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Deep Adversarial Domain Adaptation Model 

for Bearing Fault Diagnosis 
Zhao-Hua Liu, Member, IEEE, Bi-Liang Lu, Hua-Liang Wei, Lei Chen, Xiao-Hua Li, and Matthias Rätsch 

Abstract: Fault diagnosis of rolling bearings is an 

essential process for improving the reliability and safety 

of the rotating machinery. It is always a major challenge 

to ensure fault diagnosis accuracy in particular under 

severe working conditions. In this paper, a deep 

adversarial domain adaptation model (called DADA) is 

proposed for rolling bearing fault diagnosis. This model 

constructs an adversarial adaptation network to solve 

the commonly encountered problem in numerous real 

applications: the source domain and the target domain 

are inconsistent in their distribution. First, a deep stack 

auto-encoder (DSAE) is combined with representative 

feature learning for dimensionality reduction, and such 

a combination provides an unsupervised learning 

method to effectively acquire fault features. Meanwhile, 

domain adaptation and recognition classification are 

implemented using a Softmax classifier to augment 

classification accuracy. Second, the effects of the 

number of hidden layers in the stack auto-encoder 

network, the number of neurons in each hidden layer, 

and the hyperparameters of the proposed fault 

diagnosis algorithm are analyzed. Thirdly, 

comprehensive analysis is performed on real data to 

validate the performance of the proposed method; the 

experimental results demonstrate that the new method 

outperforms the existing machine learning and deep 

learning methods, in terms of classification accuracy 

and generalization ability. 

 

Index Terms—fault diagnosis, bearing, feature 

extraction, stack auto-encoder (SAE), unsupervised 

learning, domain adaptation, adversarial network, 

machine learning, deep learning ,deep neural networks. 
 

I. INTRODUCTION
1
 

Rolling bearings are widely used in industrial system, 

such as wind turbine, aeroengines, and high-speed railways, 

and it usually plays a pivotal role in their functioning 

[1]-[4]. However, these devices often work with heavy 
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loads or under some severe environments (e.g., high speed, 

high humidity, high temperatures and variable speed, etc.), 

which makes rolling bearings prone to fault attacks. The 

high failure rate of rolling bearings also increases the 

operation and maintenance costs. Moreover, in cases in 

which the potential faults of rolling bearings are not 

detected, there would be a high risk exists of the 

breakdown of the entire equipment [5]-[10].Therefore, it is 

always desirable and necessary to diagnose potential rolling 

bearing faults in time. 

In the Internet of Things (IoT) and Industry 4.0 era, large 

amounts of real-time data have been collected from the 

device-monitoring systems. The data, together with modern 

data mining techniques, makes it possible to effectively 

mine features and diagnose faults using artificial 

intelligence methods, such as Support Vector Machine 

(SVM)[11], Artificial Neural Network (ANN)[12], 

[13],Stack Auto-Encoder network (SAE)[14], and Deep 

Belief Network (DBN)[15], [16]. For example, Jiang et al. 

[13] proposed an approach for rolling bearing fault 

identification using multilayer deep convolutional neural 

network. Sun et al.[14] designed an intelligent bearing fault 

diagnosis method combining compressed data acquisition 

and deep neural network architecture. Chen et al. [15] 

presented a novel method to implement bearing fault 

diagnosis utilizing the integration method of sparse 

auto-encoder and deep belief network. However, although 

these intelligent fault diagnosis methods achieve good 

classification performance in experimental testing, they do 

not exhibit satisfactory performance when applied in 

practical applications, in which the classification accuracy 

is usually much lower than that for test data. This can be 

explained from two aspects as follows. Firstly, these 

artificial intelligence methods require a large amount of 

labeled data to train the model. However, in many real 

applications, it is very expensive or difficult, even not 

possible; to collect labeled training data that has the same 

distribution as the test set. In conclusion, it is difficult to 

collect sufficient labeled data and then train a reliable 

diagnosis model in engineering scenarios. Secondly, it is 

assumed that the training data set and the test set of the 

model are generated under the same working conditions in 

the experimental testing. In other words, it is assumed that 

all data obey the same distribution and possess the same 

feature space. In reality, however, during the operation of 

the rotating machinery differ, the mechanical working 

conditions vary, the signal acquisition methods are different, 

and the mechanical workloads are varying. As a 

consequence, these intelligent diagnosis methods have poor 

generalization ability in the in reality application, and 

therefore bring poor diagnostic accuracy 

[11-16].Fortunately, the domain adaptation (DA) technique 

can be utilized to solve or alleviate the data inconstancy 

issue (i.e., the inconsistency between the training and test 

data) [17], [18]. DA aims to reduce the difference between 
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multi-domains, through learning the invariant knowledge 

