
Publication V 

Jirka Poropudas and Kai Virtanen. 2010. Game-theoretic validation and 
analysis of air combat simulation models. IEEE Transactions on Systems, Man, 
and Cybernetics—Part A: Systems and Humans, volume 40, number 5, pages 
1057-1070. 

© 2010 Institute of Electrical and Electronics Engineers (IEEE) 

Reprinted, with permission, from IEEE. 

This material is posted here with permission of the IEEE. Such permission of 
the IEEE does not in any way imply IEEE endorsement of any of  
Aalto University's products or services. Internal or personal use of this  
material is permitted. However, permission to reprint/republish this  
material for advertising or promotional purposes or for creating new collective 
works for resale or redistribution must be obtained from the IEEE by writing to 
pubs-permissions@ieee.org. 

By choosing to view this document, you agree to all provisions of the copyright 
laws protecting it. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 5, SEPTEMBER 2010 1057

Game-Theoretic Validation and Analysis of
Air Combat Simulation Models

Jirka Poropudas and Kai Virtanen

Abstract—This paper presents a new game-theoretic approach
toward the validation of discrete-event air combat (AC) simula-
tion models and simulation-based optimization. In this approach,
statistical techniques are applied for estimating games based on
data produced by a simulation model. The estimation proce-
dure is presented in cases involving games with both discrete
and continuous decision variables. The validity of the simulation
model is assessed by comparing the properties of the estimated
games to actual practices in AC. These games are also applied
for simulation-based optimization in a two-sided setting in which
the action of the opponent is taken into account. In optimiza-
tion, the estimated games enable the study of effectiveness of AC
tactics as well as aircraft, weapons, and avionics configurations.
The game-theoretic approach enhances existing methods for the
validation of discrete-event simulation models and techniques for
simulation-based optimization by incorporating the inherent game
setting of AC into the analysis. It also provides a novel game-
theoretic perspective to simulation metamodeling which is used to
facilitate simulation analysis. The utilization of the game-theoretic
approach is illustrated by analyzing simulation data obtained with
an existing AC simulation model.

Index Terms—Air combat (AC), discrete-event simulation,
game theory, military decision making, simulation-based opti-
mization, validation.

I. INTRODUCTION

THE application of constructive simulation is often the
most convenient as well as the least money- and time-

consuming way to obtain information about the performance
of systems used in air combat (AC) or the value of new ways
for conducting AC missions [1], [2]. A realistic AC simula-
tion model requires components representing aircraft, weapons,
radars, and other apparatus. The simulation model has to also
adequately represent the decision making [3]–[5] and situa-
tional awareness [6] of pilots. Furthermore, uncertainties affect-
ing ACmust be taken into account. A suitable way for modeling
the aforementioned features as well as the dynamic nature of
AC is offered by the discrete-event simulation methodology
(e.g., [7]), and thus, there exist several AC simulation models
based on this methodology (e.g., [3] and [8]–[10]).
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A discrete-event AC simulation model is controlled with
input parameters and variables that affect the components de-
scribing the pilots’ decision making as well as the properties
of aircraft and other hardware. Uncertainty related to AC is
represented by random factors in the simulation model whose
effect on simulation output, e.g., the number of aircraft shot
down, is analyzed using the Monte Carlo method (e.g., [7]). In
this method, each AC scenario is replicated several times with
different realizations of random factors determined by nonover-
lapping pseudorandom number streams to produce statistical
estimates for the simulation output.
In practice, the nature of a discrete-event AC simulation

model may be almost black box due to its high complexity.
Therefore, establishing that it performs as intended, i.e., the
validation of the simulation model, is a challenging task (e.g.,
[7]). It should also be noted that the model is never completely
validated, but various methods and techniques can be used
to test it in order to increase one’s confidence in its validity
[11], [12]. Once the satisfactory level of confidence has been
reached, the simulation model can be utilized in simulation-
based optimization that offers a powerful tool for comparing
available tactics or hardware configurations. The optimization
analysis, called strategy analysis in this paper, gives valuable
insight into AC scenarios under consideration although it may
not provide the optimal solution of time-dependent courses of
action for entire AC campaigns. However, the obtained infor-
mation can be utilized in planning AC operations or purchases
of aircraft and weapon systems. It is also acknowledged in
instruction and training of pilots.
In both validation and strategy analysis, the action of the

opponent must be taken into account in a rational and realistic
manner. In this paper, this issue is tackled by presenting a novel
approach to AC simulation analysis that utilizes game theory.
The approach consists of statistical procedures for the estima-
tion of games from simulation data as well as the utilization
of the estimated games in validation and in simulation-based
optimization. Analyses of AC have been widely supported
by the application of either game theory or simulation (e.g.,
[1]). However, the approach presented in this paper is the first
application of game theory that explicitly includes the action
of the opponent into the simulation analysis. All the simulation
analyses presented earlier in the open literature have been one
sided as they have ignored this inherent feature of AC.
Games estimated from simulation data can also be seen as

a new type of simulation metamodel [12]–[14]. In the simu-
lation literature, metamodels refer to simpler analytical models
auxiliary to simulation models [14]. Existing metamodels [15]–
[17] are used for various purposes such as understanding and
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validating of a simulation model as well as optimizing the
output of the model [18]. Clearly, the estimated games are also
applicable for all these purposes.
Game theory (e.g., [19]–[21]) gives a systematic way for

analyzing decision problems with several players pursuing their
own objectives. A game consists of players, their decision
variables, and payoffs that depend on the decision variables
and evaluate the attainment of players’ objectives. Decision
alternatives available to the players are presented by the ranges
of the decision variables. The outcome of the game, i.e., the
values of the players’ payoffs, is determined based on the
decision alternatives selected by the players. Using the game,
one can identify the players’ best responses to the opponents’
decisions, i.e., the game optimal value of the player’s decision
variable when the action of the opponent is fixed. Together, the
players’ best responses are used to find the equilibrium solution
of the game.
The inherent game setting of AC is raised by conflicting

objectives of the two sides. Therefore, several types of game
formulations for AC and air operations have been constructed.
Such formulations are, e.g., matrix games [22], [23], discrete-
time dynamic games [24]–[30], differential games [31]–[36],
two-target games [37], [38], and influence diagram games [39].
The dynamic and differential games enable the solution of
game-optimal time-dependent controls or decision sequences
for the players. In order to be tractable, such game formulations
have to be limited in detail and realism. For example, aircraft
and missiles are described using 3-DOF point-mass models [4],
[5], [22], [32], [34]–[36], [39], [40] or even more simplified
equations of motion [24], [25], [28]–[30], [33], [41] that re-
sult in unrealistic flight paths that cannot be implemented in
practice. In addition, many decision-making problems related
to AC do not necessitate a dynamic or differential game formu-
lation. Such problems are, e.g., the selection of flight tactics or
hardware configurations that can be analyzed effectively using
AC simulation models. Compared with dynamic or differential
games, simulation models allow for more detailed modeling of
flight mechanics as well as of sensory and avionics systems.
Furthermore, by using simulation, multiple actors representing
individual pilots and their situational awareness that depends
on uncertain information as well as coordinated actions within
flights can be included in the analysis. However, the game set-
ting of AC has been ignored in the earlier simulation analyses.
The game-theoretic approach introduced in this paper con-

sists of four phases. First, the AC scenario is determined. In the
scenario, the sides of AC are assumed to have a set of tactical
alternatives related to available tactics or hardware configura-
tions. The objectives of the sides are represented by measures
of effectiveness (MOEs). Second, the scenario is simulated with
the combinations of the tactical alternatives that determine the
input of the simulation model. Then, MOE estimates are calcu-
lated based on the simulation output. Third, a suitable game
is estimated to capture the dependence between the tactical
alternatives and MOEs. In the game, the tactical alternatives are
represented by decision variables and the MOE estimate is used
as the payoff. This paper presents the estimation procedures
for games involving continuous or discrete decision variables.
In the discrete case, one obtains a matrix game in which the

