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Abstract—Dust deposition on the surface of photovoltaic (PV)
modules is a nonnegligible factor that reduces a PV system’s
efficiency and reliability. Cleaning can remove dust, and the effect
of cleaning on PV performance resembles that of maintenance.
In this article, we propose a hybrid cleaning scheduling policy
with periodic planning and dynamic adjustment for refining
the operations and maintenance of PV systems. Specifically, the
periodic planning stage aims for medium-term scheduling while
the dynamic adjustment stage is tailed for short-term fine-tuning.
In the former stage, we show that when the number of cleaning
actions is fixed, a periodic cleaning strategy is optimal. Moreover,
we derive the optimality condition under which the optimal
cleaning interval can be determined. In the latter stage, based
on the determined cleaning interval, we dynamically adjust the
cleaning schedule with the forecast of meteorological parameters,
PV power generation, and dust deposition in order to further
minimize economic losses. In addition, we take the forecasting
uncertainty into account and propose a new custom parameter
called risk-taking tendency (RTT) which is able to quantify the
risk preference of decision makers and analyze its influence on
the scheduling policy. A case study is provided to illustrate the
proposed strategy.

Index Terms—photovoltaic systems, operations and mainte-
nance, cleaning scheduling, periodic planning, dynamic adjust-
ment

NOMENCLATURE

Parameters of the power generationa

p ideal generated power
h total daytime hours
e electricity selling price
d dust accumulation degree (DAD)
w0 cleaning cost per square meter
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S area of the PV modules

Symbols in the periodic planning stage

t time index in the scheduling time range: t ∈
[0, T ]

c cleaning schedule: c = [c1, c2, . . . , cI ], where ci
is the ith cleaning instant

y total economic losses during the scheduling time
range

η economic loss per unit time
α the cleaning interval in medium-term schedule

Symbols in the dynamic adjustment stage

n index of the day in the scheduling time range:
n ∈ {1, 2, ..., N}

m index of adjustment cycles: m ∈ {1, 2, ...,M}
k index of the decision-making day: k ∈

[W d
m,W

d
m]

j index of the assumed cleaning date when
scheduling for the future: j ∈ [k +Nl,W a

m]
Nf predictable time length
Nl lead time of cleaning
W a,W a start day and end day of the adjustment window
W d,W d start day and end day of the decision-making

window
R applied cleaning schedule after dynamic adjust-

ment: R = [r1, r2, . . . , rM ], where rm is the mth
applied cleaning date

r′m planned cleaning date before adjustment of the
mth cycle

ψ daily mean economic loss
a Parameters with prime symbol (’) represent forecasted val-
ues. Capital letters represent seasonal average values.

I. INTRODUCTION

In recent years, the shortage of traditional energy such
as fossil fuel and natural gas has constantly been a public
concern; climate change and air pollution caused by the
consumption of traditional energy resources have also been
a critical issue. As a result, renewable resources have gained
increasing attentions [1]. In particular, solar energy is one of
the most promising renewable resources due to its availability
and cleanliness [2]. Photovoltaic (PV) power generation is a
mainstream technology to convert solar energy to electricity.
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The reliability and efficiency of PV systems raise more and
more attentions as it is seriously influenced by environmental
conditions and meteorological parameters. Technologies to
increase the reliability and efficiency of PV systems have
attracted numerous research interests and been significantly
improved [3]–[5].

The components responsible for energy conversion in PV
systems are called PV modules. Shading is a major factor that
causes degradation of a PV system’s reliability and efficiency
because it prevents solar radiations from reaching the PV
modules [6]. In broad terms, there are two main sources of
shading—barriers like trees and buildings, and dust deposition
on the surface of PV modules. The former can be largely
avoided by careful location selection and installation for PVs
[7]. However, dust can scatter and absorb solar radiations and
thus has a continual impact on PV power generation. A signifi-
cant number of experiments have been conducted to investigate
the influence of dust deposition on the conversion efficiency.
It has been reported that the performance degradation of PV
systems attributed to dust varies with location, environmental
conditions, and exposure duration. In general, the impact of
dust deposition on the power output of PV modules can
account for up to 60-70% [8]–[10]. Such influence on the
PV efficiency will, in turn, reduce the accuracy of PV output
prediction, and therefore impedes an efficient and reliable
energy management [11]–[13]. In addition, dust deposition
may lead to hot spots on the surface of PV modules, which
will reduce the efficiency and reliability of the system and
even cause damage to the modules [14]–[16].

Although rain and wind can remove dust to some extent,
dust deposition is inevitable for in-service PV systems. Clean-
ing as a special form of maintenance [17]–[22] is thus neces-
sary to reduce the influence of dust deposition. To minimize
the economic losses caused by dust deposition, an appropriate
cleaning scheduling strategy should be developed to balance
the efficiency restoration and the cleaning costs.