hidden within multiple different domain datasets. So, by 

using a similar (but not exactly the same) source domain, it 

provides a solution to the problem of insufficient labeled 

samples in engineering scenarios. These two aspects make 

the learned classifiers from the source domain more robust 

when dealing with mismatched distributions [19]-[21]. 

DA methods can be divided into two categories: (1) 

semi-supervised and (2) unsupervised. For example, Pan et 

al. [22] proposed a transfer component analysis (TCA) 

technique to reduce the difference of features in two 

domains. Lu et al. [23] proposed a novel deep model called 

Deep Model Based Domain Adaptation for Fault Diagnosis 

(DAFD) in which the AE was combined with domain 

adaptation. However, these methods are usually achieved 

by minimizing some predefined distance measures of 

domain discrepancy such as maximum mean discrepancy 

(MMD) [24], [25], Bregman divergence [26], or 

KL-divergence [27]. An advantage of using the existing 

definition of domain discrepancy such as MMD as a part of 

the loss function when performing domain adaptation is 

that the method implementation is simple and straight 

forward. But such a method has a challenging issue when 

the data set has a small or limited number of target domain 

data in the training phase. Thus, these domain adaptation 

techniques may fail in this case, since they all require using 

enough target domain data (the number of target domain is 

similar to the source domain data)to define the domain 

discrepancies between domains. Inevitably, the lack of 

target domain data is a frequently encountered scenario in 

engineering, and an approach of implementing domain 

adaptation through the predefined distance measures cannot 

always achieve satisfactory results for such problems. In 

short, these domain adaptation methods have some detects 

for fault diagnosis, for example, they can become less 

effective to define the domain discrepancy distance when 

the target domain data are not enough. 

Recently, deep learning [28] has attracted considerable 

attention from researchers, since it could capture more 

hidden knowledge in the process of feature extraction in 

hierarchical structures. Moreover, integrating the 

distribution differences in multi-domains, deep learning has 

well data adaptability in domain adaptation, and possesses 

strong capabilities in domain-invariant feature learning. In 

particular, one of the most significant advances in deep 

learning architecture is the introduction of generative 

adversarial networks (GANs) [29], which offer strong 

distribution learning and sample generation ability. The key 

idea of this method is to train a discriminator and a 

generator, leading them to Nash equilibrium. In addition, 

the generator is used to capture the data distribution, and 

the discriminator is employed to estimate the probability, 

and the whole training procedure for generator aims to 

maximize the probability of the discriminator producing the 

discriminated error. This novel idea provides a way to 

achieve domain adaptation without extensively target data. 

On the other hand, the emergence of the stack 

auto-encoder(SAE) method, which can automatically 

extract more useful knowledge behind high-dimensional 

data as a feature learning method with the deep architecture. 

This characteristic can solve some problems of the shallow 

structure, such as representative features learning and 

dimensionality reduction. Finally, combining the novel idea 

of GANs and SAE can overcome the issues or drawbacks 

relating to the domain adaptation methods mentioned 

above. 

In this paper, an SAE based deep adversarial domain 

adaptation (DADA) model is proposed for rolling bearing 

fault diagnosis. The presented method minimizes an 

approximate domain discrepancy distance through an 

adversarial objective with respect to a domain discriminator. 

Another important advantage of the method is that it 

employs an unsupervised learning method and can be 

trained with an end-to-end network. It also offers the 

following two major advantages, in particular for rolling 

bearing fault diagnosis:(1) it can effectively solve the data 

inconsistency issue in which the training data and the test 

data have inconsistent distribution in the absence of 

extensive target domain data; and (2)the method can be 

easily implemented for real applications. To the best of our 

knowledge, this constitutes the novel work to address the 

rolling bearing fault diagnosis problem through adversarial 

networks, and the main contributions are summarized as 

follows: 

1) In order to ensure the reliability of the model when the 

labeled training data is not enough, we construct a 

novel deep domain adaptation model based on the 

GANs, utilizing the sufficient labeled source domain 

data and then training a reliable diagnosis model in 

engineering scenarios. A multi-layered network is also 

used to learn rich knowledge of the source domain to 

promote domain adaptation. 

