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Optimal Estimator Design and Properties Analysis for
Interconnected Systems with Asymmetric Information

Structure
Yan Wang, Junlin Xiong, Zaiyue Yang, Rong Su

Abstract—This paper studies the optimal state estimation
problem for interconnected systems. Each subsystem can obtain
its own measurement in real time, while, the measurements
transmitted between the subsystems suffer from random delay.
The optimal estimator is analytically designed for minimizing the
conditional error covariance. The boundedness of the expected
error covariance (EEC) is analyzed. In particular, a new condition
that is easy to verify is established for the boundedness of
EEC. Further, the properties of EEC with respect to the delay
probability are studied. We found that there exists a critical
probability such that the EEC is bounded if the delay probability
is below the critical probability. Also, a lower and upper bound of
the critical probability is derived. Finally, the proposed results are
applied to a power system, and the effectiveness of the designed
methods is illustrated by simulations.

Index Terms—Interconnected systems, expected error covari-
ance, subsystems, random delay, optimal state estimation.

I. INTRODUCTION

State estimation plays an important role in numerous ap-
plications such as target tracking [1], control [2], and signal
processing [3]. With the development of the wireless network
and sensor technologies, the networked state estimation have
received considerable attention during past decade. The esti-
mation performance is significantly affected by the network
environment.

The network attack is one of the factors having significant
impact on the performance of the networked state estimation.
The remote state estimation (RSE) under denial-of-service
(DoS) attacks was studied by a stochastic game framework
in [4]. The nonstationary filtering framework was designed
for uncertain fuzzy Markov switching affine systems with
deception attacks in [5]. The authors of [6] investigated the
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distributed dimensionality reduction fusion estimation problem
for cyber-physical systems under DoS attacks. The results of
[6] are only for a single system with multi-sensors.

The packet drops and network delays are other two major
factors affecting the networked state estimation performance.
The researchers tried to understand or counteract the effects
of the packet drops/delays on the estimation performance. The
Kalman filtering with (partial) random packet drops was inves-
tigated in [7], [8]. The distributed Kalman filtering with multi-
sensors in the presence of packet drops was studied in [9].
The results of [7]–[9] are for Bernoulli packet drops model.
The Kalman filtering with Markovian packet drops/delays was
studied in [10]–[12]. The authors of [13] focused on the
protocol-based filtering of fuzzy Markov affine systems with
uncertain packet dropouts. In general, the estimation problems
with Markovian packet drops/delays are more complex than
the ones with Bernoulli packet drops/delay. However, it is
difficult to analytically discuss the estimator properties for
the Markovian packet drops/delays cases. The literature [14]
studied the state estimation over sensor networks with mixed
uncertainties of random delay, packet dropouts and missing
measurements. The state estimation problem with multiple
packet losses and with the unknown varying delayed mea-
surements were reported in [15] and [16], respectively. Only a
single system with one sensor or multi-sensors is considered
in [7]–[11], [14]–[16], and the extensions to interconnected
systems (ISs) are rarely reported in the literature. Numerous
physical systems are modeled as ISs that have attracted lots of
research attentions in the last decade [17]–[20]. The distributed
optimal estimation problem of IS with local information is
studied in [21]. However, the optimal estimator is not explicitly
designed, and the obtained condition of the error covariance
being bounded is not easy to verify [21].

In this paper, we focus on the optimal state estimator design
for ISs with random delays. A condition in term of semidefi-
nite programming is established to ensure the boundedness of
the EEC. For the IS, the measurements transmitted between
the subsystems suffer from random delays. To reduce the
on-line computation and save the storage space, the delayed
measurements will be discarded by each subsystems. Under
the above-mentioned setup, an optimal state estimator is
explicitly designed. Auxiliary equations are defined to analyze
the boundedness of the expected error covariance (EEC). In
addition, the relationship between the boundedness of EEC
and the delay probability is studied. The existence of a critical
probability is shown, where the EEC is bounded if the delay
probability is less than the critical probability. Also, a lower
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Subsystem 1
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Fig. 1. The information transmission between the subsystems: γt,i = 1
means that the corresponding information transmission does not suffer delay,
otherwise, γt,i = 0.

and upper bound of the critical probability is successfully
derived. Finally, the effectiveness of the proposed theories is
illustrated on a power system.

Notations: Let γa:b denote the sequence γa, γa+1, · · · , γb.
The probability measure is denoted by Pr(·). The 2-norm of
matrix A is denoted by ||A||. The spectral radius of matrix A
is denoted by ρ(A). The symbol δ(·) represents the minimum
eigenvalue of a matrix. The symbols ⊗ and ◦ are the operators
of Kronecker product and Hadamard product, respectively. Let
0n×m denote n×m zero matrix, and 0n×n is abbreviated as
0n. Let 1n×m be a n×m matrix whose all elements are 1, and
1n×n is abbreviated as 1n. The n× n unit matrix is denoted
by In. For a function f(·), define fn(·) = f(fn−1(·)), where
f1(·) = f(·).

II. PROBLEM STATEMENT

Consider an IS composed of two subsystems. The system
dynamic is given by{

x1
t+1 = A11x1

t +A12x2
t + ω1

t , (1a)
x2
t+1 = A21x1

t +A22x2
t + ω2

t , (1b)

where for subsystem i (i ∈ {1, 2}), xit ∈ Rni and ωit ∈ Rni

are the state and process noise, respectively. The initial state
x0 = [(x1

0)T (x2
0)T]T is a random vector satisfying E(x0) = 0

and E(xT0x0) = Σ0 � 0. The noise ωt = [(ω1
t )T (ω2

t )T]T is an
i.i.d. random process with E(ωt) = 0 and E(ωtω

T
t ) = W � 0.

Each subsystem employs sensors to measure its own sub-
system state. The measurement equations are given by

yit = Cixit + υit, i ∈ {1, 2}, (2)

where υit ∈ Rmi , (i ∈ {1, 2}) is the measurement noise, and
υt = [(υ1

t )T (υ2
t )T]T is an i.i.d. random process satisfying

E(υt) = 0 and E(υtυ
T
t ) = V � 0; Ci is the measurement

matrix with a proper dimension, for i ∈ {1, 2}. It is assumed
that ωt1 is independent of vt2 for any t1, t2 ≥ 0.

