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The Linear Model under Mixed Gaussian Inputs:
Designing the Transfer Matrix

John T. Fldm, Dave Zachariah, Mikko Vehkapera and Saikeit€rjee

Abstract—Suppose a linear modely = Hx + n, where inputs  Here,||-||, denotes the 2-norny,(x,y) is the joint probability
x, n are independent Gaussian mixtures. The problem is to design density function (PDF) ofx,y),

the transfer matrix H so as to minimize the mean square error
(MSE) when estimatingx from y. This problem has important
applications, but faces at least three hurdles. Firstly, ean for a
fixed H, the minimum MSE (MMSE) has no analytical form.
Secondly, the MMSE is generally not convex inH. Thirdly,
derivatives of the MMSE w.r.t. H are hard to obtain. This paper
casts the problem as a stochastic program and invokes gradie
methods.

The study is motivated by two applications in signal procesag.
One concerns the choice of error-reducing precoders; the ber
deals with selection of pilot matrices for channel estimatn. In
either setting, our numerical results indicate improved emation
accuracy - markedly better than those obtained by optimal deign
based on standard linear estimators.

Some implications of the non-convexities of the MMSE are
noteworthy, yet, to our knowledge, not well known. For examje,
there are cases in which more pilot power is detrimental for
channel estimation. This paper explains why.

Index Terms—Gaussian Mixtures, minimum mean square
error (MMSE), estimation

|. PROBLEM STATEMENT

Consider the following linear system
y = Hx +n. (1)

Herey is a vector of observations, andandn are mutually

independent random vectors with known Gaussian Mixture

(GM) distributions:
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In this work, we assume thal is a transfer matrix that
we are at liberty tadesign typically under some constraints.

Specifically, our objective is to desigd such thatx can be

estimated fromy with minimum mean square error (MMSE).

The MMSE, for afixed H, is by definition [1]
MMSE £ E {lIx- ux‘y||§}

- / I — uey I3/ (0 y)dxdy.  (4)
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is the MMSE estimator, and(x|y) is the PDF ofx given

y. The MMSE in equation[{4) depends d&f both through
u,|, and f(x,y). Our objective is to solve the following
optimization problem

min MMSE, (6)
HeH

where H denotes a prescribed set of matrices thhtmust

belong to. Solving this optimization problem is not strafgh

ward. In particular, three hurdles stand out. Firstly, vii8hand

@) as inputs to[{l1), the MMSE i 4) has no analytical closed

form [2]. Thus, the effect chnymatrix H, in terms of MMSE,

cannot be evaluated exactly. Secondly, the MMSE is not
convex inH. Thirdly, the first and second order derivatives of
the MMSE w.r.tH cannot be calculated exactly, and accurate
approximations are hard to obtain. For these reasons, and in
order to make progress, we cast the problem as a stochastic

program and invoke the Robbins-Monro algorithim [3]} [4].

Very briefly our approach goes as follows: We draw samples

from x andn and use these to compute stochastic gradients

of the MMSE. These feed into an iterative gradient method
that involves projection.

The contributions of the paper are several:

« As always, for greater accuracy, its preferable to use
gradients instead of finite difference approximations. For
this reason the paper spells out a formula for exact real-
ization of stochastic gradients. Accordingly, the Robbins
Monro algorithm comes to replace the Kiefer-Wolfowitz
procedure.

« Inthe design phase, we exploit the known input statistics
and updateH based on samples of the inputg, n),
instead of outpuy. This yields a closed form stochastic
gradient, and we prove that it is unbiased.

« Numerical experiments indicate that our method has far
better accuracy than methods which proceed via linear
estimators. The main reason is that the optimal estimator,
used here, is non-linear.

« It turns out that the non-convexities of the MMSE may
have practical implications that deserve being better
known. Specifically, in channel estimation, it can be
harmful to increase the power of the pilot signal. This
paper offers an explanation.

Clearly, in many practical problems, the quantitiedin (& a

complex-valued. Throughout this paper, however, they aill
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be assumed real. For the analysis, this assumption intesdud does not change before all pilots have been transmitted.
no loss of generality, as the real and imaginary partd bf (This assumption typically holds in flat, block-fading MIMO
can always be treated separately. systems[[10]--[12]. With multiple transmitted pilots, mo@)

The paper is organized as follows. The next section outlinean be written in matrix form as
two applications. It also specifies the Gaussian mixtures an
motivates their use. Sectidn]lll illustrates the problem by Z=AS+N. ©)
means of a simple example. Section] IV spells out problef A s 1, x n, then this model can be vectorized into (Thm.
() in full detail. Sectiori V' reviews how the Robbins-Monrg, ch. 2, [13])
method applies. Numerical results are provided in Se¢fibn V i
Section[ VIl concludes. A large part of the detailed analysis vedZ) = (8" ®1,,) veqA) + veqN) . (10)