2) In order to solve the bearing fault diagnosis problem in 

complex and uncertain environment, we propose a 

novel deep adversarial domain adaptation algorithm 

forbearing fault diagnosis based on the model proposed 

in 1).The adversarial domain adaptation can enhance 

the generalization ability of the proposed bearing fault 

diagnosis algorithm, and thus fault diagnosis accuracy 

can be significantly improved.  

3) In order to make the experimental more results robust 

and generalizable, the proposed algorithm was 

validated through six domain adaptation situation 

studies. The effects of the number of hidden layers in 

the stack auto-encoder network, the number of neurons 

in each hidden layer, and the hyperparameters of the 

DADA on the model performance are analyzed. The 

experimental results demonstrate that our model can 

produce excellent classification accuracy and possesses 

strong domain adaptive ability. 

The remaining parts of this paper are depicted as follows. 

The proposed adversarial domain adaptation framework is 

presented in Section II. In Section III, a novel adversarial 

domain adaptation algorithm is provided, as well as its 

optimal solution. Experimental results on different domain 

adaptation situations are given in Section IV. Finally, a brief 

summary is presented in Section V. 

II.THE PROPOSED ADVERSARIAL DOMAINA 

DAPTATION FRAMEWORK 

Rotating machinery is playing an increasing role in the 

modern industry. To prevent potential the occurrence of 

faults and fault propagation, it is critical to monitor the 

state of the rotating machinery healthy state. Artificial 

intelligent diagnosis methods, which can efficiently process 

collected vibration data and automatically obtain diagnosis 

results, are commonly employed for the condition 

monitoring and fault diagnosis of rotating machinery health 



monitoring. It is known that several external factors such as 

 

Fig.1. The proposed adversarial domain adaptation framework. 

variable working conditions and workloads, can lead to 

inconsistent distribution in the collected data, which make 

the traditional artificial intelligence fault diagnosis methods 

less effective. In recent years, generative adversarial 

networks (GANs) have attracted increasing interest due to 

their excellent generative performance. The use of GANs 

and DA for fault diagnosis can assist to solve the following 

problem: training data and test data have inconsistent 

distributions in the rotating machinery. The key idea of 

GANs is a generator and training of a discriminator, leading 

them to Nash equilibrium [29]-[31]. GANs make the two 

networks including the generator model G and the 

discriminator model D , complementary to each other. 

Specifically, the former attempts to capture the data 

distribution, while the latter aims to estimate the probability, 

and the whole training procedure for G aims to maximize 

the probability of producing the discriminated error in D . 

Similar to GANs, to build a deep adversarial domain 

adaptation (DADA)framework is as shown in Fig.1, the 

DADA framework comprises three parts: the generator 

SAE-
f

G  to extract features, the domain discriminator d
G  

implements domain adaptation, and the label predictor
y

G  

obtains feature classification. Note that d
G  and 

y
G can 

be simultaneously implemented in the proposed adversarial 

domain adaptation framework, through which fault 

diagnosis can be achieved by using a similar (but not 

exactly the same) source domain. The SAE architecture has 

been extended to comprise several auto-encoder and two 

Softmax classifiers. This constitutes a general fault 

diagnosis framework for bearing and a DADA learning 

process of a two-player game. The first game player is a 

feature extractor, denoted by SAE-
f

G , whose task is to 

extract the domain-invariant features. The second player is 

a discriminator-Softmax classifier d
G , which is trained to 

distinguish whether the features extracted by 

SAE-
f

G belong to the source domain s  or the target 

domain t . To extract the domain-invariant feature F , the 

main purpose of the parameters
f

  in the feature extractor 

SAE-
f

G is to maximize the loss of the domain 

discriminator d
G and minimize the loss of the label 

predictor-Softmax classifier
y

G .Note that it is impossible 

to distinguish whether the data comes from the source 

domain or the target domain only through maximizing the 

error of the domain discriminator d
G . Domain adaption 

learning is needed when the two domains become very 

similar. Features extracted by SAE-
f

G (e.g. obtained 

through minimizing the error of the label predictor) can be 

used to predict the corresponding label, and to the result in 

turn can be used for bearing fault diagnosis. By maximizing 

the error of the domain classifier and minimizing the error 

of the label predictor in the proposed adversarial domain 

adaptation model, it is possible to use similar (but not 

exactly the same) source domain to do fault diagnosis for 

the target domain data. 

