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Bi-Virus SIS Epidemics over Networks:
Qualitative Analysis
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Abstract—The paper studies the qualitative behavior of
a set of Ordinary Differential Equations that models the
dynamics of bi-virus epidemics over bilayer networks. Each
layer is a weighted digraph associated with a strain of virus;
the weights ~; represent the rates of infection from node :
to node j of strain z. We establish a sufficient condition on
the ~’s that guarantees survival of the fittest—-only one strain
survives. We propose an ordering of the weighted digraphs,
the x-order, and show that if the weighted digraph of
strain y is x-dominated by the weighted digraph of strain z,
then y dies out in the long run. We prove that the orbits
of the ODE accumulate to an attractor. Due to the coupled
nonlinear high-dimension nature of the ODEs, there is no
natural Lyapunov function to study their global qualitative
behavior. We prove our results by combining two important
properties of these ODEs: (i) monotonicity under a partial
ordering on the set of graphs; and (ii) dimension-reduction
under symmetry of the graphs. Property (ii) allows us to
fully address the survival of the fittest for regular graphs.
Then, by bounding the epidemics dynamics for generic
networks by the dynamics on regular networks, we prove
the result for general networks.
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I. INTRODUCTION AND BRIEF REVIEW OF THE
LITERATURE

Historical remarks. The dynamics of physical sys-
tems are often modeled by ordinary differential or
difference equations (ODEs). Mathematical models for
epidemics have a long history starting possibly with the
work of Daniel Bernoulli in the mid-eighteen century,
[1], defending inoculation against smallpox. In the first
three decades of the twentieth century, among others, the
works of Hamer [2] and Kermack and McKendrick [3]
laid the foundations of mathematical epidemiology. The
population is divided in compartments, e.g., susceptibles,
infectious, exposed, removed, and the epidemics are
modeled by ODEs governing the rates of flow between
these compartments, see [4] for a comprehensive collec-
tion of such models. These models have been established
for many infectious diseases from the historical plagues
affecting millions over the centuries, to outbreaks of
cholera, malaria, influenza, or HIV.

ODE model motivation. Such logistic-like ODE
models can be motivated through mean-field approxi-
mation arguments, e.g., [S], [6]. More formally, in [7],
we proved that the solutions to the Susceptible-Infected-
Susceptible (SIS) bi-virus ODEs (4)-(5) represent the ex-
act weak limit (under an appropriate topology on the set
of sample paths) of a stochastic process representing the
fraction of infected nodes at each partite on a complete-
multipartite network and evolving according to a peer-
to-peer stochastic model of infection (Harris contact pro-
cess). Namely, we proved that, as the number of nodes
at each partite grows to infinite (in a controlled way), the
vector collecting the fraction of infected nodes at each
partite converges weakly to the solution of the ODE. For
the sake of completeness, we remark that multipartite
structures find motivation in real life epidemics. For
example, the dengue disease is spread between humans
and Aedes Aegipty mosquitoes according to a bipartite
structure, refer to [8]. Indeed, a healthy human gets
infected once bitten by an infected mosquito. A healthy
mosquito gets infected once it bites an infected human
being. The disease does not spread among humans nor
does it spread among mosquitoes, i.e., only cross-species
infection is allowed. Therefore, the underlying network
of infections has two partites connected together: one
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comprised of mosquitoes and the other of human beings.
Therefore, such ODEs conform to a natural model to
study the evolution of the fraction of infected nodes
at each partite on a large-scale complete-multipartite
network (from [7]) as in Dengue-like epidemics, or to
study the evolution of the likelihood of infection of nodes
in an arbitrary network as, e.g., in [5], [6] for single-
virus, or [9] for bi-virus.