As Fig. 1 shows, subsystem i will transmit the measurement
yit to subsystem j through network for i 6= j. The commu-
nication network between different subsystems suffers from
random one step delay (one step delay or no delay). Define the
random binary variables γt,1 and γt,2 to describe the random
delay. In particular, γt,i = 0 means that the measurement yjt
transmitted from subsystem j to subsystem i suffers from one
step delay, and γt,i = 1 indicates that there is no delay, where

i, j ∈ {1, 2}. The subsystem i will broadcast the value of γt,i
to the subsystem j once subsystem i knows the information
transmission outcomes. Because the realization of γt,i takes a
value of either 0 or 1, it is easy to broadcast the value of γt,i.
Consider that the delay indicator γt,i (i ∈ {1, 2}) is a i.i.d.
Bernoulli process with{

Pr(γt,1 = 1) = 1− λ1, Pr(γt,1 = 0) = λ1, (3a)
Pr(γt,2 = 1) = 1− λ2, Pr(γt,2 = 0) = λ2, (3b)

where 0 ≤ λ1, λ2 ≤ 1. Due to the random delays, the real
time measurements available to subsystem 1 and subsystem
2 are {y1

t , γt,1y
2
t }, and {y2

t , γt,2y
1
t }, respectively, which are

referred to as asymmetric information sets. Using the available
real time measurements, the estimator 1 and estimator 2 are
designed as the Kalman-like filtering form:

{
x̂1
t|t−1 = A11x̂1

t−1|t−1 +A12x̂2
t−1|t−1, (4a)

x̂1
t|t = x̂1

t|t−1 +K11
t φ

1
t + γt,1K

12
t φ

2
t , (4b)

{
x̂2
t|t−1 = A21x̂1

t−1|t−1 +A22x̂2
t−1|t−1, (5a)

x̂2
t|t = x̂2

t|t−1 + γt,2K
21
t φ

1
t +K12

t φ
2
t , (5b)

where φ1
t = y1

t − C1x̂1
t|t−1, φ2

t = y2
t − C2x̂2

t|t−1, x̂1
0|0 =

0ni×1, x̂2
0|0 = 0n2×1; Kij

t , i, j ∈ {1, 2}, are the gain matrices
with proper dimensions. Define x̂t|t = [(x̂1

t|t)
T (x̂2

t|t)
T]T and

x̂t|t−1 = [(x̂1
t|t−1)T (x̂1

t|t−1)T]T. The estimator of the IS is
written as {

x̂t|t−1 = Ax̂t−1|t−1, x̂0|0 = 0, (6a)
x̂t|t = x̂t|t−1 + Lt(yt − Cx̂t|t−1), (6b)

where A = [Aij ]i,j∈{1,2}, C = diag{C1, C2}, and Lt =[
K11
t γt,1K

12
t

γt,2K
21
t K22

t

]
. Denote xt = [(x1

t )
T (x2

t )
T]T. The esti-

mation error and prediction error are defined as et|t = xt−x̂t|t,
and et|t−1 = xt − x̂t|t−1, respectively. The conditional error
covariances are defined:{

Pt|t = E(et|te
T
t|t
∣∣γt, Pt|t−1), (7a)

Pt|t−1 = E(et|t−1e
T
t|t−1

∣∣Pt−1|t−1), (7b)

where γt = [γt,1 γt,2]. Combining (1a)–(1b) and (6a)–(6b),
one has {

et|t−1 = Aet−1|t−1 + ωt−1, (8a)
et|t = et|t−1 − Lt(Cet|t−1 + υt), (8b)

and {
Pt|t−1 = APt−1|t−1A

T +W, P0|0 = Σ0, (9a)

Pt|t = (I − LtC)Pt|t−1(I − LtC)T + LtV L
T
t , (9b)

where Pt+1|t, Pt|t are random matrices induced by the random
variables γ0:t. For the IS (1), we make the following definition
and assumption:

Definition 1: A system with parameters (A, C) is detectable
with Ω if there exists a K such that ρ(A− (K ◦ Ω)C) < 1.

Assumption 1: In this paper, we assume that (A, C) is
detectable with 1(n1+n2)×(m1+m2), and is undetectable with
diag{1n1×m1 , 1n2×m2}.
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Under Assumption 1, Pt|t−1 is bounded if λ1 = λ2 = 0
and is unbounded if λ1 = λ2 = 1, where Pt|t−1 is viewed as
a nonrandom matrix if λ1, λ2 ∈ {0, 1}.

III. OPTIMAL ESTIMATOR DESIGN

In this section, the optimal gains of the estimator are
analytically derived, and the estimator realization algorithm
is presented.

Theorem 1: Consider the system (1), the estimator (6) and
the conditional error covariance dynamics (9). Given Pt|t−1,
γt,1, γt,2, the optimal Lt minimizing Pt|t is given by

Lt = γt,1γt,2L
[11]
t + (1− γt,1)γt,2L

[01]
t

+ γt,1(1− γt,2)L
[10]
t + (1− γt,1)(1− γt,2)L

[00]
t , (10)

where

L
[11]
t = Pt|t−1C

T(V + CPt|t−1C
T)−1,

L
[01]
t =

[
(N3J1

t J
2
t U

1
t + U2

t )U3
t

[
0n1×m2

−J1
t J

2
t

]]
,

L
[10]
t =

[[
−J3

t J
4
t

0n2×m1

]
(N4J3

t J
4
t U

4
t + U5

t )U6
t

]
,

L
[00]
t =

[
N4TU2

t U
3
t 0n1×m2

0n2×m1 N3TU5
t U

6
t

]
,

N1 = [Im1 0m1×m2 ], N2 = [0m2×m1 Im2 ],

N3 =

[
0n1×n2

In2

]
, N4 =

[
In1

0n2×n1

]
,

J1
t = N3T

(
U2
t U

3
t U

4
t U

6
t − U5

t U
6
t

)
,

J2
t =

(
I − U1

t U
3
t U

4
t U

6
t

)−1

, J4
t = (I − U4

t U
6
t U

1
t U

3
t )−1,

J3
t = N4T(U5

t U
6
t U

1
t U

3
t − U2

t U
3
t ),

U1
t = N2V N1T +N2CPt|t−1C

TN1T,

U2
t = Pt|t−1C

TN1T, U5
t = Pt|t−1C

TN2T,

U3
t =

(
N1V N1T +N1CPt|t−1C

TN1T
)−1

,

U4
t = N1V N2T +N1CPt|t−1C

TN2T,

U6
t =

(
N2V N2T +N2CPt|t−1C

TN2T
)−1

.