N——" —_— N —— ——

concerning stochastic gradients, is deferred to the append M e M M

Herel,,, denotes then xm identity matrix, the veg) operator

] ) ) stacks the columns of a matrix into a column vector, and
The above described matrix design problem appears jBnotes the Kronecker product. Assuming that the channel

various applications of interest. Next we present two Q&) and noise %) are independent and GM distributed, this
these, which are of particular interest to the signal prsiogs s again a design problem as described in Segtion I, where the
community. Then we will explain and motivate the GM inpubjjot matrix S is the design parameter. A natural constraint,
statistics. is to impose power limitations on the transmitted pilots,
i.e. |S||3 < 4. Together with the structure imposed by the
A. Linear precoder design Kronecker product, this then determinEsin ().
Consider a linear system model In (I0), one may either assume thatis pure background
noise, or thah represents noisendinterference. In the former
y=BEx+n, (7) case a Gaussian distribution may be justifiable, whereas in
H the latter a GM distribution may be more suitaklel[14].1[15].
where B is a known matrix, and is a precoder matrix to AS for the channelx, a GM distribution can account for
be designed such that the mean square error (MSE) wHeHltiple fading situations. This can be useful, for example
estimatingx from y becomes as small as possible. The vectdfrthe source is assumed to transmit from multiple locations
n is random noise. Ifx and n are independent and GM Then, the commonly used Rice distribution is unlikely to
distributed, this is a matrix design problem as described @¢curately capture the channel statistics associated alfith
Sectiori], wherd is the design parameter. A typical constrainransmit locations (especially so in urban areas). In fa¢t.6]

is to require thaf'x cannot exceed a certain average powef,has been experimentally observed and reported thateliffe
ie. E ||Fx||§ < ~. Together with the nature oB, this transmitlocations are indeed associated with differeanciel

determined in (). statistics. A GM distributed channel, with multiple modkas

A linear model with known transfer matrid and GM dis- the potential to capture this.
tributed inputs is frequently assumed within speech andjema The assumption that a channel realization can originata fro
processing. In these applications, the signal of interésino several underlying distributions is not novel. For ins&nc
exhibits multi modal behavior. That feature can be reasignaf@!! studies assuming channels governed by a Markov Model
explained by assuming an underlying GM distribution. Th@ake this assumption, see e(g.|[17]./[18] and the references
noise is often modeled as Gaussian, which is a special c#erein. A GM is a special case of an Hidden Markov model,
of a GM. Conveniently, with[{2) and(3) as inputs, the MMSEvhere subsequent observations are independent, rather tha
estimator in[(5) has a closed analytical form for any gi#n governed by a Markov process. In spite of this, to the best
Selected works exploiting this includel [SF-[9]. Howeveone Of our knowledge, pilot optimization for estimating chalmne
of these works study MSE reducing precoders. These have gverned by a GM distribution has not been considered in the
potential to significantly improve the estimation accuramd literature.
should therefore be of interest.

Il. BACKGROUND AND MOTIVATION

C. Gaussian Mixture distributions

B. Pilot signal design While aimed at minimizing the MSE, most optimization
Consider a multiple-input-multiple-output (MIMO) commu-studies on linear precoders [19], [20] or pilot signals] [10]
nication model [12] utilize only the first and second moments of the input

z = As+n, (8) distributions. Commonly, the underlying motivation is ttkea

. . . .__linear MMSE (LMMSE) estimator is employed. The LMMSE
whereA is a random channel matrix that we wish to estimate__. . . .

: ) . . . estimatdi only relies on first and second order statistics,
with as small MSE as possible, ard is a pilot signal

to be designed for that purpose. As beforejis random which conveniently tends to simplify the associated matrix

. : . : design problem. In fact, the desired matrix can often be
noise. In order to estimatA with some confidence, we must
transmit as |e.§5t as many pilot vectors as there are (?Olumn@mong all estimators which are linear (affine) in the obstoves, the
in A. In addition we must assume that the realization afMMSE estimator obtains the smallest MSE.



obtained as the solution of a convex optimization problemhere « is a scalar and, is the unit vector along the-

It is known, however, that the LMMSE estimator is optimaéxis. Assume initially thaF = I, which corresponds to no

only for the special case when the random signalandn rotation. In this case, Figufé 1(a) illustrates the deesitifF'x

are both Gaussian. For all other cases, the LMMSE estimattull circles) andn (dashed circles), when seen from above.

is suboptimal. They are identical and sit on top of each other. Now, with a
In practice, purely Gaussian inputs are rare. In general, th

input distributions may be asymmetric, heavy tailed and/or (@) (b)

multi modal. A type of distribution that can accommodate

all of these cases is th@aussian Mixturg(GM) distribution. <>

In fact, a GM can in theory represeany distribution with PPag PP

arbitrary accuracy[[21],[122]. Therefore, in this work, we m m Lo MR

assume that the inputs are GM distributed asin (2) &hd (3). \VJ W N AR

Notation [2) should be read in the distributional sense,reshe

x results from a composite experiment. First, soutce K <>

is activated with probability, > 0, >, . px = 1. Second,

that source generates a Gaussian signal with distribuéion |

N(u:(ck)a Cg;)) For any realizedx, however, the underlying rig 1. (a): Densities without any rotation. (b): The effettrotating x by

index k is not observable. The noiseemerges in an entirely /2.

similar, but independent manné¢. and £ are index sets. In

theory, it suffices that these sets are countable, but irtipeac

they must be finite. Clearly whefd and £ are singletons, one

falls back to the familiar case of Gaussian inputs. L2 / i N )
P from an estimation viewpoint. This is clear from figure 2,

i (k) (k)
_The mixture parameters, e @y, ux ', Cuxc Jrex, Are rarely -\ p oo e MMISE is displayed as a function of all rotation
given a priori. Most often they must be estimated, which is ;
. i . .angles between 0 ar@lr (with o = 2). As can be seen, a
generally a non-trivial task [21], [23]. A common approash i

to estimate the GM parameters from training data. The exp significant gain can be obtained by rotating (or by 3/2).