In practice, cleaning programs of PV systems should be
designed by accounting for various factors including dust
accumulation process, PV power generation, cleaning cost, etc.
In the literature, however, limited studies have been devoted
to the design of cleaning programs for PV systems. Pavan et
al. [14] pointed out that the soiling influence is related to both
the soil type and the cleaning technique. It was found that dif-
ferent cleaning schedules should be chosen according to these
factors, though they did not provide methods to determine
the schedule of cleaning. The optimal cleaning frequency was
investigated in [23] by experiments on photovoltaic plants in
Central Saudi Arabia. However, this scheme does not include
the strategy of cleaning dates selection, and the assumption
that the power generated during one time slot in the absence of
soiling is a constant, is not realistic. Jiang et al. [24] found that
in a desert area, modules should be cleaned when the power
output reduction and the particle concentration are equal to 5%
and 100 µ g/m3, respectively. Al-Kouz et al. [25] investigated
the effect of dust on a PV system built at Jordan and a
recommendation for cleaning frequency of every two weeks
was proposed. Zapata et al. [26] designed a cleaning program
for a PV plant installed in northern Chile based on an analysis

of energy losses. Hammad et al. [27] built two models, based
on multivariate linear regression (MLR) and artificial neural
network (ANN), to estimate PV system conversion efficiency
using the experimental parameters of exposure time to natural
dust and ambient temperature. Then they obtained an optimal
cleaning frequency for a case study in Jordan based on the cost
of cleaning and benefit of extra energy yields. Ashley et al.
[28] theoretically analyzed the rationality of periodic cleaning
for Concentrated Solar Power (CSP) systems. However, the
dust accumulation process was assumed to be linear in time
and the fluctuations caused by weather variations and other
factors were ignored.

The majority of existing studies focused on a single PV
system or plant and investigated dust disposition based on
historical or experimental data. They focused on the PV
system/plant itself rather than a general cleaning scheduling
policy. Moreover, most existing studies did not consider daily
variation of PV power generation. They implicitly assumed
a periodic cleaning policy, and then determined an optimal
cleaning interval, instead of a detailed cleaning schedule. Ba
et al. [29] developed a condition-based cleaning strategy for
PV systems with stochastic soiling, rain events, and imperfect
cleanings. The optimal cleaning policy turns out to be a
time-varying reflectivity threshold, below which cleaning is
triggered. Wang et al. [30] proposed a dynamic scheduling
strategy that considers daily variation of PV power generation
with forecasting information. In their work, the dust accumula-
tion process was oversimplified and failed to capture the real
situations very well; also, their dynamic scheduling method
depended heavily on the forecast, without fully utilizing static
schedule derived from historical data.

This study aims to address the deficiencies above and fill
the gaps in cleaning scheduling for PV systems. We develop a
hybrid scheduling framework that integrates periodic planning
and dynamic adjustment so as to minimize the economic losses
due to dust deposition. The originality and main contributions
are summarized as follows:

• Moving beyond solely considering the cleaning fre-
quency, our method includes two stages—the periodic
planning stage and the dynamic adjustment stage. The
two stages can make full use of historical data, seasonal
characteristic, and forecast of meteorological parameters
and PV power generation to design a more refined
cleaning schedule.

• In the periodic planning stage, rather than using a specific
function of dust accumulation process, we consider a gen-
eral function, and utilize seasonal characteristics of PV
generation. We show that when the number of cleaning
actions is fixed, a periodic cleaning policy is optimal;
moreover, we derive the optimality condition under which
the optimal cleaning interval can be determined.

• In the dynamic adjustment stage, we take the forecasting
uncertainty into account and propose a new custom
parameter called “risk-taking tendency” (RTT) to quantify
the decision maker’s risk attitude in the cleaning schedule.

The rest of this paper is organized as follows. Section
II gives an overview of the research design and methodol-



3

Data Layer

• Radiation intensity
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Meteorological 

parameters

• Max rated power

• Modules area

• Real power

• …

PV system data

Scheduling Layer

Forecasting:

• Radiation intensity

• Temperature

• Sunshine hours

• Electricity selling price

• Cleaning cost

Dynamic adjustment stage

Historical data:

• Dust accumulation

• Ideal power generation

• Sunshine hours

• Electricity selling price

• Cleaning cost

Periodic planning stage interval

adjustment

Forecasting data

Historical data

Execution Layer

Cleaning lead time Cleaning duration

Cleaning effect Cleaning range

• PV modules

• MPPT controller

• Storage

• DC load/ AC load

• DC/AC inverter

Physical Layer

Fig. 1. Scheme of the hybrid scheduling framework with periodic planning
and dynamic adjustment.

ogy. Section III formulates the cleaning scheduling problem
and proposes the hybrid scheduling framework. Section IV
presents a case study to illustrate the proposed cleaning
framework, using real data from a PV system located in
Shanghai, China. Section V concludes the paper.

II. OVERVIEW OF THE FRAMEWORK

With the aim of minimizing economic losses of PV sys-
tems, we propose a hybrid scheduling framework with two
stages—the periodic planning stage and the dynamic ad-
justment stage. In the first stage we determine an optimal
cleaning interval for the PV systems based on historical system
characteristics and meteorological parameters. Unlike previous
studies that focus only on a periodic cleaning schedule, in this
study we further propose a dynamic adjustment policy under
which the cleaning schedule in each cycle will be fine-tuned
according to the forecast of meteorological parameters, PV
power generation, and dust deposition. This implies that the
cleaning interval determined in the periodic planning stage is
just a rough schedule, and the actual interval between any two
successive cleaning dates is adjusted by taking into account
short-term variations. In essence, the adjustment in every cycle
could improve the profit by considering specific condition
variations, rather than only general conditions.

The proposed cleaning scheduling framework is illustrated
in Fig. 1, which consists of four layers:
• Physical layer. This layer describes physical PV systems.

A PV system consists of the PV modules, the Maximum
Power Point Tracking (MPPT) controller, the energy
storage part, the DC load/AC load, the DC/AC inverter,
and other components. Some PV systems are connected

to the power grid, called grid-connected systems, whereas
others are named as off-grid PV systems. In this study,
our focus is on the PV modules.

• Data layer. Data of meteorological parameters and PV
systems are collected and transmitted to support the
scheduling process. There are two types of data: histor-
ical data and forecasting data related to meteorological
parameters and PV systems.