MOE estimates are classified by applying analysis of variance
(e.g., [42]). With continuous variables, a multivariate regression
model (e.g., [43] and [44]) is fitted to the simulation data.
Finally, the estimated game is used for validating the simulation
model or conducting strategy analysis.
In the simulation literature, there exists a versatile set of

validation methods for discrete-event simulation models [7],
[45]. Commonly used methods include comparing the simu-
lation results with actual data. Alternatively, a subject-matter
expert can assess the validity of the model output. To aid
the assessment, several techniques can be used to describe
the model output such as calculating descriptive statistics and
presenting the results graphically. One can also perform a
sensitivity analysis with respect to the model input to see how
it affects the simulation output. While such methods are also
suitable for the validation of an AC simulation model, they omit
the game setting of AC which is taken as an integral part of the
approach presented in this paper.
In validation, the structures and solutions of estimated games

are compared with real-world AC scenarios. This comparison
focuses on the following properties of the estimated games.
First, symmetric scenarios should result in symmetric games.
Second, the payoff of the game should depend on the deci-
sion variables in a manner that is consistent with the tactical
alternatives and MOE in actual AC. The analysis of these
two properties is straightforward and can be carried out even
without a subject-matter expert. If an expert is available, also
the following properties can be analyzed. The best responses
of the games should be justifiable based on the corresponding
tactical alternatives of the scenario. Furthermore, the effect of
initiatives in the games should reflect the actual AC scenario.
If these properties of the games are considered plausible, this
is taken as positive evidence on the validity of the simulation
model. Thus, the game-theoretic approach gives insight that
includes information about the optimal decisions and behavior
of the players that could not be obtained by simply studying the
output of the simulation model.
In addition to validation, the game-theoretic approach allows

the use of simulation-based optimization in strategy analysis.
In such an analysis, the combination of simulation and game
theory provides an AC analyst with a thorough understanding
over decision problems in AC scenarios. The utilization of
the estimated games in optimization enhances the existing
techniques for simulation-based optimization (e.g., [12], [46]–
[49]) into a two-sided setting as the joint effects of the sides’
decisions are now taken into account—instead of unilateral
optimization. Most importantly, the game-theoretic analysis
offers a systematic framework for both sifting through the
available tactical alternatives and managing various objectives
of the combatants.
In practice, strategy analysis is based on the following as-

pects of the games. Several games with different payoffs are
analyzed to assess the performance of tactical alternatives with
respect to different objectives, which provides a comprehensive
understanding over the AC decision problem. On the other
hand, by varying the opponent’s payoff, one can see how this
affects the opponent’s decisions and the outcome of AC. To
identify the effective and ineffective tactical alternatives, one
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can solve the best responses to all opponent’s decisions. Finally,
in worst case analysis [19], decision alternatives are compared
based on the most disadvantageous payoff values in which
they can result. This comparison provides the alternatives that
guarantee the best available outcome in case the opponent
acts in the worst possible manner and aims at minimizing the
respective payoff.
In this paper, the game-theoretic approach is illustrated by

representing the analysis of a discrete-event AC simulation
model, X-Brawler [3], [8]. In X-Brawler, aircraft, weapons, and
other systems as well as pilots’ decision making are modeled
at a high level of detail which should provide a good repre-
sentation of actual AC. Validation examples are presented in
three scenarios that study the effects of pilot aggressiveness,
commit maneuvers executed at the beginning of AC, and the
action taking place after the launch of a medium-range air-to-air
missile. Strategy analysis is illustrated by analyzing a decision
problem regarding the launch range of an air-to-air missile.
This paper is organized as follows. The necessary terminol-

ogy of game theory is briefly summarized in Section II. In
Section III, the game-theoretic approach is introduced by de-
tailing the estimation of games for both discrete and continuous
decision variables as well as by discussing the use of estimated
games in validation and strategy analysis. Examples of vali-
dation and strategy analysis are given in Sections IV and V,
respectively. Finally, conclusions are given in Section VI.

II. REQUIRED GAME-THEORETIC CONCEPTS

Game theory is a branch of science that uses mathematical
models to study decision-making problems with multiple actors
[19]–[21]. Due to the nature of AC, here, the discussion is lim-
ited to noncooperative game theory [19] where several players
make decisions in order to attain their own, possibly conflicting,
objectives. Additionally, the discussion is limited to games with
two players that represent the sides of AC. The players are
called the blue and red flights, or simply blue and red.
In games, the players’ decision alternatives are represented

by decision variables having a discrete or continuous range
of values. Due to technical and practical reasons, the players’
decisions are now limited to selecting exact values of the
decision variables. In other words, the players are allowed to
use only pure strategies, and mixed strategies are excluded, i.e.,
the players are not allowed to present decisions as probability
profiles over available decision alternatives. Additionally, in
this paper, the term “strategy” is excluded to avoid possible
confusion with strategy analysis.
The objectives of the players are presented using payoffs

whose values depend on the decision variables. The players
are assumed to be rational, i.e., their sole goal is to maximize
the value of their own payoff. Once the players have chosen
their decision alternatives, the selected alternatives determine
the outcome of the game, i.e., the values of players’ payoffs.
For continuous decision variables, the dependence between de-
cision variables and payoffs is modeled using payoff functions.
A game can be either zero sum or non-zero sum. In a zero

sum game, there is only one payoff that is maximized by one
player and minimized by the other, i.e., the players’ objectives

are completely opposite. A zero sum game is presented either
by a single payoff matrix in the case of discrete decision vari-
ables or by a payoff function for continuous decision variables.
If the game is non-zero sum, the players have separate payoffs
so that an increase in the payoff of one player does not neces-
sarily lead to a decrease in the payoff of the opponent. In other
words, the objectives of the players are not directly opposite. In
a non-zero sum game formulation, there are two separate payoff
matrices, i.e., a bimatrix, or two payoff functions.
The game also describes the information available to the

players when making their decisions. The players can act
simultaneously without knowing the opponent’s decision or
in a predetermined order. Furthermore, the players may or
may not be aware of the opponent’s payoff. In a Stackelberg
game setting [19], the players have the roles of a leader and
a follower. The leader makes a decision first, knowing the
follower’s payoff, i.e., the follower’s response to the leader’s
decision. The follower simply observes the leader’s decision
and acts accordingly being unaware of the leader’s payoff.
In this paper, Stackelberg games are used to model the effect

of initiative in AC. In a zero sum setting, the Stackelberg
solution equals a maximin solution [19] where the follower’s
response is always the most disadvantageous for the leader,
i.e., the minimum of the leader’s potential payoff values. The
leader then maximizes its payoff by selecting the appropriate
decision alternative. In this paper, maximin solutions are used
to perform worst case analysis. This term is adapted from
the field of controller design in which game formulations are
applied for controlling a dynamic system under uncontrollable
disturbances [19]. Here, the action of the opponent is treated as
such disturbance.
One way to analyze games is to study the best responses

of a player against the decisions of the opponent. The best
responses are solved by selecting one decision alternative of
the opponent at a time and optimizing one’s payoff against that
alternative. If a decision alternative is the best response to all of
the opponent’s decisions, it is called a dominating alternative.
Similarly, a decision alternative is dominated if there exists
another alternative that performs at least as well against all
and better against at least one of the decision alternatives of
the opponent. In the case of continuous decision variables, the
player’s best responses generate the best response curve of the
player which gives the player’s game optimal decision as a
function of the opponent’s decision.
The equilibrium solutions of games are obtained by studying

the players’ best responses. If two decision alternatives are best
responses to each other, they form a Nash equilibrium (e.g.,
[19]–[21]). In such a case, neither player is willing to deviate
from the equilibrium, and the players cannot gain anything by
unilaterally choosing a different decision alternative. Thus, a
Nash equilibrium gives a stable solution for the game, and ra-
tional players are assumed to play the game in a way that results
in a Nash equilibrium. The Nash equilibrium is not necessarily
unique, and when the players are not allowed to randomize their
decision making, it may not exist. The Stackelberg equilibrium
of the Stackelberg game and the maximin solution of a zero
sum game are determined using similar inference based on the
players’ best responses.
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TABLE I
CORRESPONDENCES BETWEEN QUANTITIES IN AC SCENARIOS