. L . . ) is gain isnot due to a particularly favorable signal-to-noise-
tation maximization (EM) algprlthm is we!l suited, and mucr}atio SNR— E HFXHg JE |n| ;: becausd is orthogonal, the
used, for that purposél[1]. [24]. [25]. Briefly, the algorith . : .

. . AT . SNR remains equal for all rotation angles. The MMSE gain
relies on observations drawn from the distribution we wish . . . ; :

IS instead due to a rotation producing a signal whishdsto

to parametrize, and some initial estimate of the parametekr)% orthogonal to the noise

The observations are used to update the parameters yigdyati . . . .
P P by The above example is a special case of the matrix design

until convergence to a local maximum of the likelihood . : . .
function. Because the resulting GM parameters depend on H{gblem, whereH in (I) is restricted to be orthogonal. It is

initial estimates, the algorithm can alternatively betsifrom cléar thatH plays a decisive role in how accuratetycan be

multiple initial estimates. This produces multiple setsGil estimated. An aimost equally important observation, h@sev

parameters, and each set can be assigned probabilitied bésséhat the MMSE is not convex iki. Hence, in general, we

on the training data. Our starting point is that the distiis cannot expect that first order optlmal|ty (zero gradlenpllms.
. . .. a global minimum. When studying the channel estimation
in @) and [B) have resulted from such, or similar model fiftin ) AR )
. . : . ._problem further, we will see an implication of this non-
Model @) with GM inputs [(2) and[{3) is quite generic, . o ) ;
- . . . “convexity, which is perhaps not well known: In certain cases
and we have indicated two signal processing applicatiop)s . .
. . ; e MMSE of the channel estimate does not decrease with
where the matrix design problem appears. The solution to tha
problem is, however, essentially application independént
should therefore be of interest to a wide audience. To the b

of our knowledge, it has not been pursued in the literature.

precoder that rotates by 7/2, the densities oFx andn will
look like in Figure[1(b). The latter configuration is prefilia

IIl. AN ILLUSTRATIVE EXAMPLE

We start by studying a special instance of the matrix desis
problem, where the MMSE foall H € H can be plotted. In
general this is not possible, but the following simple ex&mp
reveals some fundamental properties of the problem. Assu
that we wish to design a precoder, adih (7), wHBre: I, and
F is restricted to be an orthogonal matrix. Equatigh (7) the
simplifies toy = Fx + n, whereF only rotatesx. Further,
let x andn be independent and identically GM distributed a

MMSE [dB]

o 1 2 3 s 5 6 7
Rotation angle [radians]

1 1
5/\/ (Oéez, 12) + 5-/\/' (—Oéez, 12) ) Fig. 2. MMSE versus rotation angle.



increasing pilot power. On the contrary, the MMSE may i
fact increase.

does in general not produce a global maximizer §oH).
Finally, as argued in the appendix, neither first or secoderor

In the next section we rewrite the original minimizatiorderivatives ofg(H) w.r.t. H can be computed exactly, and
problem into an equivalent but more compact maximizatiaaccurate approximations of these are hard to obtain.
problem. Then, in Sectioh,]V we present a stochastic opti-

mization approach which provides a solution.

IV. AN EQUIVALENT MAXIMIZATION PROBLEM

In order to propose a solution to the matrix design proble
in (@), we first rewrite expressiof](4). Using the resultsjf [
it follows that for model [(L), under independent GM input
) and [B), and a fixed, the MMSE can be written as

E{lx-E{xly} |3} =
2
S (1r(0) + [o[) = [ s s
(11)

In (I1), tr-) denotes the trace operator afifly) is a (GM)
probability density function

) = peaf 0 (y), (12)
k,l
where

1 (k,)\T ~—(k,1) (k,1)

e_f(y_uy ) Cyy (y—uy )
f(kvl) — 13
(v) YRpE: (13)

(2m) Cyy

ul) = Hul +ul!, (14)
clkh =HCEHT + ). (15)

In @3), () denotes transpositioh| denotes the determinant,
C_y(k’l) is short for(C(y@l))*1 and M is the length ofy. The
MMSE estimatoruy,, in (1) can be written as

x|y
k.l
B Zk,lpkﬂﬂf(k’l)(Y)u,((\y)
Uyxly = ’ (16)
fy)
where
k.l _
) = ul® + CWHTC (y —ul) . @7)
In what follows, it is convenient to define
2
G(H,y) = Hux\yHQ- (18)

V. THE ROBBINS-MONRO SOLUTION

The above observations suggest that a sampling based
approach is the only viable option. The problem of maxingzin
& non-analytical expectatiofr [G(H,y)|, over a parameter
H, falls under the umbrella of stochastic optimization. In
particular, for our problem, the Robbins-Monro algorithaj, [

[4], can be used to move iteratively from a judicially chosen
initial matrix Hy to a local maximizeH*. The philosophy

is to update the current matril using the gradient of
the MMSE. Since the gradient cannot be calculated, one
instead relies on a stochastic approximation. Translatexdit
problem, the idea is briefly as follows. Although119) cannot
be computed analytically, it can be estimated from indepahd
sample vectordy; = Hx; + ni}fvzl, as

1
g(H) ~ N ; Huxl)’i

The derivative of [(2Il) w.r.tH represents an approximation
of 6-‘3(1?), which can be used to update the curr&ht Each
update is then projected onto the feasible HetThis is the
core idea of the much celebrated Robbins-Monro algorithm
[3]. In our context, the algorithm can be outlined as follows

o Let the current matrix béd,..

« Draw at random(x, n) and computey = H,x + n.