• Scheduling layer. This is the core layer to optimize
the cleaning schedules. To minimize the total economic
loss consists of power generation reduction caused by
dust and cleaning cost, with the constraints of cleaning
capacity, cleaning lead time and forecasting uncertainty,
a two-stage cleaning scheduling policy is proposed. In
the periodic planning stage, an optimal cleaning interval
is determined based on the historical data as a preset
schedule for the latter stage. In the dynamic adjustment
stage, the cleaning schedule determined in the periodic
stage might be advanced or postponed based on an ad-
justment algorithm to minimize the economic loss further.
The scheduling problem and framework are detailed in
Section III.

• Execution layer. The cleaning schedules are implemented
in this layer. When applying the optimal schedule real
systems, many factors should be taken into account. For
example, the cleaning lead time indicates the lag from
decision making to implementation, as it usually takes
several days to prepare for cleaning. Cleaning duration,
effect, and range are all factors that may vary with PV
systems and situations.

III. HYBRID CLEANING SCHEDULING FRAMEWORK

The hybrid cleaning scheduling framework is a two-stage
process as previously mentioned. In the periodic planning
stage, we show that when the number of cleaning actions
is fixed, a periodic cleaning policy is optimal; moreover,
we derive the optimality condition under which the optimal
cleaning interval can be determined, so that the planning
horizon of interest is divided into multiple non-overlapping
cycles. In the dynamic adjustment stage, the cleaning sched-
ule in each cycle determined in the former stage might be
advanced or postponed based on an adjustment algorithm, and
the decision maker’s risk attitude is quantified and considered
in the scheduling framework.

A. Periodic planning stage

Cleaning can remove dust deposition on the surface of PV
modules to avoid the reduction of generation efficiency. If
the PV modules are cleaned frequently, they can keep a high
generation efficiency and thus gain more economic benefits.
However, manual cleaning requires expenditure to pay for
the water, detergent, labors, etc. Too frequent cleaning may
result in an overwhelmed cost of cleaning against the benefit.
On the other hand, the lack of cleaning may significantly
affect the electricity generation and therefore reduce the profit.
Therefore, one needs to optimize the cleaning interval to
balance cleaning cost and benefit.
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In the cleaning-interval optimization problem, the dust ac-
cumulation process is a key element. In general, most existing
studies just choose a specific prediction model to describe the
dust accumulation process and then specify cleaning schedules
accordingly. The dust accumulation process, however, varies
with the PV systems, locations, seasons, and other factors.
In the periodic planning stage, we propose a framework to
determine an optimal cleaning interval for a general dust
accumulation model. When applying to a specific PV system,
the model can be fitted from the historical data available.

To quantify the effect of dust on power losses, we use
the power loss ratio caused by dust, denoted by d(t, c), to
measure the dust accumulation degree (DAD) over an extend
period from t = 0 to T when the cleaning schedule is
c = [c1, c2, . . . , cI ], where d(t, c) ∈ [0, 1], t ∈ [0, T ],
0 = c0 < c1 < c2 < · · · < cI < T are cleaning implemen-
tation instants, and I is the total number of cleaning times
during [0, T ]. Specifically, d(t, c) consists of a deterministic
term f(t) and a random term ∆f(t), where f(t) represents
the underlying dust accumulation process of a PV system
exposed to outdoor conditions without cleaning, and ∆f(t)
is the random fluctuation caused by weather variations, air
cleanliness, and other factors. In this study, f(t) is modeled
by a monotone increasing function and ∆f(t) by a Wiener
process [31]–[33].

In this manner, the DAD d(t, c) can be expressed as:

d(t, c) = f(t− ci) + ∆f(t− ci),
t ∈ [ci, ci+1), i = 0, 1, . . . , I,

∆f(t) ∼ N (0, σ2
f t),

(1)

where σf is the diffusion coefficient of the Wiener process.
Here, the cleaning is regarded as a transient behavior and
we assume that it is perfect, i.e., the dust deposition will
be removed completely after each cleaning (will be explained
later). Taking into account the generated power, the electricity
selling price, and the cleaning cost, the total economic losses
resulting from dust deposition and cleaning within [0, T ] can
be expressed as:

y(T, c) =

∫ T

0

p(t)d(t, c)e(t)dt+ Iw0S, (2)

where
• p(t) is the ideal generated power (in kW). Note that p(t)

is not necessarily the same as the rated maximum power
of the PV system. “Ideal” here means that the modules are
clean without any dust deposition. PV systems work at the
rated maximum power only in the standard meteorologi-
cal conditions. In practice, however, the actual radiation
intensity and temperature are usually different from the
standard conditions. Thus, the ideal generated power p(t)
is just the maximum power in certain meteorological
conditions without the influence from dust. The actual
generated power will be reduced by dust accumulation.
The loss part caused by dust under cleaning schedule c
is p(t)d(t, c).

• e(t) is the electricity selling price (in currency unit/kWh).
The power generation loss times the electricity selling

price yields the economic loss resulting from dust depo-
sition.

• w0 and S are the cleaning cost per square meter (in
currency unit/m2) and the cleaning area of the PV mod-
ules (in m2), respectively. In practice, a PV plant usually
signs a one-year or longer outsourcing contract with a
third-party company for cleaning operations. Within the
contract period, the one-time cleaning cost per area of
PV modules is usually a constant.

