We show in Appendix 1V that by applyingl(9) and [24, Eq. (2)]datihen [11), we can obtain

the second order MGF of as
N o0
MGFz (A1, \2) = Z /dumpim (um,) exp (A1)
Im=1 0
m—1

X Z H €i (umu /\1)

{il','-wlm 1}€Pm 1(IN {'Lm}) k=1
{117 lm— 1}

N

x > T ci (um 2. (20)

{ima1,riN}EPN o (IN—{im }—{i1,--sim—1})  l=m+1
717'n+17 77‘N}

Again, letting\; = —S; and A, = —S;, we can obtain the desired 2-dimensional joint PDF
N
of 7, = Z u, andZ, = > u, by applying the inverse Laplace transform as
n=m-+1

pz(21,22) = Lg'g, {pz (—=S1,—52)}

N m—1
= Z /dumpim () Z Lgll H €ip (Um, —51) exp (—S1um)
im=17 {i1,-im—1}€Pm_1(INn—{im}) k=1
{i1,sim—1}
N
X > Lg! IT e (um—S2) ¢ (21)
{im+1s s iNJEPN—m (IN—{im }—{i1,-yim—1}) l=m+1

{Zm+1 ----- 'LN}
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N
Theorem 4.3: (Joint PDF ofu,, and >  w,)
N e
Let Z, = u,, andZ, = > u, for convenience. We can obtain the 2-dimensional joint PDF o

n=1
n#m

7 = [Zl,ZQ] as

pz (21,22) = Lg' g, {pz (=51, —52)}

N o0
= Z /dumpim (wm) L§11 {exp (=S1um)} Z
0

{i15estm—1}EPm—1(UN—{im})

im=1

m—1 N
x > L I e =) [ e (wm—S2) . (22)
{im+1,...,iN}GPme(IN—{im}—{il,...,im,l}) { k:_l } { l:erl }
L] yeeeslm—1 Tm41s-tN
Proof: Similarly to Theorem 4.1l andi4.2, by applying [9), [24, Eq. (2)] and_(11), we can
N
obtain the second order MGF &f, = u,, andZ, = >  u,. Detailed derivation is omittedm
n=1
n#m

V. SAMPLE CASES WHEN ONLY N, ORDEREDRVS ARE CONSIDERED

Let us now consider the cases where only the Bég$ V) ordered RVs are involved.

N,
Theorem 5.1: (PDF of > u,, N, > 2)

n=1

Ny
Let Z' = > u, for convenience, then we can derive the PDFZ6fas

n=1
s
pz () = Py e (z) = / pz (x — 2z9,29)dzo fOr Ny > 2, (23)
n= 0
where
pz(z1,22) = Lg' g {pz(—S1,—52)}
N 1,2,...,N N
= > /duzvspms (un,) Lg) {exp (=Soun.)} Y I  P(uw)
ing=1] INg+1yeiN k=Ng+1
iNg 417N {INg+150IN }
INg+17INg
iN?éiNS
N.—1
x > Lg! II  e(un.—S)p. (24
{1, iNg—1}EPN 1 (UN—{in, }—{iNg+1,--,iN }) =1
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Ns—1
Proof: We only need to considen,, separately in this case. Let; = > u, and

Zs = uy,. The target second order MGF &f = [7;, Z,] is given by the expectation in

MGFZ (/\17/\2) = E{exp ()\121 + /\22’2)}
1,2, ,N 0 UNG—2
= Z /dulpi1 (u1) exp (Aru) -+ / dun, ~1Pin, -1 (un,~1) exp (AM1un,—1)
111?151122?5 #ZN 0
UNg—1
X / dun,piy, (un,)exp (Aaun,) H (un,)- (25)
0 Jj=Ns+1

By simply applying [24, Eq. (2)] and theh (11) tb (25), we cartain the second order MGF

result as
N 1,2,..,N N
MGF (upe) = 30 [ duxpiy, (un)exp Owuw) Y I Puun)
ZNSZIO 'LN5+1 ..... IN k=Ns+1
iNg 17 Fin {iNg 1, 0in )
INg+17EN,
iN?éiNS
Ny—1
X Z H €;, (’U,NS, /\1) (26)
{ix,ing—1}€PN 1 (Un —{in }—{ing41,m0in}) 1=

{i1,0yiNg—1}

Again, letting\; = —S; and A\, = —S,, we can obtain the 2-dimensional joint PDF Bf =
Ns—1
> u, and Zy = uy, by applying the inverse Laplace transform as

n=1

pz(z1,22) = Lg'g, {nz(=51,—52)}

N 1,2,...,N N
= > /duzvspms (un,) Lg)! {exp (= Soun,)} > II P
iNSZI 0 iN3+l,---7iN k=Ngz+1
INg+1FZIN {INg+150IN}
INg+17INg
iN?éiNS
N.—1
x > Lg! II  eilun.—S)p. (@7
{i1,ving—1}EPN 1IN —{ing }—{ing 4150 0in D) =1

{il,...,istl}

Finally, noting that”’ = 7; + Z,, we can obtain the target PDF af with the following finite

integration

pz(r) = / Pz (x — 22, 22) dza. (28)
0
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Ny

Theorem 5.2: (Joint PDF ofu,, and >  w, for 1 <m < Ny — 1)
N nm
Let X =u, andY = Z u,, then the joint PDF ofZ = [X Y] can be obtained as
nim
bz (Iay) = D Ns ('rvy)
um7n§1 o
n7_ém
x y—(Ns—m)zy
:/ / D1 Ne—1 (21,2, y—21— 24, 24) dz1d2y4. (29)
0 (m—1)z 3 UnyUm, Do Un,UN
n=1 Nn:m+1
Proof: For the joint PDF ofu,, and ) wu,, as one of original groups is split by,,,
n=1

n#m
we should consider substituted groups for the split growgbesd of original groups as shown
in Fig.[2. As a result, we will start by obtaining a four ordeiG®. In this case, the higher
dimensional joint PDF can then be used to find the desiredr&asional joint PDF of interest

by transformation.

Applying the results in [24, Eq. (2)][X9)[(L1) and {13), weride in AppendiX'V the target

m—1 Ns—1
joint MGF. Let Z; = > wy, Zo = Uy, Z3= Y. u,, andZ, = uy,, then
n=1 n=m+1
1,2,..N N
MGFz (A1, A2, A3, \1) = Z /dUNspiNs (un,) exp (Aun,) H Pi; (un,)
iNg, N () j=Ns+1
iNgFFIN {ivs+1,0in}

N oo
X Z / dtmpi,, (tum) exp (Aztn)
un

. i_ynzl .
1m5£ZN5 ..... TN

Ngs—1

X Z H Wiy (UN, 5 Uy A3)
{im+1,ing—1}EPNg—mo1(IN —{im}—{ing,..vin}) | k=m+1
{im41,-siNg—1}
m—1
X > IT e (wm M) (30)
{it,vim—1}E€Pm—1(IN—{im}—{ing - int—{im41,ning—1}) = I=1

{i1,-sim—1}
Starting from the MGF expressions given above, we applyrgesd.aplace transforms in

Appendix[M in order to derive the following joint PDFs
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Pz (21,22, 23,24) = L§11152753_,54 {pz (=51, —S2,—53,—S4)}

1,2,.,N 9 N
= Y [, ) I ew (S} I[Py ()
iNg,iN () J=Ne+1
iNgF AN {iNg+1,--IN}

N o0
X Z / dumpi,, (Um) ngl {exp (—Saum)}

=1

N:—1
—1
x > Ly, | | N O )
{im41,iNg—1YEPN —m—1 (IN—{im }—{ing - sin }) k=m+1

{tmt1,e0iNg —1}

m—1
X Z Lgll H i (umv _Sl) )
{i1,stm—1}EPm_1UN—{fim}—{ing - iN} —{imt1,.-yiNg—1}) =1
{Zl,...,lmfl}
for zy < z9, z1>(m—1)zgand (Ng —m — 1) z4 < 23 < (Ns —m — 1) 2. (31)