Equilibria versus qualitative analysis in the lit-
erature. There is a vast body of literature dedicated
to the study of single-virus epidemics over networks.
References [6], [10] provide a comprehensive review
of the epidemics literature. All these references focus
mostly on studying the equilibria of imposed ideal-
ized differential equation models with a few providing
heuristics on the transitory behavior of such dynamical
systems. Reference [5] provides several bounds on the
equilibria of a single virus epidemics. These references
concentrate on studying the equilibria of such ODE
models, i.e., determining the equilibria, or properties
of the equilibria, or the local (often linearized) dynam-
ics about the equilibria. They do not study rigorously
their qualitative behavior, i.e., do not characterize the
attractors and basins of attraction of the dynamical
system. Reference [6] also attempts to briefly study the
qualitative behavior of some epidemics models resorting
to heuristic arguments, e.g., linearizing the ODEs when
the degree of infection is small. We do not evoke such
approximations in this work. We remark that the discrete-
time counter-part of such ODEs present chaotic behavior
and do not, in general, converge to the equilibria (refer
to the logistic map, e.g., in [11]), and thus, results on the
global stability of the system are crucial to understand
the behavior of its solutions from the initial conditions
to the attractors. Reference [12] does provide a rigor-
ous qualitative analysis for the single virus epidemics
dynamics — equation (3) — based on Lyapunov stability
theory. As we explain in Section III, the results in [12]
for the single virus dynamics do not apply to the bi-
virus case, and we need to develop a new methodology.
Reference [13] studies via numerical simulations the
epidemics over big cities resorting to dynamical systems
similar to the one in equation (3), to model the mixing
of different interacting groups of individuals.

Bi-virus motivation and some references. Bi-virus
dynamics is motivated by the virus pandemic vs vacci-
nation problem. In many real life settings, once infected,
an individual cannot be vaccinated; and, if vaccinated,
it is not prone (ideally) to be infected. This partitions
the population in disjoint sets: infected; not infected and
not vaccinated (susceptible); and vaccinated (and thus,
not susceptible). This exclusion principle couples the
dynamics of spreading of the virus with the dynamics of
vaccines: one cannot understand the bi-virus dynamics

of virus-vaccines (ODE (4)-(5)) by studying it separately
(e.g., via the single-virus ODE (3)). While the virus
spreads across the population according to the underlying
network of contacts, [14], [15] suggest that vaccines
obey similar dynamics: the social network of influences
plays a major role on the decision of parents vaccinating
their children. Also, recent research results in malaria
vaccines (e.g., [16]) suggest that infection inhibition via
mosquitoes bites is possible. In other words, the vaccines
would spread across the population via similar dynamics
as the main virus'. In this case, one recovers the bi-
virus epidemics setting in the network where the vaccine
may be cast as another virus strain spreading similarly
to the main virus with mutual inhibition between the
strains. Therefore, the bi-virus dynamics, see (4)-(5)
below, are a natural model to study the evolution of
infected and vaccinated individuals. The analytic study
of this dynamical system can inform the regulatory
policies of vaccination to preventing the persistence of
the epidemics. Similar models for bi-virus competition in
a network are addressed in references [9], [17], [18]. The
common feature among these papers and the majority
of the literature in epidemics is that they perform local
analysis — i.e., determine properties of the equilibria,
or study the dynamical system on small neighborhoods
of the equilibrium points. In contrast, we study our
dynamical system via global stability analysis.

Main contribution of this paper. This paper fo-
cus on the qualitative analysis of the bi-virus coupled
nonlinear ODEs dynamics (4)-(5). We do not focus
on characterizing purely the equilibria (or properties
of the equilibria); we devise tools that guarantee to
where the orbits of the dynamical system accumulate
to. More precisely, we prove that, under some condition
on the rate parameters of the ODE (4)-(5), the orbits
accumulate to an attractor A that we characterize. This
is further interpreted as a natural selection phenomenon
taking course in the long run: the weaker strain dies out
whereas the stronger strain survives with a degree of
infection above a threshold that we determine. Due to
the high-dimension and nonlinearity of the ODEs, the
bi-virus epidemics defies the use of Lyapunov methods.
Our approach explores three properties of the ODE (4)-
(5) to establish the sufficient condition for survival of
the fittest: (i) monotonicity under initial conditions; (ii)
monotonicity under an appropriate partial ordering on the
set of graphs; and (iii) complete qualitative characteriza-
tion of (4)-(5) for regular networks. By combining these
three properties and introducing a new ordering on the
set of weighted digraphs (referred to as x-order), we can
obtain a sufficient condition for survival of the fittest in

ITechnically, malaria is not caused by a virus, but by a protozoan.
For our purposes, the relevant feature lies in the dynamics of spread
and not in the nature of the viral agent.
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general weighted digraphs: if the strain y is x-dominated
by the strain x, then y dies out, i.e., it cannot co-habit the
network along with the strain x in the long run. Our ap-
proach is based on bounding the epidemics dynamics for
generic networks by the epidemics dynamics on regular
networks. More precisely, one can appropriately bound
the dynamics of the strains of virus in general networks
by the dynamics over inner/outer regular networks to
show that the ODE over general networks exhibit natural
selection, as we will make clearer below. We explore
the fact that, if the underlying network is regular with
all infection rates constant across edges, then the global
attractor is an equilibrium point (to be proved). Remark
that the sub (or inner)/supper (or outer) regular graphs
of a graph GG always exist, even if trivially — the isolated
nodes and the complete networks, respectively. Although
there is no closed form for the number of regular sub-
networks on mn nodes, see [19], [20], [21], reference
[22] shows that, in general, for random networks in
the asymptotic limit of large networks there is a high
probability that it contains a regular non-trivial sub-
network.