AS WELL AS IN SIMULATION MODELS AND GAMES

III. GAME-THEORETIC APPROACH

The game-theoretic approach to AC simulation proceeds as
follows. First, the AC scenario of interest is defined at a suitable
precision so that the definition contains all the necessary infor-
mation for performing the simulation. This includes the number
and types of aircraft, weapons, sensory, and other systems as
well as the initial geometry of the scenario. The definition of the
scenario also includes the objectives of the flights, the measure
of the attainment of these objectives which is called a MOE,
and the flights’ means for achieving these objectives, i.e., their
available tactics or hardware configurations. Here, these means
are called the flights’ tactical alternatives.
The MOE represents the outcome of the combat as perceived

by the flights, and it can be selected in many ways depending
on the aim of the analysis and the objectives of the flights. In
general, AC-related decision problems contain multiple objec-
tives, but now, it is assumed that the objectives can be presented
with a scalar-valued MOE. It can be, for example, the mean
of kills, the mean of losses, or a linear combination of the
former. One can also study probabilities of scenario-specific
AC events. In defensive scenarios, success can be measured by,
e.g., the probability of taking down some prespecified aircraft
or destroying the entire attacking bomber fleet. On the other
hand, in offensive scenarios, the MOE can be, for example,
the probability of reaching a given route point unharmed or
destroying an important ground target.
To study how tactical alternatives affect a MOE, the AC sce-

nario is simulated with suitable combinations of tactical alter-
natives that are selected using design of experiments [12], [42].
The alternatives are entered to the simulation model using input
variables, and other scenario information is presented by input
parameters. For each combination of input variable values, a
MOE estimate is obtained from the simulation output. Once
the simulation data are collected, a suitable game is estimated
using the statistical techniques presented in Section III-A.
In the estimated game, the players’ decision variables and
payoffs are associated with the simulation input variables and
the MOE estimates (Table I). The nature of tactical alternatives
determines whether the decision variables of the game are
discrete or continuous.
After the estimation of the game, it is used in the validation

of the simulation model or in strategy analysis. To validate the
simulation model, the game is evaluated in the sense of how
well it reflects the actual AC scenario. On the other hand, the
estimated game can be used as a part of the strategy analysis to
give insight into a decision problem arising from the scenario.
The validation and strategy analyses are further discussed in
Sections III-B and C, respectively.
To summarize, the game-theoretic approach consists of the

following phases.
1) Define the AC scenario.

2) Simulate the scenario according to a suitable experimen-
tal design.

3) Estimate games from the simulation data using suitable
statistical techniques.

4) Use the games in validation and/or strategy analysis.

A. Estimation of Games

1) Simulation Data: To estimate games, one needs AC sim-
ulation data that consist of values of simulation input variables
and resulting MOE estimates. If the tactical alternatives of the
AC scenario are discrete, e.g., different maneuvers or missile
types, they are presented by discrete-valued input variables for
blue and red, which are denoted by x1, . . . , xn and y1, . . . , ym,
respectively. Then, the scenario is simulated using the input
variable values (xi, yj) to gather the needed data.
Continuous tactical alternatives are entered into a simulation

model using input variables that have a continuous range of
values and are denoted by x for blue and y for red. Examples of
such alternatives include, for example, missile launch distances
or missile support times. For continuous input variables, games
can be constructed in two ways. One approach is to estimate
games containing continuous decision variables, even though it
is not possible to simulate the AC scenario using all feasible
values of input variables. In such case, a discrete set of values
(xi, yj) is chosen according to a suitable experimental design
(e.g., [42]) to produce the necessary simulation data.
On the other hand, the continuous input variables can also

be discretized and treated as discrete-valued input variables.
In discretization, there exists a tradeoff between the accuracy
of estimated games and the number of necessary simulation
replications. In general, games obtained by discretization ne-
cessitate a lesser number of simulation replications, whereas
games containing continuous decision variables provide more
precise results.
Because of random factors in a simulation model, a MOE can

be regarded as a random variable with an unknown probability
distribution. Similarly, a given AC event associated with the
MOE takes place during simulation with an unknown probabil-
ity. When the AC scenario is simulated with input variable val-
ues (xi, yj), the simulation output gives a random sample from
the MOE distribution or observations of the occurrence of the
AC event. These are used to produce MOE estimates denoted
by Û(xi, yj). In practice, the MOE estimate is the mean of
the sample estimating the expectation of the MOE distribution
or the relative frequency of the occurrence of the AC event
estimating the probability of the event. One can also estimate
other descriptive statistics, such as quantiles, but now, such an
analysis is omitted. The values of the input variables and the
MOE estimates form the simulation data (xi, yj , Û(xi, yj)).

2) Discrete Decision Variables: When tactical alternatives
are discrete, the AC scenario is converted into a matrix game
where the decision alternatives of the players coincide with the
input variable values (xi, yj) and the payoffs are based on the
MOE estimates Û(xi, yj). Due to the random factors of the sim-
ulation model, the MOE estimates may not be entirely accurate
and have to be classified statistically using variance analysis
methods (e.g., [42] and [43]). In these methods, the estimates
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Fig. 1. Classification of MOE estimates for a matrix game. Simulation
with input variable values (xi, yj) produces MOE estimates Û(xi, yj) that
are grouped into classes I , II , and III . The payoff has four values, i.e.,
u(xi, yj) ∈ {I, I−II, II−III, III}.

are compared pairwise to find out which pairs are statistically
significantly different. In this paper, the MOE estimates are
classified using the Tukey–Kramer procedure [42] that carries
out all the comparisons simultaneously to avoid the multiple-
comparison problem. The Tukey–Kramer procedure also allows
unequal sample sizes and variances for the MOE estimates.
This is practical as some of the simulation replications may
crash, resulting in unequal sample sizes. Furthermore, there
is no guarantee that different values of input variables lead to
equal variances.
In the Tukey–Kramer procedure, the MOE estimates are

grouped into classes. Two estimates belong to the same class
if they do not differ from each other statistically significantly.
Now, the classes are indexed in ascending order so that the
lowest estimates belong to class I , the second lowest belong
to class II , and so on. The classification gives the payoff,
denoted by u(xi, yj), that maps the combinations of decision
alternatives (xi, yj) to the payoff values associated with classes
I , II , III , etc. Then, the player maximizing the payoff prefers
the outcome of the game with the higher payoff value. Note
that a MOE estimate can simultaneously belong in two classes.
Thus, the payoff value can be, for example, I–II . When com-
paring two payoff values, they are considered as equal if they
share a common class, e.g., I–II and II–III . It should also
be noted that the classification gives only ordinal information
about the ranking of the payoff values, i.e, the payoff value I is
considered smaller than II but the magnitude of the difference
between the payoff values is unknown.
Fig. 1 shows an example of the classification of five MOE

estimates Û(xi, yj) into three classes I , II , and III . The MOE
estimates are marked with circles, and each estimate is associ-
ated with a vertical line that corresponds to the simultaneous
95% confidence interval used in the comparison of the esti-
mates. If two vertical lines overlap, the corresponding estimates
do not differ from each other statistically significantly. For
example, in Fig. 1, the horizontal dashed lines represent the
comparison of the third estimate with the others. The first three
estimates do not significantly differ from each other. Thus, they
are regarded as equal and belong to class I . The third and fourth
estimates are also deemed equal and belong to class II . Finally,
the fourth and fifth estimates form class III .

