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Abstract—Quantizer noise can improve statistical signal detec-
tion in array-based nonlinear correlators in Neyman-Pearson and
maximum-likelihood (ML) detection. This holds even for infinite-
variance symmetric alpha-stable channel noise and for general-
ized-Gaussian channel noise. Noise-enhanced correlation detection
leads to noise-enhanced watermark extraction based on such non-
linear detection at the pixel or bit level. This yields a noise-based
algorithm for digital watermark decoding using two new noise-
benefit theorems. The first theorem gives a necessary and suffi-
cient condition for quantizer noise to increase the detection prob-
ability of a constant signal for a fixed false-alarm probability if
the channel noise is symmetric and if the sample size is large. The
second theorem shows that the array must contain more than one
quantizer for such a stochastic-resonance noise benefit if the sym-
metric channel noise is unimodal. It also shows that the noise-ben-
efit rate improves in the small-quantizer noise limit as the number
of array quantizers increases. The second theorem further shows
that symmetric uniform quantizer noise gives the optimal rate for
an initial noise benefit among all finite-variance symmetric scale-
family noise. Two corollaries give similar results for stochastic-res-
onance noise benefits in ML detection of a signal sequence with
known shape but unknown amplitude.

Index Terms—Maximum-likelihood (ML) detection, Neyman-
Pearson (NP) detection, noise benefits, nonlinear correlation
detectors, quantizer arrays, quantizer noise, scale-family noise,
stochastic resonance, watermark decoding.

I. NOISE BENEFITS IN NONLINEAR SIGNAL DETECTION

N OISE can sometimes improve nonlinear signal pro-
cessing [1]–[10]. This noise-benefit stochastic resonance

(SR) effect in signal detection occurs when small amounts
of noise improves detection performance while too much
noise degrades it [11]–[15]. Such SR noise benefits arise in
many physical and biological signal systems from carbon
nanotubes to neurons [16]–[23]. We focus here on the special
case of SR for quantizer-array-based nonlinear correlators
in Neyman-Pearson (NP) and maximum-likelihood (ML)
signal detection in non-Gaussian channel noise. This channel
noise includes symmetric -stable noise and general-
ized-Gaussian noise. Such detection problems occur in sonar,
radar, and watermark detection [24]–[26]. The two theorems
below prove that injecting small amounts of quantizer noise in
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these types of nonlinear detectors can improve their detection
performance. These new SR theorems extend the growing list of
formal proofs of SR noise benefits [1]–[3], [8]–[14], [27]–[31].

Fig. 1 shows an SR noise benefit in the ML watermark extrac-
tion of the “yin-yang” image embedded in the discrete-cosine
transform (DCT-2) coefficients of the “Lena” image [32]. The
yin-yang image of Fig. 1(a) is the 64 64 binary watermark
message embedded in the midfrequency DCT-2 coefficients
of the 512 512 gray-scale Lena image using direct-sequence
spread spectrum [33]. Fig. 1(b) shows the result when the
yin-yang figure watermarks the Lena image. Figs. 1(c)–1(g)
shows that small amounts of additive uniform quantizer noise
improve the watermark-extraction performance of the noisy
quantizer-array ML detector while too much noise degrades the
performance. Uniform quantizer noise with standard deviation

reduces more than 33% of the pixel-detection errors in
the extracted watermark image. Section VI gives the details of
such noise-enhanced watermark decoding.

The quantizer-array detector consists of two parts. It consists
of a nonlinear preprocessor that precedes a correlator and a like-
lihood-ratio test of the correlator’s output. This nonlinear de-
tector takes samples of a noise-corrupted signal and then
sends each sample to the nonlinear preprocessor array of
noisy quantizers connected in parallel. Each quantizer in the
array adds its independent quantizer noise to the noisy input
sample and then quantizes this doubly noisy data sample into
a binary value. The quantizer array output for each sample is
just the sum of all quantizer outputs. The correlator then cor-
relates these preprocessed samples with the signal. The de-
tector’s final stage applies either the NP likelihood-ratio test in
Section II or the ML-ratio test in Section V.

Section III presents two SR noise-benefit theorems that apply
to broad classes of channel and quantizer noises for the quan-
tizer-array NP and ML detectors. Theorem 1 gives a necessary
and sufficient condition for an SR noise benefit in NP detection
of a constant (“dc”) signal. The condition characterizes when
the detection probability will have a positive noise-based
derivative—when . Theorem 1 applies to all
symmetric channel noise and to all symmetric quantizer noise
so long as the number of data samples is large. Corollary
1 in Section V gives a similar condition for the ML detection
of a known sequence of unknown amplitude. It gives a simple
method to find a near-optimal quantizer noise intensity for the
ML detection and does not need the error probability. Section VI
uses this method for watermark decoding.

Theorem 2 of Section III contains three SR results for quan-
tizer-array NP detectors when the quantizer noise comes from a
symmetric scale-family probability density function (pdf) with
finite variance. The first result shows that is necessary
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Fig. 1. Noise-enhanced digital watermark extraction using a noise-based algorithm: SR noise benefits in quantizer-array ML watermark decoding: (a) Binary
64� 64 watermark yin-yang image. (b) Watermarked 512� 512 Lena image. Direct-sequence spread spectrum embeds each message bit of the yin-yang image
in a set of mid-frequency discrete cosine transform (DCT-2) coefficients of the gray-scale Lena image (c) Nonmonotonic quantizer-noise-enhanced watermark-
detection performance plot of the array-based ML detectors. The noisy array detector had � � �� quantizers. Uniform quantizer noise decreased the pixel-
detection error by more than 33%. The solid U-shaped line shows the average pixel-detection errors of 200 simulation trials. The dashed vertical lines show the
total min-max deviations of pixel-detection errors in these simulation trials. The dashed U-shaped line shows the average pixel-detection errors of the limiting-array
������ correlation detector. This dashed U-shaped line gives the lower bound on the pixel-detection error for any finite �� � �� quantizer-array detector
with symmetric uniform quantizer noise. (d) Retrieved yin-yang image using the ML linear correlation detector. (e) Retrieved yin-yang image using the ML
noiseless quantizer-array detector. This nonlinear detector outperforms the linear correlation detector. (f) Retrieved yin-yang image using the ML noisy quantizer-
array detector. Additive uniform quantizer noise improves the detection of the quantizer-array detector by more than 33% as the uniform quantizer noise standard
deviation � increases from � � � to � � �. (g) Too much quantizer noise degrades the watermark detection. The SR effect is robust against the quantizer noise
intensity since the pixel-detection error in (g) is still less than the pixel-detection errors in (d).

for an initial SR effect if the symmetric channel noise is uni-
modal. The second result is that the rate of the initial SR effect
in the small quantizer noise limit im-
proves if the number of quantizers in the array increases. This
result implies that we should replace the noisy quantizer-array
nonlinearity with its deterministic limit to achieve
the upper-bound detection performance if the respective quan-
tizer-noise cumulative distribution function has a simple closed
form. The third result is that symmetric uniform quantizer noise
gives the best initial SR effect rate among all symmetric scale-
family noise types. Corollary 2 in Section V extends Theorem
2 to the ML detection of a known sequence of unknown ampli-
tude. All these results hold for any symmetric unimodal channel
noise even though we focus on noise and symmetric gen-
eralized-Gaussian channel noise. The scope of these new theo-
rems extends well beyond watermark decoding and detection.
They show how quantizer noise can enhance a wide range of
array-based NP and ML detection problems in non-Gaussian
channel noise. Applications include radar, sonar, and telecom-
munications [24]–[26], [34]–[36] when optimal detectors do not
have a closed form or when we cannot easily estimate channel
noise parameters.

Array-based noise benefits have only a recent history. Stocks
[10] first showed that adding quantizer noise in an array of par-
allel-connected quantizers improves the mutual information be-
tween the array’s input and output. This produced a type of
suprathreshold SR effect (or SSR as Stocks calls it [37]) because
it did not require subthreshold signals [38]. Then Rousseau and
Chapeau-Blondeau [9], [13] used such a quantizer array for
signal detection. They first showed the SR effect for NP de-
tection of time-varying signals and for Bayesian detection of
both constant and time-varying signals in different types of non-
Gaussian but finite-variance channel noise. We proved in [12]
that noise in parallel arrays of threshold neurons can improve
the ML detection of a constant signal in symmetric channel
noise. Theorem 5 in [12] showed that collective noise benefits
can occur in a large number of parallel arrays of threshold units
even when an individual threshold unit does not itself produce
a noise benefit.

II. NP BINARY SIGNAL DETECTION IN -STABLE NOISE

This section develops the NP hypothesis-testing framework
for the two noise-benefit theorems that follow. The problem is to
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detect a known deterministic signal with amplitude in ad-
ditive white symmetric -stable channel noise given

random samples :

(1)

such that the signal detection probability
is maximal while the false-alarm

probability stays at a preset
level . The are independent and identically distributed
(i.i.d.) zero-location random variables. We consider only
constant (dc) signals so that for all . So the null
hypothesis states that the signal is not present in the
noisy sample while the alternative hypothesis states
that is present.