The basic function of the adversarial domain adaptation 

is defined as follows: 

( , , ) ( ( ( ; ); ), )

                        ( ( ( ; ); ), )

i s

i s t

f y d y y f i f y i

X

d d f i f d i

X

E L G G X y

L G G X y

    

  


 

 


 (1) 

where
i

X is the training samples; ( ,  )
y

L is the loss of the 

label predictor
y

G ; ( ,  )
d

L  is the loss of thedomain 

discriminator
d

G ;
i

y  is the label for
i

X ;and  is a 

trade-off parameter that controls the proportion of 

thedomain discriminator loss on the entire loss function. 

During the training progress, the 

parameters f , y ,and d deliver a saddle point of the 

functional (1): 

,
( , ) arg min ( , , )

f y

f y df y
E

 
    

     

(2) 

   arg max ( , , )
d

d f y d
E


   

     

(3) 

The following rules are used to update the parameters 

throughout the training process: 
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y d

f f

f f
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i
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where   is the learning rate, and these rules can be 

embedded into the optimization algorithm that using back- 

propagation such as stochastic gradient descent (SGD)[21]. 

The factor   in (4) represents that the training process, 

which aims to maximize the objection of (3), and this 

operation is referred to as the gradient reversal layer (GRL). 

Due to the existence of the GRL, we can rewrite the basic 



function of the adversarial domain adaptation as follows: 

 

Fig.2. The proposed deep adversarial domain adaptation algorithm for rolling bearing. 

( , , ) ( ( ( ; ); ), )
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Performing SGD or other optimization algorithms on 

(4)-(6), we can obtain the domain adaptation and sample 

label prediction simultaneously. Of course, the main 

difference between DADA and GAN is that the whole 

training process is distinct. For GAN, the discriminator 

training and generator training constitute two separate 

processes. Generally, the generator is trained first, and then 

the discriminator is trained. For DADA, the training of the 

discriminator and the training of the generator can be 

completed in the same training process, and thus the DADA 

can be trained in an end-to-end framework. The latter is 

compared with the former, which enables the training 

process to be implemented in a straightforward manner. In 

addition, the DADA framework can usually achieve the 

good domain adaptation ability. 

III. THE PROPOSED DEEP ADVERSARIAL 

DOMAIN ADAPTATION METHOD FOR ROLLING 

BEARING FAULT DIAGNOSIS 

Rolling bearings are a fragile key component of the 

rotating machinery. Frequently, severe working 

environments can make rotating machinery vulnerable to 

damage. Therefore, it is necessary to diagnose potential 

rolling bearing faults as early as possible. Based on the 

proposed framework in Section II, in this paper, we propose 

a deep adversarial domain adaptation algorithm for rolling 

bearing fault diagnosis. This model consists of three parts: 

(1) a feature extractor using the stack auto-encoder; (2) the 

domain discriminator and the label predictor based on the 

Softmax classifier, and (3) the optimization solution. The 

approximate algorithm framework is presented in Fig.2, 

and detailed descriptions of the algorithms are given below. 

A. Stack Auto-Encoder -Based Feature Extractor 

After the experimental device is operated for a long period 

of time (e.g.,72 hours) , a large amount of vibration data 

can be obtained from the rolling bearings [32]-[34], and 

these raw vibration data contain some noise. Thus, it is 

required to preprocess the raw vibration data. In this paper, 

we consider the stack auto-encoder (SAE) [35],[36], which 

is a useful method to find the representative features of the 

raw data, because it can reduce the dimension of the 

collected vibration data and extract high-dimensional 

features. The main process is depicted in Fig.3. 

