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Abstract—In this era of fast and large-scale opinion formation,
a mathematical understanding of opinion evolution, a.k.a. opinion
dynamics, acquires importance. Linear graph-based dynamics
and bounded confidence dynamics are the two popular models
for opinion dynamics in social networks. Stochastic bounded
confidence (SBC) opinion dynamics was proposed as a general
framework that incorporates both these dynamics as special cases
and also captures the inherent stochasticity and noise (errors)
in real-life social exchanges. Although SBC dynamics is quite
general and realistic, its analysis is more challenging. This is
because SBC dynamics is nonlinear and stochastic, and belongs
to the class of Markov processes that have asymptotically zero
drift and unbounded jumps. The asymptotic behavior of SBC
dynamics was characterized in prior works. However, they do not
shed light on its finite-time behavior, which is often of interest in
practice. We take a stride in this direction by analyzing the finite-
time behavior of a two-agent system and a bistar graph, which
are crucial to the understanding of general multi-agent dynamics.
In particular, we show that the opinion difference between the
two agents is well-concentrated around zero under the conditions
that lead to asymptotic stability of the SBC dynamics.

Index Terms—Opinion dynamics; Markov process; Concentra-
tion inequality.

I. INTRODUCTION

Public opinion is the driving force of a society. The advent

of social media platforms has revolutionized the speed and

scale of opinion formation, resulting in significant effects

on societies. Hence, modeling opinion formation, popularly

known as opinion dynamics, and analyzing its behavior is a

very important problem.

The study of opinion dynamics has a long history [2]. In the

mathematical and computational study of opinion dynamics,

individuals or social entities, a.k.a. agents, are modeled to have

real-valued opinions regarding a topic. A positive (negative)

opinion represents a favorable (unfavorable) view of the topic,

and its magnitude represents the agent’s conviction. Opinion

dynamics models are discrete-time dynamical systems where

the opinions of the agents at the next time slot are updated

according to a specified function of the current opinions.

A. Background and Motivation

Broadly, there have been two popular models of opinion dy-

namics: linear graph-based dynamics and bounded confidence

A preliminary version of this paper appeared in the proceedings of
COMmunication Systems & NETworkS (COMSNETS) 2022 [1].

dynamics. In the first model [3]–[10], opinion updates occur

according to a linear combination of opinions of neighbors on

a social graph. In the original bounded confidence dynamics

[11]–[13], an agent updates its opinion using the average of

the opinion of all agents (including itself) whose opinions are

within a specified distance from its own opinion. Thus, in

short, linear dynamics considers social graph-based opinion

exchanges, whereas bounded confidence dynamics considers

opinion-dependent opinion exchanges.

Although the study of these two models and their variations

[2]–[4], [6]–[11], [13] span most of the literature, they capture

only partially, the nuances of real-world social interactions.

An important characteristic of interactions in the real world

is that they are often stochastic. Since no agent can know the

true opinion of the other agent and can, at best, estimate it

based on expressed views. Hence, whether an agent accepts

or rejects another agent’s opinion is a random phenomenon.

Naturally, the probability of accepting another agent’s opinion

is lower when the difference between their (true) opinions is

larger. Moreover, while updating its own opinion based on

other accepted opinions, an agent incorporates estimates of

others’ opinions tempered by its own inherent beliefs. This

leads to unavoidable noise in the opinion updates.

Stochastic bounded confidence (SBC) opinion dynamics

proposed in [14]–[16] is a framework that addresses these real-

world issues while merging the graph-based exchanges in lin-

ear dynamics with a stochastic generalization of the opinion-

dependent exchanges in bounded confidence dynamics. Unlike

prior opinion dynamics models, where opinions eventually

converge, the SBC dynamics captures real-life scenarios where

opinions in a society, depending on the scenario, may stay

close or diverge to opposite extremes.

Linear dynamics and bounded confidence dynamics have

been analyzed in detail in the literature. SBC dynamics

is a stochastic generalization of both these dynamics on a

graph. Though the nonlinear and stochastic nature of SBC

dynamics makes this model much more realistic, its analysis

becomes significantly more challenging. In [14]–[16], specific

conditions involving the social graph and the nature of the

stochastic opinion-dependent exchanges were provided for

limiting opinion differences to be finite. In multiple settings,

tight converse results were also provided. Although these

results display significant initial progress, they do not disclose

anything about the evolution of opinions over a finite time

window, which is often of interest in practice.

http://arxiv.org/abs/2212.13387v1


B. Our Contributions

In this paper, we take the first stride towards a non-

asymptotic characterization of the opinion differences under

SBC dynamics. Here, we obtain high probability bounds on

opinion differences at a finite time for stable SBC dynam-

ics. The primary focus of this work is on characterizing

the evolution of the opinion difference for two-agent SBC

dynamics at a finite time. We derive high probability bounds

for the opinion difference under sub-Gaussian noise using a

Chernoff bound. In particular, we demonstrate that the opinion

difference between the agents is well-concentrated around zero

under the same technical conditions that imply the asymptotic

stability of the SBC dynamics.

Next, motivated by a two-party democratic polity, we study

SBC dynamics on a bistar social network1. We obtain bounds

for a class of asymptotically stable SBC dynamics on bistar

social graphs using the insights gathered from the two-agent

dynamics.

The reason for starting with the two-agent case is to study

the issues of nonlinearity and stochasticity in isolation from

the graph structure. Also, the two-agent SBC dynamics is

a necessary building block for understanding the dynamics

on a general graph. The insights obtained from the two-

agent dynamics help us to develop bounds for SBC dynamics

on bistar social graphs. Towards the end, we support our

theoretical analysis using numerical results.

C. Organization

In the following section (Sec. II), we briefly discuss SBC

dynamics. The two-agent stable SBC dynamics is analyzed in

Sec. III. In this section, we present a high probability bound on

the opinion difference at a finite time when the noise (errors) in

opinion exchange has a sub-Gaussian distribution. In Sec. IV,

we outline the proof of the main result of two-agent dynamics,

starting with the relatively simpler case of bounded noise in

Sec. IV-A, followed by its extension to sub-Gaussian noise

in Sec. IV-B. We then present the high probability bounds

for opinion differences in stable SBC dynamics on a bistar

graph (Sec. V), followed by the numerical results in Sec. VI.

Detailed proofs are in Appendix.

II. STOCHASTIC BOUNDED CONFIDENCE DYNAMICS

Stochastic bounded confidence (SBC) opinion dynamics

[16] captures the effect of the social graph as well as that

of the closeness of opinions on opinion evolution. Further-

more, it models the impact of inherent stochasticity in human

interactions and the unavoidable noise and errors in opinion

exchanges. It is a general framework for opinion dynamics

that captures the well-known linear dynamics and the bounded

confidence dynamics as special cases. Below, we briefly de-

scribe a simplified version of the dynamics that is sufficient for

the purpose of this work. Please see [16] for a more general

description.

In SBC dynamics, there is an underlying undirected social

network G = (V , E) of n agents, which captures the possible

1A bistar graph is a reasonable model for a polity with two leaders/parties
having large followings.

interactions. Agent u can interact with v only if it has an

edge (u, v) with v. For each edge (u, v) ∈ E , there are

two influence functions Gu,v, Gv,u : [0,∞) → [0, 1], which

capture the probability of influence of u on v and that of v on

u, respectively, as functions of their opinion difference.

Opinions are real-valued and evolve as discrete-time

stochastic dynamics. Opinions at time t are denoted by

{Xu(t) : u ∈ V}. Any two agents u and v with (u, v) ∈ E
interact at time t with a non-zero probability, and at any

time, an agent interacts with at most one other agent. If

u and v interact at time t, then agent u influences v and

vice versa with probabilities Gu,v(|Xu(t) − Xv(t)|) and

Gv,u(|Xu(t)−Xv(t)|), respectively.

If u influences v at time t, then v updates its opinion as

Xv(t+ 1) =
Xu(t) +Xv(t)

2
+ nv(t),

and if v is not influenced by any agent, then its opinion evolves

as

Xv(t+ 1) = Xv(t) + nv(t).

Here, for each agent u, nu(t) is an i.i.d. zero mean process.

This captures the errors and noise in the interactions, which

stem from miscommunications and misinterpretations. This

also captures the innate evolution of the opinion of an agent

due to his/her own thoughts and emotions.