The characteristic function of the noise random vari-
able has the exponential form [39], [40]

(2)

where real is the location parameter, is the charac-
teristic exponent that controls the density’s tail thickness,

is the dispersion that controls the width of the bell curve,
and is the scale parameter. The bell curve’s tails get thicker as

falls from 2 to near zero. So energetic impulses become more
frequent for smaller values of .

pdfs can model heavy-tailed or impulsive noise in
applications that include underwater acoustic signals, telephone
noise, clutter returns in radar, internet traffic, financial data, and
transform domain image or audio signals [24], [26], [40]–[44].
The only known closed-form pdfs are the thick-tailed
Cauchy with and the thin-tailed Gaussian with .
The Gaussian pdf alone among pdfs has a finite variance
and finite higher-order moments. The lower-order mo-
ments of an -stable pdf with exist if and only if .
The location parameter serves as a proxy for the mean if

and as a proxy for the median if . The
uniformly most powerful detector for the hypotheses in (1) is a
NP log-likelihood ratio test [45], [46]

(3)

because the random samples are i.i.d.
We choose so that it has a preset false-alarm probability
of . This NP detector (3) is hard to implement
because again the pdf has no closed form except when

or . The NP detector (3) does reduce to the simpler
test

(4)

if the additive channel noise is Gaussian [45]. But
this linear correlation detector is suboptimal when the channel
noise is non-Gaussian. Its detection performance degrades se-
verely as the channel noise pdf departs further from Gaussianity
[45], [47] and thus when holds.

An important special case is the NP detector for Cauchy
channel noise. The zero-location Cauchy random variable

has the closed-form pdf

(5)

for real and positive dispersion . The NP detector is non-
linear for such Cauchy channel noise and has the form

(6)

So the NP Cauchy detector (6) does not have a simple correla-
tion structure. It is also more computationally complex than the
NP linear correlation detector (4). But the NP Cauchy detector
performs well for highly impulsive noise cases [26], [40].
Section III shows that three other simple nonlinear correlation
detectors can perform as well or even better than the Cauchy
detector does when the noise is mildly impulsive (when

).
The locally optimal detector has the familiar correlation

structure [40], [48]

(7)

and coincides with the linear correlator (4) for Gaussian
channel noise . The score function is nonlinear for

. The locally optimal detector (7) performs well when
the signal amplitude is small. But this test is not practical
when does not have a closed form because requires
both and . So researchers have suggested other subop-
timal detectors that preserve the correlation structure but that
replace with different zero-memory nonlinear functions

[46], [49]–[52]. These nonlinearities range from simple ad-hoc
soft-limiters

if
if
if

(8)

and hole-puncher functions

if
else

(9)

to more complex nonlinearities that better approximate .
The latter may use a scale-mixture approach [51] or a simpli-
fied Cauchy-Gaussian mixture model [52].

The next section presents the two main SR theorems for the
nonlinear correlation detectors that replace the deterministic
nonlinearity with a noisy quantizer-array-based random
nonlinearity or with its deterministic limit . We show
that these detectors enjoy SR noise benefits. We then compare
their detection performances with the Cauchy detector (6) and
with the nonlinear correlation detectors based on the simple
soft-limiter and hole-puncher nonlinearities (8)–(9).
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III. QUANTIZER NOISE BENEFITS IN

NONLINEAR-CORRELATION-DETECTOR-BASED

NP DETECTION

This section presents the two main SR noise-benefit theorems
for NP detectors. The Appendix gives the proof of Theorem 2.
We start with the nonlinear correlation detector:

(10)

(11)

Here is the detection threshold, is the quantization threshold,
and for . We chose

because both the channel noise and the quantizer
noise are symmetric.

We assume that the additive quantizer noise has
a symmetric scale-family [53] noise pdf

. Here is the noise standard devia-
tion and is the standard pdf for the whole family [53].
Then the noise cumulative distribution function (CDF) is

where is the standard CDF
for the whole family. Scale-family densities include many
common densities such as the Gaussian and uniform but not the
Poisson. We assume that the quantizer noise random variables

have finite variance and are independent and come from
a symmetric scale family noise. The quantizer noise can arise
from electronic noise such as thermal noise or from avalanche
noise in analog circuits [54], [55]. The noisy quantizer-array
detector (10)–(11) is easy to use and requires only one bit to
represent each quantizer’s output. This favors sensor networks
and distributed systems that have limited energy or that allow
only limited data handling and storage [56], [57].

Define next and as the respective popula-
tion mean and population variance of under the hypoth-
esis ( or ) when is the quantizer noise inten-
sity: and .
Then and for all
because both the additive channel noise and the quantizer
noise are symmetric. The mean and variance of the test
statistic depend on both and . So and depend
on the noise intensities and . We write these two terms
as and because we control only the quantizer
noise intensity and not the channel noise intensity . The
Appendix derives the complete form of and in
the respective (72) and (92) as part of the proof of Theorem 2.

The additive structure of in (10) gives rise to a key sim-
plification. The pdf of is approximately Gaussian for both
hypotheses because the central limit theorem [53] applies to
(10) if the sample size is large since the random variables

have finite variance and are independent and iden-
tically distributed (i.i.d.). Then Theorem 1 gives a necessary
and sufficient inequality condition for the SR effect in the quan-
tizer-array detector (10)–(11). This SR condition depends only
on and and on their first derivatives. It is equiv-
alent to since in (72).

Theorem 1: Suppose that the detection statistic in (10)
has sufficiently large sample size so that it is approximately
conditionally normal: and

where
and . Then the inequality

(12)

is necessary and sufficient for the SR noise benefit
in NP signal detection based on the nonlinear test statistic

.
Proof: We first derive an approximate linear form for the

detection threshold : . The NP
detection rule based on rejects if be-
cause we choose the detection threshold such that

. We also need to define the constant so that
where . Then

standardizing under the assumption that the null hypoth-
esis is true gives

(13)

(14)

(15)

So and thus
. So the detection threshold has the

approximate linear form .
Standardizing under the assumption that the alternative

hypothesis is true likewise gives the detection probability
as

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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Fig. 2. SR noise benefits based on inequality (12) for constant (dc) signal detection in �-stable channel noise (a) The plot of � �� �� �� ��� �� �� �� �
versus the standard deviation � of zero-mean additive uniform quantizer noise. The zero crossing occurs at the quantizer noise standard deviation � . (b) The
solid line and circle markers show the respective plots of the detection probabilities � with and without the Gaussian approximation of the � pdf. Adding
small amounts of quantizer noise � improved the detection probability � by more than 7.5%. This SR effect occurred until inequality (12) held. So �
maximized the detection probability.

Then the normal pdf and the chain rule of
differential calculus give

(24)

because is a constant. So
is necessary and sufficient for the SR effect
because is a pdf and thus .

Fig. 2 shows a simulation instance of the SR inequality
condition in Theorem 1 for constant (dc) signal detection
in impulsive infinite-variance channel noise. The signal has
magnitude and we set the false-alarm probability

to . The channel noise is with pa-
rameters , , and . The
detector preprocesses each of the noisy samples

with quantizers in the array. Each quantizer
has quantization threshold and adds the indepen-
dent uniform quantizer noise to the noisy sample
before quantization. Fig. 3(a) plots the smoothed difference

versus the standard devia-
tion of the additive uniform quantizer noise. We used
simulation trials to estimate and and then used
the difference quotients
and to estimate their first
derivatives. Fig. 3(b) shows that adding small amounts of quan-
tizer noise improved the detection probability by more
than 7.5%. This SR effect occurs until (12) holds in Fig. 3(a).
Fig. 3(b) also shows the accuracy of the Gaussian (central
limit theorem) approximation of the detection statistic ’s
pdf. Circle marks show the detection probabilities computed

from the Monte Carlo simulations. The solid line plots the
detection probability in (23).

Theorem 2 states that it takes more than one quantizer to pro-
duce the initial SR effect and that the rate of the initial SR ef-
fect increases as the number of quantizers increases. It further
states that uniform quantizer noise gives the maximal initial SR
effect among all possible finite-variance symmetric scale-family
quantizer noise. Theorem 2 and Corollary 2 involve an initial SR
effect that either increases the detection probability or de-
creases the error probability for small amounts of noise. We
define the SR effect as an initial SR effect if there exists some

such that or that
for all . Theorem 2 follows from Theorem 1 if we
substitute the expressions that we derive in the Appendix for

, , , and and then pass to the
limit . The complete proof is in the Appendix because
it is lengthy and uses real analysis.

Theorem 2: Suppose that the channel noise pdf is uniformly
bounded and continuously differentiable at . Then

(a) is necessary for the initial SR effect in the NP
detection of a constant signal in symmetric unimodal
channel noise if the test statistic is the nonlinear test
statistic .

(b) Suppose that the initial SR effect occurs in the quan-
tizer-array detector (10)–(11) with quantizers and with
some symmetric quantizer noise. Then the rate of the ini-
tial SR effect in the quantizer-array detector (10)–(11)
with quantizers is larger than the rate of the initial SR
effect with quantizers if .