 

 

Fig.3. The main process of SAE networks. 

The SAE is usually achieved by several auto-encoder 

(AE) [37] stacked networks stacked. Here, we select two 

AE networks to stack into the SAE, which is used to extract 

the representative feature. The reason for such a choice will 

be explained in the Section IV. The AE network is 

composed of an encoder and a decoder, which is trained as 

an unsupervised learning method. Given the input 

data
N

X  , the role of the encoder layer is to compress 

X into the representative feature ( )M
Y M N  , and 

the function used as: 
(1) (1)( ),

1
( ) .

1 exp(- )

Y f W X b

f x
x

 




            

(8) 

where
(1)

W and 
(1)

b are the weight matrix of size NхM and 

bias vector of size M , respectively. ( )f x is the activation 

function of the AE network. Then, the representative 

featureY is reconstructed into the vector X̂ by the decoder  



layer as follow: 

(2) (2)ˆ ( )X f W Y b 
           

(9) 

where the 
(2)

W and 
(2)

b are defined in the same way as 
(1)

W and 
(1)

b ,respectively. The main purpose of AE 

network training is to obtain  (1) (2) (1) (2)= , , ,W W b b  

by minimizing the reconstruction error between X and X̂ . 

B. The Domain and The Label Discriminator 

The Softmax regression model has been widely utilized in 

fault diagnosis tasks such as fault classification and 

prediction [38]. In this paper, we use two Softmax 

classifiers—a label predictor 
y

G and a domain 

discriminator
d

G .Given the input data 

(1) (1) ( ) ( ){( , ),..., ( , )}m m
X x y x y ,  with k  types of 

labels  ( ) 1,2,...,i
y k , let the hypothesis function 

be ( ) 1/1 exp( )T
h x x    . The probability that 

( )i
x  

belongs to each type of label is: 

( )
1

( )
2
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( ) ( ) ( ) ( ) ( )
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T i
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e

e

e
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 
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

(10) 

The cost function of softmax regression model is: 
( )

( )

( ) 2

1 1 1 0
1

1
1{ }log

2

T i
j

T i
j

xm k k n
i

ijxk
i j i j

l

e
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m e



 

 
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 
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 
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(11) 

where the symbol  1   .  is the indicator function,   

which is defined as1{a true statement} = 1 and 1{a false 

statement} = 0;  is the parameter vector of the Softmax 

regression model,  is a trade-off parameter for the weight 

decay term. 

C. Optimization Solution 

In this paper, we propose a novel adversarial domain 

adaptation model for rolling bearing fault diagnosis and 

choose the SGD algorithm to find the optimal solution. The 

proposed algorithm is briefly summarized in Algorithm 1. 

Note that the setting of each parameter in the proposed 

algorithm is just for demonstration, i.e., a good or better 

setting of these parameters may be available for real 

applications. Some details and suggestions are provided in 

Section IV. 

IV. Experimental Test 

A. Experimental Data Description 

   

Fig.4. Experimental equipment[39]. Fig.5.The actual situation of three faults. 

Algorithm 1  

Input: Labeled source 

data
( ) ( )(1) (1){( , ),..., ( , )}s sn n

S
X x y x y and unlabeled 

target data 
( )(1) (2){ , ,..., }tn

tX x x x . 

Output: Target class labels. 

1.1:Set the SAE parameters: 

 learning rate  = 0.003, weight of sparsity penalty 

term  =0.0001, sparsity parameter =0.1, 

 #hidden layer=2, 

 #nodes=150 per hidden layer ; 

1.2:Set the Softmax classifier parameters: 

 Trade-off parameter for the weight decay term = 

0.0001; 

2: Obtain the SAE feature 

vectors:   _
1

s tn n
F trained SAE X Xti Si


  ; 

3: Optimize label predictor 
y

G  using SGD on the labeled 

source features  
1

sn

i i
F


 only, and optimize domain 

discriminator
d

G  using SGD on the SAE feature 

vectors 
1

s t
n n

i i
F




;the backpropagation of two optimization 

processes can be written as follow: 

  
  ,

i i
y d

f f

f f

L L   
 

  
      
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i

y

y y

y

L
  



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

 

 
   .

i

d
d d

d

L  



 


 

4: Feed the unlabeled target features  
1

tn

i i
F


 to label 

predictor 
y

G  and estimate the corresponding labels; 

 

Rolling bearing vibration data were collected from the 

Case Western Reserve University (CWRU) Bearing Data 

Center [39], and the equipment is listed in Fig.4. 