Note that if one chooses Gu,v(x) = Gv,u(x) = 1 for all x

and (u, v) ∈ E and nu(t) = 0, we get back the well-known

linear dynamics on a social network. On the other hand, if we

choose G to be a clique and for any u, v, choose Gu,v(x) =
Gv,u(x) = 1 for x ≤ d and Gu,v(x) = Gv,u(x) = 0 for

all x > d, we get back the well-known pairwise bounded

confidence opinion dynamics. Thus, these two popular classes

of dynamics are special cases of SBC dynamics.

Due to nonlinearity and stochasticity, analyzing SBC is

significantly more challenging. Further, due to the presence of

noise (or estimation error) in the SBC dynamics, a consensus

cannot be reached, not even in an almost sure or a high

probability sense. This, in a way, reflects the real social

dynamics, where there may not be a consensus. In such a

scenario, just like in real democratic societies, we can, at best,

hope for the differences of opinions to remain finite. To capture

this scenario, the notion of stability of opinion dynamics was

introduced in [16], and conditions for the stability of SBC

dynamics were established.

Mathematically, the stability of SBC dynamics is defined

as the opinion differences between agents asymptotically

reaching a proper stationary distribution. On the other, the

dynamics is said to be not stable if the opinion differences

do not reach a stationary distribution. These capture the cases

when the opinions of two groups stay close and diverge away,

respectively. The stability results (and their converses) in [16]

provide simple conditions in terms of G and {Gu,v} that lead

to stability (and otherwise).

The stability results are essential in understanding the

dynamics. Still, due to their asymptotic nature, they do not

shed much light on opinion differences at a finite time, which

are often of practical interest. However, standard concentration



inequalities cannot be applied to obtain bounds for opinion dif-

ferences in stable SBC dynamics due to their jumpy, nonlinear

behavior.

III. BOUNDS FOR TWO-AGENT DYNAMICS

For developing insights into the general dynamics, we first

consider the following simple two-agent symmetric dynamics.

Agents 1 and 2 interact at all time instants. Thus, at time t,

if their opinions are X1(t) and X2(t), then they are mutually

influenced by each other with probability G(|X1(t)−X2(t)|).
Upon influence, their opinions are updated as, for i = 1, 2,

Xi(t+ 1) =
X1(t) +X2(t)

2
+ ni(t)

and when they are not influenced, the opinions evolve as, for

i = 1, 2,

Xi(t+ 1) = Xi(t) + ni(t).

Their opinion difference Y (t) := X1(t) − X2(t) is a

discrete-time stochastic process and its evolution can be writ-

ten as: given Y (t) = y, Y (t + 1) = ñ(t) with probability

G(|y|) and with probability 1−G(|y|),
Y (t+ 1) = Y (t) + ñ(t),

where ñ(t) = n1(t)− n2(t) is the difference of two indepen-

dent zero mean i.i.d. noise processes. We assume that ñ(t) has

a symmetric distribution about its mean.

It was shown in [16] that the opinion difference Y (t)
reaches a stationary distribution, i.e., the SBC dynamics is

stable, if for some δ > 0, G(x) & 1
x2−δ , where the notation

m(x) & g(x) means lim infx→∞
m(x)
g(x) > 0. It was also

shown that the dynamics is not stable if for some δ > 0,
1

x2+δ & G(x). The influence function G(.) is monotonically

non-increasing. We define G0 := G(0).
It is not hard to see that if Y (0) = 0, for most two-agent

opinion dynamics, including the SBC dynamics, Y (t) can be

written as a function ft({ñ(τ), Uτ : 1 ≤ τ ≤ t}), where Ui are

i.i.d. uniform [0, 1] random variables. Moreover, if Y (0) = 0,

E[Y (t)] = E[ft({ñ(τ), Uτ : 1 ≤ τ ≤ t})] = 0. Hence, it

may seem that an application of McDiarmid like inequalities

should give a tight high probability bound on |Y (t)|. However,

for SBC dynamics, ft has unbounded discontinuities, and

hence, they require different treatments. For the same reason,

the well-known Markov concentration results [17] cannot be

applied either.

In this paper, our first important result is a bound on |Y (t)|
in stable two-agent dynamics at a finite t. Later, we build

on these intuitions and proof techniques to obtain bounds for

dynamics on the bistar graph. We establish the bound for the

class of sub-Gaussian i.i.d. noise processes.

Definition 1 (Sub-Gaussian Random Variable [18, Sec. 2.3]).

A random variable X with E[X ] = 0 is sub-Gaussian with

variance parameter σ2, denoted by X ∈ SG(σ2), if ∀λ ∈ R,

E[exp (λX)] ≤ exp
(λ2σ2

2

)

.

The main result in the case of two-agent dynamics is a high

probability bound on |Y (t)| at any finite time t.

Theorem 1. Consider a two-agent stable dynamics with

G(x) & 1
x2−δ for some δ > 0, and i.i.d. ñ(t) ∈ SG(σ2)

for some finite σ. Let k = c t
1
2−β for c, β > 0. Then, with

dτ = D τ
1
2+β′

for some β′ > 0, D > 0, and c′ > 0, and

h(t) < t,

P0(|Y (t)| ≥ k) ≤ 2(t− h(t)) exp (−c′h(t)2β
′

) + 2
[ t− h(t)

1−G(dt)

+ exp
(

G(dt)h(t)
)]

exp
(

−
√

2G(dt)

σ
k
)

for all t ≥ 0. Here, P0(·) corresponds to the conditional

probability given that the initial difference Y (0) = 0.

The bound in Theorem 1 can be simplified when t is

sufficiently large.

Proposition 1. Consider a two-agent stochastic bounded

confidence dynamics with G(x) & 1
x2−δ for some δ > 0 and

i.i.d. ñ(t) ∈ SG(σ2) for some finite σ. Let k = c t
1
2−β for

c, β > 0 and dt = D t
1
2+β′

for some β′ > 0 and D > 0.

Then, for all t > 0 such that
√

t1−2β−2ǫG(dt) ≥ θσ√
2c

,

P0(|Y (t)| ≥ k) ≤ c1t exp (−θtǫ)

for ǫ ≤ δ
6 − 2β

3 and positive (independent of t) constants θ

and c1 ≤ 2(3−2G0)
1−G0

.

Furthermore, for t >
(

1
θ ǫ

)
1
ǫ

and c2 > 0,

P0(|Y (t)| ≥ k) ≤ c1 exp (−c2t
ǫ).

Proposition 1 follows from Theorem 1 for h(t) = tζ with

ζ ≤ 1− δ
2 and ǫ ≤ δ

6 − 2β
3 .

First and obvious implication of Proposition 1 is that the

concentration of the opinion difference around 0 in a stable

SBC dynamics is much tighter than that of sum of i.i.d. noise

given by S(t) =
∑t

τ=1 n
(b)(τ). Since it is well known that

for any ǫ > 0 and c > 0 [18],

P(|S(t)| ≥ c t
1
2−ǫ) = 1− o(1).

The behavior of sum of i.i.d noise is a benchmark of interest

to us since the SBC dynamics would behave like that if

G(x) = 0 for all x > 0. Thus, Proposition 1 shows that

G(x) & 1
x2−δ , for some δ > 0, ensures asymptotic stability as

well as closeness of opinions at finite time.

A direct corollary of Proposition 1 is that, for some a, b > 0,

P0(
∞
⋃

τ=t

{|Y (τ)| ≥ c τ
1
2−β}) ≤ a exp(−btǫ)

for ǫ ≤ δ
6 − 2β

3 and large enough t, which follows using union

bound. This means that the probability of the event that |Y (τ)|
does not cross τ

1
2−β after τ = t approaches 1 fast as t → ∞.

This, in turn, implies that Y (t) almost surely remains within

an envelope of the shape t
1
2−β for β > 0.

The opinion difference process Y (t) is a Markov process

[16]. A high probability bound of the above kind is not uncom-

mon for well-behaved Markov processes. However, we note

that Y (t) is structurally quite different from the Markov chains

observed in areas such as queuing systems and population

dynamics.



The Markov process Y (t) lies in the class of asymptotically

drift zero Markov processes, i.e., its expected conditional drift

given Y (t) = y tends to zero as |y| → ∞. This is because the

probability of influence decays with increasing opinion differ-

ences. Note that even the stable dynamics has asymptotically

zero drift. Furthermore, unlike queuing processes, |Y (t)| has

unbounded jumps towards zero.