What this paper is about. This paper is about a
rigorous global qualitative analysis of a set of ODEs that
model the evolution of two strains of virus in a network.
We determine a sufficient condition on the parameters of
these ODEs (a.k.a., virus rates) under which the orbits of
these ODEs converge to a survival of the fittest attractor,
regardless of the initial conditions.

What this paper is not about. In this paper, we do
not study the original stochastic system giving rise (in the
limit of large network) to the ODE (4)-(5) as established
in [7]. In this paper, we do not resort to approximations
about the equilibria — such as linearizing the system
about the equilibria — nor do we pursue a local analysis
about the equilibria.

Summary of the paper. Section II sets-up the main
notation, important inequalities between networks, and
the ODE:s to be studied through out the paper. Section III
illustrates our model analysis in the simpler case of
single-virus epidemics. Section IV establishes the main
result on the survival of the fittest associated with the
bi-virus dynamics (4)-(5) in Theorem 20. We include
some auxiliary Theorems, Theorems 22, 23, and 24, and
the corresponding proofs in Section V. Such Theorems
are crucial to establish the main Theorem, Theorem 20,
but, for the sake of clarity, we omit them in Section IV.
Concluding remarks are in Section VI

Preliminary Notation. Symbols R and R, | repre-
sent the set of nonnegative and positive, respectively, real
numbers; N = {1,2,...} represents the set of natural
numbers. We define 1y € RY (and Oy € RY) as the
vectors with all entries equal to one (respectively, 0) —
the subindex may be omitted whenever the dimension

is clear from the context. Let X,y € RY . we define
X >y as the pointwise inequality, i.e., x; > y; for all
t=1,...,N. We refer to x # 0 as x ¢ Rf+. Define
|V| as the cardinality of the set V. Let z,y € R and
define x Ay as: x Ay =uxa,ifx <yoraxAy =y, if
otherwise. Let z,y € R and define z Vy as: z Vy =z,
if x > yoraxVy =y, if otherwise. We define the
Hadamard pointwise product x ® y as

XOy = (T1Y1,-.-,TNYN) -

Let A ® y be the Kronecker product

Ay= (aijy)ilj .

II. FLOW IN NETWORKS

In this Section, we present the bi-virus ODE model
to be studied along its associated flow, we set the
main notation and introduce basic definitions to be used
throughout. We present useful inequalities on networks,
namely, we propose the x-inequality ‘=<*’ that will be
important in Section IV to draw a sufficient condition
for survival of the fittest: if GY <* G%, where GY, G*
are the weighted digraphs — to be defined — associated
with the strains x, y, then the strain y dies out. We start
by defining some graph constructs.

Definition 1 (Graph). The ordered pair G = (V, E), is
a graph; where V.C N and E C V x V are the finite
set of nodes and edges, respectively.

Unless otherwise stated, V', with cardinality |V| = N,
is defined by default as

V={1,...,N}.

Next, we define a weighted digraph that we associate
with a virus infection: it couples the underlying graph
of potential infections with the rates of infection between
nodes. In order to avoid repeatimg the term “weighted di-
graph” recursively, we denote it simply by “e-network”.

Definition 2 (E-Network). The ordered pair G = (V, )
is an e-network, where V. C N is finite and v : VXV —
R is a nonnegative function;

EV)={G=(V,y) : v: VxV =Ry}

is the set of e-networks with fixed node set V. If the
particulars of V are not relevant, we write E(|V])
instead of E(V).

The N x N matrix/function « is the infection rate of
a virus between any two arbitrary nodes with (i, j),
or 7;;, standing for the rate of infection from node ¢
towards node j. In Fig. 1, we depict an e-network. The
path-flow graph of infection is specified by the support
of ~ that we now define.
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Figure 1: Representation of an e-network G = (V,~),
with V' = {1,2,3,4}. The edges associated with null
rates y are not depicted. That is, y24 = 42 = 0 and
Y13 = 0.