[
Note that[[29) involves only finite integrations of joint PRH herefore, while a generic closed-
form expression is not possible, the desired joint PDF cagdlsdy numerically evaluated with the
help of integral tables [29], [30] or using standard mathi&rahpackages, such as Mathematica

or Matlab etc.

m Ns
Theorem 5.3: (Joint PDF of " u,, and > w,)

n=1 n=m+1
m Ns
Let X = > w, andY = >  u,, then we can simply obtain the joint PDF gf= [X, Y] as
n=1 n=m-+1
bz ('rvy) =DPm Ns ('rvy)
20 Uns D Un
n=1 n=m+1
Nsy—m % m
= / / P Kg—1 (T — 22,22,y — 21, z2) dzad24, fOr o > 8 (32)
Proof: Omitted. u

Note again that only the finite integrations of joint PDFs emelved.
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VI. CLOSED-FORM EXPRESSIONS FOR EXPONENTIARV CASE

Now, we focus on obtaining the joint PDFs for i.n.d. expoiraRV special cases in a ready-
to-use form. The PDF and the CDF of the RVs are givenphyz) = %exp (—%) and
P, (r) =1—exp (—%) for v > 0, respectively, wherg;, is the average of theéth RV.

The above novel generic results are quite general and appbny RVs. We now focus
on obtaining the joint PDFs for i.n.d. exponential RV spk@ases in a ready-to-use form
and illustrate in this section some results for the indepahdon-identical exponential RV
special case, where the PDF and the CDFyoére given byp;, (z) = %lexp (—%) and

P, (r) =1—exp (—%) for v > 0, respectively, whergy;, is the average of théth RV. As

shown in AppendiX VI, [(B),[(T1) and(13) can be specialized to

i (20, ) = ﬁ {1 ~exp (<)\ - vi) z)] , (33)
i (70 ) = 1 _%A [exp (<)\ - vi) z)] , (34)
13, (Zas 2, ) = ﬁ [exp (()\ _ Vi) zb) ~exp ((/\ _ %) z)] . (35)

i) For general case:

l=n1 l=ny

i) For special case:

l:n1

ne—ni+1

no—Il+1 no l
1+ exp (- za N {(_1)l > ) exp <_ > %Za
—1 "im

i =1 fi=jotmi  ji=ji_i+1 m >H
_ Z Ok7n17n2 1 0 - 1 1 -1 ’ (36)
(-

k:nl

2

=y %exp <_ i <Z_)> exp ((na — n1 +1) z\), 37)
- L I
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I et =i I oo (350 ) =0 (=57 )]

l:n1 l:’ﬂ,l
l:n1

. exp ((n2 —n1+1) -z - A) exp <_l_§; (’%)>
= Z Ckyny,ns ()\_ 1 )

k:nl

ng—mni+1 na—Il+1 na
x{1+ ) exp<1-<Zb—za>-A>{<—1>l > > eXP<—ZZI%__Z“>}Ha<38>
=1

Jj1=jo+mn1 Ji1=ji-1+1 =1 Yim

where
1

ﬁ (=i, ) F" (%)

l:n1

) mn2—ni I . no—Il+1 no l 1 _—
F(SC): Z(TLQ—TLl—l—l-l)SC (—1) Z Z H7 +(7”L2—711+1)I .

=1 fi=dotni  Gi=hia+1m=1 Vim
(40)

Cl,m e — ) (39)

After substituting [(36),[(37) and (B8) into the derived esgmions of the joint PDF of partial
sums of ordered statistics presented in the previous ssctibis easy to derive the following
closed-form expressions for the PDFs by applying the ataksnverse Laplace transform pair
and the property given in [24, Appendix I]. While some of thessults have been derived using
the successive conditioning approach previously, we listrt here for the sake of convenience

and completeness in the next page.
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N
1) PDF of Y w,:
n=1

where

pz (21) =

{i1,42,...,

N
2) Joint PDF ofu,, and >  w,:

n=1
n#m

pz (21,22) = L§11 sy 1z (=51, —52)}

<3 i (5

x >

{il7<~Jm71}Emel(IN*{im}){i

+Z/dum_ <_ﬁ

’Lm_l
x >

{7:7n+1 vvvv iN}GPanl(IN*{'L‘m}*{ilv sim— 1}){

where

yees

m—1

> oa
k=1

yim—1

=) L5} {exp (~Sru))

m—1
1,m—1 €Xp ( )
= N\

) L5 fexp (=Siwm)} Z

—(m—1) umSg)

N N—m
g Cq,erl,N g
g=m+1 h=1

Tg1see vLN}

iN}ePN(Un) =1

>

{img1rin FEPN —m (In—fimt—{i1sesim—1})

1 ”f Cam- 16Xp< ”i_:<%>>

h
Z ’u_”n>}L521 {exp(‘ (h—|—m—1) Umva)) }]7 (43)

N—h+1 N
{<—1>h >3 -

Jji=jot+m+1  jp=jp_1+1

L, {exp (—=Sium)} =8 (21 — um) ,

al 1
> > CuinLy, {(57
1

)

N

>

q=m+1

m=1

) o

exp (— (m

(41)

(42)

C'q,erl,NL§21 { (
}

— D umSo) }
e

Yig,

w)}U(zz—(m—l)Um)

(44)

Ls;{ exp (— (
(52— 7) (52— 5

B exp <— (22— (m— 1) um) (%1,6 + W:q)) {exp (%
) =

11
Yigq iy,

; (45)
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o sy | (e =1 () o (3030 ) o ()} e )

—1 'k
L f—
52 FIE
Vigq iy,

(=5 =7) (== 5%)

m N
3) Joint PDF of Y u,, and > wuy:

n=1 n=m+1

pz(21,22) = Lg, g, {1z (=51, —S2)}

Z /Oodum' ( %m>

tm=17
. exp (—mumS1)
X Z Z Cr1,m— 1exp< (7 >>lel M Z
‘ (=51 -4)

{itesim—1}€Pm _1(IN— {Zm}){ ) =1 Vi, {imt1vin €PN (In—{im}—{i1sim—1})
bl ’VTL

(46)

N
-1 1
X E Comirnls, \ 77—~
g=m+1 (_82 - ¥ )
Tm41- SIN 4

+Z/dum,

m— m—1
1 eXp(_mUmsl)
( %’") Z Z Chmesr ( =1 <7” >> = (_Sl - "nlk)

im=17 {i1smsim 1 }EPm 1 (UIn— {Lm}){l

1

,,,,,

1

N N—h+1 N by exp (—hm S2)

m —1 - m

x 3 S, G R S o 1 ] b s
{im+1riN FEPN —m (IN—{im}—{i1, - rim— 1}){ g=m+1 ji=jotm+1l  jp=jp_1+1 m=1 "Jm (_SQ_ 5 )

LLIN

where
L§21 71 - = —exp (— ;2’2 ) > (48)
_S, — i
( 52 Yig ) !
P {exp(_mu,qsl)} e (_w) U (21 — munm), (49)
-5 — = Vi
L] (—humlSQ) — e (_ 2 = hum) U (2 — htm) - (50)
—52 — Fiq Viq
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N,
4) PDF of > uy:
n=1
pz (21, 22) = L, 5, {iz (=51, —52)}