(c) Zero-mean uniform noise is the optimal finite-variance
symmetric scale-family quantizer noise in that it gives the
maximal rate of the initial SR effect among all possible
finite-variance quantizer noise in the NP quantizer-array
detector (10)–(11).
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Fig. 3. Initial SR effects in quantizer-array correlation detectors for constant (dc) signal detection in impulsive symmetric �-stable ����� channel noise �� �
�����. (a) Initial SR effects for zero-mean uniform quantizer noise. The solid lines show that the detection probability � improves at first as the quantizer noise
intensity � increases. The dashed line shows that the SR effect does not occur if � � � as Theorem 2(a) predicts. The solid lines also show that the rate of the
initial SR effect increases as the number � of quantizers increases as Theorem 2(b) predicts. The thick horizontal dash-dot line shows the detection probability
of the optimal ��� NP detector (3). The limiting-array ������ detector gave almost the same detection performance as the optimal ��� NP detector gave
(b) comparison of initial SR effects in the quantizer-array correlation detector for different types of symmetric quantizer noise. Symmetric uniform noise gave the
maximal rate of the initial SR effect as Theorem 2(c) predicts. Symmetric discrete bipolar noise gave the smallest SR effect and was the least robust.

Fig. 3 shows simulation instances of Theorem 2. The thin
dashed line in Fig. 3(a) shows that the SR effect does not occur
if as Theorem 2(a) predicts. The solid lines show that
the initial SR effect increases as the number of quantizers in-
creases as Theorem 2(b) predicts. quantizers gave a
0.925 maximal detection probability and thus gave an 8% im-
provement over the noiseless detection probability of 0.856. The
thick dashed line in Fig. 3(a) shows the upper bound on the de-
tection probability that any noisy quantizer-array detector
(10)–(11) with symmetric uniform quantizer noise can achieve
if it increases the number of quantizers in its array. The thick
horizontal dash-dot line shows the detection probability of the
optimal NP detector (3). This line does not depend on the
quantizer-noise standard deviation and so is flat because the
optimal NP detector (3) does not use the quantizer noise

. The limiting-array detector gave almost the same
detection performance as the optimal NP detector gave.

Theorem 2(b) implies that the limit
gives the upper bound on the detection probability of the noisy
quantizer-array detector (10)–(11). The right-hand side (RHS)
of (11) is the conditional sample mean of the bipolar random
variable given because the
quantizer noise random variables are i.i.d. Then the condi-
tional expected value has the form

(25)

(26)

where . The CDF is the CDF of the sym-
metric scale-family quantizer noise that has standard devi-
ation and that has standard CDF for the entire family.

So the strong law of large numbers [53] implies that the sample
mean in (11) converges with probability one to its
population mean in (26):

(27)

(28)

Equality (28) follows because the quantizer noise is sym-
metric. So Theorem 2(b) implies that the detection probability

of the limiting nonlinear correlation detector

(29)

(30)

gives the upper bound on the detection performance of the quan-
tizer-array detector (10)–(11) for when the quantizer
noise has standard deviation and when the scale-family
CDF is .

We can use this limiting non-noisy nonlinear correlation de-
tector (29)–(30) if the quantizer noise CDF
has a closed form. Simulations show that the detection perfor-
mance of the noisy quantizer-array detector quickly approaches
the detection performance of the limiting quantizer-array

detectors. So we can often use the noisy quan-
tizer-array detector (10)–(11) with near 100 to get a detec-
tion performance close to that of the limiting quantizer-array

detector.
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Fig. 4. Comparison of NP detection performance of four nonlinear detectors for different values of (a) false-alarm probabilities � . (b) Characteristic exponent
or tail-thickness parameter � of ��� channel noise dispersion � when the signal strength � was � � ��� and the number � of samples was � � ��. The
limiting ������ quantizer-array detector performed better than the Cauchy detector, the soft-limiter detector, and the hole-puncher detector for medium-to-low
impulsive ��� noise cases ���� � � � ���� and for small false-alarm probabilities �� � ����.

The limiting nonlinearity is easy to use for sym-
metric uniform quantizer noise because it is a shifted soft-limiter
with shift :

if
if
if

(31)

where . Fig. 3(a) shows that the limiting nonlinear
correlation detector (29)–(30) with the shifted soft-limiter non-
linearity (31) gives almost the same detection performance as
the optimal detector (3). We used the numerical method
of [58] to compute the pdf for . Fig. 4 shows
that the limiting quantizer-array detector performed
better than the Cauchy detector, the soft-limiter detector, and the
hole-puncher detector for medium-to-low impulsive noise
cases and for small false-alarm probabilities

.
The limiting-array nonlinearity (30) is monotone non-de-

creasing while the asymptotic behavior of the locally optimal
nonlinearity in (7) is . So a small
signal strength implies that quantizer-array detectors cannot
perform better than nonlinear correlation detectors with non-
monotonic nonlinearities such as [49], [50]

if

else
(32)

or such as [46]

(33)

Fig. 3(b) shows simulation instances of Theorem 2(c). It
compares the initial SR noise benefits for different types of
simple zero-mean symmetric quantizer noises such as Lapla-
cian, Gaussian, uniform, and discrete bipolar noise when there

are quantizers in the array. Symmetric uniform noise
gave the maximal rate of the initial SR effect as Theorem 2(c)
predicts. It also gave the maximal SR effect (maximal increase
in the detection probability) compared to Laplacian, Gaussian,
and discrete bipolar noise. Theorem 2(c) guarantees only a
maximal rate for the initial SR effect. It does not guarantee a
maximal SR effect for symmetric uniform noise. So some other
type of symmetric quantizer noise may give the maximal SR
effect in other detection problems. Fig. 3(b) also shows that
symmetric discrete bipolar noise gave the smallest SR effect
and was the least robust. The SR effect was most robust against
Laplacian quantizer noise.

IV. MAXIMUM-LIKELIHOOD BINARY SIGNAL DETECTION

IN SYMMETRIC -STABLE CHANNEL NOISE OR

GENERALIZED-GAUSSIAN CHANNEL NOISE

Consider next the ML detection of a deterministic signal
sequence of known shape but unknown amplitude in either
additive i.i.d. channel noise or generalized-Gaussian
channel noise . We assume that the noise pdf has un-
known parameters. The ML detector uses random samples

to decide between the equally likely null hypoth-
esis and alternative hypothesis :

(34)

The ML decision rule minimizes the average decision-
error probability

[59]. The prior probabili-
ties and are equal: .
The ML detector for (34) is a log-likelihood ratio test [45], [46]:

(35)
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The optimal ML detector (35) again does not have a closed form
when the channel noise is except when and .
Nor does the optimal ML detector have a correlation structure
if and thus if the channel noise is not Gaussian.

The optimal ML detector for the hypothesis test (34) has the
different form

(36)

if the symmetric channel noise variables are i.i.d. generalized
Gaussian random variables with pdf

(37)

Here is a positive shape parameter, is an intensity param-
eter, and is a normalizing constant. The generalized Gaussian
family [60] is a two-parameter family of symmetric continuous
pdfs. Its scale-family pdf has the form

(38)

where is the standard pdf of the family, is the standard
deviation, and is the gamma function. This family of pdfs in-
cludes all normal and Laplace pdfs. It includes
in the limit all continuous uniform pdfs on bounded
real intervals. It can also model symmetric platykurtic densities
whose tails are heavier than normal or symmetric lep-
tokurtic densities whose tails are lighter than normal .
Applications include noise modeling in image, speech, and mul-
timedia processing [61]–[64].

Generalized Gaussian noise can apply to watermark detec-
tion or extraction [33], [65]–[67]. The generalized-Gaussian
ML detector (36) does not use the scale parameter but we still
need joint estimates of and . The generalized-Gaussian ML
detector (36) applies to watermark extraction in images when
generalized Gaussian random variables model mid-fre-
quency discrete cosine transform (DCT-2) coefficients [33],
[68] or subband discrete wavelet transform coefficients [65],
[69]. But the mid-frequency DCT-coefficients of many images
may have thicker tails than generalized Gaussian pdfs have.
And using the generalized-Gaussian ML detector (36) may be
difficult for non-Gaussian noise because (36) requires
joint estimation of the signal amplitude and noise parameters
and because (36) also requires exponentiation with floating
point numbers when . So Briassouli and Tsakalides [26]
have proposed using instead the Cauchy pdf to model the DCT
coefficients.

The ML Cauchy detector has the form [40]

(39)

It does not use exponentiation with floating point numbers. But
the nonlinear detectors (36) and (39) require that we jointly es-
timate the signal amplitude and the parameters of the channel-
noise pdf. This joint estimation is not easy in the ML case.

We next analyze a noisy quantizer-array correlation statistic
and its limit . Neither uses the value of for the ML

detection of (34). These nonlinearities are versions of (11) and
(30) with . We show next that the results of Theorems 1
and 2 also hold for the ML correlation detectors based on
and .