Though the phenomenon of asymptotic zero drift is in direct

opposition to strong concentration, unbounded jumps towards

zero are conducive to concentration. However, the jumps

are probabilistic and the probability decays with increasing

opinion difference. So, it is not intuitively clear whether Y (t)
concentrates or not. In that sense, Proposition 1 settles this

dilemma affirmatively for stable SBC dynamics. For other

SBC dynamics that are not stable, Y (t) is either a null

recurrent or a transient Markov process, and hence, is not

expected to concentrate.

IV. PROOF OUTLINE OF THEOREM 1

In this section, we outline the proof of Theorem 1 and

discuss the main intuitions behind them. These intuitions are

adapted and extended for obtaining the results on bistar social

graph. We start with a relatively simpler case of bounded ñ(t)
and discuss the basics of our proof technique in this context.

Then, we extend that proof technique to sub-Gaussian noise

in Proposition 1.

A. Bounded Noise: A Useful First Step

As discussed above, the opinion difference process Y (t) is a

Markov chain [16] with unbounded state-dependent jumps and

asymptotically zero drift. As a result, its analysis is intricate

than the usual Markov chains [16]. So, towards proving the

main result in Theorem 1, as a first step, we consider a

relatively simpler setting: ñ(t) is bounded, i.e., it has a support

[−D,D] for some D > 0 and G(x) & 1
x1−δ .

Theorem 2. Let k = c t
1
2−β for c, β > 0 . Consider a two-

agent stable dynamics with G(x) & 1
x1−δ for some δ > 0, and

bounded noise model. Then, for all t ≥ 0,

P0(|Y (t)| ≥ k) ≤ 2
( t

1−G(Dt)
+ 1

)

exp
(

−
√

2G(Dt)

D
k
)

.

The following simpler bound can be obtained from Theo-

rem 1, for all sufficiently large t.

Proposition 2. Consider a two-agent stable dynamics with

G(x) & 1
x1−δ for some δ > 0, and bounded noise model with

the assumed characteristics. Let k = c t
1
2−β for c, β > 0.

Then, for θ > 0, c1 ≤ 4−2G0

1−G0
and ǫ ≤ δ

2 − β,

P0(|Y (t)| ≥ k) ≤ c1t exp (−θtǫ)

for all t > 0 such that
√

t1−2β−2ǫG(Dt) ≥ θD√
2c

. In addition,

for t >
(

1
θ ǫ

)
1
ǫ

and c2 > 0,

P0(|Y (t)| ≥ k) ≤ c1 exp (−c2t
ǫ).

This is a direct consequence of Theorem 2. As we discuss

later, the ingredients in the proof of Theorem 2 are also

vital in proving Theorem 1 and the bound for bistar graph

in Proposition 3.

Details of the proof of this result is presented in Ap-

pendix A. Here, we only discuss the main intuitions that are

also useful in proving Proposition 1. The main part of the proof

involves obtaining a suitable upper bound on E0[e
λY (t)], where

E0[·] represents E[·|Y (0) = 0]. The bound on E0[e
λY (t)] is

obtained using three main steps.

First, for any t ≥ 0, obtain an upper bound on E0[e
λY (t+1)]

in terms of E0[e
λY (t)], E[eλñ(t)] and G(|Y (t)|):

E0[e
λY (t+1)] ≤ E[eλñ(t)]

(

E0[e
λY (t)(1−G(|Y (t)|))] + 1

)

.

Second, note that as the noise is bounded, |Y (τ)| ≤ Dτ for

any τ . Using this fact along with the recursive relation, for any

t > 0, we obtain a bound on E0[e
λY (t)] as a sum of products

of the moment generating function of noise at λ, Mñ(λ), and

{G(Di) : 0 ≤ i ≤ t}:

E0[e
λY (t)] ≤ Mñ(λ) +

t−1
∏

i=0

Mñ(λ)(1 −G(Di))

+

t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(D(t− 1− j)).

Third, by using Hoeffding’s Lemma [18, Sec. 2.3] for the

moment generating function of noise, Mñ(λ), we obtain the

following bound on E0[e
λY (t)] in terms of a sum of products

involving only λ and G(Dt):

γ̄(λ)
t−1
∑

i=0

[

γ̄(λ)(1 −G(Dt))
]i

+
[

γ̄(λ)(1 −G(Dt))
]t

.

where γ̄(λ) = 1

1−λ2D2

2

.

Finally, by the use of the Chernoff bound and a suitable

choice of λ, the bound in Theorem 2 follows.

The above proof technique has an interesting aspect to it:

it starts with an initial weak bound on |Y (t)| and refines it

to a much stronger bound. This is also the case in the proof

of Proposition 1. However, in the latter case, a tighter initial

weak bound is utilized, which leads to a tighter final bound.

As a result, Proposition 1 applies to all influence functions for

which the two-agent SBC dynamics is stable.

B. Extending to Sub-Gaussian Noise

Proof of Theorem 1 builds on the three-step approach

discussed in Sec. IV-A. However, proof technique for bounded

noise cannot be directly extended to sub-Gaussian noise. An

important ingredient in the proof for the bounded noise case

was the bound on G(|Y (t)|) in the second step, which used

the fact that |Y (τ)| ≤ Dτ for any τ . Clearly, this is not true

when the noise is sub-Gaussian. We circumvent this issue by

introducing a high probability bound on |Y (t)| instead of a

deterministic bound, and by adapting the subsequent proof

steps and the final step involving the Chernoff bound according

to that high probability bound.

Towards that, we define events At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ dτ}

where h(t) < t and dτ = D τ
1
2+β′

for some β′ > 0.



We first discuss the final step involving the Chernoff bound

since that would place the changes we make to the three

preceding steps in the proof of Theorem 2 in the right

perspective.

In the proof of Theorem 2, the natural Chernoff bound is

P0(Y (t) ≥ k) ≤ E0[e
λY (t)] exp (−λk).

In the current setting, we adopt the following useful modi-

fication.

P0(Y (t) ≥ k|At−1) ≤ E0[e
λY (t)|At−1] exp (−λk)

P0(Y (t) ≥ k) ≤ P0(Y (t) ≥ k|At−1) + 1− P0(At−1),
(1)

where, At−1 is an event defined in terms of {Y (τ) : 0 ≤ τ ≤
t− 1}. The choice of the event At is dictated by the fact that

|Y (t)| should be bounded on At with high probability and

1− P0(At−1) should be rapidly approaching 0 as t → ∞.

Note that, clearly, |Y (t)| is stochastically smaller than

the absolute value of the sum of i.i.d. sub-Gaussian noise

|∑t
τ=1 ñ(τ)|. Thus, P0(|Y (t)| ≥ D t

1
2+β′

) is no more than

P(|
t

∑

τ=1

ñ(τ)| ≥ D t
1
2+β′

) ≤ 2 exp

(

−D2

2σ2
t2β

′

)

,

which fast approaches 0 as t → ∞. Here, the bound on

P(|∑t

τ=1 ñ(τ)| ≥ D t
1
2+β′

) follows from the concentration

inequality for the sum of i.i.d. sub-Gaussian random variables.

Based on the above observations, while keeping the adap-

tation of the final step involving the Chernoff bound in mind,

we adapt the three main steps from the proof of Theorem 2

as follows.

First, define At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ D τ
1
2+β′} and obtain

an upper bound on E0[e
λY (t+1)|At] in terms of E0[e

λY (t)|At],
E[eλñ(t)] and G(|Y (t)|). Then, using the fact that At imposes

a symmetric constraint on Y (t) and Y (t) has a symmetric

distribution, we show that E0[e
λY (t)|At] ≤ E0[e

λY (t)|At−1].
This gives a recursive upper bound on E0[e

λY (t+1)|At] in

terms of E0[e
λY (t)|At−1], E[e

λñ(t)] and G(|Y (t)|).
Second, we use the fact that |Y (t)| ≤ D t

1
2+β′

on the

event At to obtain a bound on E0[e
λY (t)|At−1] as a sum of

products of the moment generating function of noise at λ and

{G(D i
1
2+β′

) : 0 ≤ i ≤ t}.