N % 1 U 1,2,...,N N u
= Z /duNS 5 exp <— W.NS ) ng {exp (—Saun,)} Z H {1 — exp (—7—1\%)}
~19 iNg

iNg= “Ne INg 1IN k=Ns+1 Vi
1Ns+175 FUIN {ZNS+1 ,,,,, z‘N}
INg+17INg
Z'N?éiNs
Ne—1 Ne—1
r - _ —(Ns —1 S
X Z H Cy,1,N,—1€xp <— Z <qus>> lel exp (— ( ) un, S1) 7 (51)
{il""’istl}EPstl(INi{iNs}7{iN3+17“‘viN}) . qél =1 “ ( Sl ,qu)
{itiming—1}
where
Ly, {exp (=Szun,)} = 6 (22 — un,) , (52)
p;rdeeC W mDunS) L _ (“Zl D 1)UNS> Uz — (Ne — Duw,). (53)
(5 )
tq

N
5) Joint PDF ofu,, and >  w, for 1 <m < Ny — 1:
n=1
n#m

pz (21,22,23,21) = L, 5, 55,5, {1z (=51, —Sa2, =S5, —S4)}

1,2,....N 1 N
= Z /duNS —— exp (— EL_NS ) L§41 {exp (—un,S41)} H {1 — exp (—%)} X

iNgr iN Vins INs J=Ns+1

iNS7é"‘¢iN {iNS+1 ,,,,, 'L'N} “n?élNS ,,,,, iN

Ng—1 Ng—1

. > P ok e mad B ( > (“—@)

Y
{im1rsing—1} €PNy —m—1 (In—{im }—{ing oin }) F=mH1 t=mt1 N T

Ne—m—1 No—1 Ne—1

+exp<_ Nizl (u&)) Z Ls, exp (l'u7”+((]_vé‘_m1_3_1)'UNS)'SS) I DI exp< zl:umw;n )

l=m+1 Vi Ji1=jo+m+1 J1=ji—1+1 m=1

| § B[ () {pamtsn)
1=

i15sim—1 }EPm—1 (IN—{im}—{ing s rin }—{img1sning—1}) P=1 =1 " Vi
{ } ( n
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where
L, {exp (—un,Sa)} = 6 (24 — un,), (55)
L, {exp (—umS2)} = 6 (22 — um), (56)
Lo exp (— (Ns —m —1) - un, - S3) — _exp <_Z3 —(Ns —m — 1)'UNS> U(zs— (No—m—1) - un,) (57)

1o (= unt (Ns—m—1-1) un,)-S) :_exp<_23—(l~um+(Ns—m—l—1)~UNS)>U(23—(l~um+(Ns—m—l—1)'uN))
' (58)

—1 ) exp(—(m—1umdSt) | _ zi—(m—1) um
Lg, { p (_,5‘1 - %1’1) } = —exp (—T) U(z1—(m—1) um), (59)

no ng—ni+1 no—k+1 no k
H <1 — exp (—%)) =1+ (—1)F Z Z exp <— Z U, ) (60)

k=ny tk k=1 ji=jo+n1  Je=jr—1+1 m=1 Tiim
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VIl. APPLICATION EXAMPLE

The above derived joint PDFs of partial sums of ordered sttesi can be applied to the
performance analysis of various wireless communicaticstesys. In this section, we discuss

several selected application examples.

A. Derivation of the Capture Probability of GSC RAKE receiver over i.n.d. Rayleigh fading

conditions

Recently, we presented the exact performance analysessofapture probability on GSC
RAKE receivers in [23]. For analytical simplification, thading was assumed both independent
and identically distributed from path to path. However, thesrage SNR of each path (or
branch) is different for most practical channel models,eegly for wide-band SS signals
since the average fading power may vary from one path to ther.ofor example, experimental
measurements indicate that the radio channel is charaetetly an exponentially decaying
multipath intensity profile (MIP) for indoor office buildisg[31] as well as urban [32] and
suburban areas [33]. Based on this motivation in mind, wit@ help of our derived results
in Sec V, we can extend our previous result (a closed-forrmiiba of the capture probability
on GSC RAKE receivers) by maintaining the assumption of petielence among the diversity
paths but relaxing the identically distributed assumption

Let u; be the order statistics obtained by arrangiNg(N > 2) nonnegative i.n.d. RVs,
{%l}jlvzl, in decreasing order of magnitude such that> u; > --- > uy. Based on the system
model and definition in [23], the capture probability can bdtten as

5

Prob?scfcapture =Pr n;l >T ) (61)
> Un
n=1
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m N
where0) < 7' < 1 andm < N. If we assumeZ = [Z1,Z,], Z1 = > u, and Zy = > uy,,
n=1

n=m-+1
then [61) can be calculated in terms of the 2-dimensional jpDF of Z, and Z, easily as

1—

Prok; /NS Bl A dzod 62
ro SC—capture — r Zl+Z2 > _‘/0 /0 Pz (21722) 220%7 . ( )

m N
The joint PDF of " u,, and > wu,, pz (21, 22) can be derived with the help of our extended
n=1 n=m+1
approach in this paper. More specifically, insertingl (4% if62), the closed-form expression
for i.n.d. Rayleigh fading conditions is shown at the toplod hext page (refer to Appendix=VII

for details).
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PrOtbSCfcapture

N 1 m—1 N
= = > Crk,1,m—1 > > Cqm+1,N
Im=L T L i1 }E€Pm 1 (IN —{im }) {n k:il . {im1in €PN —m(In—Lim}—{i1ssim_1}) {1 qJ:lm+1¢N}
,,,,, e P
1-T
X ; /oo/( T )21 exp <7_Z2 )cxp (*_Zl )dz2dzl
<§<71>77m> o Jo Fig Fiy,
=\ Ay Vi
N m—1 N
-2 = > > Cl1ym—1 > > Cqm41,N
=L L im—1 }E€P 1 (TN —{im}) {1'1 k:il 3 {ims1sin €PN —m(In—Lim}—{i1ssim—1}) ‘ q+:1m+1iN}
,,,,, o T
1-T
Y AN Plexp(ff?)exp <7 (i(i))f) deion
) T ) CER):
=1\ Vig
N 1 m—1 N
+.Z 5, > > Cr1,m—1 > > Cq,m+1,N
=L L i1 EP 1 (TN —{im}) {n k:il ) {img1rin }EPN—m(In—Lim}={i1ssim—1}) 0 q+:lm+1iN}
,,,,, — R

N—m N—h+1 N (17’1’)
1 oo z1 z1 z2 Z1 z2
h T
X E —1) E E / / exp|— exp|— U (— - —)dz dz
D ) Jo Jo p< :Yik> p< mq> m h) !

h
h=1 Jj1=jo+m+1  jp=ip_1+1 s (=2 + g <;>7 m _ _h
i\ iy, )=\ Fip,  Tig
N 1 m—1 N
-2 = > > Ck,1,m—1 > > Cqm+1,N
g=m+1

im=1Tim {il ,,,,, iynfl}EPm—l(IN’{im}) {il k:il 1} {im+1 ,,,,, iN}GPN,m(INf{im}*{il ,,,,, im—l}) {1 " iN}
,,,,, — s

N—h+1 N 1

SIS S >
<

Jj1=jo+m+1 Jh=ip—1+1

1-T h m
1 1
X/m/( T >21cxp<7_21>cxp — E — + E (_ >7_7n z U(Z—17Z—2>dzgdzl
o Jo Vi, m=1 \ 7i; =1 \ 7 Vi ) R moh