Fig. 2. Construction of the payoff function. Simulation with the input variable
values (xi, yj) produces the MOE estimate Û(xi, yj). The payoff function
u(x, y; β) is fitted to the data in order to approximate the MOE for all values
of the variables x and y.

In Fig. 1, the payoff u(xi, yj) has four values I , I–II ,
II–III , and III . Again, two combinations of decision alter-
natives are considered to provide equal payoff values if the
corresponding values overlap, i.e., they share a common class.
For example, the third payoff value is I–II , and therefore, it is
considered equal to the first payoff value I and the fourth payoff
value II–III . On the other hand, the fifth payoff value III is
statistically significantly greater than the third I–II .

3) Continuous Decision Variables: In the case of continu-
ous tactical alternatives, one needs a payoff function that ap-
proximates the dependence between the tactical alternatives and
the MOE. There exists random variation in the MOE estimates
that has to be accounted for in the approximation. Therefore, the
payoff function u(x, y;β) is constructed as a regression model
[42], [43] based on the simulation data (xi, yj , Û(xi, yj)), as
shown in Fig. 2. Now, the simulation input variables (x, y)
are taken as the decision variables of blue and red. In order
to achieve the best possible approximation, the payoff function
is fitted to simulation data by selecting an appropriate type of
regression model and estimating its parameter vector β with the
method of least squares. The correctly constructed regression
model then describes the dependence between the decision
variables and the payoff of the game as well as approximates
the payoff values for all values of the decision variables.
In practice, there are no apparent limitations for the func-

tional form of the regression model, as it can be, for example,
a linear, logistic, or some nonlinear regression model [42].
The model needs to be complex enough to accurately capture
the dependence between tactical alternatives and a MOE. The
goodness of fit of the regression model is studied using residu-
als, coefficient of determination, and/or deviance of the model
[42]–[44]. Simultaneously, the model needs to be as parsimo-
nious as possible. Thus, statistically insignificant parameters
are excluded from the model in order not to fit the model into
random variation of the simulation data. The relevance of the
parameters is analyzed with p-values [42]–[44]. The model se-
lection is case dependent, and the suitability of alternative mod-
els is also affected by the type of MOE. For example, logistic
regression models [44], [50] are ideal for modeling probabilities
of AC events. Furthermore, several regression models can be
combined to define more complex payoff functions, e.g., the
difference between probabilities of two AC events.
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B. Validation Analysis

The purpose of validation analysis is to ensure that the
simulation model gives a satisfactory representation for AC.
A widely used validation approach is to study the simulation
data with statistical methods [11] such as regression analysis
and analysis of variance. The methods are used to analyze how
different factors and variables affect the outcome of the sim-
ulated AC. Traditionally, this one-sided analysis is performed
separately for each flight. If the simulation model is proper and
functional, the statistical models should be consistent with the
AC scenario under consideration.
Games estimated from simulation data are utilized in val-

idation in the same way as the one-sided statistical models.
Now, validation is conducted in a two-sided setting from the
viewpoint of both flights by studying whether the games are
consistent with the actual AC scenario. If the games are found
unsatisfactory, this indicates a need for improvement in the
simulation model or its settings.
In this paper, validation analysis concentrates on the fol-

lowing properties of games: MOE estimates, symmetry, de-
pendences, best responses of players, equilibrium solutions,
and effect of initiative. To ease the comparison of the games
and their properties with actual AC practices, the players are
not allowed to randomize their decision making. It should
also be noted that the symmetry and, up to certain extent,
the dependences can be analyzed even without subject-matter
expertise, whereas the analysis of best responses and the effect
of initiative requires a more profound familiarity with AC and
its practices.

1) Symmetry: Symmetric AC scenarios are an integral part
of the validation analysis. An AC scenario is said to be sym-
metric if the initial geometry is symmetric and the flights
have similar aircraft and other hardware as well as similar
tactical alternatives. In such a case, the estimated games are
supposed to reflect this symmetry. Asymmetric games, on the
other hand, point toward problems in the simulation model or
in the execution of simulation.
In a symmetric game, the payoff values are the same for

each player under comparable circumstances, i.e., the effect of
a decision on the payoffs is independent of the player making
the decision. The estimation of separate games with the same
payoff for blue and red should result in similar games that
have same payoff values. For example, in a symmetric setting,
the games with payoffs equaling the number of blue and red
kills should be alike. Furthermore, in the case of continuous
decision variables, the symmetric payoff functions are expected
to depend on the decision variables in a concurrent manner and
the parameters of the payoff functions are supposed to mirror
each other. In symmetric games, best responses and equilibrium
solutions should also be symmetric. For example, if there is
a Nash equilibrium where the players make certain decisions,
the decision combination where the decisions of the players are
reversed should also be a Nash equilibrium.
Validation analysis can also be extended to asymmetric sce-

narios to see how differences between the flights affect the
simulation results. For example, one can start with a perfectly
symmetric AC scenario and gradually make it more uneven,

e.g., by enhancing the performance capability of one flight or
by changing the initial geometry. By comparing corresponding
games, it is possible to study the effect of increased asym-
metry on the outcome of AC. Clearly, the outcome should
favor the flight having superior aircraft or advantageous initial
position.

2) Dependence Between Decision Variables and Payoff:
The games show how the players’ decisions affect the players’
payoff values and the corresponding MOE estimates, reflecting
the outcome of the simulated AC scenario. Therefore, the
payoffs and their dependence on the decision variables can be
studied to see if they are reasonable, e.g., do more effective
weapon systems result in a better outcome or do more defensive
tactics reduce losses. Furthermore, the joint effects of players’
decisions can be analyzed, e.g., to see what happens to the
number of kills when both flights behave very aggressively.

3) Best Responses and Equilibrium Solutions: Best re-
sponses are a special case of the joint effects of the players’
decisions which give the players’ game optimal decisions when
the opponent’s decision is fixed. The best responses can be
solved for all decision alternatives of the opponent, and the
logic behind these responses should concur with the respective
AC scenario. If the estimated games have dominating alterna-
tives, this should also be justifiable on the basis of the scenario.
For example, if the AC scenario involves maximizing kills,

one may want to engage in a direct confrontation with the
opponent. Therefore, the best responses in this situation should
represent the aggressive behavior of the player, e.g., choosing
a shorter missile launch range or maneuvering directly toward
the opponent. In such a scenario, it would also be plausible to
have a dominating alternative that performs best regardless of
the opponent’s decision.
Nash equilibria of the games are also used in the validation

analysis. If an estimated game has one or more such equilibria,
there should be an explanation based on the AC scenario to
show why the players would behave in the given manner. This
is compared with actual AC by considering whether similar
decisions would be made by pilots.