V. QUANTIZER NOISE BENEFITS IN ML DETECTION

The next two corollaries apply Theorems 1 and 2 to the ML
detection problem in (34). We first restate the noisy quantizer-
array correlation statistic (11) and its limit (30) with

for the ML detection of the signal in (34):

(40)

(41)

(42)

(43)

We use because the pdfs of the random samples are
symmetric about and given the hypotheses and

of (34) and because both hypotheses are equally likely. The
two ML detectors (40)–(43) require that we know the quantizer
noise and its intensity . But they do not require that we
know the signal amplitude or the channel noise pdf parame-
ters or . The generalized-Gaussian ML detector (36) and the
Cauchy ML detector (39) do require such knowledge.

Corollary 1 requires that the mean and variance of the detec-
tion statistics and in (40) and (42) obey

and for all . These equali-
ties hold because (40)–(43) imply that
and . The pdf of is approximately
Gaussian for both hypotheses because the central limit theorem
applies to (40) and (42) if the sample size is large since
the random variables and are inde-
pendent even though they are not identically distributed. This
holds for uniformly bounded random variables that satisfy the
Lindeberg condition [70]: and

. The variables and
are uniformly bounded so long as the sequence

is bounded. The Lindeberg condition then holds because
the noise pdfs have infinite support since the noise is general-
ized Gaussian or . Then the SR noise-benefit conditions
of Theorems 1 and 2 also hold for the quantizer-array ML de-
tector (40)–(41) and for its limiting-array ML de-
tector (42)–(43). The proof of Corollary 1 mirrors that of The-
orem 1 but uses the error probability as the performance mea-
sure. We state it for completeness because it is brief.

Corollary 1: Suppose that the detection statistic in (40)
has sufficiently large sample size so that it is approximately
conditionally normal: and

where
and . Then the inequality

(44)
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is necessary and sufficient for the SR effect
in the ML detection of (34) using the quantizer-array detector

(40)–(41).
Proof: The ML detection rule (40) for rejects if

. The null hypothesis and alternative hypothesis
partition the sample space. So the probability of average

decision error [59] is

(45)

(46)

(47)

(48)

(49)

(50)

Then the normal pdf and the chain rule of
differential calculus give

(51)

So is necessary and suffi-
cient for the SR effect because is a pdf and
thus .

The SR condition (44) in Corollary 1 allows us to find a
near-optimal quantizer-noise standard deviation for the
ML detector if we have enough samples of the received signal
vector under both hypotheses and in (34). Then the
pdf of is a mixture of two equally likely Gaussian pdfs:

. So
is a non-central chi-square random variable [53]

with noncentrality parameter and 1 degree of freedom.
Then

(52)

(53)

Putting from (52) in (53) gives a quadratic equation in
with solution

(54)
So the real part of (54) gives the consistent estimator
of for large sample size if we replace the popula-
tion variances of and with their sample variances

because then the RHS of (54) is a continuous function of
consistent estimators. Then can replace in (52)
to give the consistent estimator of . The same
received vector allows us to compute and
for all values of by (40)–(43). Then a zero-crossing of

estimates the
optimal quantizer-noise standard deviation for a small
step-size of because the SR condition
(44) is equivalent to since

Section VI uses this zero-crossing method to find a
near-optimal standard deviation of uniform quantizer noise for
the limiting array detector (42)–(43) in watermark decoding.

The lengthy proof of Corollary 2 below is nearly the same as
the proof of Theorem 2 in the Appendix. It replaces the detection
probability with the error probability and uses a zero
threshold. So we omit it for reasons of space.

Corollary 2: Suppose that the channel noise pdf is uniformly
bounded and continuously differentiable. Then

(a) is necessary for the initial SR effect in the quan-
tizer-array detector (40)–(41) for the ML detection of (34)
in any symmetric unimodal channel noise.

(b) Suppose that the initial SR effect occurs with quan-
tizers and with some symmetric quantizer noise in the
quantizer-array detector (40)–(41). Then the rate of the
initial SR effect in the quantizer-array detector (40)–(41)
with quantizers is larger than the rate of the initial SR
effect with quantizers if .

(c) Zero-mean uniform noise is the optimal finite-variance
symmetric scale-family quantizer noise in that it gives the
maximal rate of the initial SR effect among all possible
finite-variance quantizer noise in the ML quantizer-array
detector (40)–(41).

The simulation results in Figs. 5 and 6 show the respective
predicted SR effects in the ML detection (34) of signal in
generalized-Gaussian channel noise and in channel noise
for quantizer-array detectors. The signal was a bipolar sequence
with amplitude . The respective sample sizes were

and for these detectors. The channel noise
was generalized-Gaussian with parameters and
in Fig. 5. It was with and in Fig. 5. The
thin dashed lines in Figs. 5(a) and 6(a) show that the SR effect
does not occur if as Theorem 2(a) predicts. Figs. 5(a)
and 6(a) also show that the rate of the initial SR effect increases
as the number of quantizers increases as Corollary 2(b) pre-
dicts. The thick dashed line in Fig. 5(a) shows the error prob-
ability of the limiting-array ML correlation detector
(42) with limiting-array Gaussian-quantizer-noise nonlinearity

where we have replaced
in (43) with the standard normal CDF . The thick horizontal
dash-dot line shows the error probability of the optimal general-
ized-Gaussian ML detector (36). The limiting-array
detector does not require that we know the signal amplitude .
It still gave almost the same detection performance as the op-
timal generalized-Gaussian detector gave.

The simulation results in Figs. 5(b) and 6(b) show the initial
SR-rate optimality of symmetric uniform quantizer noise. The
symmetric uniform quantizer noise gave the maximal rate of the
initial SR effect as Corollary 2(c) predicts. Gaussian noise gave
the best peak SR effect in Fig. 5(b) in the sense that it had the
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Fig. 5. Initial SR effects in ML quantizer-array detection. The signal was a bipolar sequence with amplitude� � ���. The channel noise was generalized-Gaussian
with parameters � � ��� and � � �. (a) Initial SR effects for zero-mean Gaussian quantizer noise. The initial SR effect does not occur if � � � as Corollary
2(a) predicts. The rate of the initial SR effect increased as the number � of quantizers increased as Corollary 2(b) predicts. The thick dashed line shows the error
probability � of the respective limiting-array ������ detector. This detection performance was nearly optimal compared to the optimal generalized-Gaussian
detector (36) (thick horizontal dashed-dot line). (b) Comparison of initial SR noise benefits in the ML quantizer-array detector (40)–(41) for four different types
of quantizer noise. Symmetric uniform noise gave the maximal rate of the initial SR effect as Corollary 2(c) predicts. But Gaussian noise gave the best peak SR
effect because it had the largest decrease in error probability. Laplacian quantizer noise gave the most robust SR effect and had almost the same peak SR effect as
Gaussian noise had. Symmetric discrete bipolar noise gave the smallest SR effect and was least robust.

Fig. 6. Initial SR effects in the quantizer-array ML detection of a known bipolar sequence � of unknown amplitude � in infinite-variance �	� channel noise
with 	 � ��� and 
 � ��� . (a) Initial SR effects for Laplacian quantizer noise. The initial SR effect did not occur if � � � as Corollary 2(a) predicts. The
rate of initial SR effect increased as the number � of quantizers increased as Corollary 2(b) predicts. (b) Comparison of initial SR effects in the quantizer-array
ML detection of a deterministic bipolar sequence � of unknown amplitude � in infinite-variance �	� channel noise with different types of quantizer noise. The
symmetric uniform noise gave the maximal rate of the initial SR effect as Corollary 2(c) predicts. Symmetric discrete bipolar noise gave the smallest SR effect and
was least robust. Symmetric uniform noise had the peak SR effect in the sense that it had the largest decrease in error probability. Gaussian noise gave almost the
same peak SR effect as uniform noise did. The SR effect was most robust against Laplacian quantizer noise.

maximal decrease in error probability. Symmetric uniform noise
gave the highest peak SR effect in Fig. 6(b) when compared with
symmetric Laplacian, Gaussian, and discrete bipolar noise even

though Corollary 2(c) does not guarantee such optimality for
the peak SR effect. Symmetric discrete bipolar noise gave the
smallest SR effect and was least robust.
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VI. WATERMARK DECODING USING THE NOISY

NONLINEAR-CORRELATION DETECTOR

The above noisy nonlinear detectors and their limiting-array
detectors can benefit digital watermark extraction.

We will demonstrate this for blind watermark decoding based
on direct-sequence spread spectrum in the DCT domain [33],
[71], [72]. Digital watermarking helps protect copyrighted mul-
timedia data because it hides or embeds a mark or signal in
the data without changing the data too much [73], [74]. Trans-
form-domain watermarking techniques tend to be more robust
and tamper-proof than direct spatial watermarking [74], [75]. So
we use the popular direct-sequence spread-spectrum approach
to watermarking in the DCT domain because such spreading
gives a robust but invisible watermark and because it allows
various types of detectors for blind watermark extraction [33],
[71], [72].