Definition 3 (Support Graph of an E-Network). Let G =
(V,7) be an e-network. We call

supp (G) = (V.7 (Ry4)) (1)

the support graph of the e-network G, where v~! (R, )
is the inverse image of Ry by

v:VxV =Ry

or, in words, the set of edges (i,7) where v(i,j) > 0.

The support graph represents the graph where an edge
from node 7 to node j is placed whenever (7, j) > 0 and
not placed if otherwise (i, 7) = 0. This provides us with
the path-flow of infection of a virus associated with the
e-network G. Thus, an e-network G provides us not only
with the topology of the network environment as seen by
the virus, but also with the quantitative rates ~(i,j) of
infection attached to each edge (7, j). We assume in this
work that e-networks are the defining feature of viruses:
each strain bears an underlying e-network and they are
assumed different (with possibly different topologies
of the corresponding support graphs). Therefore, the
neighborhood of a node a — set of nodes that can directly
infect the node a — is sensitive to the underlying strain of
virus. For instance, in Fig.2, node 4 is neighbor to node 3
with respect to strain y, but not with respect to strain x.
Next, we formally define the neighborhood of a node in
e-networks and introduce the appropriate notation. The
concept of second order or, more generally, nth order
neighborhood is useful and will be also introduced.

Definition 4 (Neighborhood). Let G = (V,~) be an e-
network, and i € V be a node in G. Define N (i,G) as
the 1-hop neighborhood of node i in G and write it as

NG :={jeV : jci) o)

where j —¢q i@ means Y(j,i) > 0, ie., node j can
directly infect node i. Write N%(i,G) as the 2nd order
neighborhood of i, that is,

jeN?(i,QG)
if and only if the shortest path connecting j to i
(a.k.a. geodesic) has length 2 hops. Inductively, say
JEN"(4,QG)
if and only if there exists
ke N1, Q)

with j —¢ k, i.e., the geodesic connecting j to i has
a length of n hops. If there is no ambiguity, we will
suppress G and we will write N™(i) and i — j, instead.

The degree of node i € V in G is
di(G) == |V (i,G)|.
From the definition,
N@H AN () =0
whenever [ # m, i.e., (N"(i)), partitions V.

We now present the single-virus epidemics ODE
model and its underlying flow.

Definition 5 (Flow of Single-Virus ODE). Ler D(V) =
[0, 1]|V‘. Define the function

y: Ry xDV)xEV)
(t,yo; G)
where (y (t,y0; G)); is the solution to the ODE

— ¥y (t,y0;G)

vi(t) = Z Y, )y (@) | (L —wi(t) —wi(t)  (3)

JEV

Fi(y(t);G)
fori =1,...,N for N = |V|, initial condition yo €
D(V), and underlying e-network
G=(V,y) e E(V).

For fixed G, (y (t,y0;G));>o is the flow for t > 0
of virus y over the e-network G, starting from yq at
time t = 0. Whenever V is clear from the context, we
will write simply D and &.

We observe that, given an e-network G € £(V), the
flow (y (¢,y0;G)) to the ODE (3) is well defined — it
is uniquely determined for all time ¢, ¢ > 0. Indeed, the
underlying vector field

F<7G) = (F1(7G)a7FN(7G))
is (globally) Lipschitz over the domain D = [0,1]" for
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all G € &£(V). Note that the set D is invariant with
respect to the dynamics, that is, y (¢,yo; G) € D for all
time ¢ whenever yy € D. The fact that D is compact
further implies that the solutions are defined for all ¢,
t > 0. Whenever the underlying e-network G is clear
from the context or previously fixed, we will write y; (¢)
or y; (t,yo) instead of y; (t,y0; G).

Our goal in this paper is to study the bi-virus epi-
demics dynamics that we introduce next.

Definition 6 (Flow of bi-Virus ODE). Let
Dy(V) :={(x,y) e D(V) xD(V) : x +y < 1n},

with D(V') = [0, 1]|V|. Define the function

(x,y): Ry x Da(V) x E2(V) — Da(V)

(t,20; G*Y) +— (x(t,20; G"Y),

y (t,20; G™Y)),

where ((x,y) (t,20;G"Y)),~, is the solution to the
ODE -

gi()= D A" D)y (D)1= (8) —yi (1)) — () (4)
JjeEV
= F; (x(1),y(t); G")

9i(6)={ Y 7Y, D)y (1= () —yi(t) —vi(t) (5)

jeVv

= F; (x(t),y(t); GY),
fori=1,...,N with N =|V

zo = (X0, ¥0) € Da(V)

and underlying bilayer e-network G*Y = (G*, GY) with
G® = (V,7") and GY = (V,+Y). For a fixed G*Y, we
refer 10 ((x,3) (t, (x0,¥0) ; (G, G¥))) oy as the flow
for t > 0 of viruses x and y over the corresponding e-
networks G* and G¥, starting from (xo,yo) at time t =
0.