The theoretical global optimal cleaning schedule can be
obtained if all the information about p(t), e(t), and d(t, c)
in the future are exactly known. In reality, however, this is
not the case. The ideal power generation depends heavily on
the meteorological parameters. In general, the meteorological
parameters for the same location are relatively stable in one
season but may change across seasons. That is, p(t) has a
seasonal pattern. In the periodic planning stage, our aim is
just to determine an optimal cleaning interval in an average
manner. What we need is the average state of the PV power
generation over an extended period. Thus, we can make full
use of the seasonal patterns of PV generation. Moreover,
according to the current practice, the electricity selling price
is usually a constant within one year. Hence, for the time
range in one season, we can approximate p(t) and e(t) by the
corresponding seasonal average values P and E, respectively,
which can be obtained from the historical data. In that case,
we can divide the whole scheduling horizon into several pieces
by season and optimize the cleaning intervals for every season
separately.

For convenience of description, the scheduling time range
T is assumed as one season in this article. A schedule for a
period over several seasons or years can be connected by the
specific schedule for each season. In addition, the generation
efficiency of PV systems degrades over time inherently. Indus-
trial standards and academic research show a median efficiency
degradation of 0.5%/year based on nearly 2000 case studies
[34]–[36]. Such efficiency degradation rate is quite small so
that it can be ignored in the cleaning scheduling problem. As
a result, Eq. (2) can be rewritten as:

y(T, c) =

∫ T

0

PEd(t, c)dt+ Iw0S. (3)

The objective of cleaning scheduling is to determine an
optimal cleaning interval so as to minimize the expected
economic losses caused by the electricity reduction from dust
as well as the cleaning cost over an extended period. Therefore,
the optimization problem can be formulated as

Problem 1

min
c

E[y(T, c)]

s.t. 0 < ci < cj < T, ∀1 ≤ i < j ≤ I.
(4)

For a fixed number of cleaning actions I , minimizing
E[y(T, c)] is equivalent to minimizing E[

∫ T
0
PEd(t, c)dt].

We thus have the following result.

Theorem 1. When the number of cleaning actions is fixed, a
periodic cleaning strategy is optimal.
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Proof. The term
∫ T
0
PEd(t, c)dt can be expressed as∫ T

0

PEd(t, c)dt

= PE

[ ∫ c1

0

(f(t) + ∆f(t))dt+

∫ c2

c1

(
f(t− c1)

+ ∆f(t− c1)
)
dt+ · · ·+

∫ T

cI

(
f(t− cI) + ∆f(t− cI)

)
dt

]
= PE

{[∫ c1

0

f(t)dt+

∫ c2

c1

f(t− c1)dt+ . . .

+

∫ T

cI

f(t− cI)dt
]

+

[ ∫ c1

0

∆f(t)dt+

∫ c2

c1

∆f(t− c1)dt

+ · · ·+
∫ T

cI

∆f(t− cI)dt
]}

.

(5)
The expectation of ∆f(t) for any t ∈ [0, T ] is zero, i.e.,

E[∆f(t)] = 0, ∀t ∈ [0, T ], due to the fact that ∆f(t) is a
Wiener process. Thus, we have

E

[ ∫ c1

0

∆f(t)dt+

∫ c2

c1

∆f(t− c1)dt

+ · · ·+
∫ T

cI

∆f(t− cI)dt
]

=

∫ c1

0

E(∆f(t))dt+

∫ c2

c1

E(∆f(t− c1))dt

+ · · ·+
∫ T

cI

E(∆f(t− cI))dt

= 0

(6)

Therefore, the expectation of
∫ T
0
PEd(t, c)dt is given by

E

[∫ T

0

PEd(t, c)dt

]
= PE

[ ∫ c1

0

f(t)dt+

∫ c2

c1

f(t− c1)dt

+ · · ·+
∫ T

cI

f(t− cI)dt
]
,

(7)
Define F̃ (c1, c2, . . . , cI) =

∫ c1
0
f(t)dt +

∫ c2
c1
f(t − c1)dt +

· · · +
∫ T
cI
f(t − cI)dt. As f(t) is monotonically increasing

in t, F̃ (·) is a convex function. Let ŷ(T, c) denote the
total economic losses with a periodic cleaning strategy, then
we have E[ŷ(T, c)] = PEI

∫ T
I

0
f(t)dt + Iw0S. Notice

that F̃ (c1, c2, . . . , cI) ≥ I
∫ T

I

0
f(t)dt = F̃ (TI ,

2T
I , . . . ,

IT
I )

for all possible c. Therefore, we have E[y(T, c)] =

PEF̃ (c1, c2, . . . , cI) + Iw0S ≥ PEI
∫ T

I

0
f(t)dt + Iw0S =

E[ŷ(T, c)] for all possible c, which implies that the best
strategy is to adopt a periodic cleaning schedule.

The next problem is to find the optimal cleaning interval
for the periodic cleaning strategy. To avoid the interference of
T , we define the economic loss per unit time, η(α), as the
objective function:

η(α) =
E[ŷ(T, c)]

T
=
PE

∫ α
0
f(t)dt+ w0S

α
, (8)

where α is the cleaning interval.

In order to obtain the optimal cleaning interval α∗, we take
the first derivative of η(α) with respect to α:

η′(α) =
PE[f(α)α−

∫ α
0
f(t)dt]− w0S

α2
. (9)

Setting η′(α) = 0 yields

f(α)α−
∫ α

0

f(t)dt =
w0S

PE
. (10)

Theorem 2. There exists a unique and finite solution α∗ to
(10), and the resultant economic loss per unit time is given by

η(α∗) = f(α∗). (11)

Proof. Define ζ(α) = f(α)α −
∫ α
0
f(t)dt. Then, we have

ζ ′(α) = f ′(α)α ≥ 0. Notice that ζ(0) = 0 and ζ(α)→∞ as
α → ∞. This implies that ζ(α) is increasing in α from 0 to
∞. Therefore, the solution to (10) is unique and finite. Given
the optimal solution α∗ to (10), rearranging its terms yields
(11).