Third, using the sub-Gaussian bound on the moment gener-

ating function of noise, we obtain a bound on E0[e
λY (t)|At−1]

in terms of a sum of products involving only λ and

G(D t
1
2+β′

).
Finally, upper bound on the probability of At is obtained

using sub-Gaussian concentration and all the bounds are

plugged into (1). A detailed proof that essentially formalizes

the above steps is presented in Appendix B.

The bound in Proposition 1 applies to the whole range

of influence functions for which dynamics is stable. On the

other hand, the bound in Proposition 2 applies to influence

functions satisfying G(x) & 1
x1−δ . The main reason behind the

improvement from Proposition 2 to Proposition 1 is the change

in the second step of the proof of Theorem 2. In the proof

for the sub-Gaussian case, the initial bound on |Y (t)| in the

second step of the proof of Theorem 1, though probabilistic,

is a significantly tighter bound, which results in a much better

final bound.

V. SBC DYNAMICS ON A BISTAR SOCIAL GRAPH

G

G̃

1 2

Fig. 1: An illustration of multi-agent systems on a bistar graph

In this section, we utilize the insights obtained from two-

agent dynamics and characterize opinion differences in multi-

agent systems. Consider the bistar social graph in Fig. 1,

in which two agents, 1 and 2, share an edge. There are

two disjoint sets of agents F1 and F2, which share edges

with agent 1 and 2, respectively, but share no edges among

themselves. For any f ∈ F1∪F2, Gf1 = Gf2 = 0, i.e., agents

1 and 2 are not influenced by agents F1∪F2. However, agents

1 and 2 are influenced by each other and their interactions

follow the two-agent dynamics with influence function G, as

discussed before.

Agents 1 and 2 influence agents F1 and F2, respectively

with an influence function G̃(·). However, G1f = 0 for all

f ∈ F2 and G2f = 0 for all f ∈ F1.

If the opinion of f ∈ F1 at time t is Xf (t), then it updates

as X1(t) + nf (t) with probability G̃(|Yf1(t)|) and Xf (t) +
nf (t) with probability 1 − G̃(|Yf1(t)|). Here, nf (t) captures

noisy opinion updates at t. Yf1(t) = Xf (t)−X1(t) represents

the opinion difference between agent 1 and its follower f . A

similar dynamics happen for agents in F2 under the influence

of agent 2.

The above dynamics represents a model of leader-follower

societies with two leaders or parties of a bipartisan democratic

polity. This SBC dynamics is stable for G(x) & 1
xα for α < 2

and G̃(x) & 1
xα′ for α′ < 2 [15, Theorem III.6]. The main

result of this section is a concentration bound on the opinion

difference between a leader and their follower in such stable

dynamics at a finite time. We assume that the initial opinion

difference between the agents is zero.

Although the dynamics is related to the two agents, its be-

havior is quite different from that of the two-agent dynamics.

This can be observed by following the dynamics of Yf1(t) for

f ∈ F1. In two-agent dynamics, Yf1(t) evolves due to noise

or |Yf1| jumps closer to 0 if f is influenced by 1. However,

as agent 2 can influence agent 1 and pull it closer to itself,

|Yf1| can experience jump increments. As a result, analyzing

this dynamics is much more challenging than the two-agent

dynamics. Here, by extending the proof techniques for two-

agent dynamics, we obtain bounds on opinion differences for

a subset of G and G̃ and bounded noise. Define G0 := G(0)
and G̃0 := G̃(0).

Proposition 3. Consider multi-agent stable dynamics with

bounded noise as described above. Assume G(x) = G0

1+x1−δ

for some δ > 0 and 0 < G0 ≤ 1, and G̃(x) &
(

1
x

)
2
3−δ̃



for some δ̃ > 0. Define k̃ = c t
1
2−β̃ for c, β̃ > 0. Then,

for t >
(

2
θς

)
1
ς

and positive (independent of t) constants θ,

c1 ≤ 2max{ 4−2G0

1−G0
, 4−2G̃0

1−G̃0
} and c2 > 0,

P0(|Yf1(t)| ≥ k̃) ≤ c1 exp (−c2t
ς)

where ς = min{ǫξ, β − β̃}, 0 < ξ < 1− 2β and ǫ ≤ δ
2 − β.

Note that the SBC dynamics is known to be stable for

G(x) & 1
xα for α < 2 and G̃(x) & 1

xα′ for α′ < 2. In that

sense, the above bound applies to a subset of stable dynamics,

with very strong influence functions [14], [16]. Based on

numerical evidence, we conjecture that a qualitative similar

concentration bound holds for all stable influence functions

G(·) and G̃(·). However, the proof (in Appendix E), while

already challenging, does not extend directly to cover all stable

dynamics between the leaders and followers.

Proposition 3 is a direct consequence of the following bound

on |Yf1(t)| at any t. Define l(t) = tξ for 0 < ξ < 1, d̄τ =
D τ

1
2−β for some β > 0, and d̃t = 2D t

3
2 .

Theorem 3. Assume G(x) = G0

1+x1−δ for some δ > 0 and 0 <

G0 ≤ 1. With G̃(x) &
(

1
x

)
2
3−δ̃

for some δ̃ > 0, λ = 2 ln 2
d̄t

,

and positive (independent of t) constants θ, c1 ≤ 4−2G0

1−G0
,

P0(|Yf1(t)| ≥ k̃) ≤ c1t
2 exp (−θl(t)ǫ)

+ 2
( t− l(t)

1− G̃(d̃t)
+ exp

(5

8
λ2D2l(t)

))

exp (−λk̃)

for all t such that
√

t1−2β−2ǫG(Dt) ≥ θ√
2

where ǫ ≤ δ
2 − β.

Note that the concentration results in Theorem 3 and Propo-

sition 3 assume a stronger influence between a leader and

its followers than between the two leaders. This assumption,

while stronger than needed for stability, seems reasonable in

reality: i.e., a leader influences its followers more than it

influences a rival. In our analysis, a more substantial influence

by a leader on its follower aids the concentration of their

opinion difference despite the perturbations caused by a rival.

The proof technique of Theorem 3 exploits the high proba-

bility bound on the opinion difference between agents 1 and 2
(obtained in Theorem 2) to upper-bound Y (τ) in the second

step. We define an event Bt =
t
⋂

τ=l(t)

{|Y (τ)| ≤ d̄τ} where

l(t) = tξ for some ξ > 0. Then, we adapt a modification of

the Chernoff bound to get the required bound.

P0(Yf1(t) ≥ k̃|Bt−1) ≤ E0[e
λYf1(t)|Bt−1] exp (−λk̃)

P0(Yf1(t) ≥ k̃) ≤ P0(Yf1(t) ≥ k̃|Bt−1) + P0(B
C
t−1).

Details are available in Appendix E. By a similar interpretation

of notations, Proposition 3 also characterizes Yg2(t), the

opinion difference between agent 2 and its follower g ∈ F2.

Indeed, by using triangle inequality, union bound, and the

high probability bounds on Y (t), Yf1(t) and Yg2(t), we derive

similar concentration bounds on the cross opinion differences,

i.e., opinion differences between follower f ∈ F1 and agent

2, g ∈ F2 and agent 1, and followers f ∈ F1 and g ∈ F2.

In particular, the following proposition captures the opinion

dynamics between two opposing groups of people in a society.

Proposition 4. Consider multi-agent stable dynamics with

bounded noise as described above. Assume G(x) = G0

1+x1−δ

for some δ > 0 and 0 < G0 ≤ 1, and G̃(x) &
(

1
x

)
2
3−δ̃

for some δ̃ > 0. Define k̃ = c t
1
2−β̃ for c, β̃ > 0. Then,

for t >
(

2
θς

)
1
ς

and positive (independent of t) constants θ,

c1 ≤ 5max{ 4−2G0

1−G0
, 4−2G̃0

1−G̃0
} and c2 > 0,

P0(|Yfg(t)| ≥ k̃) ≤ c1 exp (−c2t
ς)

where ς = min{ǫξ, β − β̃}, 0 < ξ < 1− 2β and ǫ ≤ δ
2 − β.

We infer from Propositions 3 and 4 that, in stable dynamics,

the opinion difference between a follower and its leader has a

stronger concentration than that between the followers of rival

groups. Indeed, this is the case in reality.

An essential consideration in the proof techniques is the

zero initial opinion difference between a pair of agents. This

consideration plays a significant role in establishing symmetric

constraints on the opinion difference process while provid-

ing analytical guarantees. In general, concentration occurs

in stable dynamics (discussed in Sections III and V) even

with non-zero initial opinion differences. However, the rate

of concentration will be slower.