« Calculate the update direction as

(21)

2
9

_ 0G(H,,y)
B, = Xy 22)
and
Wr = Hr + erBra (23)

where {e.} -, is an infinite sequence of step sizes
satisfyinge, > 0, ¢, — 0 and) 2 € = co.
Update the matrix as

H, = my (Wy), (24)

where 7y (-) represents the projection onto the set of
permissible matricesl.

This notation emphasizes that the squared norm of the MMSE, Repeat all steps until convergence.

estimate depends on boH and the observatiog. In (17),
only the integral depends oH. Exploiting this, and using
(18), the minimizer of the MMSE is th&l which maximizes

/G(H7y)f(y)dy =FE[GH,y)] =1gH), (19)
subject to

H e H. (20)

The integral in [(IB) cannot be evaluated analytically, evehat [22) becomes an unbiased estimat

for a fixed and knowrH [2]. Moreover, as the example in
Sectior 1] illustrated, the MMSE is generally not convextih

A. Remarks on the Robbins-Monro algorithm

Recall that the input statistick](2]L] (3) are assumed known.
Therefore, in a design phase, it is reasonable to assume that
the inputs(x,n) can be sampled toomputey, as indicated
in the second step of the algorithm. The alternative would
be to sampley directly, leaving the underlyingc and n
unknown. The first approach is preferred because it guagante
) whereas the
alternative does not. This important point is fully expkn
in the appendix. In general, the Robbins-Monro procedure

which implies thaty(H) is generally not concave. Hence, anyloes notrequire observing the input realizationx, n). The

optimization method that merely aims at first order optityali

algorithm converges also when only outpytsare available.



For this reason we write (22) in terms gf, but for our estimation. In conformance with much of the literature, vt w
implementation we will assume that the underlying inputsse thenormalizedMSE (NMSE) as performance meadlire

(x,n) are fully known. This is defined as
Because the gradient directio?:w in (22) is central E{|x — uyyll3}
in the algorithm, its closed form expression is derived ia th NMSE = E{[x]2}
2

appendix. Observe tha@% is random because it relies
on a random realization of. Specifically it is a stochastic A. Precoder design
approximation of% based on a&ingle observation vector .

y. Instantaneously, it may even point in directions opposite Here we study_the performance of a Robbms-Monrlo pre-
to %. In order to increase the likelihood of a beneficia?Oder' As in the simple example of Sectlad Ill, we restncet_th
update, one can alternatively compute the gradient as %ﬁcoder to be orthogonal. Thus, the norm of precoded signal

based I ' ted i 1). Th is equal to that of the non-prt_acoded signal. For the current
average based on multipiés, as suggested il {P1). Then example we choose the following parameters.

1 L OG(H,,y;) « B=L.
B, = N z} oH, ) e x is GM distributed with parameters

In our implementation of the algorithm, however, we do not pr=1/4, fork=1..4
do this. In fact, it was recognized by Robbins and Monro, that 1 _ { —10 } @) _ { 10 }
choosingN large is generally inefficient. The reason is that e T TTx T 10 |
H. is only intermediate in the calculations, and as argued in 10 10
the appendix, regardless of the value\afthe update direction 115:3) = { 10 } . u§<4) = [ 10 } 3
can be chosen such that it coincides V\ﬁ%%) in expectation 1

The Robbins-Monro procedure does not rely on the exis- C,((l,Z = Cx2,2 = C,(SQZ = C,(:Q = 1—012.

tence of% at all points. If this derivative is discon-

tinuous, one can instead use any of its sub-gradients; all’ The noise is Gaussian and distributed as

of which are defined. Consequently, if the local maximum Y ({ 0 } a[ 10 D _ (25)
towards which the algorithm converges has a discontinuous 0] [0 01

deriVatiVe, then the algorithm will oscillate around th”]n where ¢ is a scalar that can account for any chosen
Due to the decaying step sizes, however, the oscillatiofis Wi~ SNR=tr(Cyy) /tr (Cpnyn), and Cyxx and Cp,, are the co-
eventually become infinitesimal, and for all practical mses, variance matrices ot andn respectively.

the system comes to rest. « We useF, = I, as the initial guess in the Robbins-Monro

Convergence towards a local optimum is guaranteed only as  g|gorithm.
r — oo [3], [4]. Therefore, in theory, the algorithm must run , As stopping criterion we usdiF, .1 — F.|, <107
forever in order to converge. The engineering solution,cvhi  g..51se we have assumBd= I, we may in the Robbins-

tends to work well in practice, is to terminate the algorithrg; .o algorithm of SectiofiV simply replace aH, with
. T
when [[H, ;1 —H,[, < v, wherey is a chosen threshold,ho nrecoder,. For the projection in[(24), we choose the

or smply after a pr(_edeflned number of |_te.rat|ons. Still, thRearest orthogonal matrixThis projection is the solution to
associated running time may be non-negligible, and thezefq, o following optimization problem.

the Robins-Monro procedure is best suited when the input

signals are stationary. Fri1 = argmin |[F — W,
In general, for other problems than considered here, it ma¥] ) ) o

happen that the functional form 6f(H, y) is unknown, even W e_re@ is the set of orthogpnal mgtrlces. The solution is

when its output can be observed for afy and y. In this pgmcularly simple, and exploits the singular value depom

case, 26(MY) cannot be computed. Instead one may repladion:
it by a finite difference approximatiof26]. In some cases, W, =UDV” = F,,, = UVT.

this may also be preferable even when the derivative can ) ] . ]
be computed; Especially so if computir?ggég*” requires F!gureB_dlspIays the NMSE with and without pr.ecodmg,
much effort. When finite difference approximation are usefPr increasing SNR levels. As can be seen, Robbins-Monro
the procedure is known as the Kiefer-Wolfowitz algorithnr€coding provides a significant NMSE gain, especially at
[], [26]. If the derivative can be computed, however, theNR levels between 0 and 10dB. Observe that the common
Kiefer-Wolfowitz algorithm is associated with more uncer@PProach of using the LMMSE estimator (and its correspond-
tainty (larger variance) than the Robbins-Monro procedurd Precoder) is highly suboptimal at intermediate SNR leve
For the interested reader, the present paper extends [Ridhw In fact, it is _much worse than doing MMSE estimation without
considers Kiefer-Wolfowitz precoding. any precoding.