4) Initiative: There are AC situations where holding initia-
tive, i.e., making one’s decision first, is advantageous compared
with making the decision after the opponent or simultane-
ously. For the estimated games, the effects of initiative can be
studied by solving the equilibrium solutions of the game in a
Stackelberg setting. When the players alternate as the leader
and the follower, the payoff values they receive in the equilibria
determine whether it is advantageous to make one’s decision
before or after the opponent. This property of the estimated
game can then be compared with the AC scenario to validate
the simulation model.

C. Strategy Analysis

The aim of strategy analysis is to increase the understanding
of an AC scenario and decision-making problems associated
with it by comparing the effectiveness of tactical alternatives.
For comparison of the tactical alternatives, the most straight-
forward approach would be simulation-based optimization in
which the scenario is simulated for all tactical alternatives that
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are ranked according to their performance [49]. Unfortunately,
such an analysis ignores the action of the opponent. Therefore,
a two-sided setting is introduced to simulation-based optimiza-
tion by analyzing games estimated from simulation data.
In strategy analysis, four properties of games are studied.

Multiple games are estimated for various payoffs to examine
the scenario from several points of view. For each individual
game, players’ best responses as well as equilibrium solutions
are solved and the dominance between decision alternatives is
studied. By studying maximin solutions, the decision alterna-
tives can also be compared based on the worst possible outcome
in which they may result. In general, these properties of the
games are to be studied by an analyst who is familiar with AC
practices.

1) Best Responses and Equilibrium Solutions: For all esti-
mated games, the best responses are solved for both players to
study the interaction of the players’ decision alternatives. Most
importantly, the best responses determine the optimal decision
alternatives when the opponent’s decision is known and present
the effects of the opponent’s action in an explicit manner. The
best responses of the players define the equilibrium solutions
of the game which provide the potential courses of AC and the
resulting payoff values. With this knowledge, one can compare
tactical alternatives according to the opponent’s best responses
in order to achieve the most desirable outcome of AC.

2) Dominance Between Alternatives: An important feature
of strategy analysis is the recognition of dominated decision
alternatives. By solving the player’s best responses against all
decisions of the opponent, one may find out that some decision
alternatives are never among the best responses. Such infor-
mation simplifies the decision-making problem by pruning out
tactical alternatives and directing the focus of further analysis
toward the more relevant ones.

3) Different Objectives: To gain a thorough understanding
of the AC scenario and the decision-making problem at hand,
games with different payoffs should be estimated. By analyzing
these games together, one obtains a multidimensional picture
of the AC and understands how different objectives are best
achieved. The analysis of several games also implies how the
opponent might act in different situations. Overall, the games
with different payoffs yield information on how AC should be
conducted against an opponent with given objectives as well as
on what courses of AC may take place in these situations.

4) Maximin Solution: In a game setting, the effectiveness
of a decision alternative may depend critically on the decision
of the opponent. In some situations, a player may be un-
aware of the objectives of the opponent. One way to handle
this uncertainty is to assume that the opponent’s objectives
are completely opposite to the objectives of the first player.
Furthermore, it may be assumed that the opponent is able
to respond to the decisions of the first player in the most
disadvantageous manner. These are the assumptions of worst
case analysis [19] where the decision alternatives are compared
based on the worst outcome in which they may result.
In practice, worst case analysis is performed by studying

zero sum maximin solutions where the opponent observes
the first player’s decision and responds with the alternative
that minimizes the payoff of the first player. Then, the first

player selects the alternative that maximizes the payoff given
the response of the opponent. Worst case analysis yields the
decision alternatives that guarantee the highest payoff value
when the opponent tries to minimize the first player’s payoff.
In other words, the application of tactical alternatives obtained
with worst case analysis ensures that one succeeds always, at
least, as well as planned or better.

IV. EXAMPLE OF VALIDATION ANALYSIS

In the following, the use of the game-theoretic approach in
validation is demonstrated by analyzing three scenarios that are
based on simulations conducted with the AC simulation model
X-Brawler [3], [8]. The aim of the analysis is to explore the
decision-making model of the simulated pilots and to ensure
that settings and hardware models used in simulation are proper
and functional. In the scenarios, flights engage in AC with
identical aircraft and weapon systems. Furthermore, the initial
geometry of the combat is symmetric. Such a situation should
result in symmetric games that can be analyzed without a
subject-matter expert.
The scenarios are selected in order to describe AC at different

levels of resolution. The first scenario presents an analysis that
spans the entire engagement and compares three types of pilot
behavior ranging from low to high aggression level. The second
scenario studies the effect of a single maneuvering decision
during the commit phase of AC. In the third scenario, a support
time game [40] is studied. The game of this type takes place
in AC when pilots have launched their medium range air-to-air
missiles.

A. Scenario 1: Level of Aggression

In this scenario, the effect of pilot aggressiveness is studied
in two-versus-two AC where both flights perform a maneuver
called end run (see Section IV-B) during the commit phase
of AC. The flights’ tactical alternatives represent aggression
levels for the simulated pilots. They are briefly summarized as
follows.
1) Low aggression level. The flights engage the opponent
and launch a medium-range air-to-air missile toward it.
After the launch, the pilots support their missiles, i.e.,
relay state information about the opponent to the missile
in order to increase the likelihood of a hit but not at
the cost of being easy targets for the opponent. Finally,
the flights retreat from the opponent. The distance to the
opponent is maintained at beyond visual range during the
entire engagement.

2) Medium aggression level. Similar to the low aggression
level, but now, having retreated from the opponent, the
flights reenter the combat. Should a pilot get caught
within the visual range area, the engagement is continued
as a dogfight.

3) High aggression level. The flights engage the opponent
and launch and support their missiles. Then, the aircraft
are flown toward the opponent, and a dogfight is engaged
within visual range. During the engagement, the pilots do
not perform any defensive maneuvers, such as retreating.
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Fig. 3. Matrix game with the payoff representing the number of blue kills.
The Nash equilibria are enclosed in squares.

Fig. 4. Matrix game with the payoff representing the number of red kills.
The Nash equilibria are enclosed in squares.

Fig. 5. Matrix game with the payoff representing the difference of blue and
red kills. The Nash equilibrium is enclosed in a square.

The MOEs analyzed in the scenario are the number of blue
and red kills as well as the difference between kills. Here, the
number of kills means the number of opposing aircraft shot
down. To produce necessary MOE estimates, the scenario is
simulated 2400 times for each of the nine combinations of input
variable values representing the levels of pilot aggressiveness.
TheMOE estimates are classified using the procedure presented
in Section III-A2 which results in matrix games.
The estimated games with the MOE estimates are shown in

Figs. 3–5. Blue maximizes its kills in Fig. 3 and the difference
of kills in Fig. 5. In Fig. 4, blue minimizes red kills. All the
games are zero sum, and thus, the objective of red is always
opposite to blue. It should also be noted that I corresponds to
the payoff value with the smallest MOE estimates and that the
estimates ascend according to the indexing.
To validate the simulation model, the symmetry of the games

is considered first. The games for blue and red kills in Figs. 3
and 4 reflect the symmetry of the scenario as the game for blue
kills is essentially the same as the game for red kills because the
former game matrix can be obtained by transposing the latter.
The game for the difference of kills in Fig. 5 is also perfectly
symmetric. Note that payoff value I is the most advantageous
for red while IV is preferred by blue. Additionally, when the
players’ decisions coincide, the MOE estimates do not differ
statistically significantly from zero. All the games discussed
previously represent the symmetric AC scenario, and there is
no reason to challenge the validity of the simulation model.
Next, the best responses of the players as well as the de-

pendence between the decision variables and the payoff are
analyzed. In Figs. 3 and 4, an increase in the level of aggression
leads to higher casualty rates for both flights. The best response
for the player minimizing losses, i.e., blue in Fig. 4 and red in
Fig. 3, is always the low aggression level, whereas for the player
maximizing kills, i.e., blue in Fig. 3 and red in Fig. 4, the best