, with initial condition

The bi-virus dynamics evolves on a bilayer e-
network G®™Y = (G*,GY), where each e-network is
associated with the dynamics of a strain of virus as de-
picted in Fig. 2. Remark that the dynamics of both strains
are coupled together, and one cannot in general extract
valuable information from the coupled system (4)-(5) by
studying the dynamics of each strain separately via (3).

Let zo = (X0,¥0) € Dy and G*Y = (G*,GY) €
&2, then, we remark that z; (t,29, G*Y) (respectively,
yi (t, 20, G®Y)) may model the fraction of nodes infected
with virus x (respectively, y) at time ¢, ¢ > 0, at
island 4, of a bi-virus epidemics with initial distribu-
tion zg = (Xg,yo) and associated complete-multipartite
networks whose super-topology plus inter-island rates
of infection are given by the e-networks G* and GVY.

Figure 2: Representation of a bilayer e-network G*Y =
(G*,GY), with G* = (V,7%), GY = (V,4¥), and V =
{1,2,3,4}. The edges associated with null rates ~ are
not depicted. Each e-network G® and GY is associated
with a single strain of virus z and y, respectively.

The corresponding flow x; (¢,29, G®Y) (respectively,
yi (t,20, G®Y)) may also model the evolution of the
likelihood of infection of node ¢ at time ¢ by virus x
(respectively, ).

For the same reasons as in the single-virus dynamics,
the flow ((x,y) (¢, (x0,¥0); (G*,GY))) is well defined
— it is uniquely determined for all time ¢, ¢ > 0, as the
underlying vector field

F(,G")=(F(,G),F(-,GY)

is Lipschitz over the invariant compact domain of interest
Ds. Again, whenever clear from the context, we will
write y; (t), x; (t) or y; (t,20), x;(t,2¢) instead of
yi (t,20, G™Y) or x; (t,20, G*Y). We will also refer to
n

Y;(t,zo, G*Y) or (gf)i(t,zo,G””’y) as the nth derivative
of the flow to (4)-(5) at time ¢, ¢t > 0. Next, we define a
class of e-networks, called regular e-networks, where one
can fully characterize the qualitative behavior of (4)-(5) —
namely, determine the attractors and basins of attraction.
In words, an e-network is regular if its support graph is
regular and the rates between connected nodes v;; = 7y
are constant across edges (i, 7).

Definition 7 (Regular E-Network). We call G :=
(V,~) € E(V) a regular e-network, whenever

supp(G) = (V. E)
is a regular graph and
’Y(Za.]) =€ R-‘r-‘ra

Sor all (i,j) € E, ie., the infection rates are the same
across the edges of the underlying support graph. For a
regular e-network G = (V,~), we may refer to v as a
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scalar or as the matrix of rates, interchangeably. Further,
the regular e-network G is called d-regular, if

4 (@) = IN (i.G)| = d

for all nodes i = 1,...,N and for some d €N, i.e., all
nodes i € V have degree d. We denote by R(V') C E(V)
the subset of regular e-networks with node set V.

As we explore later, the qualitative dynamics of (3)
or (4)-(5) can be well understood for regular e-networks.
Also, the flow in (3) or (4)-(5) over an e-network G or
bilayer e-network G**Y can be appropriately lower/upper
bounded (in a sense that will be precise later) by flows
over sub (inner)/supper (outer) e-networks of G or G*Y.
We will be able to show fairly general qualitative results
for arbitrary e-networks G or G*¥ on the infection
dynamics by upper/lower bounding its dynamics by the
flow over well understood classes of regular sub/supper
e-networks that we refer to as inner/outer regular e-
networks of G or G*Y. Next, we define inequalities that
will provide us with the appropriate notion of dominance
of a virus (or an e-network) over another virus.

Definition 8 (Inequalities). Ler G' = (V,~') and G* =
(V, 72) be two e-networks.

o We say that G* < G? whenever supp (Gl) is a
subgraph of supp (GQ).

o We say that G' < G? whenever v < ~2, where
the latter inequality is pointwise.

o We say that G* < G? whenever v* < 2.