2Assumingx to be a zero mean signal, the NMSE is never larger than 1

VI. NUMERICAL RESULTS (zero dB). The reason is that the MMSE estimatay,,, will coincide with

In thi . il d if | o the prior mean ok only when the SNR tends to zero. Hence, the prior mean
n this section we will study two specitic examples. One I8 a worst case estimate af and the NMSE describes the relative gain over

on linear precoding, the other is on pilot design for channek worst case estimate.
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Fig. 4. The NMSE as a function of pilot power.
Fig. 3. The NMSE with and without precoding.

As starting point for the Robbins-Monro algorithm we set

The above example indicates that our method generate§ &qual to a scaled identity matrix satisfying the power
reasonable precoder, fqrarticular GM input distributions. constraint. During the iterations we rely on the following
Admittedly, there exists input statistics for which the rgé& simple projection: If the candidate pilot matrix has power

much less significant. However, in all simulations we hawe CEESHQ — , thenS — . /2S. Thus, if the pilot matrix does not
ried out, the clear tendency is that a Robbins-Monro predode > ' i ’

MMSE receiver outperforms the LMMSE precoder/LMMSéJse the entire power budget, the magnitude of all its elesnent
receiver at intermediate SNR levels. are increased. Similarly, if pilot matrix has to large povtke

magnitude of its elements are decreased.
Figure[4 shows the estimation accuracy for increasing SNR
B. Pilot design for channel estimation (increasing values ofy). It can bee seen that our method

Also for the channel estimation problem, the Robbin%()_utperforms the commonly used LMMSE channel estima-

Monro pilot matrix/ MMSE receiver outperforms the LMMSE Or/LMMSE pilot matrix at intermediate SNRs. In fact, for

pilot matrix/LMMSE receiver at intermediate SNR levels. Ir%he same range of SNRs, the latter is much than transmitting

. P led identity pilot matrix and using the MMSE estimator.
the next example we choose parameters in order to highli pea . o
this, and one additional property. That property is a direcsthe SNR increases, however, it is known that the LMMSE

consequence of the non-convex nature of the MMSE. timator becomes optimal [2]. The performgnce gap bgtvveen
believe it to be of interest, but not well known. The startin ur approach a_nd th_e LM.MSE estimator at high SNR indicates
point is the channel estimation problem il (9), where at a scf';lled identity p||(_)t matrix s a Ioca_l optimum that
assume that all matrices ame x 2. In the correspondingt e Robbins-Monro algorithm does not easily escape from.
vectorized model The most striking observation in figuré 4, however, is that th
channel estimates may becomerseby increasing the pilot
vedZ) = (sT ® 12) veqA) +vedN), (26) power! This is not an artifact of the Robbins-Monro algarith
—— —— the same tendency is seen when a scaled identity (satisfying
Y H * " the same power constraint) is used as the pilot matrix.

we assume the following parameters.

« The vectorized channek, is distributed asV (0,1,).

: ¢ ' I ) C. Increased pilot powe# improved channel estimates
o The vectorized noisey, is GM distributed with parame-

We believe that the above phenomenon is not well known,

ers and that it deserves to be explained. In order to visualizatwh
q=1/2, forl=1,2, happens, we will consider an example of smaller dimensions,
u = u@=5[1 1 1 1 }T’ gut with similar properties as in the previous subsection.
) pgcmcally, we will assume tha_t the annown channel matrix
cll) = Cfﬁz = 5j[4 (27) Ais 2 x 1, and that the pilot signal is just a scalar= a.

Then, using[(10) it follows thal = al,. Thus, in this setup,
« As constraint we impose thaﬁSHg — «a, wherea is Wedo nqtoptimi_zeanything,we only try to explain the NM_SE

power, and therefore also any SN /tr (Cpn). parameters:
« Stopping criterion]|S, 1 — S|, < 10~4. « H = al,, wherea is a scalar that we can vary.
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Fig. 5. The NMSE as a function of the scalar Fig. 6. Sampled observations for a = 3.45 dB anda = 7.6 dB.