Fig. 6. Matrix game with the payoff representing the number of blue kills.
The Nash equilibria are enclosed in squares.

response is the medium or high aggression level. The game for
the difference of kills (Fig. 5) implies that the low aggression
level is the dominating alternative for both players as it gives
always the most desirable payoff value. Thus, according to this
game, it is most effective to launch the missile and disengage.
It should also be noted that the medium and high aggression
levels produce identical payoff values. This could be explained,
e.g., by an ineffective implementation of evasive maneuvers or
overtly effective missile models that render the maneuvering
after the missile launch irrelevant.
To summarize, the symmetric AC scenario under consider-

ation produces symmetric games. In addition, the games are
reasonable as an increase of aggression increases the casualty
rates for both flights which is compatible with the actual AC.
These observations point toward the validity of the simulation
model. However, the analysis also implies some shortcomings
in the simulation results. The dominance of the low aggres-
sion level in Fig. 5 and the identical payoff values for the
alternatives medium and high may not be entirely realistic.
Therefore, further analysis of the decision-making model of the
simulated pilots as well as of the aircraft and missile models is
recommended.

B. Scenario 2: Commit Maneuver

In the second scenario, the effect of the commit maneuver
on the outcome of a two-versus-two AC is studied. The overall
pilot behavior is similar to the medium aggression level in
Scenario 1, but now, the flights can approach their opponent
using three different maneuvers during the commit phase of
AC. In other words, the tactical alternatives of the scenario
present the maneuvering of flights at the beginning of the
engagement. Three commit maneuvers are compared.

1) End Run. The flight approaches the opponent from left
or right, depending on which side it finds the most
advantageous.

2) Split. The flight splits, and the aircraft approach the
opponent simultaneously from both sides.

3) Cross. The flights head toward the opponent, and the
aircraft zigzag.

As in Scenario 1, the MOEs are the number of blue and
red kills as well as the difference of kills. To produce MOE
estimates, the scenario is simulated 2400 times for each of the
nine combinations of input variable values that represent the
commit maneuvers. The classification of the estimates gives the
matrix games presented with the MOE estimates in Figs. 6–8.
The players maximize their kills and minimize their losses. In
Fig. 8, the difference of kills is defined so that it is maximized
by blue and minimized by red.
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Fig. 7. Matrix game with the payoff representing the number of red kills. The
Nash equilibria are enclosed in squares.

Fig. 8. Matrix game with the payoff representing difference of kills. The Nash
equilibria are enclosed in squares.

First, the symmetry of the games is considered. The payoff
values do not concur in Figs. 6 and 7. This results in disparate
best responses for the players and asymmetric Nash equilibria.
For example, in Fig. 6, the combination split for blue and cross
for red is an equilibrium, but in Fig. 7, the combination cross
and split is not. Altogether, the games do not mirror each other
in a way that is suggested by the scenario at hand. On the other
hand, the game for the difference of kills (Fig. 8) as well as its
best responses and Nash equilibria are symmetric. Furthermore,
if the flights perform the same maneuver, the MOE estimates
do not differ statistically significantly from zero as one could
expect based on the symmetric AC scenario.
Next, the players’ best responses and dominating alternatives

are studied. In the game for blue kills (Fig. 6), split leads to
the highest payoff value regardless of the decision of red, and
therefore, it is the dominating alternative for blue. In the case
of red kills (Fig. 7), split is not the dominating alternative for
red, and thus, the games are inconsistent. In Figs. 6 and 7, cross
is found to be the dominating alternative for the player who
minimizes losses. When the payoff is the difference of kills
(Fig. 8), both players find cross to be the dominating alternative.
This may not be entirely realistic, and the implementation of the
commit maneuvers should be studied further.
To study the effect of initiative, the games are analyzed in

the Stackelberg setting. The players are set alternately as the
leader and the follower to see how the order of action affects
the equilibrium solution of the game. In the first two games,
the existence of the dominating alternatives makes initiative
meaningless as the players select the dominating alternative
regardless of the sequence of decisions. In the game for the
difference of kills, the Stackelberg setting results in the same
equilibria as the game with simultaneous action. Thus, initiative
and information on the opponent’s decision have no influence
on the solutions of the games which is not entirely in accor-
dance with the actual AC.
Overall, the findings do not concur with the AC scenario

at hand. The games are not perfectly symmetric, and initiative
does not affect any of the games. Most importantly, cross should
not be the dominating alternative in the presented scenario.
Therefore, the validation analysis suggests that the implemen-
tation of the commit maneuvers is flawed and that there exists
a need for further development in the simulation settings.

TABLE II
PARAMETER VECTORS βB AND βR OF THE LOGISTIC REGRESSION

MODELS REPRESENTING THE PROBABILITIES OF BLUE AND RED KILLS

C. Scenario 3: Support Time of a Missile

The third scenario concentrates on one-versus-one AC where
the pilots face each other at the limit of the missile launch
range. The pilots launch their missiles and support them, i.e.,
relay radar information about the opponent to their missiles
to increase the likelihood of a hit. The tactical alternatives of
the scenario are the support times of blue and red, denoted by
x, y ∈ [0, 15] (in seconds). The main idea of the scenario is that
supporting one’s missile increases the hitting probability. On
the other hand, longer support times take the pilot to a more
disadvantageous position with regard to evading the opponent’s
missile and increase the probability of being hit. The ranges of
the support are dictated by the properties of the missile. In the
scenario, there is no reason to support the missiles for longer
than 15 s because earlier simulations have proved this to be the
upper limit of the missiles’ flight time.
Unlike the previous scenarios, now,MOEs are the probability

of blue kill, the probability of red kill, and the weighted sums
of the probabilities. The tactical alternatives are presented by
the continuous input variables of the simulation model. The
scenario is simulated for a set of input variable values that
are selected according to a central composite design [42]. The
used experimental design includes 12 combinations of the input
variable values that are simulated 3000 times and a central
combination that is simulated 12 000 times. Because the MOEs
are probabilities, a logistic regression model [44] is fitted to the
simulation data which gives regression models of the form

p(x, y;β) =
exp (q(x, y;β))

1 + exp (q(x, y;β))
(1)

where q(x, y;β) is a quadratic function of the decision vari-
ables x and y, i.e.,

q(x, y;β) = β0 + β1x + β2y + β3x
2 + β4y

2 + β5xy. (2)

The functional form of q(x, y;β) is selected to allow for the
curvature of the regression model. Most importantly, the term
xy links the players’ decision variables together and turns the
model into a game instead of two independent optimization
problems.
Games for the probabilities of blue and red kill estimated

from simulation data and the resulting parameter vectors βB

for blue and βR for red are presented in Table II. The 95%
confidence intervals of the parameter estimates are given in
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Fig. 9. Logistic regression models used in defining the payoffs of the support
time game. (a) Probability of blue kill p(x, y; βB) as the function of the
blue support time x and the red support time y. (b) Probability of red kill
p(x, y; βR) as the function of the blue support time x and the red support
time y.