Note that the inequality =< is stronger than <. In
words, G' < G? if the rates of infection underlying G*
lower-bound the rates of infection of G? at every edge.

Definition 9 (x-Inequality for Regular E-networks). Let
G' = (Vﬁl) and G? = (Vﬁ?) be two regular e-
networks. We say that G' =* G2, in words, the regular
e-network G? x-dominates the regular e-network G*,
whenever y'd' < ~v2d?, where v* € Ry, and d' are
the rate (constant across edges) and degree associated
with the regular e-network G'.

Definition 10 (Inner/Outer Regular E-Network). Let
G = (V,) be an e-network. We denote

G eargmax{S : S <G, SeR(V)} (6)

as a maximal regular e-network dominated by G. Cor-
respondingly,

Geargmin{S: S=G,SeR(V)} (7

is defined as a minimal regular e-network that domi-
nates G. We refer to G and G as an inner and outer,
respectively, regular e-networks of G. Note that if G
is a regular e-network then, G and G are unique (up

to a possible relabeling). In general, G and G are not
uniquely determined.

Since the complete graph is regular and it is a supper
graph for any graph, any graph admits a trivial regular
outer-graph. Similarly, the trivial e-network of isolated
nodes

G=(V,0nxn)

i.e., with no connections (v(i,7) = 0 for all i,5 € V),
is an inner-graph of any graph. But the picture is better
than it sounds. Reference [22] establishes that a typical
large (Erdos-Rényi random) graph admits regular (non
trivial) subgraphs with high probability.

Next, we introduce the most important order on the
set of e-networks £ (V') in this paper.

Definition 11 (x-Inequality for General E-networks). Let
G = (V,'yl) and G? = (V, 72) be two e-networks. We
say that

Gl j* G2,

whenever )
G j* Q2

for some outer and inner regular e-networks 61,Q2
of G' and G?, respectively. That is, we say that G* x-
dominates G, whenever there exists a non-trivial inner-
regular e-network G* of G? that x-dominates (in the
sense of d(%ﬁnition 9) some non-trivial outer-regular e-
network G of G1, i.e., 7131 < ~42d2.

Note that definition 11 extends the definition 9 for
regular e-networks to general e-networks. One can read-
ily check that ‘<*’ defines a strict-order (irreflexive
and transitive) on the set of non-regular e-networks
E(V)\ R(V), and a preorder (reflexive and transitive)
when restricted to the regular e-networks. We shall stress
that the inequality ‘<*’ is not stronger than ‘=’, i.e., one
may find e-networks GY and G for which

GY <* G, but G¥ 4 G*.

Fig. 3 illustrates a counter-example, with GY and G*
being regular e-networks with degrees d¥ = 2 and d® =
3. Thus, GY =<* G*, but GY ﬁ G* as, for instance,
Vs =0 < iy

III. MODEL ANALYSIS — SINGLE-VIRUS

In this Section, we present an overview of our
approach addressing, for simplicity, the single-virus epi-
demics. We do not prove the Theorems in this Section
as they are trivial Corollaries to the Theorems proved in
Section IV for bi-virus over general bilayer e-networks,
where our contribution lies. More precisely, Theorem 12
below is a single-virus version of the survival of the
fittest Theorem, Theorem 20, in Section IV.
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G <*G"
but

G’ 4 G*

Figure 3: Representation of a bilayer e-network G*Y =
(G*,GY), where the layers G* (in blue/lighter color)
and GY (in red/darker color) are regular e-networks with
degrees d* = 3 and dY = 2, and identical rate parame-
ters. Only edges with positive rate weights are depicted.
For instance, 7§y = v3; = 0 as the corresponding edge
connecting nodes 1 and 2 are not represented in the
support graph of G*.

Theorem 12. Let G be an e-network. Let G = (V,7)
and G = (V,7) be inner-regular and outer-regular e-
networks of G. If yd (G) > 1, then

IN

liminfy (¢, yo, @)

1
< limsu t,yo;G) <1— —.
< limsupy (£,y0; G) (@)

If vd (@) <1, then

lim y (¢, y0,G) — 0.
t—o0

Theorem 12 states that if the effective rate yd (G) > 1
then, the set

N
1 1

— , 1 — —
1d(Q) " 7d(G)
is an attractor to (3) with basin of attraction

B={yo€D(V) : yo#0}.