VI. SIMULATIONS

This section presents numerical results to further elucidate

the concentration of opinion differences in stable dynamics.

We assume that noise in opinion differences follows uniform

distribution in [−D,D] for D = 20.

A. Opinion dynamics of two agents

We consider a two-agent stable SBC dynamics with G(x) =
1

1+x1−δ for some δ > 0. We infer from the opinion difference

model in Section III that G = 0 represents a symmetric

random walk. In that case, for noise with a finite second

moment, D2

3 , the expected drift in opinion difference after

t units of time is D√
3

√
t [18, Chap. 2]. Therefore, with G > 0,

it is suggested that the expected drift is c t
1
2−β for c, β > 0.

Fig. 2a illustrates the evolution of opinion difference be-

tween the two agents with respect to δ for δ = 0.2, 0.5, 0.8
and β = δ

4 . δ characterizes the strength of influence among

the agents, i.e., the larger the δ, the more likely the agents

influence each other despite large opinion differences. In other

words, as δ increases, their opinion difference likely stays

within the envelope of the form t
1
2−β .

With δ = 0.5, we depict a concentration bound for Y (t)
(seen in Proposition 2) in Fig. 2b for c1 = 1 and c2 = 0.5.

B. Opinion dynamics on bistar graphs

For the multi-agent dynamics discussed in Section V, we

consider that G(x) = 1
1+x1−δ for δ = 0.5 and G̃(x) = 1

1+x
2
3
−δ̃

for δ̃ = 0.55. We choose β = δ
4 and β̃ = δ̃

10 . In Fig. 3a, we

illustrate how the opinion difference between a leader and their

follower evolves when there is a perturbation in the leader’s
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(a) Evolution of opinion difference with G(x) & 1

x
1−δ for

δ = 0.2, 0.5 and 0.8.
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(b) Concentration bounds for two-agent dynamics with
G(x) & 1

x
1−δ for δ = 0.5.

Fig. 2: Illustration of the behaviour of two-agent stable SBC

dynamics in finite time.

opinion due to a rival leader. In the same figure, we depict

our concentration bound in Proposition 3 for constants c1 = 1
and c2 = 0.8. Likewise, Fig. 3b illustrates the concentration

of opinion difference between followers f ∈ F1 and g ∈ F2.

These numerical results suggest that the actual concentration

of opinion differences in stable dynamics is much stronger.

Furthermore, the analytical bounds hold for all t for suitable

choices of c1 and c2 (Fig. 2b and Fig. 3).

VII. CONCLUDING REMARKS

In this work, we characterized the finite-time behavior of

stable stochastic bounded confidence opinion dynamics on

a bistar graph. Specifically, we obtained a high probability

bound on the opinion difference between a pair of agents

at a finite time. Our proof technique is based on bounding

the conditional moment generating function of the opinion

difference on a high probability subset of the sample space and

adapting the Chernoff bound accordingly. The main motive of

this work is to characterize opinion differences in tractable

stable systems and extend our analysis to more complicated

network structures in the future. Indeed, numerical results

suggest scope for tightening the theoretical bounds.
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(a) Opinion difference between a follower and its leader.
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(b) Opinion difference between followers of rival groups.

Fig. 3: An illustration of concentration bounds in stable

multi-agent SBC dynamics.
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APPENDIX A

PROOF OF THEOREM 2

Assume that ñ(t) is bounded in [−D,D]. Let Mñ(λ) denote

its moment generating function at λ. By using Chernoff bound,

for λ > 0,

P0(|Y (t)| ≥ k) = 2P0(Y (t) ≥ k) ≤ 2E0[e
λY (t)] exp (−λk).

(2)

We now focus on the expectation term in (2). By the law of

iterated expectations,

E0[e
λY (t+1)] = E0[E[e

λY (t+1)|Y (t)]]

= E0[e
λ(Y (t)+ñ(t))(1−G(|Y (t)|))

+ eλñ(t)G(|Y (t)|)].
For any t > 0, ñ(t) and Y (t) are independent. Therefore,

E0[e
λY (t+1)] = E[eλñ(t)]E0[e

λY (t)(1−G(|Y (t)|)) +G(|Y (t)|)]
≤ Mñ(λ)

(

E0[e
λY (t)(1−G(|Y (t)|))] + 1

)

.



As G(·) is decreasing in its argument, in time window [0, t],
G(|Y (t)|) ≥ G(Dt) for any t. We have

E0[e
λY (t+1)] ≤ Mñ(λ)

(

E0[e
λY (t)](1−G(Dt)) + 1

)

.

This recursive inequality can be expanded to obtain

E0[e
λY (t)] ≤ Mñ(λ)

+
t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(D(t− 1− j))

+
t−1
∏

i=0

Mñ(λ)(1 −G(Di)). (3)

We exploit the observation that G(·) is decreasing and simplify

the RHS of (3) term by term. Focusing on the second term,

t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1 −G(D(t− 1− j))

≤
t−2
∑

i=0

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(Dt))

=

t−2
∑

i=0

Mñ(λ)
t−i(1−G(Dt))t−i−1

= Mñ(λ)

t−1
∑

i=1

[

Mñ(λ)(1 −G(Dt))
]i

.

Now, the third term:

t−1
∏

i=0

Mñ(λ)(1 −G(Di)) ≤ Mñ(λ)
t

t−1
∏

i=0

(1−G(Dt))

=
[

Mñ(λ)(1 −G(Dt))
]t

.

Putting all these terms together in (3), we get

E0[e
λY (t)] ≤ Mñ(λ)

t−1
∑

i=0

[

Mñ(λ)(1 −G(Dt))
]i

+
[

Mñ(λ)(1 −G(Dt))
]t

. (4)

By Hoeffding’s Lemma [18, Sec. 2.3],

Mñ(λ) ≤ exp
(λ2D2

2

)

.

We know that exp (x) ≤ 1
1−x

for all x ≥ 0. This means that

exp
(

λ2D2

2

)

≤ 1

1−λ2D2

2

. Define γ̄(λ) = 1

1−λ2D2

2

. Now, (4)

becomes

E0[e
λY (t)] ≤ γ̄(λ)

t−1
∑

i=0

[

γ̄(λ)(1 −G(Dt))
]i

+
[

γ̄(λ)(1 −G(Dt))
]t

.

Therefore,

P0(|Y (t)| ≥ k) ≤ 2
(

γ̄(λ)

t−1
∑

i=0

[

γ̄(λ)(1 −G(Dt))
]i

+
[

γ̄(λ)(1 −G(Dt))
]t)

exp (−λk). (5)

Based on the stability criterion, we consider that G(x) & 1
x1−δ

for some δ > 0. We observe from (5) that, as λ increases, the

exponential term decreases, whereas γ̄(λ) increases. One way

to choose an optimal λ for a better bound is such that γ̄(λ)(1−
G(Dt)) ≤ 1. This implies that λ2D2

2 ≤ G(Dt) yielding λ ≤√
2G(Dt)

D
. We assume λ =

√
2G(Dt)

D
. With this choice of λ,

(5) can be rewritten as

P0(|Y (t)| ≥ k) ≤ 2
( t

1−G(Dt)
+ 1

)

exp
(

−
√

2G(Dt)

D
k
)

.

(6)

Note that (6) holds for all t ≥ 0. Clearly, the bound in (6)

depends on the functional form of G(·). In particular, (6) can

be written in a compact form as follows for all t > 0 such

that

√
2G(Dt)

D
k ≥ θtǫ. For ǫ ≤ δ

2 − β and positive constants

c1 ≤ 4−2G0

1−G0
and θ,

P0(|Y (t)| ≥ k) ≤ c1t exp (−θtǫ). (7)

Further, for t >
(

1
θ ǫ

)
1
ǫ

and c2 > 0, (7) can be refined into

P0(|Y (t)| ≥ k) ≤ c1 exp (−c2t
ǫ). (8)

Recall that k = c t
1
2−β for c, β > 0. With G(x) & 1

x1−δ for

some δ > 0 and ǫ ≤ δ
2 −β, we observe that (8) decreases with

t. This, in turn, is not only in accordance with the stability

results in the literature but also proves our intuition for k.

Clearly, this technique cannot be directly extended to the case

where G(x) & 1
x2−δ as it will be evident from the available

choices of ǫ.