N 1 m—1
> > Cr1,m—1 > > Cq,m+1,N

+
im—1 Vi ) ) ) = ) ) ) =
im=1 Tim {11 ,,,,, zm,l}EPm,l(INf{zm}) {il,f,l:n 1} (2T zN}EPN,m(IN—{wm}—{zl ,,,,, ¢m71}> ,Lm(:»;jl.tliN}
N—m L Nt N 1
S SESTUINS SRR SH - _
h=1 Jj1=jotm+l  dp=in_1+1 (2 e () om o
izt \ Vigo, =\ Fip,  Tig
0 (IET)Z z1 2 21 22
></ / exp | —— exp | —— 1-U|— — — || dzadz
0 0 Vig Yig m
N 1 m—1 N
- = > > Cl,1,m—1 > Cqm+1,N
im m {11 ,,,,, Hn—l}EPm—l(IN*{"m}) {i11~k~11:n71} Gl IN}eprm(IN*{"m}*{ll ,,,,, 17,171}) {Mnil"if,lN
N—m L N N 1
| e TR
h
h=1 J1=do+m+1  dp=ip_1+1 zl: 1 + Tf; 1 )__m _
m=1 \ Vi, 1=1 \ iy Vig Tig
1-T h m
o z1 z 1 1 h z z z
></ /(T> cxp<f_2>cxp - > (= +Z<_ >7_— 2z [17U<—17—2>]dzgdz14 (63)
o Jo Fig m=1 \ Tijmn 1=1 \ 7y Yig ) ™ moh
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The closed-form expressions of integral parts in the exgivagpresented i (63) can be derived

as

i) The first integral part:

exp ( =2 ) exp ( ) dzadzy = i, iy, — Tig . (64)
Yig Fin (_ 1 _1)

i) The second integral part:
exp ( ) exp ( <Z ( )) ) dzodzy
Vig =1

m T T m . (65)
: 1 1-T

(lZ:l (m;wl )> (l; (m'ryil) + T"Yiq)
iif) The third integral part:
)Zl Z1 29 2 2

P <_%) P (_'_y_) U (E - E) dzodzy

i 1 1-T i 1 1-T
=% Vi U <— - ) _ 0 U <_ B _>

m T-h (%7_5_’_;) m T-h

e o= (TG N

Yig™M Yig

iv) The forth integral part:

T3 60 56 ) ) - e
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v) The fifth integral part:

/000/0( L)z . <_%> exp (_72_2) [1 U (% _ %2” dzadzy

__CijZJJU(zjg—%)_(LQZJJU(Eﬁz—%). (68)

mYig Viy,

1

vi) The sixth integral part:

; 1-7 1
— b U ( — —) . (69)
h m _ T-h
{(Z G B -4) esn) .
B. Finger Replacement Schemes for RAKE Receivers in the Soft Handover Region over i.n.d.

fading channels

Recently, new finger replacement techniques for RAKE regeph the soft handover (SHO)
region [34] has been proposed and analyzed over indepeadémdentical fading (i.i.d.) channel.
The proposed schemes are basically based on the block dsmpamong groups of resolv-

able paths from different base stations and lead to the tieduof complexity while offering

Le—Ls L¢ Ls
commensurate performance. If we Bt= > w;, W) = > w;and W, = > P (for
i=1 t=Lc—Ls+1 i=1

n = 2,...,N), wherew; (i = 1,2,...,Ly) andv® (: = 1,2,...,L,) are the order statistics
obtained by arrangind.,, nonnegative i.n.d. path SNRs corresponding tositte base station
(2 < n < N) in descending order, then the RAKE combiner output SNR W@8(C is given by
Y + max, W,. Y andW; are dependent bt and IV,, are independent. In practice, the i.i.d.
fading assumption on the diversity paths is not always sgaldue to, for example, the different
adjacent multipath routes with the same path loss. Althougiiridentical fading is important

for practical implementation, [34] have only investigatk@ non-uniform power delay profile
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case only through computer simulation due to the high amab@mplexity. The major difficulty
in this problem is to derive the joint statistics of orderegh@ential variates over non-identical
fading assumptions, which can be obtained by applying Tdme@.1 and 513 of section V. Due

to space limitation, the analytical details are omittedhis twwork.

C. Outage Probability of GSC RAKE Receivers Over i.n.d. Rayleigh Fading Channel subject to

salf-interference

Recently, the outage probability of GSC RAKE receivers sabfo self-interference over
independent and identically distributed Rayleigh fadih@rinels has been investigated in [23].
Let~; be the SNR of the-th diversity path and,; (: = 1,2, ..., N) be the order statistics obtained
by arrangingV (N > 2) nonnegative i.n.d. Rvg%}iN:l, in decreasing order of magnitude such
thatu; > us > --- > uy. Then, the outage probability, denoted By, is then defined as [23],

Up,
Pow =Pr | ——=—— < T, (70)
I+a > uy

n=m-+1

i

whereT (0 < T') is the outage threshold and(0 < a < 1) is the self-interference cancellation
coefficient (in practice, each path may have the differehtevaf ). The closed-form expression
for this outage probability over i.i.d. Rayleigh fading pathas been derived and compared to
that of partial RAKE receivers. However, the average sigoaloise ratio (SNR) of each path (or
branch) is different for most practical channel modelsgesly for wide-band spread spectrum

signals. As results, to evaluate the outage probability awed. fading channel subject to self-

m N
interference, the major difficulty is to derive the joint POF >  u, and >  u, for i.n.d.
n=1 n=m+1

case. Fortunately, the target joint PDF can be obtained thi#hhelp of Theorerh 4.2 in Section

V.
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APPENDICES

APPENDIX |

DERIVATION OF .J,,

In this appendix, we derive Eq.](9). At first, we derive specaseN = 3 and then we extend

this result to general case for arbitraly and m.

A. Special Case

Let us first considerN = 3 andm = 3 case as

1,2,3 o0 w2

Z /dulp“ u1) exp (Auy) /du2pzz uz) exp (Auz) /du?,pm (us) exp (Aug). (71)
i1ia,i3 0 0
i1 A2 713

In here, we can rewritd (Y1) as

—_

23 o
duipi, (ur) exp (Auy) / duspi, (uz) exp (Auz) / dusp;, (us) exp (Aus)
0

Zl 12 ’L'; 0 0

i17ia s
x° 1,2,3 “ uz
= Z /dulpi1 (u1) exp (Auq) Z /duzpiz (uz) exp ()\ug)/dwpig (u3) exp (Aug). (72)
=1y ;22725’3 0 0
i

To simply (72), we consider; = 1,2, 3 separately.
i) fori; =1

In this case, we can obtain the following result by deploy(@@) as

1,2,3 "1 U2

> [ duapi, (uz)exp () [ duspiy () exp ()

12,13 0 0
iais
ioF£i]
13701

uy U1 u2
/duzpz u2) exp (Auz) /du3p3 (u3) exp (Auz) + /dU2P3 (uz2) exp (/\U2)/du3p2 (u3) exp (Aus). (73)
0 0 0 0

March 7, 2022 DRAFT



S.S. NAMet al.: AN MGF-BASED UNIFIED FRAMEWORK ... ON ORDERED STATISTICS®R I.N.D. RVS 27

In (Z3), noting thatp,, (u,,) exp (Aun,) = ¢, (um, \), after applying integration by part

similar to [24], we can obtain the following result

Ul u2

/dung (uz2) exp (Auz) / dusps (u3) exp (Aus)

0 0

U1
= /dUQCQ/ (’U,Q, )\) C3 (’U,Q, )\)

0
uy

= C2 (ul, )\) C3 (ul, )\) - dUQCQ (UQ, )\) 03/ (UQ, )\)
dusps () exp (V) | duape () exp (V). (74)