Proof: See appendix.
The optimal state estimator of IS (1) with random delay

is realized by Algorithm 1. Before presenting Algorithm 1,
denote N̄1 = (N4)T, N̄2 = (N1)T, N̄3 = (N2)T, N̄4 =
(N3)T.

Remark 1: Compared to [7], [8], [10], [11], the derivation of
the optimal estimator gain Lt in this paper is more challenging,
because if γt,1γt,2 6= 1, the corresponding gains of the
estimator must satisfy a certain sparse structure constraint.
While, the optimal estimator gain in [7], [8], [10], [11] is
directly obtained from standard Kalman filtering formulas.
Actually, for any cases of the data reception, the optimal
estimator gain in [7], [8], [10], [11] is either a zero matrix or
the standard Kalman filtering gain with different measurement
matrices.

Algorithm 1 Sub-estimator realization
1. Obtain yit and transmit yit to subsystem j, where i, j ∈
{1, 2} and i 6= j.
2. Check whether yjt is obtained in real time; broadcast the
value of γt,i to subsystem j, and determine the value of
γt,j .
3. Compute L[γt,1γt,2]

t based on Theorem 1 using γt,1, γt,2,
and Pt|t−1.
4. Compute x̂1

t|t−1 and x̂2
t|t−1 by (4a), (5a) using x̂1

t−1|t−1

and x̂2
t−1|t−1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for subsystem 1:
5. Compute x̂1

t|t = x̂1
t|t−1+N̄1L

[γt,1γt,2]
t N̄2(y1

t−C1x̂1
t|t−1).

if γt,1 = 1 then
6. Update x̂1

t|t = x̂1
t|t + N̄1L

[γt,1γt,2]
t N̄3(y2

t −C2x̂2
t|t−1).

end if
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for subsystem 2:
5. Compute x̂2

t|t = x̂2
t|t−1+N̄4L

[γt,1γt,2]
t N̄3(y2

t−C2x̂2
t|t−1).

if γt,2 = 1 then
6. Update x̂2

t|t = x̂2
t|t + N̄4L

[γt,1γt,2]
t N̄2(y1

t −C1x̂1
t|t−1).

end if. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7. Transmit x̂it|t to subsystem j.
8. Compute Pt+1|t based on (9a)–(9b).
9. Let t = t+ 1 and return to first step.

IV. BOUNDEDNESS ANALYSIS OF EXPECTED ERROR
COVARIANCE

In this section, we analyse the boundedness of the EEC
through auxiliary matrix functions. For simplicity, hereinafter,
we denote Pt = Pt|t−1. It follows from (9) that{

Pt+1 = AL,tPtA
T
L,t +ALtV (ALt)

T +Wt, (11a)

P1 = AΣ0A
T +W, (11b)

where AL,t = A − ALtC. In the following, we focus on
studying the properties of E(Pt). According to the definition of
Pt, E(Pt) depends on the distributions of the random variables
γt,1, γt,2. Define the following auxiliary matrix functions

a(X,Y ) = (A−AXC)Y (A−AXC)T, (12)

b(X,Y ) = a(X,Y ) +AXVXTAT +W, (13)

c(X) = (A−AXC)T(A−AXC), (14)
d(X) = (A−AXC)⊗ (A−AXC). (15)

Recall Theorem 1. Note that Lγt , γ ∈ {[00], [01], [10], [11]}
depends on Pt, and thus we denote Lγt by Lγ [Pt], where we
take Pt as a variable. Consider the probability distribution of
γt = [γt,1 γt,2], i.e. (3), we define

f(S1, S2, S3, S4, Y ) = λ1λ2b(S
1, Y ) + λ1(1− λ2)b(S2, Y )

+ (1− λ1)λ2b(S
3, Y ) + (1− λ1)(1− λ2)b(S4, Y ), (16)

gλ1λ2
(Y ) = f(L[00][Y ], L[01][Y ], L[10][Y ], L[11][Y ], Y ).

(17)
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Some useful properties of the the matrix equation (17) are
proposed below (Proposition 1 and Lemmas 1–2) and will be
used to establish the boundedness condition of EEC.

Proposition 1: Consider (11) and (17). The following equa-
tions hold:

E(Pt+1|Pt) = gλ1λ2
(Pt), E(Pt+1) = E(gλ1λ2

(Pt)), (18)
E(Pt+1) = E(gλ1λ2

(Pt)) � gλ1λ2
(E(Pt)). (19)

Proof: See appendix.
Lemma 1: Define the matrix sequence Y0, Y1, Y2, · · · gen-

erated by Yt+1 = gλ1λ2(Yt), Y0 = P0. One has E(Pt) � Yt.
Proof: This result directly follows from (19).