Property 1. α∗ and η(α∗) increase as w0 and/or S increases,
while decrease as P and/or E increases.

As PV generation requires solar energy, PV systems only
work during the daytime; they do not generate electricity at
night. Cleaning is usually operated early in the morning near
sunrise or in the evening near sunset to avoid influencing
power generation. Therefore, the PV generation process can be
regarded as a discrete process with one day as a time unit, and
cleaning can be regarded as transient behavior. In practice, the
aim of cleaning scheduling is to decide on the cleaning date,
not the exact moment. Therefore, the optimization model can
be transformed into a discrete problem. The period from t = 0
to T is divided into N days, from day n = 0 to day N . In
this manner, the corresponding discrete form of (10) can be
expressed as

PE

(
f(α)α−

α∑
n=0

f(n)

)
= w0S, (12)

where the cleaning interval α is rounded to the nearest day.
Expression (12) can be well explained as follows. f(α)

is the natural DAD up to n = α. Hence, PEf(α)α is the
economic loss with a fixed DAD f(α) of the system over
[0, α]. PE

∑α
n=0 f(n) represents the natural economic loss

accumulated from 0 to α without cleaning. When the differ-
ence between PEf(α)α and PE

∑α
n=0 f(n) equals exactly

to the one-time cleaning cost w0S, the corresponding α is the
optimal cleaning interval for this PV system. Because f(t) is
monotone increasing, we know that f(α)α −

∑α
n=0 f(n) is

monotone increasing in α. As a result, Property 1 well holds:
The optimal cleaning interval α∗ will become shorter if the
ideal power generation and electric selling price increase. In
this case, one should clean the PV system more frequently
as the economic benefits of PV generation become larger. On
the other hand, the optimal cleaning interval α∗ will become
longer if the cleaning cost increases and the dust deposition
accumulates slower. Too frequent cleaning with high cleaning
cost and slow dust deposition is unnecessary. When α∗ > N ,
no cleaning is needed.
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B. Dynamic adjustment stage

The optimal cleaning interval obtained from the previous
stage is optimized in an average manner. In order to refine
operations and maintenance, we propose a forecast-driven
dynamic adjustment approach to further minimize the total
economic losses. Every time upon the arrival of a planned
cleaning date, we will set an adjustment window to consider if
the cleaning date should be shifted to an earlier or later date.
For example, if the optimal cleaning interval is one month
and the length of the adjustment window is one week, then
the adjustment will occur every one month before the planned
cleaning date comes. The PV modules may be cleaned on the
planned cleaning date, or several days earlier or later with a
range of one week.

1) Adjustment process. The dynamic adjustment process for
the whole scheduling horizon is illustrated in Fig. 2. To start
with, we obtain the optimal cleaning interval α∗ from the
periodic planning stage. For example, let 1©- 4© denote four
planned cleaning dates according to the planning schedule.
Then, we specify an adjustment window for the first planned
cleaning date. The actual implementation date of the first
cleaning action (might be advanced or postponed) will be
within this time window. However, the adjustment decision of
the first cleaning date will be made a few days earlier because
of the cleaning lead time. Usually, the cleaning manpower and
resources need to be planned in advance, so we should start
the decision making process before the adjustment window.
To this end, we define a decision-making window which is a
time range of the same length as the adjustment window but
with a few days advanced. On the other hand, the decision
making window will end the same time length earlier than
the end of adjustment window. This is because decisions
made after that day are too late from the cleaning preparation
perspective. Suppose that the cleaning date in the first cycle
is adjusted from 1© to (1) based on the adjustment algorithm,
which will be introduced later. Then, the next planned cleaning
date is α∗ days later than (1), which means that 2©- 4© are
all changed in accordance with the adjustment of the first
cleaning date. By repeating the adjustment procedure, we can
obtain the actual cleaning dates (1)-(4). It should be noted that
the actual number of cleaning actions for the whole planning
horizon may not necessarily be the same as that in the periodic
planning schedule.

2) Adjustment window and decision-making window. Taking
the mth cycle as an example, the parameters for adjustment
are shown in Fig. 3. The first step is to specify the adjustment
window and the decision-making window. The length of both
windows is set to Nf − Nl, where Nf is the time period
in which the meteorological and other parameters can be
predicted based on current forecasting technologies, and Nl
is the lead time of cleaning, i.e., the shortest time period from
cleaning planning to implementation. The adjustment window
is specified in a manner that the next planned cleaning date
is located in the midpoint of this window, and the decision-
making window is Nl days earlier than the adjustment window,

time

Periodic planning stage Plan  cleaning interval

time

Adjustment window

Forecasting 

Dynamic cleaning 

implementations

Decision making 

window

time

(1)

(2)

(3)

Fig. 2. Illustration of the adjustment process. In the periodic planning stage,
we get 1©- 4© as planned cleaning dates. In the dynamic adjustment stage,
before day 1©, we set an adjustment window to choose an optimal cleaning
date based on the forecasting data. Suppose that the executed cleaning date is
advanced from 1© to (1). Then the subsequent planned cleaning dates 2©- 4©
will also be advanced as the optimal cleaning interval is fixed. The executed
dates in these cycles will be shifted to an earlier or later date in the same
manner when their adjustment windows come.