value corresponds to the local maximum in figlke 5. Here the
clusters largely overlap. As continues to grow, however, the
average magnitude of a noise contribution becomes so small
compared to the average magnitudeadk, that near perfect
recovery ofx eventually becomes possible.
1 Translated to the channel estimation problem in fiddre 4,
Cll=cCc@ =1, (28) the interpretation is that there is a continuous range where
2 increasing the pilot power is harmful. From figuré 4, one
In figure[5, the NMSE is plotted as a function of increasingpserves that, unless one can spend an additional 15 dB
values for the scalan. We observe the same tendency agpproximately) on pilot power, one will not improve from
in figure [4: for increasing values of (corresponding to the local minimum solution.
increasing pilot power in figuriel 4), the NMSE may increase.
In figure[3, we also plot the NMSE that would be obtained VII. CONCLUSION
by a genie aided estimatof|[2]. Briefly, the genie aided We have provided a framework for solving the matrix
estimator knows from which underlying Gaussian source tiggsign problem of the linear model under Gaussian mixture
noisen originates for each observatign Accordingly it can statistics. The study is motivated by two applications in
always produce the MMSE estimate corresponding to a pureiignal processing. One concerns the choice of error-ragduci
Gaussian model. The genie aided estimator can of course p@coders; the other deals with selection of pilot matrices
be implemented in practice, but because it is much betfer channel estimation. In either setting we use the Robbins
informed than the MMSE estimator, it provides a lower boungionro procedure to arrive at a solution. Our numerical ftssul
on the NMSE. Yet, from figurél5 we see that fer< 3.45 indicate improved estimation accuracy at intermediate SNR
dB, the MMSE estimator is able to pin-point the correct noigevels; markedly better than those obtained by optimalgtesi
component. A plausible explanation is the following. Fopased on the LMMSE estimator.
small a, almost all realizations oHx = al>x are close to  Although the Robbins-Monro algorithm in theory only con-
the origin. Thus, observationstend to appear in two distinct verges asymptotically, in practice we see that a hard sbgppi
clusters; one cluster centered at each noise component.ofigerion may work well. The algorithm is still computatialty
a consequence, the active noise component can essenti@dyhanding, and therefore best suited under stationaryar ne
always be identified. As. grows, Hx = al>x take values in stationary settings.
an increasingly larger area, and the cluster borders approa We have explored an interesting implication of the non-
each other. The value = 3.45 dB is the largest value fo# convexity of the MMSE; namely a case where spending more
where the clusters can still be 'perfectly’ separated. Thise pilot power gives worse channel estimates. This phenomenon
corresponds to the local minimum in figure 5. Because we d@genot linked to the stochastic optimization procedure.dh c
considering 2-dimensional random vectors, we can actuabg observed without optimizinHl at all, and we have offered
visualize these clusters. The upper part of figure 6 shows havplausible explanation.
400 independeng’s form two nearby, but separable, clusters
generated at = 3.45 dB. Whena grows beyond this level, the VIIl. A CKNOWLEDGMENTS
receiver faces a larger identification problem: it is hatdeell John T. Flam is supported by the Research Council of
which noise component was active. The lower part of figuféorway under the NORDITE/VERDIKT program, Project
shows 400 independegts generated at = 7.6 dB. This CROPS2 (Grant 181530/S10).

« The signal (channelx is distributed asV (0, I).
o The noisen is GM distributed with parameters

q=1/2, forl=1,2,
ul = —u@ =501 1],



APPENDIX Theorem 1:For a scalar functionp(H), of a matrix argu-

This appendix derives a closed form expression for thngent, thedifferential has the form

gradient directionacé%” in (22), whereG (H,y) is defined d(¢) = tr (QTd(H)) = ved Q) veddH),
through [(16){(1B). To that end, it is worth observing thaewh 06
optimizing H it is beneficial if the designer can draw samples where Q = ——

directly from the inputsx andn, and not only the outpuy.

In order to see why, assume in what follows that the order bf our case, we takeé(H) to be the expression in the large

derivation and integration can be interchanged such that parenthesis of (30). We will identify its differential, arsploit
Theorent1 in order to obtain the derivative. For that purpose

9gH) _ 9 it is convenient to define
P klrs _ (k1) (r,s) , 31
- [omGEy el @) [ ) 1
OH Skl _ u(fT,l) u(r‘,s) (32)
x|y x|y ’
Now, if we can only observe outpugs we have
Y puts L= pearf S0 (y). (33)
oG (H, oG (H, dg(H k,l
() o5t 2080
Using these, the derivative if_(30), can then be compactly

fk,l,T,szk l

. o BLEIAT] . . .
Hence, in this case, the update directi8Rir¥) is not an WteN aszy (tiz) Using the chain rule, the dif-

unbiased estimator of the gradie#*. In contrast, assume ferential of this fraction is

that we can draw inputéx, n), and define i) = d <fk,l,r,szk,l,r,s 9 fhibirss klirss (1)
2 - 2 ) - 3
||ux\Hx+n||2 =G (HX + 1’1) ) d(fk,l,r,s)zk,l,r,s + d(zk,l,r,s)fk,l,r,s
. 34
then + t2 (34)

and d(t), which we do in next.Notation: we will in the
0g(F) remainder of this appendix usg) to compactly denote the
g

- // % [é (Hx + n) f(x)dxf(n)dn} =T trace operator.