DCT watermarking adds or embeds the watermark signals
of an binary watermark image in the

DCT-2 coefficients of an host image . Here
and are the respective 2-D indices

in the transform domain and in the spatial domain. We apply
an 8 8 block-wise DCT-2 transform [72]. Using a block-wise
DCT involves less computation than using a full-image DCT.

The watermark image is an black-and-white
image such that about half its pixels are black and half are
white. This watermark image gives a watermark message

with bipolar bits such
that if (white) and such that
if (black) where .

A secret key picks a pseudorandom assignment of disjoint
subsets of size or cardinality from the set of mid-fre-
quency DCT-coefficients for each message bit . Denote as
the set of 2-D indices of the DCT-coefficient set :

. Then . The secret key also gives
the initial seed to a pseudorandom sequence generator that pro-
duces a bipolar spreading sequence of length
for each message bit [33], [59]. Each is a pseudorandom se-
quence of i.i.d. random variables in . The cross-corre-
lation among these spreading sequences equals zero
while their autocorrelation equals the Kronecker delta function.

We embed the information of bit in each DCT-coefficient
of the set using the corresponding spreading sequence
of length . Each bipolar message bit multiplies its

biploar pseudorandom spreading sequence to “spread” the
spectrum of the original message signal over many frequen-
cies. We use the psychovisual DCT-domain perceptual mask

of [26] to obtain the watermark embedding
strength that reduces the visibility of the watermark in the
watermarked image [76]. Here is the known shape of the
perceptual mask and is the known or unknown
scaling factor. This perceptual mask also multiplies the
pseudorandom sequence to give the watermark signal

for each -pixel in the DCT domain.
We then add to the host-image DCT-2-coefficient

. This gives the watermarked DCT-2 coefficient
. Then the inverse block-wise

DCT-2 transform gives a watermarked image .
Retrieving the hidden message requires that we know the

pseudorandom assignment of DCT-coefficients

to each message bit in and that we also know the pseudo-
random sequence for each . Then an attacker cannot extract
the watermark without the secret key. So suppose that we do
know the secret key. Then watermark decoding just tests bi-
nary hypotheses:

(55)

for all and for . Here is the
known signal sequence and is the known or unknown scaling
factor of the perceptual mask. Define .
The optimal decision rule to decode the message bit is the
ML rule

(56)

because we assume that the DCT-2 coefficients are i.i.d.
random variables and that the message bits are equally likely
to be or 1. So the ML detection rule (56) becomes a simple
linear correlator [59]

(57)

if the DCT-2 coefficients are Gaussian random variables. The
ML detection rule (56) becomes the generalized-Gaussian (GG)
detector or decoder

(58)

or the Cauchy detector

(59)

if the respective DCT-2 coefficients have a generalized Gaussian
or Cauchy pdf. But these optimal ML detectors require that we
know the scaling factor of the perceptual mask and that we
know the pdf parameters and . Both the suboptimal quan-
tizer-array detector (40)–(41)

(60)

(61)

and its limiting-array nonlinear correlation detector (42)–(43)

(62)

(63)
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require that we know the quantizer noise and its intensity
. They do not require that we know the scaling factor of

the perceptual mask or the channel noise pdf parameters or .
We use the zero-crossing method of Section V to find a near-op-
timal quantizer-noise standard deviation for these array-based
detectors. The noise-based algorithm below summarizes the
processes of watermark embedding and watermark decoding.

Watermark Embedding
1. Compute the 8 8 block-wise DCT-2 transform of

the host image .
2. Let be the set of mid-frequency DCT-2 coefficients of

all 8 8 DCT blocks of .
3. Convert the binary (black-and-white) watermark

image into an -bit bipolar water-
mark message such that if

(white) or if
(black) where .

4. Use a secret key to generate pseudorandom disjoint sub-
sets of size from the set .

5. Let be the set of two-dimensional indexes of the DCT-
coefficient set .

6. Use the secret key to generate pseudorandom bipolar
spreading sequences of length where
for all and .

7. For each message bit : compute the watermark signals
for all where is the

perceptual mask in [26] with scale factor .
8. For each message bit : compute the watermarked DCT-2

coefficients for all .
9. Compute the inverse block-wise DCT-2 transform using

the watermarked DCT-coefficients to get the water-
marked image .

Watermark Decoding
1. Compute the 8 8 block-wise DCT-2 transform coef-

ficients of the watermarked host image
.

2. Use the secret key to obtain the index sets for
.

3. Obtain sets of watermarked DCT-coefficients
for .

4. Use the secret key to reproduce the pseudo spreading se-
quences .

5. Find the decoded message bits using one of the
following ML decoders for binary hypothesis tests in
(55):

Without Noise Injection
IF the user knows the scaling factor of the perceptual mask
• Use the Cauchy detector (60) (estimate the dispersion )

or
• Use the GG detector (60) (estimate the shape parameter )
Else
• Use the Cauchy detector (60) (estimate both and ) or
• Use the limiting-array correlation detector

(62)–(63) for uniform quantizer noise and use the
zero-crossing method of Section V to find a near-op-
timal qunatizer-noise intensity or

With Noise Injection
• Use the noisy quantizer-array detector (61)–(62) with

quantizer number and use the zero-crossing

method of Section V to find a near-optimal qunatizer-noise
intensity.

End
Fig. 1 shows a pronounced SR noise benefit in the watermark

decoding of the quantizer-array detector (60)–(61) and its
limiting-array nonlinear correlation detector (62)–(63) when
the quantizer noise is symmetric uniform noise. The simulation
software was Matlab. Fig. 1(a) shows the yin-yang image. We
used this binary (black and white) 64 64 image as a hidden
message to watermark the 512 512 gray-scale Lena image.
Fig. 1(b) shows the Lena image watermarked with the yin-yang
image such that its peak signal-to-noise ratio (PSNR) was
46.6413 dB. We define the PSNR as the ratio of the maximum
power of the original host image’s pixels to the average
power of the difference between the original image and the
watermarked image :

(64)

Each DCT-coefficient set of the Lena image in Fig. 1(a)
hides one message bit of the yin-yang image using a
Matlab-generated pseudorandom bipolar spreading sequence

. The watermark had a constant amplitude and
so did not involve psychovisual properties. The solid U-shaped
line in Fig. 1(c) shows the average pixel-detection errors of
the ML noisy quantizer-array detector (61)–(62) for 200 ran-
domly generated secret keys. The dashed vertical lines show
the total min-max deviation of the pixel-detection errors in
these simulation trials. The dashed U-shaped line shows the
average pixel-detection errors of the limiting-array
correlation detector (62)–(63) where is the soft-limiter
nonlinearity of (8) because the quantizer noise is sym-
metric uniform noise. So the thick dashed line gives the lower
bound on the pixel-detection error that any quantizer-array
detector with symmetric uniform quantizer noise can achieve
by increasing the number of quantizers in its array.

Figs. 1(d)–1(g) show the extracted yin-yang image using the
ML linear correlation detector (57) and the ML noisy quan-
tizer-array detector (60)–(61) according to the noise-based al-
gorithm. The noisy quantizer-array nonlinear detector outper-
forms the linear correlation detector. Figs. 1(e) and 1(f) show
that adding uniform quantizer noise improved the watermark de-
coding. The pixel-detection errors decreased by more than 33%
as the uniform quantizer noise standard deviation increased
from to . Fig. 1(g) shows that too much quantizer
noise degraded the watermark detection. But the SR effect was
robust against the quantizer noise intensity because the pixel-de-
tection error in (g) was still less than the pixel-detection errors
in (d) and (e).

We also watermarked Lena and six other known images
(Elaine, Goldhill, Pirate, Peppers, Bird, and Tiffany) with the
yin-yang image using a perceptual mask based on the psycho-
visual properties in [26]. Fig. 7 shows these six watermarked
images. We used the scaling factor of the psychovisual
perceptual mask such that the PSNRs of all these water-
marked images remained between 43 dB and 47 dB. We used
over 200 simulation trials for each of these seven images.
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Fig. 7. Six different 512� 512 host images watermarked with the yin-yang
image in Fig. 1(a) using a perceptual mask [26] based on the psychovisual prop-
erties. (a) Elaine. (b) Goldhill. (c) Pirate. (d) Bird. (e) Peppers. (f) Tiffany. The
PSNR of each watermarked image was between 43 to 47 dB.

TABLE I
MINIMAL VALUES OF AVERAGE WATERMARK-DECODING PERFORMANCE FOR

THE CAUCHY DETECTOR, THE LIMITING-ARRAY ������ DETECTOR, AND

THE GENERALIZED-GAUSSIAN (GG) DETECTOR. THE WATERMARKING USED A

PERCEPTUAL MASK [26] BASED ON PSYCHOVISUAL PROPERTIES

A set of 200 randomly generated secret keys allocated the
DCT-2-coefficients and produced the spreading sequences for
the watermarking process of each host image. We then applied
the ML Cauchy detector, the limiting-array detector
for the symmetric uniform quantizer noise, and the general-
ized-Gaussian detector for various values of their respective
pdf parameters , , and to each of the seven watermarked
images to decode the watermark using each secret key.