n

Decision making window

Adjustment window

k

j

k

T

kkkkkkkk

j
Objective function

Historical range Forecast range

T

Fig. 3. Schematic illustration of the parameters for adjustment.

as shown in (13) and (14) below.[
W a
m,W

a
m

]
=

[
rm−1 + α∗ − Nf −Nl

2
,

rm−1 + α∗ +
Nf −Nl

2

]
,

(13)

and [
W d
m,W

d
m

]
=

[
rm−1 + α∗ − Nf −Nl

2
−Nl,

rm−1 + α∗ +
Nf −Nl

2
−Nl

]
,

(14)

where rm−1 is the actual cleaning date in the (m−1)th cycle.
3) Decision algorithm. When the current date k is k = W d

m,
the adjustment for the mth cycle starts. We need to decide
which day in [k+Nl,W a

m] as the cleaning date. Let ψm,k(j)
represent the estimated daily economic loss from the last
cleaning day to the cleaning date j in this cycle. By evaluating
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n

B

A

Decision making window 

Adjustment window

.

.

.

A B

= +

Present time

The nearest day 

available for cleaning

Tentative decision

Forecasting accuracy

Past time

Fig. 4. An example of the adjustment decision making process for a single
cycle. The diagrams from top to bottom illustrate the process over time. A
and B are two kinds of final decisions. Each block represents one day. The
forecasting accuracy is shown by the color shades of blocks.

ψm,k(j) for every possible j, the “tentative cleaning date” jm1

of day k in cycle m can be determined as the date with the
minimum ψm,k(j), i.e., jm1

= arg minE[ψm,k(j)].

ψm,k(j) =

∑k
n=rm−1

pnhnendn(R) + w0S

j − rm−1 + 1

+

∑j
n=k+1 p

′
n,kh

′
n,ke

′
n,kd

′
n,k(j)

j − rm−1 + 1
,

(15)

where pn, hn, en are the daily mean PV power, the total
daytime hours, and electric selling price of day n, respectively.
For period from rm−1 to k, we have real data. For period
from k + 1 to j, we use notations with prime symbol (’) to
indicate that they are forecasting data. R = [r1, r2, . . . , rm−1]
includes the dates when cleaning actions have been performed.
dn(R), n ∈ [rm−1, k] are the DAD of the past days with
cleaning schedule R. d′n,k(j), n ∈ [k+1, j] are the forecasting
DAD for the future days supposing j is the cleaning date in
this cycle.

The tentative cleaning date jm1 is the best choice when we
making decision on day k, but it may not be executed because
we can get more real data and more accurate forecasting
information for the future over time. But if we are too
conservative, we may miss the optimal decision. Thus, we have
to design the execution conditions. When we get the tentative
cleaning date jm1 , if the execution conditions are met, the
decision will be executed, then the adjustment for this cycle
is completed; otherwise, we should wait for the next day, i.e.
k ← k + 1, and repeat the above process until k = W d

m.
4) Execution conditions. We determine whether or not to

execute the tentative cleaning date according to the execution
conditions. Fig. 4 illustrates the adjustment decision making
process in a single cycle. Each block represents one day.
The forecasting accuracy is shown by the color shades of
blocks. As time comes closer, more historical data can be
collected and more accurate forecast for the future days can

be obtained. The updated information may result in a better
cleaning schedule. Specifically, there are four parameters in
Eq. (15) to be predicted. Among them, the electricity selling
price is usually fixed in each year. The total daytime hours
in each day is relatively stable in a single season so that the
fluctuation can be ignored. We can use the seasonal mean
values of the two parameters, E and H to replace their daily
values. The function of DAD can be fitted from historical data.

Now the key parameter left is the ideal generated power.
In the literature, most power forecasting technologies are
statistical- or machine-learning-based methods, and can gen-
erate a probability distribution of the power [37]–[39]. Since
the forecasting method is not the focus of this research, we
directly use the forecast information as given. The predicted
ideal generated power is modeled as a normally distributed
random variable, as follows:

p′n,k ∼ N (µp′n,k
, σ2
p′n,k

). (16)

As a consequence, ψm,k(j) is also a normally distributed
random variable, as follows:

ψm,k(j) ∼ N (µψm(k,j), σ
2
ψm(k,j)), (17)

where

µψm,k(j) =
w0S

j − rm−1 + 1
+

HE

j − rm−1 + 1

×

 k∑
n=rm−1

pndn(R) +

j∑
n=k

µp′n,k
d′n,k(j)

 ,

and

σ2
ψm,k(j)

=

(
HE

j − rm−1 + 1

)2 j∑
n=k

d
′2
n,k(j)σ2

p′n,k
.

We define the “nearest day available for cleaning” as the
earliest day that can be booked for cleaning under the lead
time constraints. On the kth day, the nearest day available
for cleaning is day k + Nl. If jm1

> k + Nl, then the
tentative decision will not be applied and the decision maker
can update forecasts and thus decisions without missing jm1

.
If jm1 = k+Nl, then the cleaning decision should be made by
combining the decision maker’s RTT. This is because applying
the tentative decision jm1

means that the decision maker gives
up the chance of getting a better schedule in this time window.
RTT offers a useful tool to quantify such risk.