If otherwise 7d (@) < 1, then the origin is the corre-
sponding global attractor.

Regular E-networks. We do not prove here the
Theorem, but sketch its proof, starting with the simpler
case of regular e-networks. In this case, clearly, the lower
and upper bounds in Theorem 12 coincide.

Let G = (V,~) be regular-i.e., supp(G) is a regular
graph and v = - is constant across the edges— and
assume a symmetric initial condition y, = 1lyg, with
Yo € [0,1] and 1 € RY being the N-dimensional vector

A= |1

with all entries equal to one. Then, (y (t,y01; G)) is
solution to

D)1y = [dyoz(t) (1 —2(1) — 2(D] 1y (8)

where d is the degree of the regular e-network G. In
other words,

v1 (6w, G)=...=yn (t,y;G) VE>0.  (9)

It is easy to study the one-dimensional system (8) and
in particular to show that if 79 > 1 and yg # O then,

V() — (1 - dlv) 1,

y(t) — 0.

otherwise,

The next Theorem allows us to drop the previous
assumption on the symmetry of the initial conditions
and thus, fully characterize the global attractor of the
dynamical system (3), when the underlying e-network is
regular.

Theorem 13 (Monotonicity on the initial conditions).
Let G be any e-network and yo < y(0). Then,

In other words, the Theorem states that the
flow y (¢, yo,G) preserves the order of initial conditions.
Now, assume again that G is a regular e-network. We can
combine the analysis in the beginning of this sketch-
proof with Theorem 13 to yield Theorem 14.

Theorem 14 (Regular e-network). Let G = (V,~) be a
regular e-network. If

v>1and yo #0 € RY

then, .
t G 1—-—1
y( » Y0, )—> < d’y) )

otherwise,
y (tv Yo, G) — 0.

Indeed, let vd > 1 and G be regular. If for some ¢ > 0
we have yo > €l, then,

1
y (t,y0,G) >y (t,e1,G) — (1 - d) 1.
g

On the other hand,

1

y
Therefore, Theorem 14 is established for strictly positive
initial conditions yo > 0. To further prove the Theorem
for the more general case where yo # 0 (with possi-
bly yo; = 0 for some node i), we need to combine
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the next Theorem, Theorem 15, with Theorem 22 in
Section V. Theorem 15 states that a node % sitting n hops
away from a node j impacts node j via its nth (or higher)
order derivatives. In words, nth order neighbors of j
affect only the nth (or higher) order derivative of (y;(t)).

Theorem 15. Let y;(t) > 0 and y;(t) =0, YV j # i for
some time t > 0. Then, V¢ < n

JeN™(i) :>(.Z;-(t) > 0 and (ﬁ(t) =0. (10

More precisely, if some entry of the initial condition

(n)
vector yq is positive, then ¥ (¢,y0,G) > 0 for some
n € N, as the e-network G is assumed to be connected
and finite. Now, Theorem 22 implies that

y (t,¥0,G) > 0, Vt € (0,9) (11)

for some § > 0. Therefore, for ¢y € (0,5), we have

liminfy (¢,yo) = liminfy (¢,y (to,yo))

1
> 1 -
thm v (t,el) — (1 ) 1,

for some € > 0 (that depends on the choice of ty). Thus,
Theorem 14 is proved and we have a complete qualitative
characterization of the ODE (3) when the underlying e-
network G is regular.

Monotonicity under the partial order ‘=<’ on
the set of e-networks. Now, we observe that the
flow (y (¢,y0,G)) to (3) also preserves upper/lower
bounds — with respect to the partial order ‘<’ — on e-
networks.

Theorem 16. Let G| = (V, 7(1)) < Gy = (V,’}/(Z)) be
two e-networks and yo < y(0). Then,
y (t,y0,G1) <y (£,¥(0),Gs), V £ >0.

This Theorem combined with Theorem 14 readily

implies Theorem 12. Indeed, let
G=<G=G (12)

where
G=(V,y) and G = (V,7)

are inner and outer, respectively, regular e-networks
for G. Assume, for instance, that 7d (G) > 1. Then,

1 .
1—@ = tliglc}’(tQ’o,Q)
< liminfy (t,y0,G)
t—o0
< limsupy (t,yo,G)
t—o00
— 1
< limy(ty),G) =1— ——,
S HOOY( Yo ) id(G)

where the first and last equalities hold from Theorem 14,
and the first and third inequalities hold from Theorem 16.