APPENDIX B

PROOF OF THEOREM 1

We use the following Lemmas 1 and 2 to prove Theorem 1.

Proof of the lemmas are detailed in Appendix C and D

respectively.

Recall the event At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ dτ} where h(t) =

tζ , 0 < ζ < 1, and dτ = D τ
1
2+β′

for some β′ > 0.

Lemma 1. With G(x) & 1
x2−δ for some δ > 0,

P0(|Y (t)| ≥ k|At−1)

≤ 2
[ t− h(t)

1−G(dt)
+ exp

(

G(dt)h(t)
)]

exp
(

−
√

2G(dt)

σ
k
)

.

Lemma 2. Recall that dτ = D τ
1
2+β′

for some β′ > 0 and

D > 0. Then, for c′ > 0,

P0(A
C
t−1) ≤ 2(t− h(t)) exp (−c′h(t)2β

′

).

By law of total probability,

P0(|Y (t)| ≥ k) = P0(|Y (t)| ≥ k|At−1)P0(At−1)+

P0(|Y (t)| ≥ k|AC
t−1)P0(A

C
t−1)

≤ P0(|Y (t)| ≥ k|At−1) + P0(A
C
t−1).



From Lemma 1 and Lemma 2,

P0(|Y (t)| ≥ k) ≤ 2(t− h(t)) exp (−c′h(t)2β
′

) + 2
[ t− h(t)

1−G(dt)

+ exp
(

G(dt)h(t)
)]

exp
(

−
√

2G(dt)

σ
k
)

.

Now, for ζ ≤ 1 − δ
2 and ǫ ≤ δ

6 − 2β
3 , the final bound can be

simplified to yield the result in Proposition 1.

APPENDIX C

PROOF OF LEMMA 1

The following Claims 1 and 2 are useful to prove Lemma 1.

Claim 1. Recall the event At. Then, for λ > 0,

E0[exp (λY (t))|At] ≤ E0[exp (λY (t))|At−1].

Proof of Claim 1. Let the conditional probability of Y (t)
given an arbitrary event A be denoted as fY (t)|A(.). Note that

the constraints {|Y (τ)| ≤ dτ} are symmetric for all τ . With

Y (0) = 0, symmetric noise model and symmetric constraints,

we observe that fY (t)|At
(.) and fY (t)|At−1

(.) are symmetric

about zero. Hence,

E0[exp (λY (t))|At−1] =

∫ ∞

0

exp (λy)fY (t)|At−1
(y)dy

+

∫ ∞

0

exp (−λy)fY (t)|At−1
(y)dy

= 2

∫ ∞

0

cosh (λy)fY (t)|At−1
(y)dy.

(9)

Similarly,

E0[exp (λY (t))|At] = 2

∫ ∞

0

cosh (λy)fY (t)|At
(y)dy. (10)

Note that cosh (λy) increases with |y| for any λ > 0 and

fY (t)|At
(.) is a restriction of fY (t)|At−1

(.) on smaller |Y (t)|.
Therefore, from (9) and (10), we have the result.

Claim 2. Let {Y ′(t), t ≥ 0} be the process of opinion

difference for a two-agent system with G = 0. That is,

Y ′(t+ 1) = Y ′(t) + ñ(t).

Then, for any t ≥ 0,

E0[exp (λY (t))] ≤ E0[exp (λY
′(t))] ≤ exp

(λ2σ2t

2

)

.

The proof of Claim 2 uses the notion of stochastic ordering

and so, we overview it below. For a random variable X , let FX

and F̄X represent its distribution function and tail distribution

respectively, i.e. for any x ∈ R,

FX(x) = P(X ≤ x),

F̄X(x) = P(X > x).

Definition 2 (Stochastic Ordering [19, Sec. 1.2]). Given two

random variables X and Y taking values in R, we denote

X ≤st Y if

FX(l) ≥ FY (l) ∀l ∈ R

or equivalently, if

F̄X(l) ≤ F̄Y (l) ∀l ∈ R.

Also, if X ≤st Y , then E[f(X)] ≤ E[f(Y )] for all non-

decreasing functions f for which the expectations exist.

Proof of Claim 2. Clearly, Y (t) ≤st Y ′(t). As exponential

function is non-decreasing for λ > 0, by Definition 2,

E0[exp (λY (t))] ≤ E0[exp (λY
′(t))]. Since Y (0) = 0,

Y ′(t) =
∑t−1

τ=0 ñ(τ). We also assumed that ñ(t) ∈ SG(σ2)
for all t. Therefore, Y ′(t) ∈ SG(σ2t). That is,

E0[expλY
′(t)] = E0[exp

(

λ

t−1
∑

τ=0

ñ(τ)
)

] ≤ exp
(λ2σ2t

2

)

.

Along with these claims, we use the proof technique of

Theorem 2 to bound the conditional probability P0(|Y (t)| ≥
k|At−1). By the law of iterated expectations,

E0[e
λY (t+1)] = E0[E[e

λY (t+1)|Y (t)]]

= Mñ(λ)E0[e
λY (t)(1−G(|Y (t)|)) +G(|Y (t)|)].

(11)

Now, from (11),

E0[e
λY (t+1)|At] = Mñ(λ)E0[e

λY (t)(1−G(|Y (t)|))
+G(|Y (t)|)|At]

≤ Mñ(λ)E0[e
λY (t)(1−G(|Y (t)|)) + 1|At]

(a)

≤ Mñ(λ)(E0[e
λY (t)|At](1−G(dt)) + 1)

(b)

≤ Mñ(λ)(E0[e
λY (t)|At−1](1 −G(dt)) + 1),

where inequality (a) holds as G(·) is decreasing in its argument

and inequality (b) follows Claim 1. So, we have a recursive

inequality:

E0[e
λY (t+1)|At] ≤ Mñ(λ)(1 + E0[e

λY (t)|At−1](1−G(dt))),

which upon expansion gives an upper bound for

E0[e
λY (t)|At−1] as follows.

E0[e
λY (t)|At−1] ≤ Mñ(λ)

+
t−2
∑

i=h(t)

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(dt−1−j))

+ E0[exp (λY (h(t)))|Ah(t)]

t−1
∏

i=h(t)

Mñ(λ)(1 −G(di)).

Thus, from Claim 2, we have

E0[e
λY (t)|At−1] ≤ Mñ(λ)

+

t−2
∑

i=h(t)

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(dt−1−j))

+ E0[exp (λY
′(h(t)))]

t−1
∏

i=h(t)

Mñ(λ)(1 −G(di)).

(12)



Simplifying the second term in (12),

t−2
∑

i=h(t)

Mñ(λ)
t−i

t−2−i
∏

j=0

(1−G(dt−1−j))

≤
t−2
∑

i=h(t)

Mñ(λ)
t−i

t−2−i
∏

j=0

(1 −G(dt))

=

t−2
∑

i=h(t)

Mñ(λ)
t−i(1−G(dt))

t−i−1

= Mñ(λ)

t−2
∑

i=h(t)

[

Mñ(λ)(1 −G(dt))
]t−i−1

= Mñ(λ)

t−1−h(t)
∑

i=1

[

Mñ(λ)(1 −G(dt))
]i

.

Simplifying the product in the third term of (12),

t−1
∏

i=h(t)

Mñ(λ)(1 −G(di)) ≤
t−1
∏

i=h(t)

Mñ(λ)(1 −G(dt))

=
[

Mñ(λ)(1 −G(dt))
]t−h(t)

.

Using Claim 2, the third term in (12) is now upper-bounded

by exp
(

λ2σ2h(t)
2

)[

Mñ(λ)(1−G(dt))
]t−h(t)

. Putting all these

simplified terms together in (12), we get

E0[e
λY (t)|At−1] ≤ Mñ(λ)

t−1−h(t)
∑

i=0

[

Mñ(λ)(1 −G(dt))
]i

+ exp
(λ2σ2h(t)

2

)[

Mñ(λ)(1 −G(dt))
]t−h(t)

.