Computingd( f*1#)

g e Thus, we must identify the differenti klirss) d(zkotbms
. <8G(EII>;+n)> :// 8G(glg+n)f(x)dxf(n)dn fy alf{ fhme), d( )

Here, the second equality holds becay¥&)dx f(n)dn is

independent oH. Hence 2“5+ s an unbiased estimator N
' sy (k,0) (r,5)
of % , which is of course desirable. Because it is beneficial d(f )=d (f (v)f (y))
to samplex andn, rather than jusy, we will assume here  _ 4 (f(k-,l)(y)) FO (y) 4 R (y)d (f(r-,s)(y)) . (35)

that the designer can do this. In practice, this implies that
the optimization_ ofH_ is done off line, as preparation for theThe differentiald (f(k.,l)(y))’ is a differential of a Gaussian
subsequent estimation. . . probability density function. In our case it depends on the
In what follows, we will prove that interchanging the ordef,gexes (k, ), but in order to enhance readability, we will
of integration and derivation, as |Edi9) is justifiable. W&l w disregard these indexes in what follows. Thus, for now,
derive a closed form expression fB¢Itn) and use this as we will use equations[{12J-(17) with all indexes removed,
the update direction ii(22). Our strategy, however, willlbe and reincorporate the indexes when needed. In addition, we
do this in the reverse order: First we compute the derivativgill for now disregard the constant factQQw)*% in @3J).

assuming that the change can be done, and then we show thaice, instead of considering the differenﬁb(f(k,l) (y)),
that differentiation under the integral sign is justifiedthdugh

we therefore considetl (|Cyy | ? , Where =
we assume knowledge ¢k, n) for each observegt, we will (' | g(y)) 9(y)

- -1 —uy TC;; —uy H H
write y instead ofHx +n, and% instead of%, e 2mm) (v=uy)_This can be written as
simply to save space. d(1Co~3
Using (18), 2%¥) can be written as (' | g(y))
_1 _1
(50) () £25) () 50 g7 =d(ICyy|™) 93) + Coyl A (9(y)
k,l 8 s 7,8
3 O[S )ugy ugy 9y 3
Praiprds OH 2 : -~ T |ny| d (|ny|)
kil,r,s (Zk.,l pkqlf(kJ) (Y)) g(y) ., T .
(30) ~ L2 Cyl (v —uy) Oy (v —uy)) (36)

In order to compute[(30), we make use of the followingh the second equality we have used the chain rule, and
theorem [[13]. exploited thatg(y) is an exponential function. The first



differential in [36), providedCy, is full rank, is (Theorem Using [41)[(46) and(47), and inserting info36), we findttha
1, ch. 8, of [13]) L
d(|ny| 29(3’))

d(|Cyy|) = |Cyy| (Cyyd (Cyy)) (37) :_g(y)|cyy|—%<(c;y1chx)Td(H)>
= |Cyy|(Cyyd (HCxxH" + Cpp))
= |Cyy| (Cyy (d(H)CxxH” + HCxxd (H”))) -
(38) _ ny—;<cl w7 dH>. 48
Gyl (o HT Ol d(HD) + d(H) TG, 93)[Cyy |+ { (Copw (x—u)™) a(mm)) . (48)
(39) If we define

1 _ _ T
9(y) [Cyy|* {(CiwwT Oyl HC o) " d(H) )

T — T —
= |Cyy [ {(CouocH Cyyd(H) + CoH Cypd(H)) () _ (ki) () (- u(k))T
(40) — Myy X
- _ T
= 2|Cyy| (Gl Cyyd(H)) O (1= whOwtD o) HOR),
— 2|Cyy | {(Cy HC) " d(H)) . 41 .
Cyyl <( vy )" )> (41) wherew(’C D = y—ul"", and reincorporate the constant factor
(2m)~ 2, we now find that

In (39), we have rotated the first trace (done a cyclic per-
mutation of the matrix product), and transposed the second d (f(k,l)(y)) _ _f(k,z)(y) <(R<k=l>)Td(H)>. (49)
trace. Because&C,, and C;yl are symmetric, they are not
affected by transposition. Moreovel{H”) = (d(H))”. The Accordingly, [35) becomes
trace operator is invariant to such rotations and transiposi
and therefore these operations are justified.[I3 (40) we haved (fk,z,r,s) _ <fk,l,r,s (R(k,l) + R(T’S))Td(H)> . (50)
rotated the second term. Such rotations and transposititins
be frequently employed throughout. Introduciwg= y — uy,
the second differential of (36) can be written
Computingd(z#:57:5)

d (W' Cyyw) = d ((w' Cyyw))

T (-1 To-1 d(zFhs) =d ulh "y
= <W d (ny) W> +2 <W nyd (W)> . (42) x|y x|y
_ kDT (r.5)
The first term of [(4R) is - <d( Uy Uxly >>
a7 g (WD £ gD g (g
<WTd (C;}}) w> (43) - <UXIy d (uXIy ) Uxly d ( Uy )>
=—(w'Cyyd(Cyy) Cyyw) (44) (51)
= — (W' Cyy (d(H)CxxH" + HCyxd (H")) Coyw) Apart from a rearrangement of the indexes, equatlon (51)
(C 751 (d(H)Cox HT + HCyd (HT))) contains two similar terms. Hence it suffices to compute one

(45) of them. Recalling thatl(’C D is defined by[(TI7), we focus on
the differential

Equation [[44) results from Theorem 3, ch. 8,[0f|[13]. Observe <u(r 5) d( (k, z))>

that C;, 1waC , in (@5) is a symmetric matrix, playing the x|y Uxly

same role agy, |n (38). Therefore, we can utiliz€ (1) and s

conclude that < (| ) d(u(k) + CHHT k) (k,z))>

_ _ _ )T ~(k T kob) o (Kl
(wTd (Cyy) w) = =2 {(Cyyww ClHC o) " d(H)). < u " clld (H") Cp D w >> (52)
(46)
(r,)T ~(k) gy T —(k,l k.l
+ < 0 CWH"d (Cy D) wl >> (53)

Recall thatw = H(x — uyx) + n — u,. The second term of (rs5)T () ex T e (i .