Specifically, the vibration data were obtained by the 

accelerometers mounted at the end of an induction, 

containing both normal and fault data, Fig.5 shows the 

actual situation of the three faults. For each fault, there are 

four fault sizes corresponding to various fault levels, which 

are 0.007, 0.014, 0.021 and 0.028. Additionally, the data 

were acquired at different motor loads (0, 1, 2 and 3 hp) 

with a sampling frequency of 12 kHz. In this paper, we 

choose the fault size (0.007) and four different loads(0, 1, 2 

and 3 hp) to simulate the scenario for domain adaptation, 

and it constitutes a total of six domain adaptation scenarios 

(trial number 1 - trial number 6). The preprocessing 

procedures were implemented on the row data:6400 

samples of 1200 sample length with 80% overlap are 

selected from both s and t . 

Finally, the classification accuracy of each method is 

defined as: 



 

TABLE I 

DATA CLASSIFICATION ACCURACY 

Methods 
0-1hp(Trial 

number 1) 

0-2hp(Trial 

number 2) 

0-3hp(Trial 

number 3) 

1-2hp(Trial 

number 4) 

1-3hp(Trial 

number 5) 

2-3hp(Trial 

number 6) 

Softmax 77.2 66.8 80.6 68.8 60.2 74.0 

SVM 93.8 87.7 92.9 74.8 77.9 87.8 

BP 94.2 72.1 74.9 65.7 89.2 90.8 

SAE 78.6 75.0 90.0 74.9 80.2 75.6 

TCA 97.9 85.0 96.8 80.2 94.7 80.5 

DAFD 96.7 92.3 97.6 89.4 93.2 92.5 

Proposed method 99.2 98.7 99.8 94.8 96.4 100.0 

 

( ) ( )
( %)

n

label x k predict x k
accuracy C

x

  


  

 (12) 

where
n

x  is the total number of test samples, and k  is 

the true label value that a classifier correctly identified.  

B. Comparison with the Traditional Methods 

Unlike traditional methods (e.g. Softmax, SVM, BP, and 

SAE), the proposed method focuses on intelligent fault 

diagnosis with domain shift situation. In addition, the SAE 

is the case with the proposed method without the 

adversarial domain adaptation ability. To show the 

superiority of the proposed method, we compare it with the 

state-of-the-art domain adaptation methods including TCA 

[22] and DAFD [23].The application details of these 

compared methods are summarized as follows: For SVM, 

Softmax, BP and SAE, the training data of the classification 

model are derived from the
s
and

t
, and then select the 

data of the target domain
t
are selected as the test data to 

complete the prediction. The TCA firstly implements 

domain adaptation and dimensionality reduction for s  

and t  data, and then uses s  data to train the SVM to 

predict the t data labels. The effect of hyper-parameters 

for each compared method is also empirically analyzed. 

Due to the space limitations, analysis details are omitted. 

The accuracies of the seven methods, for a total of six 

domain adaptation situations, are shown in Table I. For 

convenience of comparisons, the accuracies are also 

displayed in histogram format (see Fig. 6). It can be seen 

that the average accuracy of the proposed method is 

98.15%, which is much higher than the six compared 

methods. It is noticed that the average accuracy of TCA and 

DAFD is also higher than the other four methods, but the 

domain adaptation ability of the TCA and DAFD is lower 

than the proposed method. Fig.7 shows the confuse matrix 

of the proposed method for the first domain shift situation 

(trial number 1). 

Two points are summarized as follows: (1) the results are 

obtained through the six domain adaptation scenarios 

demonstrate that the proposed method can improve the 

classification ability of the model in a domain shift 

situation; and (2) the adversarial domain adaptation scheme 

can produce a superior solution to the domain shift problem 

compared to traditional domain adaptation methods. 

 

 
Fig.6. Accuracy on bearing fault diagnosis. 

 

Fig.7. The confusion matrix of the proposed method for the trial number 1. 