Table I shows the minimal values of the average pixel-de-
tection errors for each host image and for each detector. The
numbers in parentheses show the pixel decoding errors for the
Cauchy detector and the generalized-Gaussian detector when
the detectors used the scale factor of the pyschovisual per-
ceptual mask. The linear detector and the limiting array detector
did not need the watermark scale factor . The limiting array de-
tector for the symmetric uniform quantizer noise performed sub-
stantially better than did the other two nonlinear detectors when
the detectors did not use the scale factor . The Cauchy detector
gave the best performance otherwise. The computational com-
plexity for all the detectors was only of order for all arithmetic
and logical operations where the length of the signal was . The
limiting array detector also had the least complexity among the
nonlinear detectors while the generalized-Gaussian detector had
the most.

Fig. 8. Finding a near-optimal quantizer-noise standard deviation for the lim-
iting-array detector (62)–(63) in the watermark decoding of the ’Bird’ image.

Psychovisual watermarking greatly reduced decoding errors
compared with constant-amplitude watermark. Consider the
Lena image: Table I and Fig. 1(c) and (d) show that the lim-
iting-array detector had 7 versus 43 pixel errors and the linear
detector had 242 versus 672 pixel errors.

Fig. 8 shows the estimation accuracy of the zero-crossing
method in Section V for the limiting-array detector (62)–(63) in
the watermark decoding of the Bird image. The method gives
the near-optimal quantizer-noise standard deviation of 1.3 in
Fig. 8(a). Fig. 8(b) shows the true optimal quantizer-noise stan-
dard deviation of 1.38 for the pixel detection error.

Noise can also benefit DCT-domain watermark decoding for
some other types of nonlinear detectors. Researchers [77]–[79]
have found noise benefits in DCT-domain watermark decoding
based on parameter-induced stochastic resonance [80]. Their
approaches differed from ours in two main ways. They used a
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pulse-amplitude-modulated antipodal watermark signal but did
not use pseudorandom bipolar spreading sequences to embed
this watermark signal in the DCT coefficients. They further used
nonlinear but dynamical detectors to process the watermarked
DCT coefficients. Sun et al. [77] used a monostable system with
selected parameters for a given watermark. Wu and Qiu [81]
and Sun and Lei [78] used a single bistable detector while Duan
et al. [79] used an array of bistable saturating detectors. These
bistable detectors require tuning two system parameters besides
finding the optimal additive noise type and its variance. These
detectors are also subthreshold systems. Their dynamical na-
ture made the error probability in the decoding of one water-
mark bit depend on the value of the previous watermark bit.
Our noisy quantizer-array detectors produced suprathreshold
SR noise benefits [5]. The detection error probabilities for the
watermark bits were also independent.

VII. CONCLUSION

Noise-enhanced quantizer-array correlation detection leads
naturally to noise-enhanced watermark decoding because we
can view digital watermarking systems as digital communica-
tion systems [82] with statistical hypothesis testing at the pixel
level. Such noise benefits will occur if the symmetric unimodal
channel noise is not Gaussian and only if the array contains more
than one quantizer. This noise-enhancement technique should
apply to other problems of signal processing and communica-
tions that involve some type of nonlinear statistical hypothesis
testing. The paper also showed that uniform noise gives the op-
timal initial rate of the SR noise benefit among all finite-vari-
ance symmetric scale-family quantizer noise for both NP and
ML detection. Finding practical algorithms for the overall op-
timal quantizer noise remains an open research question.

APPENDIX

PROOF OF THEOREM 2

Proof: Part (a) The definition of the initial SR effect and
Theorem 1 imply that the initial SR effect occurs if and only
if there exists some such that inequality (12) holds for
all quantizer-noise intensities . Then multiply both
sides of (12) by and use the chain rule to get

(65)

for all as a necessary condition for the initial SR
effect. We will prove that inequality (65) does not hold for all
quantizer-noise intensities in some positive interval if

. We first derive the equations for , , ,
and . We then show that the RHS of (65) is negative
in some noise-intensity interval while the left-hand side
(LHS) of (65) is positive in the same interval.

Define first the random variables for
. Then and the population mean of
is

(66)

The are i.i.d. random variables with population mean

(67)

(68)

Here is the signal amplitude and is the
conditional mean with received signal when the alterna-
tive hypothesis is true. Then (68) follows because

and because the are i.i.d. channel-noise random
variables with common pdf . Write

for brevity.
Define next where

and the are finite-variance i.i.d. scale-family quantizer-noise
random variables with variance and CDF . Then

(69)

(70)

where is the standard CDF for the scale family of the quan-
tizer noise. So (66), (68), and (70) imply that

(71)

(72)

because is a nondecreasing odd function
around and because is a symmetric unimodal
density with mode .

We next derive an expression for and then find the
limit . Note first that

(73)

(74)

because of the distributional derivatives [83] of and
with respect to . This allows us to

interchange the order of integration and differentiation [83] in
(73)–(74). Next substitute in (74) to get

(75)

(76)
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because is a symmetric pdf. The mean-value theorem [84]
implies that for any

(77)

for all . The supremum in (77) is finite for some small
because the pdf derivative is continuous at . Then

Lebesgue’s dominated convergence theorem [84] allows us to
commute the limit and integral in (76) because the RHS of (77)
bounds or dominates the LHS:

(78)

(79)

(80)

(81)

because is the symmetric pdf of the zero-mean and unit-
variance quantizer noise . The unimodality of the symmetric
channel noise implies that (82) is negative. Then
is negative for all noise intensities in some interval .
Then (82) also implies that

(82)

because in .
We now derive expressions for the population variance

of and its distributional derivative .
The are i.i.d. random variables. So

(83)

(84)

(85)

where

(86)

and

(87)

Expand the integrand term as follows:

(88)

(89)

(90)

because of (70). Put (90) in (87) and then put (86) and (87) in
(85). This gives

(91)

Then the distributional derivative of with respect to
is

(92)

Equation (92) implies that is positive for all
if because is negative in the quantizer-

noise-intensity interval and because of (72). So the LHS
of (65) is positive and the RHS of (65) is negative for all

if . Hence is necessary for the initial SR ef-
fect in the NP detection of a dc signal in symmetric unimodal
channel noise using the nonlinear test statistic .

Part (b) Take the limit on both sides of (24) to
find the rate of the initial SR effect near a zero quantizer-noise
intensity

(93)

(94)

because of (82). We know that

(95)

because . Equations (94) and
(96) imply that the rate of the initial SR effect increases if

decreases. Further

(96)

if we substitute in (92). Then

(97)

The integral of (97) is negative because is non-
positive. Then decreases as the number



PATEL AND KOSKO: NOISE BENEFITS IN QUANTIZER-ARRAY CORRELATION DETECTION 503

of quantizers increases because if
. So the initial SR effect with quantizers is larger

than that of the detector with quantizers if .
Part (c) Fix the channel noise and the number of

quantizers and choose the symmetric scale-family quantizer
noise . Equation (94) and (96) imply that the rate of increase
in the detection probability with respect to is maximal if

achieves its minimal value. We want to find
the symmetric standard (zero-mean and unit-variance) pdf
of the zero-mean unit-variance scale-family quantizer noise
that minimizes the expectation .
But this is equivalent to maximizing

(98)

because is nonpositive and is a probability
density function.

Suppose first that the quantizer noise is a symmetric dis-
crete random variable on the sample space

where . Suppose also that and
for all . Let

denote the probability density of this symmetric
standard discrete quantizer noise where

for all and . Then the finite vari-
ance of lets us replace (98) with the appropriate convergent
series . Write

(99)

(100)

(101)

Equality (100) follows because is zero-mean while (101) fol-
lows because the density is symmetric ( and

) and . Then we need to find the
density that maximizes (101). So write

(102)

Then the Cauchy-Schwarz inequality [84] gives

(103)

(104)

(105)

(106)

(107)

(108)

So (108) gives the upper bound on (98) for any discrete sym-
metric standard quantizer noise .

Suppose now that the quantizer noise pdf is continuous.
Write

(109)

Again the Cauchy-Schwarz inequality [84] gives

(110)

(111)

(112)

(113)

(114)

Equalities (113)–(114) follow because is a uni-
form random variable in for any continuous quantizer
noise [53]. Inequality (110) becomes an equality if and only
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if obeys for some constant on
the support of [84]. Then for all

for because is the CDF
of standard quantizer noise. The same CDF implies that is
uniformly distributed in . So symmetric uniform
quantizer noise achieves the upper bound of (114) and
(108). So zero-mean uniform noise gives the maximal rate
of the initial SR effect among all finite-variance continuous
scale-family quantizer noise.

REFERENCES

[1] H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Theory
of stochastic resonance effects in signal detection: Part I—Fixed
detectors,” IEEE Trans. Signal Process., vol. 55, pp. 3172–3184, Jul.
2007.