(@2) can therefore be written as + < w " cH"C Vd (w( ))> (54)
9 <WTC;;d( )> We will resolve this term by term. The first ternh._{52), reads
=2 <ch;1d (x — ux > <u(r )T C(k)d (HT) C;, (k Dy (ks z)>
—2((x — uy) Tc 1d(H)) o

= —u)” B o GO MRS TdH . (55
- <(C v - )’ d<H>> (47) vy y Cel) d(H)). (55)
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The second term[(53), can be written as A. Computing the derivative
Utilizing (&0), (58) and [(5B), the complete differential in
< (r.s)T COHT, (C (k. z)) w(k=l>> (34) can now be written as
x|y

fk,l,r,szk,l,r,s

_ < §:|ys) CcHHTC l)d(C(y’;”) O EDwlk: l)> d(¢) =d (—t2 )
., <fk.,l,r.,s (R(k,l) 4 R(r,s))T d(H)> Shlrs
_ — (k1 k), (r,9) k)T —(k,l k.l - —
. <ny< IwtOu(" B HTC R d (ng >)> 2
Clhlirs) <(D(k,l,r,s) _|_D(r,s,k,l))T d(H)> fk,l.,r,s
== () (a () c@R” + HCEd (HT))) * 2
T 9 fhlrss hobirs S FUD () (R(k,l))Td(H)
_ <C§(]§2HT (C(k,l,r,s) + C(k,l,r,s) ) d(H)> n k1 Prdl Yy
t3 '
T

— <((c<’f’“’5> + i) HOW) d(H)> . (56) (60)

In case of a precoder design problem, one makes the following
substitutions:H = BF and d(H) = Bd(F) throughout. In
The third term, [(5K), reads case of the pilot design problef {1@ must be substituted
by ST ®1,,. In addition, assuming th& is n x r, one makes
use of the fact that

<u(r,s)TC(k)HTC—(k,z)d (W(k,l))>
x|y XX Yy T
veqdH) = vec(d(S") ® I,,)
< G ewmT o (1) (x - u;k>)> = (I, ® Kinr © Ly) (I, @ veq(I,,)) d(ved(ST)).

(k) (k) (s) *) ™T HereK,,, is the Magnus and Neudecker commutation matrix
(C HCiu, )y (X Ux ) ) d(H) ). (57) [13]. Theorenill can then be easily applied[id] (60), and iden-
tifying the derivative in[(3D) is therefore now straightfeard.
Finally, assume thaH in (60) is not a function of some
Using [55)(56) and(§7) we now define other matrix. Complactly defining,qp,qs %t = hkbrs,
and observing thay_, , . h*b" = 2, we find from equa-

T tions [30), [(6D), and Theorem 1 that
D(k,l,r,s) — C;}Ek,l)w(k,l)u(r,s) C(k)

o xxT OG (Hx +n)
_ (C(k,l,r,s) 1 gklrs) )HCQ;) — g -
T Z hk,l,r,s (R(kl) + R(r,s)) Zk,l,r,s
— (k1 k), (r,s) k _ Lak,lrys
+ Cys(' )Hcgcx)ux\y (x —uf )) S L BELTS
Zk s hk,l,r,s (D(k,l,r,s) 4 D(r,s,k,l))
Due to its two similar terms, the differential in {51) canthe + — N

be written
2 Zk . hk,l,r,s k,l,rs Z kalf k,l)( )R(k,l)
+ .

Zz]plqﬂ ( )Zklrshklrs (61)

T
d(Z*hm5) = <(D(’“=l””=s) - D(“S*k*”) d(H)> . (58)
B. Interchanging the order of derivation and integration

Recall, that interchanging the order of derivation and-inte
gration, as in[(Z9), was until now only assumed valid. It esi
from Lebesgue’s Dominated Convergence Theorem that such
a changes valid if there exists adominatingfunction v(-)

Computingd(t)

satisfying
y=d Zpkmf(kl Zpqud (f(kl (¥ )) oG (Hx
B > | % 2 < |v(H, x,n)|, (62)
- _ kil R d(H > . 59
;pktﬂf (y) <( ) (H) (59) and

// [lv(H, x,n)||, f(x)f(n)dxdn < co. (63)

The last equation results immediately by employind (49).



Now consider[(61) and define the function
wk,l,r,s(I'LX, n) — (R(k,l) 4 R(T,S)) Sholors

[l
+ (D(k,l,r,s) + D(r,s,k,l)) [10]

2240 5, ) ()R
Zi,j pinf(i"j) (v)

+ [11]

Observe that

v

mes LS, s(Hox,m) 96 (Hx +n) [12]
Zk,l,r,s Rkt B oH .
Hence w is a convex combination of theig

wi1.r.s(H,x,n)’s, and therefore the function
U(Ha X, n) = Z Hwk-,lﬂ“-,S(Ha X, n)”Q
k,l,rs

clearly satisfies[(82). We do not explcitly prove it her, but i
can be verified that the integral

J] 3 It (50, £ 0) )

k,l,r,s

[14]

[15]

(64) [16]
is bounded. Hence a dominating function exists, and the
change of integration and derivation is justified. (17]

C. First and second order derivatives of the objective fiomct [18]
When trying to compute

//aé(Hx+n)

S f (%) f (n)dxdn,
the mixture densities in the denominators[of] (61) will nohsi
plify by substitutions. An entirely similar argument prdeis [20]
the reason for why (19) cannot be computed analytically én th
first place [2]. Hence [(85) cannot be computed analytically
and a closed form derivative of (119) w.iH does not exist. [21]
Although not demonstrated here, a similar argument wilthol
also for the second order derivative. [22]
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