parentheses. All the parameters are found to be statistically
significant as their p-values are of magnitude 10−4 or smaller.
The values of the model deviances are small compared with
the respective degrees of freedom, implying that they have
no statistical significance and are probably results of random
variation (see Table II). Thus, the models fit the data well, and
there is no sign of lack of fit or need for the addition of higher
order variables. The MOE estimates and the regression models
are shown in Fig. 9.
The payoff functions of the game are formulated by combin-

ing the probabilities of blue and red kills as weighted sums

uB(x, y) =wBp(x, y;βB) + (1 − wB) (1 − p(x, y;βR))

(3)

uR(x, y) =wRp(x, y;βR) + (1 − wR) (1 − p(x, y;βB))

(4)

where the weights 0 ≤ wB and wR ≤ 1. The payoff of blue
uB(x, y) consists of the probability of blue kill p(x, y;βB)
and the probability of avoiding blue loss (1 − p(x, y;βR)). The
larger the weight wB , the more willing blue is to sustain losses,

Fig. 10. Players’ best response curves with different weights wB and wR.
Blue’s best response curves are marked with solid lines and red’s with dashed
lines.

e.g., by setting wB = 1, the payoff reduces to the probability
of blue kill. Similarly, when wB = 0, the payoff equals the
probability of avoiding blue loss. Thus, the weight wB can be
interpreted as a measure of aggressiveness for blue. The payoff
of red uR(x, y) is constructed in a similar manner.
Players’ best response curves, i.e., the optimal support times

against a given support time of the opponent, are solved by
maximizing the payoffs (3) and (4) while holding the op-
ponent’s support time constant. The responses are shown in
Fig. 10 for a set of weights wB and wR. For instance, if blue
is only interested in the number of blue kills, i.e., wB = 1, the
best response of blue to all red’s support times is to support for
as long as possible, i.e., x = 15. As mentioned in the definition
of the scenario, there is no reason for supporting the missile
any longer due to its limitations. If blue wants to minimize its
losses, i.e., wB = 0, it is optimal for blue to support its missile
for approximately 5 s, and the optimal support time decreases
linearly as a function of the red support time.
The payoff functions and the best response curves presented

previously are used in validation analysis by considering their
symmetry and the dependences implied by them. The scenario
is symmetric, and therefore, also, the game should be sym-
metric, which holds for the presented game. The parameters
in βB and βR are symmetric (Table II). For example, the
parameter of x in the model for the probability of blue kill
is 0.289 ± 0.027 and the parameter of y in the model for the
probability of red kill is 0.300 ± 0.028. These estimates do not
differ statistically significantly. Hence, the decision variables
affect the probabilities of kills in a similar manner. This is also
pointed out by the regression models in Fig. 9 which are perfect
mirror images. Therefore, the payoff functions derived from
the probabilities are also symmetric. Furthermore, the response
curves in Fig. 10 are symmetric with respect to the line x = y
as expected.
The prolonging of the support times x and y generally results

in higher kill probabilities (Fig. 9). Therefore, the estimated
game seems to be mostly reasonable as it shows that supporting
one’s missile increases both probabilities of kill. However,
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if the launcher of the missile does not support the missile
at all, the probability of kill is very small regardless of the
support time chosen by the opponent. One could argue that
the zero probability of a hit for an unsupported missile is not
entirely realistic. The missile has also its own radar, and the
performance of the missile should not be entirely dependent
upon the launching aircraft’s radar. Therefore, the performance
and behavior of the missiles in the simulation model should be
further studied and confirmed.
The best response curves are realistic as an increase in the

weight assigned to the probability of kill leads to longer support
times (Fig. 10). However, the best responses corresponding to
the minimization of losses, i.e., the weightswB = 0 orwR = 0,
deviate from the expected. Based on the actual scenario, the
pilots should not support their missiles at all in order to mini-
mize the probability of being hit. In the game, the players’ best
response is to support their missiles for approximately 5 s be-
fore heading away from the opponent. This is an inconsistency
compared with the actual scenario that warrants further analysis
of the implementation of the evasive maneuvers as well as of
the range of the missiles and the detection range of their radars.
Nevertheless, in general, the estimated game and the best
response curves are in concordance with the actual AC scenario,
and the analysis supports the validity of the simulation model.

V. EXAMPLE OF STRATEGY ANALYSIS

In this section, the utilization of strategy analysis is illus-
trated with an example where an AC analyst aims for better
understanding of a decision problem related to an AC scenario.
In the problem, the analyst is supposed to assess the best launch
range of an air-to-air missile in a two-versus-two AC scenario
and study the impact of the missile launch range on the progress
of AC. For demonstration purposes, the analyst’s flight is called
blue and the opponent’s flight is called red.
At the beginning of the scenario, blue and red flights are

flying directly toward each other. The flights have otherwise
identical aircraft and weapon systems but the aircraft of red
are substantially faster with maximum flight speed of 1.6 Mach
compared with 0.85 Mach by blue. On the other hand, the blue
flight has an initial altitude advantage as it flies at 10 000 ft
compared with the 5000-ft altitude of the red flight. The flights
launch their missiles and support them for a short period of time
to increase the probability of a hit. After the support phase,
the pilots execute a drag maneuver to avoid the opponents’
missiles.
The tactical alternatives of the scenario are the launch ranges

of the missiles which are, in reality, continuous. Now, to
simplify the analysis and to reduce the number of necessary
simulation replications, the launch range is discretized into
three levels: short (10 nm), medium (12 nm), and long (14 nm).
The effect of the missile launch range is studied with regard to
the three objectives described by MOEs that are the difference
of kills, kills for both sides, and the probability of shooting
down all the aircraft of blue. The scenario is simulated using
X-Brawler 2400 times for each of the nine combinations of
the input variable values in order to produce simulation data
necessary for the estimation of the games.

Fig. 11. Matrix game with the payoff representing the difference of kills. The
maximin solution is enclosed in a square.

To thoroughly cover the decision problem, it is analyzed with
multiple games that are selected to illustrate the full scope of the
strategy analysis presented in Section III-C. In the first game,
the maximin solution is determined using the difference of kills
as the zero sum payoff. The second game is a non-zero sum
game where both players maximize their kills. In the final game,
the zero sum payoff is the probability of shooting down all the
aircraft of blue. Overall, the decision problem is perceived from
several viewpoints of blue, and the effect of different objectives
on the outcome of AC is explicitly demonstrated.

A. Difference of Kills

First, the analyst wants to examine both the defensive and
offensive aspects of AC from the viewpoint of blue. Thus, the
MOE is set as the difference of kills that is maximized by
blue. Uncertainty over the behavior of red is taken into account
using worst case analysis. It is assumed that red has directly
opposite objectives and can always select its best response after
the decision is made by blue. As discussed in Section III-C4,
worst case analysis is carried out by finding a maximin solution
where blue acts first and red reacts to the decision of blue. The
estimated game and the MOE estimates are shown in Fig. 11.
The worst case analysis yields the maximin solution of the

game that is long for blue and short for red. Blue selects the
decision alternative long, and red can choose the short missile
launch range without suffering additional losses. Thus, the
objective of blue, i.e., maximizing the difference of kills, is
best achieved by only avoiding losses. Overall, it should be
noted that all the MOE estimates for the difference of kills are
negative, implying that red always attains a higher number of
kills than blue. Therefore, the discussed AC scenario is disad-
vantageous for blue, and blue may only attempt to minimize
this disadvantage by maximizing the distance to the opponent.