[2] M. Guerriero, P. Willett, S. Marano, and V. Matta, “Speedier sequential
tests via stochastic resonance,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. ICASSP , 4, 2008, pp. 3901–3904.

[3] S. Kay, “Can detectability be improved by adding noise?,” IEEE Signal
Process. Lett., vol. 7, pp. 8–10, Jan. 2000.

[4] B. Kosko, Noise. New York: Viking/Penguin, 2006.
[5] M. D. McDonnell and D. Abbott, “What is stochastic resonance? def-

initions, misconceptions, debates, and its relevance to biology,” PLoS
Computat. Biol., vol. 5, no. 5, p. E1000348, May 2009.

[6] S. Mitaim and B. Kosko, “Adaptive stochastic resonance,” Proc. IEEE,
vol. 86, pp. 2152–2183, 1998.

[7] A. Patel and B. Kosko, “Stochastic resonance in noisy spiking retinal
and sensory neuron models,” Neural Netw., vol. 18, no. 5–6, pp.
467–478, 2005.

[8] A. Patel and B. Kosko, “Optimal noise benefits in Neyman-Pearson and
inequality-constrained statistical signal detection,” IEEE Trans. Signal
Process., vol. 57, pp. 1655–1669, 2009.

[9] D. Rousseau and F. Chapeau-Blondeau, “Constructive role of noise in
signal detection from parallel array of quantizers,” Signal Process., vol.
85, no. 3, pp. 571–580, Mar. 2005.

[10] N. G. Stocks, “Information transmission in parallel threshold arrays:
Suprathreshold stochastic resonance,” Phys. Rev. E, vol. 63, no. 4, p.
041114, Mar. 2001.

[11] A. R. Bulsara and A. Zador, “Threshold detection of wideband signals:
A noise-induced maximum in the mutual information,” Phys. Rev. E,
vol. 54, no. 3, pp. R2185–R2188, Sep. 1996.

[12] A. Patel and B. Kosko, “Error-probability noise benefits in threshold
neural signal detection,” Neural Netw., vol. 22, no. 5–6, pp. 697–706,
Jul./Aug. 2009.

[13] D. Rousseau, G. V. Anand, and F. Chapeau-Blondeau, “Noise-en-
hanced nonlinear detector to improve signal detection in non-Gaussian
noise,” Signal Process., vol. 86, no. 11, pp. 3456–3465, Nov. 2006.

[14] A. A. Saha and G. V. Anand, “Design of detectors based on stochastic
resonance,” Signal Process., vol. 83, no. 6, pp. 1193–1212, 2003.

[15] P.-O. Amblard, S. Zozor, M. D. McDonnell, and N. G. Stocks, “Pooling
networks for a discrimination task: Noise-enhanced detection,” Proc.
SPIE, vol. 6602, no. 1, pp. 66020S-1–12, 2007.

[16] L. Gammaitoni, “Stochastic resonance and the dithering effect
in threshold physical systems,” Phys. Rev. E, vol. 52, no. 5, pp.
4691–4698, Nov. 1995.

[17] P. Hänggi, “Stochastic resonance in biology,” Chem. Phys. Chem., vol.
3, pp. 285–290, 2002.

[18] I. Y. Lee, X. Liu, C. Zhou, and B. Kosko, “Noise-enhanced detec-
tion of subthreshold signals with carbon nanotubes,” IEEE Trans. Nan-
otechnol., vol. 5, pp. 613–627, Nov. 2006.

[19] A. Patel and B. Kosko, “Stochastic resonance in continuous and spiking
neuron models with Levy noise,” IEEE Trans. Neural Netw., vol. 19,
pp. 1993–2008, Dec. 2008.

[20] D. Applebaum, “Extending stochastic resonance for neuron models
to general Levy noise,” IEEE Trans. Neural Netw., vol. 20, pp.
1993–1995, Dec. 2009.

[21] W. C. Stacey and D. M. Durand, “Stochastic resonance improves signal
detection in hippocampal CA1 neurons,” J. Neurophysiol., vol. 83, pp.
1394–1402, 2000.

[22] N. Stocks, D. Appligham, and R. Morse, “The application of
suprathreshold stochastic resonance to cochlear implant coding,”
Fluctuation and Noise Lett., vol. 2, pp. L169–L181, 2002.

[23] K. Wiesenfeld and F. Moss, “Stochastic resonance and the benefits of
noise: From ice ages to crayfish and squid,” Nature (London), vol. 373,
p. 33, 1995.

[24] A. Benerjee, P. Burlina, and R. Chellappa, “Adaptive target detection
in foliage-penetrating SAR images using alpha-stable models,” IEEE
Trans. Image Process., vol. 8, pp. 1823–1831, Dec. 1999.

[25] M. Bouvet and S. C. Schwartz, “Comparison of adaptive and robust
receivers for signal detection in ambient underwater noise,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-37, no. 4, p. 621,
1989.

[26] A. Briassouli, P. Tsakalides, and A. Stouraitis, “Hidden messages
in heavy-tails: DCT-domain watermark detection using alpha-stable
models,” IEEE Trans. Multimedia, vol. 7, pp. 700–715, 2005.

[27] S. Kay, J. Michels, H. Chen, and P. Varshney, “Reducing probability of
decision error using stochastic resonance,” IEEE Signal Process. Lett.
, vol. 13, no. 11, pp. 695–698, Nov. 2006.

[28] H. Chen, P. K. Varshney, S. M. Kay, and J. H. Michels, “Noise en-
hanced nonparametric detection,” IEEE Trans. Inf. Theory, vol. 55, pp.
499–506, 2009.

[29] M. D. McDonnell, N. G. Stocks, and D. Abbott, “Optimal stimulus
and noise distributions for information transmission via suprathreshold
stochastic resonance,” Phys. Rev. E, vol. 75, no. 6, pp. 061 105–+, 2007.

[30] S. Zozor and P.-O. Amblard, “Stochastic resonance in locally op-
timal detectors,” IEEE Trans. Signal Process., vol. 51, no. 12, pp.
3177–3181, Dec. 2003.

[31] F. Chapeau-Blondeau and D. Rousseau, “Noise-enhanced performance
for an optimal Bayesian estimator,” IEEE Trans. Signal Process., vol.
52, pp. 1327–1334, May 2004.

[32] D. C. Munson, “A note on Lena,” IEEE Trans. Image Process., vol. 5,
p. 3, 1996.

[33] J. R. Hernandez, A. Member, F. Perez-Gonzalez, M. Amado, and O.
Pérez-gonzález, “DCT-domain watermarking techniques for still im-
ages: Detector performance analysis and a new structure,” IEEE Trans.
Image Process., vol. 9, pp. 55–68, 2000.

[34] M. Thompson, D. Halverson, and G. Wise, “Robust detection in nom-
inally Laplace noise,” IEEE Trans. Commun., vol. 42, pp. 1651–1660,
1994.

[35] D. Middleton, “Non-Gaussian noise models in signal processing for
telecommunications: New methods and results for class a and class B
noise models,” IEEE Trans. Inf. Theory, vol. 45, pp. 1129–1149, May
1999.

[36] S. M. Saberali, H. Amindavar, and J. Ritcey, “Blind detection in sym-
metric non-Gaussian noise with unknown pdf using maximum entropy
method with moment generating function constraints,” Signal Process.,
vol. 90, no. 3, pp. 891–899, 2010.

[37] N. G. Stocks, “Suprathreshold stochastic resonance in multilevel
threshold systems,” Phys. Rev. Lett., vol. 84, no. 11, pp. 2310–2313,
Mar. 2000.

[38] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, and D. Abbott, Sto-
chastic Resonance: From Suprathreshold Stochastic Resonance to Sto-
chastic Signal Quantization. Cambridge, U.K.: Cambridge Univer-
sity Press, 2008.

[39] M. Grigoriu, Applied Non-Gaussian Processes. Englewood Cliffs,
NJ: Prentice-Hall, 1995.

[40] C. L. Nikias and M. Shao, Signal Processing With Alpha-Stable Dis-
tributions and Applications. New York: Wiley-Intersci., 1995.

[41] , R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds., A Practical Guide to
Heavy Tails: Statistical Techniques and Applications. Boston, MA:
Birkhauser, 1998.

[42] A. Achim, S. Member, A. Bezerianos, and P. Tsakalides, “Novel
Bayesian multiscale method for speckle removal in medical ultra-
sound images,” IEEE Trans. Med. Imag., vol. 20, pp. 772–783, 2001.

[43] P. G. Georgiou, S. Member, P. Tsakalides, and C. Kyriakakis, “Alpha-
stable modeling of noise and robust time-delay estimation in the pres-
ence of impulsive noise,” IEEE Trans. Multimedia, vol. 1, pp. 291–301,
1999.

[44] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-
similarity through high-variability: Statistical analysis of ethernet lan
traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, pp. 71–86,
1997.

[45] G. Tsihrintzis and C. Nikias, “Performance of optimum and subop-
timum receivers in the presence of impulsive noise modeled as an
alpha-stable process,” IEEE Trans. Commun., vol. 43, pp. 904–914,
Mar. 1995.