Lemma 2: Consider the sequence Y0, Y1, Y2, · · · de-
fined in Lemma 1. The following result holds: lim

t→+∞
Yt is

bounded if and only if there exists X1, · · · , X7 such that
ρ
(
h(X1, · · · , X7)

)
< 1, where

h(X1, · · · , X7) = λ1λ2d(N4X1N1 +N3X2N2)

+ λ1(1− λ2)d(X3N1 +N3X4N2)

+ (1− λ1)λ2d(N4X4N1 +X6N2)

+ (1− λ1)(1− λ2)d(X7). (20)

Proof: See appendix.
In the following, we derive a sufficient condition of

ρ
(
h(X1, · · · , X7)

)
< 1 with the form of semidefinite pro-

gramming (SDP).
Theorem 2: Consider (11) with (3). Given λ1, λ2. If there

exists r1, r2, r3, r4 satisfying r1λ1λ2 + r2λ1(1−λ2) + r3(1−
λ1)λ2 + r4(1− λ1)(1− λ2) < 1, where

r1 = arg min
r,X,X̃

{
r ≥ 0 : p1(r,X, X̃) � 0

}
, (21a)

r2 = arg min
r,X,X̃

{
r ≥ 0 : p2(r,X, X̃) � 0

}
, (21b)

r3 = arg min
r,X,X̃

{
r ≥ 0 : p3(r,X, X̃) � 0

}
, (21c)

r4 = arg min
r,X

{
r ≥ 0 : p(r,X) � 0

}
, (21d)


p(r,X) =

[ √
rI A−AXC

(A−AXC)T
√
rI

]
, (22a)

p1(r,X, X̃) = p(r,N4XN1 +N3X̃N2), (22b)
p2(r,X, X̃) = p(r,XN1 +N3X̃N2), (22c)
p3(r,X, X̃) = p(r,N4XN1 + X̃N2), (22d)

then lim
t→+∞

E(Pt) is bounded.

Proof: See appendix.
Remark 2: Note that p(r,X) � 0, p1(r,X, X̃) � 0,

p2(r,X, X̃) � 0, and p3(r,X, X̃) � 0 are LMIs. Problems
(21a)–(21d) are SDP problems which can be effectively solved
by MATLAB toolbox. Thus, the condition established in
Theorem 2 can be effectively verified.

Corollary 1: Consider r1, r2, r3 and r4 defined in Theorem
2. It holds that r4 ≤ min(r2, r3), r1 ≥ max(r2, r3). In
addition, if r1 = r4 and there exists ri < 1, for any

i ∈ {1, 2, 3, 4}, then lim
t→+∞

E(Pt) is bounded for any λ1,

λ2 ∈ [0 1].
Proof: See appendix.

Corollary 2: Consider r1, r2, r3 and r4 defined in Theorem
2. Assume that the system parameters (A C) satisfy Assump-
tion 1. If there exists a X satisfying c(X) ≺ I , then r4 < r1,
where c(·) is defined in (14).

Proof: See appendix.
Note that E(Pt) depends on λ1, λ2. It is known that if

the delay occurs with a bigger probability, then the estimation
performance gets worse. This means that E(Pt) is monotone
increasing with respect to λ1, λ2. Additionally, if λ1, λ2 are
big enough, E(Pt) may became unbounded when the time goes
to infinity. The above discussions are concluded as follows.

Lemma 3: Consider (11). For a fixed λ1, if lim
t→∞

E(Pt)

is unbounded for λ2 = 1, but bounded for λ2 = 0, then
there exists a critical probability λ2,c such that lim

t→∞
E(Pt) is

bounded for λ2 ≤ λ2,c, and unbounded for λ2 > λ2,c. Also,
for a fixed λ2, we have the similar results to λ1.

Proof: See appendix.
Since the accurate critical probability of delay is not easy to

obtain, the lower and upper bounds of the critical probability
may be useful. A computation method is provided in the
following theorem to compute the lower and upper bounds of
the critical probability. For ease of notations, we first define

q(X1, X2) = c(N4X1N1 +N3X2N2).

Theorem 3: Consider (11). For a fixed λ1, the critical
probability λ2,c satisfies that if λ2 ≤ λ2,c, lim

t→∞
E(Pt) is

bounded, otherwise, lim
t→∞

E(Pt) is unbounded. A lower and

upper bound of λ2,c is obtained, i.e. λ2,c ≤ λ2,c ≤ λ̄2,c,
where

λ̄2,c =

{
1, if r1 = r4 < 1;

min
{

1
αλ1

, 1
}
, , otherwise;

(23)

λ2,c =


1−r2λ1−r4(1−λ1)

(r1−r2)λ1+(r3−r4)(1−λ1) , if r1 6= r4;
1, if r1 = r4 < 1;
0, if r1 = r4 ≥ 1.

(24)

where α = δ
(

min
X1,X2

q(X1, X2)
)

. Similar upper and lower

bounds for λc1 can be obtained when we fix λ2.
Proof: See appendix.

Theorem 3 provides a method to compute the upper and lower
bounds of the critical probability of delay.

Remark 3 (Extension to large-scale ISs): Consider a large-
scale IS composed of n subsystems. We can use a random
graph G(V, E , p) to describe the communication between the
subsystems, where V is the nodes set; E is the possible edges
set; p = [p1, . . . , p|E|]. At time t, the i-th possible edge in
E occurs in the graph with probability 0 < pi < 1. The
edge (i, j) occurring in the graph implies that the subsystem
i can receive the information of subsystem j in real time. The
continuity of E(Pt) (w.r.t. p) indicates that there should exist
a critical plane denoted by pc, such that the boundedness of
E(Pt) depends on which side of the plane pc the point p is



5

on. However, it is not easy to determine the upper and lower
bounds of pc.

V. APPLICATIONS TO POWER SYSTEMS

In this section, a power system is used as an example to
demonstrate the effectiveness of the proposed state estimation
methods.

Network

Data 1 Data 2

Estimator 1 Estimator 2

PCC PCC PCC PCC

V1 V2 V3 V4

Lc1 Lc2 Lc3 Lc4

Input Input Input Input
Vp1 Vp2 Vp3

Vp4

DRE1 DRE2 DRE3 DRE4

Area 1 Area 2

Attack Attack

Fig. 2. The model of distributed energy resources (DERs) connecting to the
power network [22]. DER 1 and DER 2 are in area 1; DER 3 and DER 4 are
in area 2. .