= C2 (ulv)\) C3 (ulv)\) -
0

Using (74) in [Z8) and then some manipulation, we can show

1,2,3 “
> [ duaps, (uz) exp (hus) / duspi, (u3) exp (Auz)
it 0 0
iaF£i1
13711
uy
= ¢z (u1, A) ez (u1, A) — [ duaps (u2) exp (Auz) /du3p2 (u3) exp (Aus)
0 0
Ul U2
—|—/du2p3 (uz2) exp ()\Uz)/duwz (u3) exp (Aug) (75)
0
(76)

0
= C2 (ulv)\) C3 (ula A) .

i) for i; =2
In this case, we can obtain the following result by deploy(@@) as

1,2,3 U1 U2
> [ duspi, (w2)exp i) [ duap, (us) exp ()
1122?212 0 0
i A0
13741

ul u2 Ul u2

duapi (ug) exp(\ug) | dusps (us) exp(\uz) + / duaps (ug) exp\uo) / duzps (ug) exp(ug).  (77)

0 0

0

(=)
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With (77), by applying similar approach like TtA-i), we cahawv the following result

1,2,3 "1 U2

> [ duapi, (uz)exp () [ duspiy () exp ()

ZZ;Z:% 0 0

iaF£i1

13711

= C1 (’U,l, )\) C3 (ul, /\) . (78)

i) for 7; =3
In this case, we can also obtain the following result by dgiplp (72) as

1,2,3 "1 w2

> [ duspi, (w2)exp i) [ duaps, (us)exp ()
P23 0

U1 Uz U1 Uz

/ duapi (ug) exp(uo) / duzps (u3) exp(\uz) + / dugpa (u2) exp\uy) / dusp (uz) expuz).  (79)
0 0 0 0

With (79), by applying similar approach like TtA-i) and T4, we can show the following

result

123 W
> /du2p12 (u2) exp (Auz) /du3p13 (u3) exp (Aus)
0

7/2 )13 0
2703
o701
i3F£01

= C1 (’U,l, )\) Co (ul, /\) . (80)

From results[(75),[(78), an@_(B0), we can finally simpliy](&k

1,2,3 "1 u2

> [ duspi, (w2)exp i) [ duaps, (us) exp ()
Eh ;
ioF£i]
137101
2
- Z H Ci, ula (81)
{i2,i3}€P2(I3 {11}){ :1%}
DRAFT

March 7, 2022



S.S. NAMet al.: AN MGF-BASED UNIFIED FRAMEWORK ... ON ORDERED STATISTICS®R I.N.D. RVS 29

B. General Case

With arbitrary N andm, we can re-write[(71) as

1,2,...,N Um—1 s
T = Z / dumpi,, (um)exp (/\Um)/dum+1pz‘m+1 (Um+1) exp (A1)
ImsbmA1se N 0

I Flm 17 FIN
‘1m7£7‘1.77‘2‘ ~~~~~ m—1
7f7n+17£11a7f2 ~~~~~ Tm—1

N F81,82,50 -y lm —1

UN -1

-/duNpiN (un) exp (Aun). (82)
0

By applying the process presentedlin]l-A {ol1(82) similarhe {81) can be generalized to

arbitrary N andm, which leads to the result in Ed.](9) as

N
Jin = > 1T Ciy (Um—1,\). (83)
{imyim+1yeriNJEPN —mi1(IN—{i1,02,0esim—1})  l=m

APPENDIX I

DERIVATION OF J),

In this appendix, we derive Eq._(11). At first, we similarlyride special casév = 3 and

m = 3 and then we extend this result to general case for arbithagnd m.

A. Special Case

Let us first considerN = 3 andm = 3 case as

1,2,3 oo oo %)

> / duspi, (uz) exp (Aug) / duspy, (uz) exp (Auz) / duipi, (ur) exp (Auz). (84)
11,012,913 4, u u
i1#ia Al 3 2

In here, similar td_I-A, after deploying (84) and then somenipalation with the help of integral

by part based om,, (u,,) exp (Au,,) = —e,’ (A\u,,), we can finally simplify [84) as

1,2,3 00 00 0o

> / duspi, (u3) exp (Auz) / duspi, (u2) exp (Auz) / duypi, (u1) exp (Auy)
inin fia u v
= e1 (ug, A) e (us, A) €3 (ua, A) - (85)
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B. General Case

With arbitrary N andm, we can re-write[(84) as

1,2,...,N oo o0
J o = Z / dumDi,, (Um)exp (Atp,) / A4y (Urm—1) €XP (A1)

11,82, 0m
! ; Upn 41
g,
11Ut 1,im4 2, IN
12FUmt1,im42,IN

Um

im 7£7:m+1 77:m+2 NN

o0

. -/dulpi1 (u1) exp (Auq). (86)

Uz

By applying the process presentedin II-A [01(86) similafltdhie [85) can be generalized to

arbitrary N andm, which leads to the result in E4._(11) as the closed-form

m

I = > I e mia V). (87)

{3132, im JEPm (IN —{im+1simt2,--in}) . I1=1
{7‘177‘27---;71771}

APPENDIX |11

DERIVATION OF J!,

In this appendix, we show the derivation of [Eql(13). Simtlathe derivation progress dfl(9)
and [11), we first derive special cade= 3 andm = 3 and then we extend this result to general

case for arbitraryV andm.

A. Special Case

Let us first considerN = 3 andm = 3 case as

1,2,3 41 w1 u1
S [ duaps, (wa)exp ) [ dusp, () exp () [ dap, () exp Qi) (88)
i1£12F£ 13
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In here, by deploying(88)[_(88) can be re-written as

1,23 “ “r “r
S [ duapsy (wa)exp ) [ duspi, () exp () [ daps, () exp Ouie)
11,02,13 us Uy us
i1 #ia i3
Ul ul ui
= /du4p1 (u4) exp ()\U4)/du3]92 (u3) exp (/\U3)/duzp3 (u2) exp (Aug)
us Ug us
ul Ul uy
T / dusp (us)exp ) [ duspa (ua) exp (ua) | duape (1) exp (vuz)
U4 us
Ul ul
—|—/du4p2 Uy eXP(AU4)/dU3P1 (U3)€XP(/\U3)/dU2p3 (uz2) exp (Aug)
uUg us
Ul ul
n / dusp (us) exp () [ duspa (ua) exp (ua) | duape (uz)exp (vuz)
U4 us
Ul ul
—|—/du4p3 U eXP(AU4)/dU3P1 (U3)€XP(/\U3)/dU2P2 (uz2) exp (Aug)
Ug us
Ul ul
/ dusps (us)exp () [ duspa (us) exp (i) | duap (uz)exp (). (89)
us Uyg us

In (89), using similar manipulations with (74) to the onesdisn the previous AppendicBs | and

[ the first, the second and the third multiple integral tertan be also re-written as, respectively

/ duspi (ug) expAug) / duzpa (uz) expAug) / duaps (uz) exp\us)

us Ug us

= / duapi (us) exp(uy) {02 (ua, N c3 (wa, N) — c2 (wa, N c3 (w1, N) + / dusps (uz) exp\uz) ca (us, /\)}7 (90)

us Uq

uy Ul ul
/ duap (ua) expMug) / duzps (u3) exp\us) / dugpa (us) expAus)
us Ug us

Uy

= / duapr (ug) exp\uy) {63 (wr, N ez (wi, ) — c3 (wa, N c2 (w1, N) — / duszps (u3) exp\us) c2 (s, /\)}, (91)

us Uq

Ul ul uy

/ duaps () expOius / duspy (us) expiuz / duzps (uz) expOiuz)

us Uq u3

U1

= / duapa (u4) exp\uy) {61 (wa, N ¢3 (g, N) — c1 (s, N c3 (W, N) + / duszps (u3) exp\us) c1 (s, /\)}- (92)