C. Comparison and Analysis 

In order to show the overall performance of the proposed 

method, TCA is chosen to be the reference method, and 

comparisons are carried out based on predefined distance 

such as maximum mean discrepancy (MMD). For TCA, the 

kernel is defined as Radical Basis Function (RBF), and the 

optimized subspaces (optimized subspaces are the 

transformed source and target domain features dimension 

after adaptation) for the transformed source and target 

domain features are chosen from{8,16,32,64,128}.The 

target domain data for domain adaptation means existing 

historical data, and test data set are those that need to be 

diagnosed in real time. As shown in TableⅡ, the target 

domain data for domain adaptation is gradually 

reduced(from 700 to 100), but the number of test data set 

remains unchanged. 



 

TABLE II 

DATA CLASSIFICATION ACCURACY 

0-1hp (trial number 1) 

Methods                                the number of target domain data for domain adaptation 

700 600 500 400 300 200 100 

TCA 87.63% 83.75% 78.13% 62.58% 62.54% 25.69% 12.59% 

Proposed method 98.27% 96.34% 98.50% 97.72% 94.16% 95.08% 86.25% 

0-2hp (trial number 1) 

Methods                                the number of target domain data for domain adaptation 

700 600 500 400 300 200 100 

TCA 80.59% 84.85% 75.33% 69.34% 64.08% 18.34% 22.75% 

Proposed method 100.00% 92.26% 93.33% 97.50% 96.17% 99.97% 87.09% 

0-3hp (trial number 3) 

Methods                                the number of target domain data for domain adaptation 

700 600 500 400 300 200 100 

TCA 88.78% 82.58% 74.52% 66.74% 48.04% 20.13% 25% 

Proposed method 96.58% 98.43% 94.38% 90.85% 92.56% 92.48% 75.00% 

0-4hp (trial number 4) 

Methods                                the number of target domain data for domain adaptation 

700 600 500 400 300 200 100 

TCA 76.36% 86.35% 72.05% 68.43% 57.47% 18.34% 18.75% 

Proposed method 96.84% 84.81% 78.25% 80.94% 85.16% 73.88% 72.22% 

0-5hp (trial number 5) 

Methods                                the number of target domain data for domain adaptation 

700 600 500 400 300 200 100 

TCA 89.59% 85.64% 71.60% 64.67% 46.83% 25% 25% 

Proposed method 92.25% 98.50% 88.72% 82.75% 75.91% 75.00% 75.78% 

0-6hp (trial number 6) 

Methods                                the number of target domain data for domain adaptation 

700 600 500 400 300 200 100 

TCA 78.64% 81.39% 78.14% 56.75% 44.38% 25% 24.84% 

Proposed method 98.56% 96.31% 99.81% 99.50% 99.78% 100.00% 74.84% 

With the reduction of target domain data for domain 

adaptation, the performance of TCA drops sharply, 

especially when the number of target domain data for 

domain adaptation reaches 100. 

It is worthy to stress the following points. Note that TCA 

can show good performance when the number of source 

domain is similar to the target domain data, but when 

additional new data are added and make the source domain 

and target domain data unbalanced, the performance of 

TCA drops dramatically. It is known that bearing fault 

diagnosis needs to process new real-time data in 

engineering scenarios, as a consequence, methods based on 

predefined distance such as TCA may fail. The proposed 

method is superior to the TCA method in that it is more 

suitable for fault diagnosis of bearings in the engineering 

scenarios. 

D. Empirical Analysis 

In order to prove the transferability of the proposed 

method, the t-distributed stochastic neighbor embedding 

(t-SNE) software is used to visualize the high-dimensional 

model and SAE features in a two-dimensional map. All 

experimental data of this part are taken from the third 

domain shift situation. t-SNE is a visualization tool that can 

learn the local structure of high-dimensional data and 

reduce it to 2-D or 3-D display. Additional details about 

t-SNE can be found in the [40]. The proposed method can 

reduce the difference between the source domain and target 

domain, and Fig. 8(a)-(d) shows this situation.  

 

Fig.8. Four results of features displayed by t-SNE dimensionality 

reduction. The bracketed symbol S represents the source domain s ,and 

symbol T represents the target domain t . In particular, the SAE features 

represent the DADA method to remove the domain adaptation ability. 