We study the state estimation problem for the distributed
energy resources (DERs) connected to the power network that
is shown in Fig. 2. In this example, the power network is
chosen to be the IEEE 4-bus distribution network (see Fig. 3
of [22]). As Fig. 2 depicts, four DERs are integrated into the
main power network at the point common coupling (PCC).
The voltages of the PCC are vs = [v1 v2 v3 v4]T, where
vi is the voltage of the ith PCC, and i ∈ {1, 2, 3, 4}. Each
DER is a voltage source at each bus. The input voltage of
the voltage sources is denoted by vp = [vp1 vp2 vp3 vp4]T.
To maintain the proper operation of DERs, it is required to
keep the PCC voltages vs at reference values vref . The PCC
voltage deviation xt = vs − vref is chosen to be the system
state. The DER control effort deviation ut = vp − vpref is
the control input, where vpref is the reference of the control
effort. Following the modeling process provided in [22], [23],
the dynamic of xt is of the following form:

ẋt = Axt +But + nt, (25)

where nt is a zero-mean Gaussian white noise whose covari-
ance is Q. The system (25) is discretized as:

xt+1 = Adxt +Bdut + ωt, (26)

where Ad = I+ATs, Bd = TsB, and ωt is the i.i.d. Gaussian
process with zero-mean and covariance W = TsQ. Assume
the initial state x0 is a zero mean Gaussian variable with
identity covariance. Here, we assume W = I4, and set the
sampling time Ts = 0.05s. In this example, ρ(Ad) > 1, which
means that the system (26) under open-loop pattern (there is
no control input) is unstable. Here, the controller is of the state
feedback form: ut = Fxt, where F is the gain matrix with
proper dimension. The closed-loop system is given by

xt+1 = Acxt + ωt, (27)

where Ac = Ad + BdF . As Fig. 2 shows, DERs 1–2 are in
area 1 and DERs 3–4 are in area 2. Based on different areas,

the system (27) can be written as an IS composed of two
subsystems:

xit+1 = Aiic x
i
t +Aijc x

j
t + ωit, i, j ∈ {1, 2}, i 6= j, (28)

where xit is the component of the system state correspond-
ing to area i; and Ac = [Aijc ]i,j∈{1,2}, x1

t = [I2 02]xt,
x2
t = [02 I2]xt, ω1

t = [I2 02]ωt, ω2
t = [02 I2]ωt. To monitor

the working status of the power system (28), in each area,
the sensors are employed to measure the system state. The
measurement equations of area 1 and area 2 are

yit = Cixit + υit, i ∈ {1, 2}, (29)

where υt = [υ1
t υ

2
t ]T is measurement noise that is the zero-

mean Gaussian independent processes with E(υtυ
T
t ) = I3,

and C1 = [I2 02], C2 = [0 0 1 1]. In area i, the estimator
i is installed to estimate the state xit. The measurement y1

t is
transmitted to estimators 1–2 through network, so does y2

t . It
is assumed that the data yit transmitted to estimator j suffers
from random delay (one step delay or no delay), where i 6= j
and i, j ∈ {1, 2}. Assume that the delay indicator γt,i is a
Bernoulli stochastic process with Pr(γt,i = 0) = λi, where
i ∈ {1, 2}.

Case 1 (the stable closed-loop system): The controller
gain is chosen such that ρ(Ac) < 1, which means that the
system (28) with the chosen F is stable. Then, our proposed
method is applied for the state estimation of the system (28).
The estimation performance is evaluated by the trace of the
expected error covariance E(Pt). The trace of E(Pt) with
respect to different delay probabilities (λ1, λ2) is approxi-
mately computed by averaging 1000 Monte-Carlo simulations,
see Fig. 3. From Fig. 3, we can see that (i) the estimation
performance gets worse under larger delay probabilities; (ii)
the expected error covariance E(Pt) is bounded even though
λ1 = λ2 = 1 (Note that λ1 = λ2 = 1 means that the delay
always happens); (iii) under different delay probabilities, the
expected error covariance E(Pt) is within the same order of
magnitude as the error covariance of standard Kalman filtering.
The simulations illustrate that our estimators can well monitor
the working state of the power system (28), even though the
data transmitted between different areas suffer from random
delays.

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

50 100 150 200
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5.672

5.674

5.676

5.678

Fig. 3. The value of tr[E(Pt)] under different λ1, λ2.

Case 2 (the unstable closed-loop system): It is known that
to estimate the states of unstable systems is more challenging
than to estimate the states of stable systems. Hence, to further
illustrate the effectiveness of our estimators, we also consider
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the unstable system case. The controller gain is chosen such
that ρ(Ac) > 1. Hence, the system (28) with the chosen
controller gain is unstable. In this case, the values of tr[E(Pt)]
with different (λ1, λ2) are presented in Figs. 4–5.
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Fig. 4. λ1 = 1, the value of tr[E(Pt)] under different λ2
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Fig. 5. λ2 = 1, the value of tr[E(Pt)] under different λ1

Figs. 4–5 show that the expected error covariance E(Pt)
(with any delay probabilities) is within the same order of
magnitude as the error covariance of standard Kalman filtering.
This implies that even when the power systems (28) become
unstable, the working states are also well monitored by our
estimator under random delay. In addition, comparing Fig. 4
and Fig. 5, we find that for the power system with the
parameters given in this case, the estimation performance is
more sensitive to λ2 than to λ1.

VI. CONCLUSION

This paper studied the optimal estimator design problem
for IS with random delay. Due to the random delay occurring
among the subsystems, the information available to different
subsystem may be different. This type of IS is called IS with
asymmetric information structure. An optimal estimator has
been analytically designed. The estimator realization algorithm
for each subsystem was developed. In addition, some useful
properties of the estimation performance were obtained. Fi-
nally, the proposed estimator was applied to a power system.
The simulations showed that the designed estimator is effective
and is of good performance.