Us Ug
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Similarly in (89), the4-th, 5-th and the final multiple integral terms can be also re-emitas

respectively
ul Uy uy
/ duapa (u4) exp\uy) / duzps (u3) exp\us) / duapy (us) expAus)
us Ug us

uy

Z/dU4P2 (ua) exp(Aug) {03 (wy, N er (i, N — c3 (wa, N c1 (Wi, N) — /du3p3 (u3) exp(\ug) 1 (u3, /\)}, (93)

us Uq

(1 (1 (1

/ dusps (us) exp(uy) / duzpi (u3) exp\us) / duzps (u2) exp\uy)

us Ug u3

Uy

= / duaps (ug) exp\uy) {61 (a, N c2 (g, N) — 1 (s, N c2 (w1, N) + / duzpz (u3) exp\us) c1 (s, /\)}7 (94)

us Uq

Uy ul ui
/ duaps (u4) exp\ug) / duzpa (u3) exp\us) / duapy (us) expAus)
us Ug us

U1

= / duaps (ug) exp\uy) {Cz (Wi, N ey (@i, N) — 2 (wa, N e1 (W, N — / duzpa (u3) exp\us) c1 (s, /\)}- (95)

us Ugq

Using all the above results froh (90) {0 {95) n{89) and thfterasome manipulations similar
to the one used in previous Appendices | and[ll] (89) can beldied as

1,2,3 Uy Uy Uy
. [ dusp turyexp () [ duaps, () exp () [ dusps, () exp ()
ROTL R i

U1

- / duuapy (1a) exp (ua) {ez (1, N) — 2 (ua, AV} {s (un, A) — €3 (ua, 1))

Us

U1l

+ / dugps (ug) exp (Aug) {c1 (u1, A) — ¢ (ug, A) } {eg (w1, A) — 3 (ug, \) }

us

U1

+/du4p3 (u4) exp (Aug) {1 (ur, A) — 1 (ua, N} {c2 (u1, A) — c2 (ug, )} (96)

Uus

In (@6), after applying[(74) to the first integral terms anértrsome manipulations, it can be
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simply re-written as
uy

/ duuapy (1s) exp (ua) {ez (1, A) — € (g, AV} {es (un, A) — e (g, A))

= —C1 (U5, /\) {Cg (’U,l, )\) — C2 (U5, /\)} {63 (’U,l, )\) — C3 (U5, /\)}
+ [ duapa () exp O e (s, ) fea a1, 3) = ca (s, V)

Us

uy

+/du4p3 (ua) exp (Aua) c1 (ug, A) {e2 (u1, A) — c2 (ua, A)}. (97)

us

Using (97) in [(96), [(96) can be simplified as

123 W w w
. [ dusp (ur)exp () [ duaps, () exp () [ dusps, () exp ()
ROTL R i

= —C1 (U5, )\) {02 (Ul, A) — C2 (U5, )\)} {Cg (Ul, )\) — C3 (U5, /\)}

Ul

+ / dugps (ug) exp (Aug) c1 (u1, ) {e3 (w1, N) — ¢z (uq, \)}

us

uy

+ / dugps (uq) exp (Auq) 1 (w1, A) {c2 (ug, A) — c2 (uq, \) }. (98)

Uus

In (@8), after applying[(Z4) to the first integral terms wittethelp of similar manipulations used

in (@7), the first integral terms in_(98) can be simply re-terit as

/ duaps (us) exp () e (ur, ) fes (un, A) — 3 (ug, )}

us

= —C1 (ul, )\) C2 (U5, )\) {03 (Ul, A) — C3 (U5, )\)}

U1

—|—/du4p3 (ug) exp (Aug) c1 (u1, A) c2 (ug, A). (99)

us

Now, using [(99), after addind (P9) and the second integmah e (98), we can obtain the

following result
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/du4p2 (ua) exp (Aua) c1 (ua, A) {3 (u1, A) — c3 (ua, )}

Us

+ / dusps (us) exp (Aus) €1 (ug, A) {ea (u, A) — ez (ua, \)}

us

= —C1 (ul, A) C2 (U5, A) {Cg (ul, )\) — C3 (U5, /\)}

+ {Cg (ul, )\) — C3 (U5, A)}Cl (ul, )\) C2 (ul, )\)

= c1 (u1, A) {e2 (u1, A) — e (us, A)}{es (u1, A) — e3 (us, A)} - (100)

Finally, using [(10D) in[(98),[(98) can be re-written as

U1 U1

1,2,3 U1
. [ dusp turexp () [ duaps, () exp () [ duaps, () exp ()

21,22513 4 Ug us

i1 F£i2#£13
= C1 (Ul, A) {CQ (ul, )\) — C2 (U5, /\)} {Cg (ul, )\) — C3 (U5, /\)}

—c1 (us, A) {e2 (u1, A) — ez (us, M)} {es (ur, A) — s (us, A} (101)

By simplifying (101), we can obtain the final closed-form fpecial caséV = 3 andm = 3

as
1,2,3 W U1 vl
. [ dusp tun)exp () [ duaps, () exp () [ duaps, () exp ()
[i1,02,13 us Ug u3
i1 #1273
= {e1 (u1,A) —c1 (us, A} {ea (ur, A) — e2 (us, A)} {es (ur, A) — ez (us, A) } (102)
= 1 (us, ui, \) o (us, w1, N) ps (us, ui, A). (103)
B. General Case
With arbitrary N andm, we can also re-writd_(88) as
1,2,....N Uq Ua
Jap = Z /dub—lpib,1 (up—1) exp (Aup—1) / dup—opi, , (up—2) exp (Aup—2)
] ’L‘aﬁ_,l.’....’ibfl_ wp Up_1
fat1Flat2 P Fly—1
Gaf 1701, yla,ih,..iN
Ga 2701, yla,ih,..HiN
1701, as e
/ dua41Pi,y (Uat1) exXp (Aat1)- (104)
Ug 42
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By applying the similar process presentedlin | and Il, (hedjidan be generalized to arbitrary

N andm, which leads to the result in Eq.(13) as the closed-form

b—1

J ap = Z H iy (Upy Ug, N). (105)

{tat1ssib—1}EPy—at1(IN—{i1," Jia,ip,..nin})  l=a+1
{ta+1,-ib-1}

APPENDIX IV
DERIVATION OF (20)

Starting with [19), with the help of integral solutioh, {1€an be simply re-written as

MGFz (A1, A2)

N oo
:Z /dumpim (um) exp (A1tm)

im=1Y
X Z dum—1pi,,_, (umfl) exp(/\lumfl) ce /dulpil (U1) eXP(/\1U1)
{il7"')i7n71}epm71(IN_{iW‘L})um Uo
Um, UN -1
X Z /duerlpim+1 W@m+1) eXpMatm41) - / dunpiy W) expPauy). (106)
{im+1,-iNYEPN — i N —{im} —{i1,--im—1D 0

In (L0B), by simply applying[{9) and(11), we can easily obtaach of the following results

Um UN—1
>, / AU 41Pi 41 Wmt1) €XPA2 U 41) - - / dunpiy (un) expRaun)
{im+1 ...,Z—N}GPme(IN*{Z-m}f{il,...,imfl}) 0 0
N

= > T ci (um M), (107)

{im+1,INYEPN —m(IN—{im}—{i1,- sim—1})  I=m+1
G lseiN }

/dumflpz‘m,l (umfl) €xXp (/\1um71) T /dulpil (U1) €xXp (/\1U1)
{il7~~~;7;7n71}€Pm—1(IN_{inl})UWn ug
m—1

_ T T e G o). (108)