[46] S. Zozor, J.-M. Brossier, and P.-O. Amblard, “A parametric approach
to suboptimal signal detection in �-stable noise,” IEEE Trans. Signal
Process., vol. 54, pp. 4497–4509, Dec. 2006.



PATEL AND KOSKO: NOISE BENEFITS IN QUANTIZER-ARRAY CORRELATION DETECTION 505

[47] S. Ambike, J. Ilow, and D. Hatzinakos, “Detection for binary transmis-
sion in a mixture of Gaussian noise and impulsive noise modeled as
an alpha-stable process,” IEEE Signal Process. Lett., vol. 1, no. 3, pp.
55–57, Mar. 1994.

[48] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses, 3rd
ed. New York: Springer, 2008.

[49] C. Brown and A. Zoubir, “A nonparametric approach to signal detec-
tion in impulsive interference,” IEEE Trans. Signal Process., vol. 48,
no. 9, pp. 2665–2669, Sep. 2000.

[50] C. Brown, “Score functions for locally suboptimum and locally subop-
timum rank detection in alpha-stable interference,” in Proc. 11th IEEE
Signal Process. Workshop on Statist. Signal Process. (SSP), 2001, pp.
58–61.

[51] E. Kuruoglu, W. Fitzgerald, and P. Rayner, “Near optimal detection of
signals in impulsive noise modeled with a symmetric �-stable distri-
bution,” IEEE Commun. Lett., vol. 2, no. 10, pp. 282–284, Oct. 1998.

[52] X. Li, L. Jin, and S. Wang, “A simplified non-Gaussian mixture model
for signal lo detection in�-stable interference,” in Proc. 2008 Congress
on Image and Signal Process., 2008, vol. 5, pp. 403–407.

[53] G. Casella and R. Berger, Statistical Inference. Pacific Grove, CA:
Duxbury Resource Center, 2001.

[54] B. Hayes, “Randomness as a resource,” Amer. Scientist, vol. 89, no. 4,
pp. 300–304, 2001.

[55] M. Epstein, L. Hars, R. Krasinski, M. Rosner, and H. Zheng, “De-
sign and implementation of a true random number generator based on
digital circuit artifacts,” Lecture Notes in Comput. Sci., vol. 2779, pp.
152–165, 2003.

[56] N. Kimura and S. Latifi, “A survey on data compression in wireless
sensor networks,” in Proc. Int. Conf. Inf. Technol.: Coding and Comput.
(ITCC’05)—Vol. II, 2005, pp. 8–13.

[57] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, “Low-
complexity digital encoding strategies for wireless sensor networks,”
Proc. ICASSP98, pp. 3273–3276, 1998.

[58] J. Nolan, “Numerical calculation of stable densities and distribution
functions,” Commun. Statist., vol. 13, pp. 759–774, 1997.

[59] J. Proakis and M. Salehi, Digital Communications, 5th ed. New York:
McGraw-Hill, 2008.

[60] S. Nadarajah, “A generalized normal distribution,” J. Appl. Statist., vol.
32, no. 7, pp. 685–694, Sep. 2005.

[61] Y. Bazi, L. Bruzzone, and F. Melgani, “Image thresholding based on
the EM algorithm and the generalized Gaussian distribution,” Pattern
Recogn., vol. 40, no. 2, pp. 619–634, 2007.

[62] M. Do and M. Vetterli, “Wavelet-based texture retrieval using gener-
alized Gaussian density and Kullback-Leibler distance,” IEEE Trans.
Image Process., vol. 11, no. 2, pp. 146–158, Feb. 2002.

[63] S. Gazor and W. Zhang, “Speech probability distribution,” IEEE Signal
Process. Lett., vol. 10, no. 7, pp. 204–207, Jul. 2003.

[64] R. Krupinski and J. Purczynski, “Approximated fast estimator for the
shape parameter of generalized Gaussian distribution,” Signal Process.,
vol. 86, no. 2, pp. 205–211, 2006.

[65] Q. Cheng and T. Huang, “An additive approach to transform-domain
information hiding and optimum detection structure,” IEEE Trans.
Multimedia, vol. 3, no. 3, pp. 273–284, Sep. 2001.

[66] A. Nikolaidis and I. Pitas, “Asymptotically optimal detection for addi-
tive watermarking in the DCT and DWT domains,” IEEE Trans. Image
Process., vol. 12, no. 5, pp. 563–571, May 2003.

[67] J. Wang, G. Liu, Y. Dai, J. Sun, Z. Wang, and S. Lian, “Locally op-
timum detection for Barni’s multiplicative watermarking in DWT do-
main,” Signal Process., vol. 88, no. 1, pp. 117–130, 2008.

[68] A. C. Bovik, The Essential Guide to Image Processing. New York:
Academic , 2009.

[69] G. V. D. Wouwer, P. Scheunders, and D. V. Dyck, “Statistical texture
characterization from discrete wavelet representations,” IEEE Trans.
Image Process., vol. 8, pp. 592–598, 1999.

[70] P. Billingsley, Probability and Measure, 3rd ed. New York: Wiley-
Intersci., 1995.

[71] M. Barni, F. Bartolini, V. Cappellini, and A. Piva, “A DCT-domain
system for robust image watermarking,” Signal Process., vol. 66, no.
3, pp. 357–372, 1998.

[72] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker, Dig-
ital Watermarking and Steganography, 2nd ed. Boston, MA: Morgan
Kaufmann, 2007.

[73] M. Arnold, S. D. Wolthusen, and M. Schmucker, Techniques and Ap-
plications of Digital Watermarking and Content Protection. Dedham,
MA: Artech House, 2003.

[74] B. Furht and D. Kirovski, Multimedia Security Handbook. Boca
Raton, FL: CRC, 2005.

[75] G. Langelaar, I. Setyawan, and R. Lagendijk, “Watermarking digital
image and video data. A state-of-the-art overview,” IEEE Signal
Process. Mag., vol. 17, no. 5, pp. 20–46, Sep. 2000.

[76] A. J. Ahumada and H. A. Peterson, B. E. Rogowitz, Ed., “Luminance-
model-based DCT quantization for color image compression,” in Proc.
Soc. Photo-Opt. Instrum. Eng. (SPIE) Conf. Ser., Aug. 1992, vol. 1666,
pp. 365–374.

[77] S. Sun and P. Qui, “Algorithm for digital watermarking based on pa-
rameter-induced stochastic resonance,” J. Commun., vol. 88, no. 8, pp.
48–55, 2005.

[78] S. Sun and B. Lei, “On an aperiodic stochastic resonance signal pro-
cessor and its application in digital watermarking,” Signal Process.,
vol. 88, no. 8, pp. 2085–2094, 2008.

[79] F. Duan, D. Abbott, and F. M. C. Chapeau-Blondeau, “The application
of saturating detectors to a DCT-domain watermarking scheme,” Fluc-
tuation and Noise Lett., vol. 8, no. 1, pp. L65–L79, 2008.

[80] F. Duan and B. Xu, “Parameter-induced stochastic resonance and base-
band binary PAM signals transmission over an awgn channel,” I. J. Bi-
furc. Chaos, vol. 13, no. 2, pp. 411–425, 2003.

[81] G. Wu and Z. Qiu, “A novel watermarking scheme based on stochastic
resonance,” in Proc. 8th Int. Conf. Signal Process., 2006, vol. 2.

[82] S. Baudry, J. Delaigle, B. Sankur, B. Macq, and H. Maitre, “Analysis
of error correction strategies for typical communication channels in
watermarking,” Signal Process., vol. 81, pp. 1239–1250, 2001.

[83] D. Jones, The Theory of Generalized Functions, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 1982.

[84] G. B. Folland, Real Analysis: Modern Techniques and Their Applica-
tions, 2nd ed. New York: Wiley-Interscience, 1999.

[85] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:
McGraw-Hill, 1976.

Ashok Patel (M’10) received the B.E. and M.E. de-
grees in electrical engineering from Gujarat Univer-
sity, Ahmedabad, India. He received the M.A. degree
in applied mathematics, the M.S. degree in electrical
engineering, and the Ph.D. degree in electrical en-
gineering, all from the University of Southern Cal-
ifornia (USC).

He is a Postdoctoral Researcher and a lecturer with
the Department of Electrical Engineering and the
Department of Industrial and Systems Engineering,
USC.

Bart Kosko (M’85–SM’07–F’10) received degrees
in philosophy, economics, mathematics, electrical
engineering, and law.

He is a Professor of electrical engineering and law
with the University of Southern California (USC),
Los Angeles, a Past Director of USC’s Signal and
Image Processing Institute, and a licensed attorney.
He has published the textbooks Neural Networks
and Fuzzy Systems and Fuzzy Engineering, the trade
books Fuzzy Thinking and Heaven in a Chip, the
novel Nanotime, edited the volume Neural Networks

for Signal Processing, and co-edited the volume Intelligent Signal Processing.
His most recent book is Noise.