In this work, we assume the delay indicator obeying
Bernoulli process. In the further work, we may extend this
work to the Markov chain delay indicator case.
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VII. APPENDIX

A. The proof of Theorem 1

The matrices L
[11]
t , U3

t , U6
t , J2

t , J4
t are defined by the

“inverse” operator. Firstly, we show that these matrices are
well-defined. It follows from V + CPt|t−1C

T � V � 0

that (V + CPt|t−1C
T)−1 is well-defined. Thus, L

[11]
t is

well-defined. Since both N1 and N2 are row full rank,
N1V N1T+N1CPt|t−1C

TN1T � N1V N1T � 0, N2V N2T+

N2CPt|t−1C
TN2T � N2V N2T � 0. Thus, U3

t and U6
t are

well-defined. Based on the Schur complement decomposition,
it follows from

V + CPt|t−1C
T =

[
(U3

t )−1 U4
t

U1
t (U6

t )−1

]
� 0

that U1
t U

3
t U

4
t ≺ (U6

t )−1, and U4
t U

6
t U

1
t ≺ (U3

t )−1. As a result,
I − U1

t U
3
t U

4
t U

6
t � 0, I − U4

t U
6
t U

1
t U

3
t � 0. This shows that

J2
t and J4

t are well-defined.
Now, we start to prove that the optimal Lt is of the form

(10). For ease of notation, define R1
t =

[
K11
t

K21
t

]
, R2

t =

[
K12
t

K22
t

]
.

(Case 1) If γt,1 = 1, γt,2 = 1, then the optimal Lt = L
[11]
t

is the gain of the standard Kalman filtering [24].
(Case 2) If γt,1 = 0, γt,2 = 1, then Lt has the form Lt =

R1
tN

1 +N3K22
t N

2. Inserting Lt = R1
tN

1 +N3K22
t N

2 into
(9b), we have

Pt|t = (I − (R1
tN

1 +N3K22
t N

2)C)Pt|t−1

× (I − (R1
tN

1 +N3K22
t N

2)C)T

+ (R1
tN

1 +N3K22
t N

2)V (R1
tN

1 +N3K22
t N

2)T.

Taking R1
t as a variable, tr(Pt|t) has the form tr(Pt|t) =

tr
(
R1
t (U

3
t )−1R1

t
T

+ rt,R

)
, where rt,R is a linear function

of R1
t . Using the formula tr(AXBXT) = vecT(X)(BT ⊗

A)vec(X), one has tr(Pt|t) = vecT(R1
t )((U

3
t )−1 ⊗

I)vec(R1
t ) + r̄t,R, where r̄t,R is a linear function of vec(R1

t ).
Thus, ∂2 tr(Pt|t)

∂2vec(R1
t )

= (U3
t )−1 ⊗ I � 0. Similarly, taking K22

t

as a variable, we have ∂2 tr(Pt|t)

∂2vec(K22
t )

= (U6
t )−1 ⊗ N3TN3 =

(U6
t )−1⊗ I � 0. Thus, tr(Pt|t) is convex with respect to both

R1
t and K22

t . The optimal R1
t and K22

t are given by solving
∂ tr(Pt|t)

∂R1
t

= 0 and ∂ tr(Pt|t)

∂K22
t

= 0. That is

∂ tr(Pt|t)

∂R1
t

= R1
t (U

3
t )−1 +N3K22

t U
1
t + U2

t = 0

∂ tr(Pt|t)

∂K22
t

= K22
t (U6

t )−1 +N3TR1
tU

4
t +N3TU5

t = 0,

which gives

R1∗
t = −(N3J1

t J
2
t U

1
t + U2

t )U3
t , K22∗

t = J1
t J

2
t .

As a result, if γt,1 = 0, γt,2 = 1, then the optimal Lt =

R1∗
t N

1 +N3K22∗
t N2 = L

[01]
t .

(Case 3) If γt,1 = 1, γt,2 = 0, then Lt is of the form
Lt = N4K11

t N
1 + R2

tN
2. Following from the the derivation

similar to the one of Case 2, we have the optimal K11
t and

R2
t are given by

K11∗
t = J3

t J
4
t , R2∗

t = −(N4J3
t J

4
t U

4
t + U5

t )U6
t .

Thus, if γt,1 = 1, γt,2 = 0, then the optimal Lt =

N4K11∗
t N1 +R2∗

t N
2 = L

[10]
t .

(Case 4) If γt,1 = 0, γt,2 = 0, then Lt = N4K11
t N

1 +
N3K22

t N
2. Similarly, we obtain that the optimal K11

t and
K22
t are of the form

K11∗
t = −N4T(N3K22

t U
1
t + U2

t )U3
t = −N4TU2

t U
3
t ,

K22∗
t = −N3T(N4K11

t U
4
t + U5

t )U6
t = −N3TU5

t U
6
t .

Hence, if γt,1 = 0, γt,2 = 0, the optimal Lt = N4K11∗
t N1 +

N3K22∗
t N2 = L

[00]
t . The proof is completed.

B. The proof of Proposition 1

The equations (18) are obvious. We focus on proving (19).
For any Y 1, Y 2 � 0, let Y = αY 1 + (1− α)Y 2. One has

gλ1λ2
(Y )

= f(L[00][Y ], L
[01]
t [Y ], L[10][Y ], L[11][Y ], Y )

= f(L[00][Y ], L[01][Y ], L[10][Y ], L[11][Y ], αY 1 + (1− α)Y 2)

= αf(L[00][Y ], L[01][Y ], L[10][Y ], L[11][Y ], Y 1)

+ (1− α)f(L[00][Y ], L[01][Y ], L[10][Y ], L[11][Y ], Y 2)

� min
S1∈Λ[00],S2∈Λ[01],S3∈Λ[10],S4∈Λ[11]

αf(S1, S2, S3, S4, Y 1)

+ min
S1∈Λ[00],S2∈Λ[01],S3∈Λ[10],S4∈Λ[11]

(1− α)

× f(S1, S2, S3, S4, Y 2)

= αf(L[00][Y 1], L[01][Y 1], L[10][Y 1], L[11][Y 1], Y 1)

+ (1− α)f(L[00][Y 2], L[01][Y 2], L[10][Y 2], L[11][Y 2], Y 2)

= αgλ1λ2(Y 1) + (1− α)gλ1λ2(Y 2),

where Λ[00] =
{[X11 0

0 X22

]
: X11 ∈ Rn1×m1 , X22 ∈

Rn2×m2

}
, Λ[01] =

{[
X11 0

X21 X22

]
: X11 ∈ Rn1×m1X21 ∈

Rn2×m1 , X22 ∈ Rn2×m2

}
, Λ[10] =

{[
X11 X12

0 X22

]
: X11 ∈

Rn1×m1X12 ∈ Rn1×m2 , X22 ∈ Rn2×m2

}
, Λ[11] = Rn×m.