{i1,im—1}EPm—1(In—{im}) = k=1
{7/17...,7,77171}

By inserting [10F7) and (108) in order intb_{19), we can obthia@ second order MGF of; =

m N
Yu,andZ, = > u, as
n=1 n=m+1
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N o0
MGFyz (A1, A2) Z/ UmnDi,, (Um) €xp (A1)
m=1 0
m—1
X Z €y (Um, A1)
{i1,0im—1}EPm—1(INn—{im}) {il-,-]-c-jmfl}
N
X > T ci (um 2. (109)
{im41,-iNYEPN - (IN—{im }—{%1,--yim—11}) l=m+1
7f7n+17 ;71N}
APPENDIX V
N
DERIVATION OF THE JOINTPDFOF u,,, AND >  u, FOR1 <m < N, — 1 AMONG N
=1
z;ém
ORDEREDRVS

N,
In this Appendix, we derive the joint PDF af,, and »_ u, amongN ordered RVs by

n=1
n#m
consideringl < m < N, — 1.
m—1 Ns—1
Let Z1 = > up, Zo = Uy, Z3 = Y. u, and Z; = uy,. The 4-dimensional MGF of
n=1 n=m+1

7 =72y, Zy, Z3, Z4] is given by the expectation

MGFy ()\1, )\2, /\3, /\4):E {exp (/\1Z1 + XoZo + N3 Z3 + )\4Z4)}

1,2, ,N 2 m =2
= ) /dumn (u1) exp (Aru) -+ / At -1Pi,, —y (Um—1) exp (A1Um—1)
Cinia, iy 0
i1 FG2F AN

U —1

x / B, () 5D (Agtim)
0

U, UNg—2

X /dum+1pim+1 (Wmt1) €xp (Azthm1) - / dun,~1Piy,—, (un,—1) exp (Azun, 1)
0 0
uN

X / dun,piy, (un,)exp (Aun,) H P (110)
0 Jj=Ns+1

With the help of integral solution presented in [24], (9)I)&nd [IB), we can easily obtain the
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4-dimensional MGF o7, Z,, Z3 and Z, as

MGFyz (A1, A2, A3, \g)

1,2,...N % N
= Y /dUNSPz'NS (un,)exp(Maun,) [ P (uwy)
iN3;~~~7iN 0 Jj=Ns+1
INgF AN {iNg 415N}

tm=1
Tm #lNS ..... 7AN

X Z /dumplm U, ) €XP (Aol )

Ns—1
X Z H i, (uNs’um7 /\3)
{tmt1,-siNg—1}EPNg—m—1(UN—{tm}—{ing,--siN }) k=m+1
7f7n+17 ;7INS 1}
m—1
X > II e (wm ). (111)
{i1eryim—13}EPm—1(IN—{im}—{ing sosin Y= {imig1sering 1)) 1=1
{t1, - sim—1}
Having a MGF expression given in_(111), we are now in the pmsito derive the 4-
m—1 Ng—1
dimensional joint PDF ofZ; = > u,, Zo = up, Z3 = > u, and Z, = uy,. Letting
n=1 n=m+1

A = =51, Aa = =55, \3 = =53, and \, = —S,; we can derive the 4-dimensional PDF &f,

Zy, Z3 and Z4 by applying an inverse Laplace transform yielding

pz (21,22, 23,24) = L3 5, 5, 5, {MGFz (=51, =55, —S3,—54)}

1,2,....N % N

= > /dUNSPz'NS (un,) LgH{exp (=Saun,)} [ Py (un.)
7’N5a SIN 0 J=Ns+1
iNg F AN {invet1,min}

S / Qi (1) L} {exp (— Srum)

Im=1
imZIiNg,..., in

X Z ngl H i, (uNs’um7 _53)

m—1
X > Lg! IT e wm—S0)p. (112
{1, tm—1}EPm—1(UN—{im }—{ingse-in }—{tm+1,--ring—1}) {il...l.:il )

With this 4-dimensional joint PDF, lettingk = Z, andY = Z; + Z5 + Z4 we can obtain the

2-dimensional joint PDF of/’ = [X, Y] by integrating over; and z, yielding
y—(Ns—m)
‘T y / / (211 T,Y — 24, 24) ledZ4, (113)
-1z
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or equivalently we can obtain the 2-dimensional joint PDFZof= [X, Y] by integrating over

z3 and z4 giving

z p(Ng—m—1)z
Py (T,y) = / / Pz (Y — 23 — 24,7, 23, 24) dz3d2y. (114)
0 (Ns—m—1)z4

APPENDIX VI

DERIVATION OF MULTIPLE PRODUCT OFCOMMON FUNCTIONS

In \VTHi), (BG), (B7), and [[38) have the form of multiple pract of (33), [34), and[(35),
respectively. Therefore, to apply an inverse LT for demgvimal PDF closed-form expressions
from MGF expressions, a multiple product expression needset converted to a summation
expression of function. In this appendix, we derive simple summation egpions of\ function
from multiple product expressions. To derive them, theoiwihg four formulas should be

converted to a summation expression.

) 1;1 (1_1'71'1)‘)

At first, we derive special case for a) the multiple produotirl to n and then we extend
this result to general case for b) the multiple product fratviteary n; to ns.
For case a), we need to convert the following multiple pradikon 1 to » to a summation

expression.
1

. (115)
(1 — Vi )‘)

s

l

With (I18), after deploying the multiple product term anerthrearrange and simplify

1

them, the multiple product term can be converted to the suromaxpression of jush

as
S > _Cun (116)
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where j, = 0,
1
Ciin == , (117)
. (1
1307 (5)
n—1 n—I+1 n l 1
Fra)y= Y m-na"'=n" > o > [ =—|+ma"". (118)
=1 Ji1=jo+1  Gi=ji—1+1m=1 Yijm

For the case of the multiple product from arbitraty to n,, after applying the same

derivation progress aé (1116), we can obtain the final result a

n

= 701’"”1” : (119)
Ta-wy & (-7)
where
1
Cl,nl,nQ = Tns 5 (120)
. 1
l:Hn1 (_’Y”)F/ (’?'Lz)
Nno—nq . no—I+1 no l 1
Frz) =13 (na-ni—t+Dam7=0" Y 0 Y]] =
=1 J1=jo+mn1 Ji=ji_1+1m=1 tim

+(ng —ng 4+ 1)a™ ", (121)

11 [1-e (1) )

Similar to[VI-i), at first, we derive special case for a) theltiple product from1 to n
and then we extend this result to general case for b) the phailroduct from arbitrary

ny to no.
For case a), after deploying the multiple product term ofoegmtial function froml to
n and then simplify them, the multiple product term can be eotad to the summation

expression of\ as

[ -eo (=) =)

n n—I+1 n l
:1+[Zexp(l-za-)\){(—l)l Z Z exp(—z Za)}], (122)

=1 Ji1=jo+1 Ji=ji—1+1

where j, = 0.
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For case b), after applying the same derivation progresfl2®),(the multiple product
from arbitraryn; to n, can be obtained as

i -on((0-2)-)]

l:n1

no—mni+1 no—Il+1 no l 5
=1+ [ Z exp(l-za./\){(_l)l Z Z exp <— Z ﬁa )}] . (123)

=1 Ji1=Jjo+ni Ji=ji—1+1

o ((4-2) ) e (12 2]

Similar to[VI-) and ii), especially, using the similar manilation used in_VI-i) and ii) in

([@23), the final simple summation expression from arbitraryjto n, can be obtained as