Let jm2 denote the cleaning date corresponding to the
second minimum ψm,k(j). Then the difference between
ψm,k(jm1

) and ψm,k(jm2
), i.e., ∆ψ(m1,m2), is also a nor-

mally distributed random variable, namely, ∆ψ(m1,m2) ∼
N (µψm,k(jm1

)−µψm,k(jm2
), σ

2
ψm,k(jm1

)+σ2
ψm,k(jm2

)). RTT is
defined as the lowest probability of ∆ψ(m1,m2) ≤ 0 that the
decision maker can accept. Because µψm,k(jm1

) ≤ µψm,k(jm2
),

we have Pr{∆ψ(m1,m2) ≤ 0} ∈ [0.5, 1) and thus RTT ∈
[0.5, 1). A higher RTT means a higher risk preference, which
implies that the decision maker is more likely to take the
risk to wait for a better chance. When jm1 = k + Nl and
Pr{∆ψ(m1,m2) ≤ 0} > RTT , the tentative decision will be
applied. If the condition is not satisfied until k = W d

m—the
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last day of the decision-making window, then there would be
only one day to be selected as the cleaning day, i.e., W a

m.
In Fig. 4, we set Nf = 7, Nl = 2, rm−1 = 1, and α∗ = 6.

On the 3rd and 4th days, the tentative cleaning days are both
not the nearest days available for cleaning for these two days.
On the 5th day, the tentative date jm1 and the nearest day
available for cleaning k +Nl are both day 7, so the decision
maker could decide on whether to perform cleaning or not
according to the condition Pr(∆ψ(m1,m2) ≤ 0) > RTT .
If the 7th day is selected as the cleaning implementation day,
then set rm = 7 and the scheduling for this cycle is completed.
However, if the condition above is not satisfied until day 7,
then the last day of the adjustment window, i.e., day 9, would
be the cleaning day. The dynamic adjustment algorithm is
detailed in Algorithm 1. The convergence of this algorithm
is guaranteed based on the increase of forecasting accuracy
with a closer time distance. The decision maker can obtain
more real data and the forecasting for the future will be more
accurate over time. Thus, the results converge to the decision
knowing all the real data with the decrease of uncertainty. For
a scheduling time range with length of n, the computation
complexity of Algorithm 1 is O(n), as the calculation times
in one adjustment window is a constant independent of n and
the number of adjustment windows is n

α∗ .

Algorithm 1 Dynamic Adjustment Algorithm
Input: α∗, Nl, RTT
Output: R
1: Set m← 1 and r′1 ← α∗

2: while r′m < N do
3: Calculate [W a

m,W
a
m] and [W d

m,W
d
m] according to (13)

and (14), respectively
4: Set k ←W d

m, j ← k +Nl

5: while k ≤W d
m do

6: for j ∈ [k +Nl,W a
m] do

7: Obtain ψm,k(j) according to (17)
8: end for
9: Determine jm1

and jm2
, and obtain ∆ψ(m1,m2)

10: if (jm1
= k+Nl & Pr(∆ψ(m1,m2) ≤ 0) > RTT )

or (k = W d
m) then

11: rm ← jm1

12: Break;
13: else
14: k ← k + 1
15: end if
16: end while
17: r′m+1 ← rm + α∗

18: m← m+ 1
19: end while

IV. CASE STUDY

A. Data description

We collect data from a PV system located in Shanghai,
China. The nominal values of the system parameters are listed
in Table I, where STC stands for the “Standard Test Condi-
tions”. The environment measuring instruments and inverter

TABLE I
NOMINAL VALUES OF SYSTEM PARAMETERS.

Variable Parameter Value

Pmax Rated max power per module 225W
Npenal Number of modules 18
S Total area of the modules 30m2

GSTC Radiation of STC 1000W/m2

TSTC Temperature of STC 25◦C
NOTC Normal operating cell temperature 45◦C

monitoring instruments have recorded data since September
2015, and the sampling period is five minutes.

B. Monte Carlo simulations

The data of the system and meteorology in year 2016 are
extracted for Monte Carlo simulations. We compare the yearly
and seasonal economic losses of four scheduling methods to
show the performance of our proposed method.
• Policy I: No cleaning.
• Policy II: Online periodic cleaning, which is designed by

the periodic planning stage.
• Policy III: Offline periodic cleaning, provided that all the

data is known. The result of this method is the best one
that the periodic cleaning strategy can achieve.

• Policy IV: The proposed hybrid scheduling policy with
periodic planning and dynamic adjustment.

In this case study, we adopt a widely adopted dust deposi-
tion process function to model the efficiency reduction due to
dust [40]–[42]:

f(t) = κ(1− e−τt) + ∆f(t). (18)

One can see that f(t) is an asymptotic curve, where κ is the
asymptotic value, τ is the accumulation rate factor, and ∆f(t)
is the random fluctuation. In the simulation, the parameters are
fitted season by season from the historical data.

We first compare the performances of the four methods
under cleaning cost variation. The electricity selling price is
set as E = 0.65 RMB/kWh, according to current policy. The
predictable time length is set as Nf = 7 days, according to
the existing power forecasting studies [37], [43]. The lead
time of cleaning is set as Nl = 1 day. We specify the
RTT and forecasting accuracy as random values in order
to demonstrate the performance of our method in different
situations. According to the market research, the one-time
cleaning cost per square meter ranges from 0.5 to 1 RMB/m2.
Thus, we set three cost levels—0.5, 0.75, 1 RMB/m2, to
perform simulations with 500 times, respectively.

Table II shows the average cleaning times under the hybrid
scheduling policy with the three cleaning cost levels in each
season as well as the whole year. One can observe that the PV
system should be cleaned more frequently in spring and winter
than in summer and autumn. This result coincides with the
fact that the dust in the atmosphere is more serious in spring
and winter, and there is more rain in summer and autumn in
Shanghai. Obviously, the number of cleaning times in every
season becomes smaller as the cleaning cost increases. When
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TABLE II
CLEANING TIMES UNDER TWO STAGE SCHEDULING METHOD IN EACH

SEASON WITH CLEANING COST VARIATION.