This shows that gλ1λ2
(Y ) is concave. Using Jensen’s In-

equality, one has E(gλ1λ2
(Y )) � gλ1λ2

(E(Y )). This com-
pletes the proof.

C. The proof of Lemma 2

(Sufficiency:) Construct a sequence Ỹ0, Ỹ1, Ỹ2, · · · by

Ỹt+1 = f
(
N4X1N1 +N3X2N2, X3N1 +N3X4N2,

N4X4N1 +X6N2, X7, Ỹt
)
, Ỹ0 = P0. (30)

Using the vectorization and Kronecker products, we can
obtain that vec(Ỹt+1) = h(X1, · · · , X7)vec(Ỹt) + Q, where
Q is a bounded vector that does not depends on Ỹt. If
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ρ
(
h(X1, · · · , X7)

)
< 1, lim

t→+∞
vec(Ỹt) is bounded, i.e.

lim
t→+∞

Ỹt is bounded. It follows from

gλ1λ2
(Y ) = min

X1,...,X7
f
(
N4X1N1 +N3X2N2, X3N1

+N3X4N2, N4X4N1 +X6N2, X7, Y
)
, (31)

that Yt � Ỹt. Hence, lim
t→+∞

Yt is bounded.
(Necessity:) From (31), the necessity is obvious. The proof

is completed.

D. The proof of Theorem 2

Using Schur complement for (21a) and (22b), we have
there exists X1, X2 such that

(
A − A(N4X1N1 +

N3X2N2))C
)(
A − A(N4X1N1 + N3X2N2))C

)T
� r1I ,

which means that ||A−A(N4X1N1+N3X2N2))C|| ≤ √r1.
It follows from the formula ||A ⊗ B|| = ||A|| × ||B||
that ||d(N4X1N1 + N3X2N2)|| ≤ r1. Similarly, there ex-
ists X3, . . . , X7 satisfying ||d(X3N1 + N3X4N2)|| ≤ r2,
||d(N4X4N1 + X6N2)|| ≤ r3, ||d(X7)|| ≤ r4. As a result,
there exists X1, . . . , X7 such that ρ

(
h(X1, · · · , X7)

)
≤

λ1λ2||d(N4X1N1 + N3X2N2)|| + λ1(1 − λ2)||d(X3N1 +
N3X4N2)|| + (1 − λ1)λ2||d(N4X4N1 + X6N2)|| + (1 −
λ1)(1 − λ2)||d(X7)|| ≤ r1λ1λ2 + r2λ1(1 − λ2) + r3(1 −
λ1)λ2 + r4(1 − λ1)(1 − λ2) < 1. It follows from Lemma
2 that lim

t→+∞
Yt is bounded. From Lemma 1, we know

lim
t→+∞

E(Pt) � lim
t→+∞

Yt. Thus, lim
t→+∞

E(Pt) is bounded. The
proof is completed.

E. The proof of Corollary 1

Consider (21c). The optimal X, X̃ to the following opti-
mization problem

min
r,X,X̄

{
r ≥ 0 : p3(r,X, X̃) � 0

}
(32)

is denoted by Xo3, X̃o3. Then, we have p3(r3, X
o3, X̃o3) =

p(r3, N
4Xo3N1 + X̃o3N2) � 0. This implies that r = r3,

X = N4Xo3N1 + X̃o3N2 is a solution to p(r,X) � 0. It
follows from the definition of r4 (see (21d)) that r4 ≤ r3.
Similarly, we can prove r4 ≤ r2, r2 ≤ r1, r3 ≤ r1. If r1 = r4,
it follows from r4 ≤ r3, r4 ≤ r2, r2 ≤ r1, r3 ≤ r1 that
r1 = r2 = r3 = r4. According to Theorem 2, if r1 = r2 =
r3 = r4 < 1, lim

t→+∞
E(Pt) is bounded for any λ1, λ2. The

proof is completed.

F. The proof of Corollary 2

From Corollary 1, we know that 1) r4 ≤ r1, and 2) if
r1 = r4 < 1, then lim

t→+∞
E(Pt) is bounded for any λ1,

λ2 ∈ [0 1]. Now, we start to prove r1 6= r4 by contradiction.
According to the definition of r4, one has r4 < 1 if there
exists X such that c(X) ≺ I . Thus, lim

t→+∞
E(Pt) is bounded

for any λ1, λ2 if c(X) ≺ I and r1 = r4 holds. However, under
Assumption 1, lim

t→+∞
E(Pt) is unbounded for λ1 = λ2 = 1,

because (A,C) is undetectable with diag{1n1×m1
, 1n2×m2

}.
This is a contradiction. As a result, r1 6= r4 if there exists X
such that c(X) ≺ I . The proof is completed.

G. The proof of Lemma 3

To prove Lemma 3, we need Proposition 1. It is known
that Lemma 3 holds if E(Pt) is monotone increasing with
respect to λ1, λ2. From Proposition 1, one has E(Pt+1) =
E(gλ1λ2

(Pt)). Hence, we only need to prove that gλ1λ2
(Y ) is

monotone increasing with respect to λ1, λ2 for any Y � 0. In
particular, we should show that
• If 0 ≤ λ1 ≤ 1 is fixed and 0 ≤ λ

[1]
2 ≤ λ

[2]
2 ≤ 1, then

g
λ1λ

[1]
2

(Y ) � g
λ1λ

[2]
2

(Y ).

• If 0 ≤ λ2 ≤ 1 is fixed and 0 ≤ λ
[1]
1 ≤ λ

[2]
1 ≤ 1, then

g
λ
[1]
1 λ2

(Y ) � g
λ
[2]
1 λ2

(Y ).