(13)

Since ñ(t) ∈ SG(σ2), Mñ(λ) ≤ exp
(

λ2σ2

2

)

. We know that

exp (x) ≤ 1
1−x

for all x ≥ 0. This means that exp
(

λ2σ2

2

)

≤
1

1−λ2σ2

2

. Define γ̄(λ) = 1

1−λ2σ2

2

. Now, (13) gives

E0[e
λY (t)|At−1] ≤ γ̄(λ)

t−1−h(t)
∑

i=0

[

γ̄(λ)(1 −G(dt))
]i

+ exp
(λ2σ2h(t)

2

)[

γ̄(λ)(1 −G(dt))
]t−h(t)

. (14)

Note that Y (t) is symmetric about zero given At−1. By using

Chernoff bound,

P0(|Y (t)| ≥ k|At−1) = 2P0(Y (t) ≥ k|At−1)

≤ 2E0[e
λY (t)|At−1] exp (−λk).

Therefore,

P0(|Y (t)| ≥ k|At−1) ≤ 2
(

γ̄(λ)

t−1−h(t)
∑

i=0

[

γ̄(λ)(1 −G(dt))
]i

+exp
(λ2σ2h(t)

2

)[

γ̄(λ)(1 −G(dt))
]t−h(t))

exp (−λk).

(15)

We choose an optimal λ for a better bound in (15) by setting

γ̄(λ)(1−G(dt)) ≤ 1. This implies that λ2σ2

2 ≤ G(dt) yielding

λ ≤
√

2G(dt)

σ
. We assume λ =

√
2G(dt)

σ
. With this choice of

λ, the RHS of (15) is upper-bounded by

2
[ t− h(t)

1−G(dt)
+ exp

(

G(dt)h(t)
)]

exp
(

−
√

2G(dt)

σ
k
)

.

APPENDIX D

PROOF OF LEMMA 2

We have At =
t
⋂

τ=h(t)

{|Y (τ)| ≤ dτ} where h(t) = tζ , 0 <

ζ < 1. Also, dτ = D τ
1
2+β′

for some β′ > 0 and D > 0.

P0(A
C
t−1) = P0

[(

t−1
⋂

τ=h(t)

{|Y (τ)| ≤ dτ}
)C]

(a)

= P0

[

t−1
⋃

τ=h(t)

{|Y (τ)| > dτ}
]

(b)

≤
t−1
∑

τ=h(t)

P0(|Y (τ)| > dτ )

(c)

≤
t−1
∑

τ=h(t)

P0(|Y ′(τ)| > D τ
1
2+β′

)

(d)

≤
t−1
∑

τ=h(t)

2 exp (−c′τ2β
′

) for some c′ > 0

≤
t−1
∑

τ=h(t)

2 exp (−c′h(t)2β
′

).

Therefore, we have P0(A
C
t−1) ≤ 2(t−h(t)) exp (−c′h(t)2β

′

).
(a) and (b) follow De Morgan’s law and Boole’s inequality

(union bound) respectively. Recalling the characteristics of

{Y ′(t), t ≥ 0} as discussed in the proof of Claim 2, we

have |Y (t)| ≤st |Y ′(t)| and Y ′(t) ∈ SG(σ2t). Hence, the

inequalities (c) and (d).

APPENDIX E

PROOF OF THEOREM 3

Recall the opinion update models of agent 1 and its follower

f . Hence, we obtain that Yf1(t+ 1) =



















ñf1(t) w.p. (1−G(|Y (t)|))G̃(|Yf1(t)|)
Yf1(t) + ñf1(t) w.p. (1−G(|Y (t)|))(1 − G̃(|Yf1(t)|))
Y (t)
2 + ñf1(t) w.p. G(|Y (t)|)G̃(|Yf1(t)|)

Y (t)
2 + Yf1(t) + ñf1(t) w.p. G(|Y (t)|)(1 − G̃(|Yf1(t)|))

(16)

where ñ(t) = n1(t) − n2(t), ñf1(t) = nf (t) − n1(t) ∈
[−D,D] and t ≥ 0. Define an event Bt =

t
⋂

τ=l(t)

{|Y (τ)| ≤

d̄τ} where l(t) = tξ for 0 < ξ < 1 and d̄τ = D τ
1
2−β for

some β > 0. Using Bt, we introduce a high probability bound

on Y (t) and adapt it in a similar proof technique used to prove



Theorem 2. Define k̃ = c t
1
2−β̃ for c, β̃ > 0. By law of total

probability,

P0(|Yf1(t)| ≥ k̃) ≤ P0(|Yf1(t)| ≥ k̃|Bt−1)P0(Bt−1)

+ P0(|Yf1(t)| ≥ k̃|BC
t−1)P0(B

C
t−1)

≤ P0(|Yf1(t)| ≥ k̃|Bt−1) + P0(B
C
t−1)

(17)

The following lemmas are crucial to the proof of Theorem 3.

Detailed proof of Lemmas 3 and 4 can be found in Appendix F

and G respectively.

Lemma 3. Assume G(x) = G0

1+xα for some α > 0 and 0 <

G0 ≤ 1. With G̃(x) &
(

1
x

)
2
3−δ̃

for some δ̃ > 0,

P0(|Yf1(t)| ≥ k̃|Bt−1)

≤ 2
( t− l(t)

1− G̃(d̃t)
+ exp

(5

8
λ2D2l(t)

))

exp (−λk̃)

where λ = 2 ln 2
d̄t

.

Lemma 4. Recall the event Bt. With G(x) & 1
x1−δ for some

δ > 0 and c1 ≤ 4−2G0

1−G0
,

P0(B
C
t−1) ≤ c1t

2 exp (−θl(t)ǫ)

for all t such that

√
2G(Dt)

D
d̄t ≥ θtǫ where ǫ ≤ δ

2 − β.

Using the results from Lemmas 3 and 4 into equation (17),

the result in Theorem 3 follows.

APPENDIX F

PROOF OF LEMMA 3

Let Mñ(λ) be the moment generating function of ñf1(t).

Recall that Bt =
t
⋂

τ=l(t)

{|Y (τ)| ≤ d̄τ} where l(t) = tξ for

0 < ξ < 1, and d̄τ = D τ
1
2−β for some β > 0 and D > 0. We

want to obtain an upper bound for the conditional probability

P0(|Yf1(t)| ≥ k̃|Bt−1). By using Chernoff bound, for λ > 0,

P0(|Yf1(t)| ≥ k̃|Bt−1) ≤ 2E0[e
λYf1(t)|Bt−1] exp (−λk̃)

(18)

We now focus on obtaining an upper bound for

E0[e
λYf1(t+1)|Bt] that will lead us to an upper bound

for E0[e
λYf1(t)|Bt−1] in (18).

E0[e
λYf1(t+1)|Bt]

= Mñ(λ)E0[(1−G(|Y (t)|))G̃(|Yf1(t)|)
+ eλYf1(t)(1−G(|Y (t)|))(1 − G̃(|Yf1(t)|))
+ eλ

Y (t)
2 G(|Y (t)|)G̃(|Yf1(t)|)

+ eλ
Y (t)

2 eλYf1(t)G(|Y (t)|)(1 − G̃(|Yf1(t)|))|Bt]

≤ Mñ(λ)E0[(1−G(|Y (t)|))
+ eλYf1(t)(1−G(|Y (t)|))(1 − G̃(|Yf1(t)|))
+ eλ

Y (t)
2 G(|Y (t)|)

+ eλ
Y (t)

2 eλYf1(t)G(|Y (t)|)(1 − G̃(|Yf1(t)|))|Bt]

≤ Mñ(λ)E0

[(

eλYf1(t)(1 − G̃(|Yf1(t)|)) + 1
)

(

1−G(|Y (t)|) + eλ
Y (t)

2 G(|Y (t)|)
)

|Bt

]

(19)

In order to upper-bound (19), we use the following Claims 3

and 4.

Claim 3. Given Bt, Yf1(t) ≤ 2D t
3
2 ∀t ≥ 0 for ξ ≤ 3

4 .

Proof of Claim 3. Recall the event Bt =
t
⋂

τ=l(t)

{|Y (τ)| ≤ d̄τ}

where l(t) = tξ for 0 < ξ < 1. Given Bt, Y (τ) ≤ D
√
τ for

τ ≥ l(t) and Y (τ) ≤ Dτ for 0 ≤ τ < l(t). Since Yf1(0) =
Y (0) = 0 and nf1(t) ∈ [−D,D] ∀t ≥ 0, Yf1(t) ≤ Dt +

D
2

( l(t)−1
∑

i=0

i+
t−1
∑

i=l(t)

√
i
)

∀t ≥ 0. That is, the maximum drift of

Yf1(t) (from (16)). By using Cauchy-Schwarz inequality on

the third term, we obtain that Yf1(t) ≤ Dt+ D
2

(

l(t)(l(t)−1)
2 +

(t3−t2)
1
2√

2
−

(

l(t)(l(t)−1)

) 1
2

√
2

)

≤ Dt+ D
2

(

l(t)2

2 + t
3
2√
2

)

≤ 2D t
3
2

for ξ ≤ 3
4 .