(- 2)) ool £) )

l:n1

B ) ool )]

l:n1

=exp((ne—mn1+1)- A z,)exp <_ Z —_>

l:’ﬂ,l

no—mi+1 no—Il+1 na l
><[1+ 3 exp(l-(zb—za)./\){(—l)l DY exp<_zz‘%_2a>}] (124)

l=n1 ji=jot+n1  ji=ji—1+1 =1 tm

\Y ex A— L)z,
) Hew (A=) =)
In this case, with the help of the property of exponential tiplitation, we can easily

derive the summation expression from the multiple produgtression from arbitrary:,

to ny, respectively, as

ﬁexp((A_%>za> _ exp({z()\_%>}z>

l:’ﬂ,l

= exp ({_ i <§—) }) exp((na —mi +1)z.)).  (125)

l:n1

Based on the above results, we can now obtain the summatmessions of[(33),[(34), and

(39) for arbitraryn, to ny. With (33), (34), and[(35), we can write the multiple prodo€i33),
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(34), and [(3b) for arbitrary; to n, respectively as

o= fi oo (+-2) =) 20

l:’ﬂ,l

l:n1

ﬁ iy (Zar 26, A) = % ]n_[ [exp ((A - %) z) — exp (()\ - %) zb)] (128)

I=n, ll‘[ (1=, A) 1=m
For the summation expression of the multiple product.of @8 rbitraryn, to n,, using [119)
and [12B) in[(126), we can obtain the final summation closedifexpression (36).
For the summation expression of the multiple product[of (@4)arbitrary n; to n,, using
(@19) and[(12k) in[(127), we can obtain the final summatioseadieform expressiomn (B7).

Finally, for the summation expression of the multiple predaf (38) for arbitraryn; to n,,

using [119) and(124) in (128), we can obtain the final sunwnatiosed-form expressioh (38).
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APPENDIX VII

CAPTURE PROBABILITY OF GSC RAKERECEIVERS

A. Joint PDF

Starting from [(4l7), we can re-write the joint PDEJ47) as

pz (21, 22)
N 1 m—1 N
P2 > > Ok > > Camin
im=1 """ L imfl}epm—l(IN*{in}){ilvﬁjk}nil} imtrin}ePyom Iy —imp—{iaonim—1}) qf:rirlizv}
Xexp <— 2 ) exp< )/dum exp Z( ) Um,
Viq Vi 1= \ Vit Vix
N 1 m—1 N
3 > Curns > S G
im=1""" {i1sns im71}€Pm71(1N*{’im}){/_1 k:il . {im41:0iNFEPN —in (In = fim}—{i1 s sign—1}) 971
P15y m— Ttlseees iN

N-m N—h+1 N . .
X (—1)h exp(—fl)exp<—72>
Z Zl+1 Vig Vig

h=1 ji=jo+m+1  jp=jn—

X O/dum exp (— Z (7217,1) Z(W”) —%— ’YZ) um> U (z1 — mum) U (z2 — hup) | - (129)

In (129), there are two integral expressions and the firgigia part can be directly derived
as the following closed form expression
oo (5 2)s)
/d eXp( <Z<1>—ﬁ>um>— ml—l(vz) Vi . (130)
Yy Vi 1 m
° E@)-=)

However, for the second integral part, we need to considerdases separately based on the

valid integral region of:q, z,, andu,, as
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i <71 > + Xm: <%> - % - %) um> U (21 — mum) U (22 — huy,)

/dumexp<—<
0 m=1
22

i " 1 i 1 m h Z1 2
— [awmew (< (X () + X (5) -2 Jun U (2 -2
o (- (5 () £ (2)-2-2))r-3)

m=

R R N [ ™

With simplified (131), we can get the following closed-formpeessions, respectively, as

2 —) : (132)

and

.
) 3 L
= \F, ) T A Gy Fie | Jig

B. Capture Probability

Starting from [[(6R), inserting the closed-form expressibiidd)) presented in VII-A into[(62),
the closed-form expression for i.n.d. Rayleigh fading d¢bads can be written in[(83). I1(63),
there are six double-integral expressions. For the firstssudnd cases, we can directly obtain
the closed-from expression as shown[in] (64) (65). Horvéweothers, we need to carefully

consider the valid integral region respectively as

iii) The third integral expression:

In this case, for valid integration, we need to consider tases separately. § > TT
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thenz, < =Lz and L > L < L thenzy < 22 and L < =L As a result,

we can re-write the third integral expression as
exp ( “l ) exp (—2) U (i — 2—2) dzodzy
0 0 Vi Vig m h
z1 (¥)Z1 z9 1 1-T
R e I
0 Vi 0 Vig m T-h
o Z1 (%)Zl z9 1 1-T
+ exp | —— exp|—— | |1 -U | — — —=— || dz2dz;. (134)
0 Vi, 0 Vig m T-h
From [134), we can directly derive the closed-form expm@ssias
& z1 (I}T)Zl Z9 1 1-T
exp | —— exp|—— | U | — — —— | dzadz;
0 Vi, 0 Vig m T-h

A 1 1-7T Fig 1 1-T
_%"%’“U(E_Tﬁ)_(l T+1)U<m T~h)’ (139)

Vig T iy,

and

h

[on(c) [ on(-2) oo (- )
e

Yig™ Yig

Iv) The forth integral expression:
In this case, similar to the case iii), we also need to comdigte cases separately. As a

result, we can re-write the forth integral expression as

ool 2ol (S EE) )3 6 -
o) [ e (S () () ) ) v (B - e
Ll [l (B EE) 2) D)ol e w

With (I37), we can also directly derive the closed-form esgions as
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m\ 2o 1 1-T
—— | = U |[— — ——)dzd
7) h) (2 )i

Tt =™
E S -2 ij(%jmﬁg ()-=) 1T-—h+7:k}U (n-7a) 6
and
/Omex"(‘@ “‘"< <m1 %)—%) D=
z( 5 m){g;h rrerenee o { UL M

v) The fifth integral expression:
In this case, we need to consider two cases separately fiok iméégration. If 1-2 > L
then%z1<z2 < —z1 and1 T 2 Lof L < L then there is no valid overlap integration

region. As a result, we can re-write the third integral espien as

exp( ’j:k>exp( ’qu) [1—U(%—%)]dzzdzl

1-T

0 0
o0 o\ )= 2 1-T 1
= exp | —— exp|—— U —— — — | dzadz;. (140)
0 Yig (%)zl Vig T-h m
With (I40), we can also directly derive the closed-form esgions as
e zZ1 (1}T)Zl z9 1-T 1
/ exp (——) / exp (—_—) U (— — —) dzodzy
0 Vi ) ()= Yiq T-h m
= Yiy v(i=L_L1)_ Yo gy (l=f_ 1 (141)
( h +L) T-h m (1—T+L) T-h m)’
m-Yig Vir T¥ig Vig

vi) The sixth integral expression:
In this case, similar to the case v), we also need to conswiercases separately. As a

result, we can re-write the forth integral expression as
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(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Yo (2o (35 () () ) 2) - - e
- / eXp( 2—:1 <%m> Xm;<7i) —Wi> %) /(;f)Z1exp <—j—2) U <% - %) dzadz.  (142)

With (142), we can also directly derive the close

o

-form esggions as

Foo (B G5 G)2) i o, 2w (-7

m

(Erge)

h m
PR R (wl
(& T U(?f‘%)- (143)
(5 G+ £ () -2) =2
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Vi 2xV k15 Vi, x

Group 1| Group 2 Group 3

(a) Example of originalM -dimensional groups

Split Group
P Y
yl:K yZ:K yS:K y4:K yS:K
yl:K 7/211( 7/3:K ;/4:1( ;/S:K

Vi, 2|7k -1k

yK:K

Group 1| |Group 2

Group 3| |Group 4

(b) Example of substituted split groups

Fig. 1. Examples for 3-dimensional joint PDF with split gpsu

m—1

m

N
Fig. 2. Joint MGF ofu,, and > wu, for 1 <m < N, — 1.
n=1
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