From the definition of gλ1λ2
(Y ), one has

g
λ1λ

[1]
2

(Y )− g
λ1λ

[2]
2

(Y )

= λ1(λ
[1]
2 − λ

[2]
2 )b(L00

t [Y ], Y ) + λ1(λ
[2]
2 − λ

[1]
2 )b(L[01][Y ], Y )

+ (1− λ1)(λ
[1]
2 − λ

[2]
2 )b(L[10][Y ], Y )

+ (1− λ1)(λ
[2]
2 − λ

[1]
2 )b(L[11][Y ], Y )

= (1− λ1)(λ
[2]
2 − λ

[1]
2 )
[
b(L[11][Y ], Y )− b(L[10][Y ], Y )

]
+ λ1(λ

[2]
2 − λ

[1]
2 )
[
b(L[01][Y ], Y )− b(L[00][Y ], Y )

]
.

According to the definitions of b(X,Y ), and Lγ [Y ],
γ ∈ {[00], [01], [10], [11]} (see after equation
(15)), one has b(L[00][Y ], Y ) = min

X∈Λ[00]
b(X,Y ),

b(L[01][Y ], Y ) = min
X∈Λ[01]

b(X,Y ), b(L[10][Y ], Y ) =

min
X∈Λ[10]

b(X,Y ), b(L[11][Y ], Y ) = min
X∈Λ[11]

b(X,Y ),

where Λ[00], Λ[01], Λ[10], Λ[11] are defined in the
proof of Proposition 1. It follows from Λ[11] ⊇ Λ[10],
Λ[01] ⊇ Λ[00] that b(L[11][Y ], Y ) � b(L[10][Y ], Y ),
b(L[01][Y ], Y ) � b(L

[00]
t [Y ], Y ). As a result,

g
λ1λ

[1]
2
− g

λ1λ
[2]
2
� 0. Similarly, we can obtain that

g
λ
[1]
1 λ2
− g

λ
[2]
1 λ2
� 0. This completes the proof.

H. The proof of Theorem 3

Based on Lemma 3, we need to show two points: (Point 1:)
lim
t→∞

E(Pt) is bounded if λ2 ≤ λ2,c; (Point 2:) lim
t→∞

E(Pt) is

unbounded if λ2 > λ̄2,c.
Point 1: For the case r1 = r4 ≥ 1, λ2,c = 0 is obtained

directly from 0 ≤ λ2 ≤ 1. For the case r1 = r4 < 1, according
to Corollary 1, lim

t→∞
E(Pt) is bounded when λ2 = 1. Thus,

λ2,c = λ̄2,c = 1 if r1 = r4 < 1. For the case r1 6= r4,
according to (24), λ2 ≤ λ2,c becomes

λ2 ≤
1− r2λ1 − r4(1− λ1)

(r1 − r2)λ1 + (r3 − r4)(1− λ1)
, (33)

Since r4 ≤ min(r2, r3), r1 ≥ max(r2, r3), and r1 6= r4, one
has r1 6= r2 or r3 6= r4 holds. Thus, (r1−r2)λ1+(r3−r4)(1−
λ1) > 0. Applying (33) to Theorem 2 gives that lim

t→∞
E(Pt)

is bounded.
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Point 2: Define sλ1λ2
(Y ) = λ1λ2b(L

[00][Y ], Y ). The proof
is divided into two steps. (Step 1:) to prove that E[Pt] �
stλ1λ2

(P0), where the definition of the composite function
f t(·) is defined in “Notations” paragraph. (Step 2:) to prove
that lim

t→∞
stλ1λ2

(P0) is unbounded for λ2 > λ̄2,c.
(Step 1:) Denote zγ(Y ) = b(Lγ [Y ], Y ), γ ∈

{[00], [01], [10], [11]}, and define

zγt−1,γt−2,...,γ0(·) = zγt−1
(zγt−2

(. . . zγ0(·))). (34)

It follows from the mathematical expectation formula, (11)
and (13) that

E[Pt] =
∑

γ0,...,γt−1∈{11,01,10,00}

Pr(γ0, · · · , γt−1)

× zγt−1,γt−2,...,γ0(P0). (35)

Because γt = [γt,1 γt,2] is an i.i.d. process and satisfies (3),
one has

Pr(γ0, · · · , γt−1) = Pr(γ0) Pr(γ1) · · ·Pr(γt−1), (36)

where for any i ∈ {0, . . . , t− 1},

Pr(γi = [11]) = (1− λ1)(1− λ2),Pr(γi = [01]) = (1− λ1)λ2,

Pr(γi = [10]) = λ1(1− λ2),Pr(γi = [00]) = λ1λ2.

It is known that stλ1λ2
(P0) = (λ1λ2)tzt[00](P0). From (35) and

(36), we can obtain E[Pt] = htλ1λ2
(P0) + Γ, where Γ � 0,

because zγt−1γt−2...γ0(P0) � 0 holds for any γ0, . . . , γt−1 ∈
{[11], [01], [10], [00]}. Thus, we have stλ1λ2

(P0) � E[Pt].

(Step 2:) If λ2 > λ̄2,c, then λ1λ2δ
(

min
X1,X2

q(X1, X2)
)
> 1.

Denote

l(Y ) = λ1λ2a(L[00][Y ], Y ),

l̂(X1, X2, Y ) = λ1λ2a(N4X1N1 +N3X2N2, Y ).

From sλ1λ2(Y ) � l(Y ) = min
X1,X2

l̂(X1, X2, Y ), and the fact

that both sλ1λ2(Y ) and min
X1,X2

l̂(X1, X2, Y ) are monotonically

increasing with respect to Y , one has stλ1λ2
(P0) � l̆t(P0),

where l̆(P0) = min
X1,X2

l̂(X1, X2, P0).

It is known that tr
(
l̆(P0)

)
=

tr
(

min
X1,X2

λ1λ2q(X
1, X2)P0

)
, where q(X1, X2) is defined

before Theorem 3. Because λ1λ2δ
(

min
X1,X2

q(X1, X2)
)
> 1,

one can obtain tr
(
l̆t(P0)

)
→ ∞ when t → ∞. Recall that

stλ1λ2
(P0) � l̆t(P0). Thus, lim

t→∞
stλ1λ2

(P0) is unbounded for

λ2 > λ̄2,c. The proof is completed.
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