Season

Time Cost
0.5 0.75 1

Spring 10.2 7.1 6.0
Summer 3.0 2.0 0.0
Autumn 3.0 2.0 1.0
Winter 6.0 5.0 4.0
Whole year 22.2 16.1 11.0

1238.0 1238.0 1238.0
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1033.0
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Fig. 5. Average whole year economic loss with the four methods.

the cleaning cost increases to 1 RMB/m2, there should be no
cleaning in summer because the benefit from cleaning cannot
offset the cost incurred.

Figs. 5 and 6 show the comparison results of the four
methods. In Fig. 5, one can see that the economic loss can be
significantly reduced when the system is cleaned, no matter
which scheduling method is used. However, the economic
losses of all the three cleaning policies will increase when the
cleaning cost becomes higher. The proposed hybrid scheduling
policy always has the best performance under all the three
levels of cleaning cost. Fig. 6 further shows the average loss
of all cost levels by seasons. Cleaning can cut down the
economic loss in every season, and the performance of the
hybrid scheduling policy is the best or tied for the best of all
methods in all seasons; the superiority is more significant in
spring and winter, because the efficiency reduction caused by
dust is more serious in these two seasons. The performance
comparison of the three scheduling policies is more clear in
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Fig. 6. Average seasonal economic loss with the four methods.

Fig. 7. Relative difference of the two stage scheduling and periodical cleaning.

Fig. 8. Economic loss with cleaning lead time variation.

Fig. 7. Define the relative difference between the results of
the policies as: Relative difference between Policy IV and
Policy II (III)=(Results of Policy IV - Results of Policy II
(III)) / Results of Policy II (III). One can see that the relative
difference between the hybrid scheduling policy and the two
periodic methods varies across seasons. The hybrid scheduling
policy can bring a 6–11% improvement in comparison with the
online periodic cleaning policy. For the whole year, the average
improvement is 9.13%. Comparing with the offline periodic
cleaning policy, the hybrid scheduling policy cannot make
remarkable improvement in summer and even performs worse
in autumn. The reason is that in summer and autumn the clean
times are limited and the weather fluctuation is more volatile.
The influence of dynamic adjustment is limited compared to
the offline method with all data. For the whole year, however,
the hybrid scheduling policy can reduce the economic loss
by at least 3.84% when compared with the offline periodic
cleaning policy.

1) Scheduling performance with lead time constraint vari-
ation: Lead time of cleaning refers to the shortest time
period between cleaning planning and implementation. The
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Fig. 9. Economic loss with RTT variation.

lead time constraint can be relaxed if the dispatch of cleaning
manpower and resources are flexible, corresponding to a small
Nl. The performances of the proposed method with lead time
constraints under the three levels of cleaning cost are shown in
Fig. 8. The box-plots include the upper bound, upper quartile,
median, lower quartile, and lower bound of all the simulations
to show the distribution of the results. From Fig. 8 one can
see that the overall results increase with cleaning cost, and
the distribution of results with Nl = 1 is better than that
with Nl = 2 under every level of cost. This indicates that the
proposed method performs better when the cleaning workers
and resources are more abundant.

2) Scheduling performance with RTT variation: Risk-
taking tendency is a parameter decided by the decision maker.
The influence of the risk preference to the results is shown in
Fig. 9. RTT = 50% means that the decision maker do not
consider the distribution of the forecasting. They make deci-
sion solely according to the expectation value optimization.
Thus, the proposition of RTT can increase the performance
of the cleaning scheduling. But it is not rational to choose
an exorbitant RTT. A higher RTT means the decision maker
prefers to wait for a better chance. They may miss the
reasonable cleaning choices until they do not have chance to
make scheduling. Fig. 9 shows the distributions of the results
with RTT varying from 50–60%. The medians of them are
similar, but the distributions are different. For RTT equals
to 52.5%, 55%, and 57.5%, the distribution range is larger
gradually, which means that when the RTT is higher, the worst
case may be worse, meanwhile the best case may be better.
The decision maker have a chance to reduce more economic
loss but also have the risk to loss more.

V. CONCLUSIONS

This study investigated the design of a hybrid cleaning
scheduling policy for PV systems that integrates a periodic
planning stage and a dynamic adjustment stage. The periodic
planning stage decides on an optimal cleaning interval based
on historical data. In this stage, we have shown that when

the number of cleaning actions is fixed, a periodic clean-
ing strategy is optimal; moreover, we derived the optimality
condition under which the optimal cleaning interval can be
determined. The dynamic adjustment stage dynamically fine-
tunes the cleaning date based on the optimized cleaning
interval and the forecast of meteorological parameters, PV
power generation, and dust deposition in order to further
minimize the economic losses. The forecasting uncertainty is
also considered. Furthermore, the adjustment algorithm incor-
porates RTT of the decision maker and evaluates its influence
on the scheduling performance. A case study based on real
PV plant data demonstrates the effectiveness of the proposed
policy and shows the influence of parameter variations on the
results.

In this paper, the electricity pricing mechanism and payment
method of cleaning workers are simplified based on the exist-
ing studies. In future research, it is interesting to investigate
cleaning scheduling with a more realistic electricity pricing
mechanism and payment method. The proposed approach can
also be used in other optimal problems with uncertainty or
periodic characteristics, such as in periodic piecewise systems
combined with some control methods [44], [45].
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