Claim 4. Recall our assumption that G(x) = G0

1+xα for some

α > 0 and 0 < G0 ≤ 1. Given Bt, G(|Y (t)|)(eλ Y (t)
2 − 1) is

monotonically increasing in Y (t).

Proof of Claim 4. Given Bt, assume that λ ∝ 1
max

0≤τ≤t
Y (τ) . Fix

λ = 2 ln 2
d̄t

. Define h(x) = (eλ
x
2 − 1)G(x) for 0 ≤ x ≤ d̄t

for all t ≥ 0. Since we want to maximize h(x), we restrict

the domain to non-negative real numbers. Applying the first

derivative on h(x), we obtain that h(.) is monotonically

increasing in the domain for α ≤ 1. This implies that h(x) is

maximized only at the extreme point x = d̄t.

Recall that d̃t = 2D t
3
2 for D > 0. We now have

E0[e
λYf1(t+1)|Bt] ≤ Mñ(λ)E0

[(

eλYf1(t)(1− G̃(d̃t)) + 1
)

(

1−G(d̄t) + eλ
d̄t
2 G(d̄t)

)

|Bt

]

Similar to the discussion in the proof of Claim 1, by virtue

of symmetric constraints and symmetric noise models, the

recursion expression reduces to the following only in terms

of G(·), G̃(·) and Mñ(λ): E0[e
λYf1(t+1)|Bt]

≤ Mñ(λ)xt

(

E0

[

eλYf1(t)|Bt−1

]

(1− G̃(d̃t)) + 1
)

which upon expansion leads us to an upper bound for

E0[e
λYf1(t)|Bt−1] as follows.

E0[e
λYf1(t)|Bt−1] ≤ Mñ(λ)xt−1

+

t−2
∑

i=l(t)

[

t−i−1
∏

n=0

Mñ(λ)xt−n−1

]

t−2−i
∏

j=0

(1− G̃(d̃t−1−j))



+
[

t−1
∏

j=l(t)

Mñ(λ)xj(1− G̃(d̃j))
]

E0[e
λYf1(l(t))|Bl(t)] (20)

where xt = 1−G(d̄t)+ eλ
d̄t
2 G(d̄t). The recursive expression

(20) can further be simplified as follows. Recall the choice

of G(·). For the chosen functional form of G(·), xt is

monotonically non-decreasing in t. Hence, the second term can

be upper-bounded by
t−2
∑

i=l(t)

(Mñ(λ)xt−1)
t−i(1− G̃(d̃t))

t−i−1.

The simplified expression is

E0[e
λYf1(t)|Bt−1] ≤ Mñ(λ)xt−1

+Mñ(λ)xt−1

t−2
∑

i=l(t)

(

Mñ(λ)xt−1(1− G̃(d̃t))
)t−i−1

+
(

Mñ(λ)xt−1(1− G̃(d̃t))
)t−l(t)

E0[e
λYf1(l(t))|Bl(t)].

We now use the following claim to upper-bound

E0[e
λYf1(l(t))|Bl(t)] in the third term. The proof technique of

Claim 5 follows a similar argument used to prove Claim 2.

Claim 5. Recall the opinion difference process {Yf1(t)}t≥0

and l(t) = tξ for 0 < ξ < 1. Then,

E0[e
λYf1(l(t))|Bl(t)] ≤ exp

(5λ2D2l(t)

8

)

.

Proof of Claim 5. We use the notion of stochastic ordering to

prove Claim 5. Recall Definition 2. Let {Y ′′(t)}t≥0 denote

the process of opinion difference between the leaders when

G = 1. Correspondingly, let {Y ′
f1(t)}t≥0 denote the process

of opinion difference between agent 1 and its follower f with

G̃ = 0. That is, at time t for G̃ = 0 and G = 1,

Y ′′(t+ 1) = ñ(t) and Y ′
f1(t+ 1) = Y ′

f1(t) +
Y ′′(t)

2
+ ñf1(t).

(21)

It is clear from (21) that Yf1(t) ≤st Y ′
f1(t) for all t. As

exponential function is non-decreasing in its argument for

λ > 0, we have

E0[exp (λYf1(t))] ≤ E0[exp (λY
′
f1(t))] ∀t

from Definition 2. Hence,

E0[exp (λYf1(l(t)))|Bl(t)] ≤ E0[exp (λY
′
f1(l(t)))|Bl(t)].

Since Yf1(0) = Y (0) = 0, Y ′
f1(l(t)) = ñf1(l(t) − 1) +

l(t)−2
∑

j=0

ñf1(j)+
ñ(j)
2 . We recall that {ñ(t)}t≥0 and {ñf1(t)}t≥0

are i.i.d. Therefore, we have E0[exp (λY
′
f1(l(t)))|Bl(t)]

≤ E0

[

exp
(

λ
(

l(t)−1
∑

j=0

ñf1(j) +
ñ(j)

2

))]

≤
l(t)−1
∏

j=0

E0

[

exp
(

λ
(

ñf1(j) +
ñ(j)

2

))]

≤ exp
(5λ2D2l(t)

8

)

following the properties of independent sub-Gaussian random

variables.

By Hoeffding’s Lemma [18, Sec. 2.3],

Mñ(λ) ≤ exp
(λ2D2

2

)

≤ 1

1− λ2D2

2

.

Let γ̄(λ) = 1

1−λ2D2

2

. Now, along with Claim 5, we have

E0[e
λYf1(t)|Bt−1] ≤ γ̄(λ)xt

t−1−l(t)
∑

i=0

(

γ̄(λ)xt(1− G̃(d̃t))
)i

+
(

γ̄(λ)xt(1 − G̃(d̃t))
)t−l(t)

exp
(5λ2D2l(t)

8

)

. (22)

By choosing λ = 2 ln 2
d̄t

, we obtain that xt = 1 + G(d̄t).
From (18) and (22), we observe that as λ increases, the

RHS of (22) increases. However, exp(−λk̃) in (18) decreases

with λ. One way to obtain a useful bound is such that

γ̄(λ)(1 + G(d̄t))(1 − G̃(d̃t)) ≤ 1. This yields that G(d̄t) ≤
G̃(d̃t) for all t and λ ≤

√
2G̃(d̃t)
D

. From this condition on G(·),
we choose λ = min

t

(

2 ln 2
d̄t

,
√
2G̃(d̃t)
D

)

= 2 ln 2
d̄t

for α ≤ 1. With

the above considerations, we obtain that

E0[e
λYf1(t)|Bt−1] ≤

t− l(t)

1− G̃(d̃t)
+ exp

(5

8
λ2D2l(t)

)

.

The final concentration bound follows the result in Lemma 3.

APPENDIX G

PROOF OF LEMMA 4

The proof technique here uses union bound and De Mor-

gan’s law, and follows similar arguments used while proving

Lemma 2. Recall the event Bt =
t
⋂

τ=l(t)

{|Y (τ)| ≤ d̄τ} where

l(t) = tξ for 0 < ξ < 1 and d̄τ = D τ
1
2−β for some β > 0.

We have

P0(B
C
t−1) = P0

([

t−1
⋂

τ=l(t)

{|Y (τ)| ≤ d̄τ}
]C)

(a)

= P0

(

t−1
⋃

τ=l(t)

{|Y (τ)| > d̄τ}
)

(b)

≤
t−1
∑

τ=l(t)

P0(|Y (τ)| > d̄τ )

(c)

≤
t−1
∑

τ=l(t)

c1τ exp (−θτ ǫ)

≤
t−1
∑

τ=l(t)

c1τ exp (−θl(t)ǫ)

≤ c1t
2 exp (−θl(t)ǫ).

This implies P0(B
C
t−1) ≤ c1t

2 exp (−θl(t)ǫ). (a) and (b)

follow De Morgan’s law and union bound respectively. In-

equality (c) follows Proposition 2 for G(x) & 1
x1−δ for some

δ > 0.
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