 

 

 

TABLE III 

DIAGNOSIS RESULTS BASED ON DIFFERENT HIDDEN LAYER 

NEURONS 

Hidden layer neurons  Average testing accuracy  Time(s) 

100 neurons             97.6453%          36.30 

150 neurons             98.2930%          49.40 

200 neurons             97.7447%          60.64 

250 neurons             96.5606%          76.85 

300 neurons             89.7745%          93.80 

350 neurons             82.9702%          110.69 

400 neurons             80.9427%          130.67 

 

TABLE Ⅳ 

DIAGNOSIS RESULTS BASED ON DIFFERENT LEARNING 

RATES 

Learning rate 
      

Average testing accuracy 

61 10                     97.5787%    
51 10                     97.6194%            
41 10                     94.8956%             
31 10                     89.8950%             
35 10                     99.8325% 
21 10                     99.8277%            
11 10                     99.8113% 
15 10                     25.0000%            

 

Taking the Fig. 8(a) as an example, the distance between 

the normal features of MODEL (the black cross marker 

from 
s

 and the red cross marker from
t

) is much 

closer than the SAE features (the black dot marker from 

s
and the red dot marker from

t
).There are similar 

situations in Fig. 7(b)-(d), which are inner, ball and outer 

features, respectively. These results explain the excellent 

domain adaptation capability of the proposed method. 

Therefore, the classification model trained with the 
s
 

features can be directly utilized for the classification of 

t
 features. 

E. Model Structure Analysis 

In order to fully explore the potentials of the proposed 

method, it is essential to analyze the impact of the number 

of the AE layers and the number of neurons in each layer. 

In doing this, all input data are taken from the third domain 

shift situation (trial number 3), and the classifiers are 

chosen to be Softmax. Fig.9(a) and (b) show the accuracy 

of SAE, running 200 times in the case of four types of 

hidden layers, which are 0 hidden layer, 1 hidden layer, 2 

hidden layers and 3 hidden layers, respectively. It seems 

that the accuracy of the 2 hidden layers is higher and more 

stable. The analysis results for the number of hidden layer 

neurons are shown in Table III, in which the average 

classification accuracy was calculated based on the results 

of 200 iterations. Obviously, although the number of 

neurons in the hidden layer increases, the average 

classification accuracy of the proposed method does not 

increases accordingly. So, we use 150 neurons to form the 

hidden layer. 

F. Model Hyper-parameter Analysis 

 
Fig.9. Four kinds of hidden layer analysis results. 

 

 
Fig.10. Sparsity parameter analysis results. 

 

In this section, we choose the input data from the third 

domain shift case (trial number 3) to perform analysis on 

the sparsity parameter and learning rate, and the classifier is  

Softmax. Eighteen different values of sparsity parameters 

are used to detect the classification accuracy of the 

proposed method and the SAE, the experimental results are 

shown in Fig.10, where the distance between the 

blue-dotted line and the red-dotted line represent the 

accuracy gap between the non-DA and DA methods, 

respectively. Additionally, experimental results for the 

learning rate are displayed in Table Ⅳ.  

Obviously,  = 
35 10  is the optimal choice. In short, 

it can be observed that: (1) the proposed method possesses 

robust classification performance, allowing the parameter 

to changes in a wide range. The changes of the accuracy 

still remains in a small band which is much smaller than 

that of SAE; And (2) the proposed DADA achieves a better 

classification performance in the domain adaptation 

situation, demonstrating that it is an effective approach for 

solving the domain shift problem. 

V. Conclusion 

This paper proposed a novel model, DADA, to solve the 

domain shift learning problem in the rolling bearing fault 

diagnosis field. First, a stack auto-encoder was employed to 

extract the representation features from the collected 

vibration data. Second, the label classifier was used to 

predict the label of the corresponding features. Meanwhile, 

a domain discriminator was designed and combined with 

the two sub-network models to construct a whole DADA 

model. 

The proposed method has been applied to real data and 



its performance has been analyzed. Experimental results 

demonstrate that the proposed method outperforms the 

compared peer methods. In addition, the structure and 

parameters of the model have been analyzed in detail. 

These analyses are useful for further explore the potential 

of the associated methods and algorithms. 
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