B. Number of Blue and Red Kills

After the worst case analysis, the analyst studies the problem
by assuming that both flights act offensively and attempt to
shoot down the opponent’s aircraft. Then, their MOE is the
number of kills. The situation is modeled as a non-zero sum
game where the players maximize the payoffs representing their
kills. The payoff values are assembled into a bimatrix shown in
Fig. 12 where the MOE estimates are presented in parenthesis.
The decision alternative long is the dominating alternative

for blue, and short is the dominating alternative for red. The
game has three Nash equilibria. The equilibria short for blue
and medium/long for red indicate that if red opts for a longer
missile launch range, blue has to launch its missiles from
the short range to attain the maximal number of kills. The
equilibrium long for blue and short for red differs from the
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Fig. 12. Bimatrix game with the payoffs representing the number of blue and red kills. The first value is the payoff for blue, and the second value is the payoff
for red. The Nash equilibria are enclosed in squares.

Fig. 13. Matrix game with the payoff representing the probability of shooting
down all the aircraft of blue. The Nash equilibrium is enclosed in a square.

previous equilibria as, now, blue launches its missiles from the
long range and red is forced to select the short launch range to
maximize its kills.
Overall, the situation seems to be disadvantageous for blue

because red achieves more kills than blue in all the outcomes of
the game. In the Nash equilibria, one flight launches its missile
from a longer range and the other one closes in before launching
its missile. Whichever flight launches its missiles from longer
range is at a considerable advantage as the opponent has to enter
closer range to achieve maximal number of kills. In effect, the
other flight actually flies into the missiles of its opponent and
inadvertently maximizes the opponent’s payoff.

C. Shooting Down Blue Aircraft

Finally, the analyst takes another perspective to the missile-
launching problem by studying the scenario as an air-to-ground
operation where blue is attempting a strike against a ground
target. To protect the ground target, red maximizes the prob-
ability of shooting down all the aircraft of blue before they
reach the launch area of air-to-ground missiles. Blue tries to
reach the launch area, and thus, the probability in question is
minimized by blue. The situation is described using a zero sum
game whose payoff is the probability of shooting down all the
aircraft of blue.
The game and its Nash equilibrium are shown in Fig. 13. The

decision alternative long is the dominating alternative for blue,
and short is the dominating alternative for red. The combination
of the dominating alternatives forms the Nash equilibrium. Red
has the highest probability of shooting down all the opposing
aircraft if it launches the missiles from short range. On the other
hand, blue minimizes the probability by launching its missiles
from as far as possible.
To conclude, blue has to stay as far as possible from red in

order to avoid losing all its aircraft, whereas red tries to launch
the missiles from as close as possible. In the earlier phases of
the strategy analysis, the scenario is found to be disadvanta-
geous for blue. However, now, one notices that, by launching
the missiles from long range, blue has a 1 − 0.151 = 0.849
chance of preserving at least one aircraft that can reach the
launch area of the air-to-ground missiles.

D. Remarks on the Strategy Analysis

The goal of the analyst in the example strategy analysis was
to assess the best launch range of air-to-air missiles for the
blue flight as well as to study the effect of the launch range on
the course of the AC scenario. The analyst’s observations from
the games estimated during the analysis can be summarized as
follows. From the view point of blue, the tactical alternative
long is dominating in all the cases as the speed advantage of red
makes it disadvantageous for blue to enter closer combat. Thus,
blue should launch its missiles from the long range. On the
other hand, if blue selects the longest launch range, red is able to
launch its missiles from closer range due to its speed advantage.
In addition to the information on practical launch ranges and

potential courses of AC, the strategy analysis yields a holistic
conception of the AC scenario. The constructed games indicate
that the scenario is highly disadvantageous for blue. Thus,
based on the strategy analysis, the considered scenario should
be avoided whenever possible.
The game settings studied in this example have been cho-

sen to illustrate all aspects of strategy analysis introduced in
Section III-C. Each game employs different payoffs, providing
distinct reasoning about the scenario and its outcome. Even
though the payoff of the game presented in Section V-C is
closely related to the number of red kills, the example demon-
strates the flexibility of strategy analysis as the payoff can
be chosen to present almost any AC event within the scope
of the simulation model. It should also be noted that all the
games presented were estimated from a single simulation batch.
Thus, the analysis of multiple objectives of the flights does
not necessitate any additional simulation replications compared
with the analysis of a single objective, provided that simulation
output is collected comprehensively.

VI. CONCLUSION

This paper has presented a new approach to the analysis of
AC combining game theory and discrete-event simulation. In
the approach, data obtained by simulating AC scenarios are
converted into games using statistical techniques. The payoffs
of the games containing discrete or continuous decision vari-
ables are estimated using analysis of variance and multivariate
regression analysis, respectively. The estimated games are ap-
plied for validating simulation models as well as for simulation-
based strategy analysis. The game-theoretic approach extends
one-sided statistical validation methods and simulation-based
optimization approaches by taking into account the game set-
ting that is a critical part of AC. On the other hand, the
estimated games can be considered as a new type of simulation
metamodel.
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The application of games in validation is based on the
comparison of their properties with actual AC practices. Such
properties include symmetry of games, dependence between
decision variables and payoffs, best responses, equilibrium
solutions, and the effect of initiative. The utilization of these
properties in validation is illustrated with the example analysis
of an existing discrete-event simulation model. The analysis
both gave positive feedback on the accuracy of the simulation
model and revealed some inconsistencies in the simulation data.
These observations based on, e.g., best responses and equilib-
rium solutions, could not have been made with traditional one-
sided validation methods. Thus, the use of the game-theoretic
approach gave additional insight into the validity of the simu-
lation model. Overall, estimated games offer a way to present
simulation data in an informative and easily interpretable form.
Therefore, the game-theoretic approach is capable of answering
validation needs in a transparent manner.
The use of the game-theoretic approach in strategy analysis

allows one to study the effectiveness of tactical alternatives
available in AC scenarios with respect to the objectives of both
flights. The approach reveals the best response dynamic of the
scenario that enables the study of the players’ best responses
to each of the opponent’s tactical alternatives. The approach
is flexible as it allows the modeling of the diverse objectives
of the flights. Games can also be used in worst case analysis,
providing tactical alternatives that secure the best possible
outcome of the AC scenario for one flight when the opposing
flight acts in the worst possible way from the viewpoint of
the first flight. Furthermore, the dominating tactical alternatives
can be easily pinpointed, which simplifies the decision-making
problem under consideration by reducing the number of poten-
tial tactical alternatives.
The utilization of these properties is demonstrated with an

example strategy analysis. In order not to obscure the aspects
of strategy analysis, the example problem was quite basic.
Nevertheless, similar analysis could easily be extended to more
complex and refined decision problems. Most importantly,
strategy analysis offers systematic and structured means for
analyzing decision problems related to AC scenarios from
several viewpoints using only a single simulation batch.
The game-theoretic approach can also be applied to simula-

tion analyses in other fields than AC. In addition to military
problems, the approach lends itself naturally to all studies,
involving multiple actors with conflicting objectives and having
a compelling need for simulation. Examples of such fields
include problems in economics, computer science, and biology.
A potential military application area could be the analysis
of effect-based operations [51] which is a modern military
planning concept that approaches the planning from a systems
perspective and takes into account the multiple objectives of
military operations.
A potential direction for future research is to apply the prin-

ciples of the game-theoretic approach in analyses of discrete-
event simulation models and simulation data that do not
originally represent a game setting. In such analyses, the input
of a simulation model is set as the decision variable of a player,
and a pertinent random factor included in the simulation model
is treated as the decision variable of a virtual opponent. Then,

games estimated from the simulation data could be combined
with worst case inference to get an overview of the total impact
of uncertainties presented by the random factor. In other words,
a game against nature is proposed (e.g., [21]). In this way,
the application area of the game-theoretic approach could be
extended well beyond situations with an inherent game setting.
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