In the next Section, we formally prove survival of the
fittest (Theorem 20) through exploring a generalization
of the properties studied in this Section: (i) we establish
survival of the fittest on regular e-networks; (ii) we prove
that the system is monotonous in a certain sense; (iii)
we combine (i) and (ii) jointly with a new order ‘=<*.
The Theorems in Section IV generalize the Theorems
discussed in this Section, and they will be formally
proved.

IV. GENERAL E-NETWORKS: BI-VIRUS

The qualitative analysis of dynamical systems com-
prises characterizing their attractors and corresponding
basins of attraction as depicted in the previous Section.
In general, this is achieved by either Lyapunov theory
or numerical simulations. For instance, reference [12]
studies the qualitative behavior of the single virus dy-
namics (3) via a Lyapunov stability approach. In contrast,
in this paper, we are interested in studying the bi-virus
dynamics (4)—(5). Our qualitative analysis of (4)—(5)
does not follow from the single-virus results in [12].
Indeed, the results in [12] rely on the irreducibility of
the matrix v = (%j)ij underlying the linear term of the
vector field

F(y)=(y—Inxn)y — N(y)
for the single virus ODE (3), where

N(y)=(w) oy

comprises the nonlinear term of F (y) in (3), and © is
the Hadamard pointwise product. If ~ is reducible then,
one can still study the single-virus dynamics at each
of the connected components individually (the system
is uncoupled) as the nonlinear term N (y) decouples
accordingly. For the bi-virus case, the linear term of

F(z) = (v*Y — Ionxon) 2z — N (2)

is reducible, with z := (x,¥), but the nonlinear term
N still couples the epidemics dynamics in each network
connected component associated to y* and ~Y. There-
fore, its dynamics cannot be studied independently for
each subsystem and the Lyapunov methods of [12] that
relied on the matrix v*¥ being irreducible do not apply.
So, we need to develop new methodologies to analyze
the global stability and qualitative behavior of (4)-(5).
To prove the survival of the fittest, Theorem 20, we
follow similar steps as in the previous Section: study the
ODE (4)-(5) on regular e-networks, and then we prove
the result on general e-networks by combining the anal-
ysis in regular e-networks with a skewed-monotonous
property of the dynamical system (4)-(5), as will be made
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clearer. Also, we resort to the inequality ‘<*’ in the set
of e-networks introduced in definition 11, in Section II.

The next Lemma represents a simpler version of the
main Theorem, Theorem 20, when symmetry is assumed.
Namely, it observes that if all nodes are evenly infected
with the virus strains = and y in regular e-networks G*
and GY then, they will remain equally infected for all
time t, and moreover the weaker strain dies out. Remark
that

(x(t, (x0,¥0) ; G*Y))
and

(¥ (t, (y0,¥0) ; G™Y))

stand for the flows to the ODE (4)-(5) associated
with the strains = and y, respectively, over the bilayer
e-network G™Y, for ¢t > 0, and starting from the
state (xo,yo) at time ¢ = 0.

Lemma 17. Let G*,GY € R(V) be two regular e-
networks. Let xg,1yo € R. Then,

x (t7 (:I;O7 yO) ® 1N7 vay) = Z (ﬁa (SCO) yO) 7Gm7y) 1N
y (t, (w0,90) @ In; G™Y) = y(t, (zo,90);G"Y) 1n

for all t, t > 0, where ‘®’ is the Kronecker product. In
this case, if v§d* > ~§dY with ~§ > ﬁ, we have

1
<0 — (1= 557 ) 1
y(t) — On
otherwise, if v§ < é, then
x(t) — Oy
y(t) — On.

Proof. When the nodes are evenly infected, i.e.,
yv(0) = yol and x(0) = zo1,

and provided that the underlying e-networks G* and GY
are regular then, the flow

((Xa y) (t7 (.1'0, yO) ® 17 Gry))
reduces to the solution of the 2D ODE

§()1=(5d (G*)y(t)1—x(t) —y(t)) —y(t))1 (13)
E(t)1=(y5d (G*)z(t)1—a(t)—y(t)) —z(t))1. (14)

The ODE (13)-(14) also describes the dynamics of
diffusion of two strains of virus in a self-linked single-
node e-network and it was studied in Reference [23],
from where the asymptotics follows. O

The next Theorem is an extension of the monotonous
property for a single virus in Theorem 16 to the bi-virus
epidemics case: skewed bounds on the initial conditions

and e-networks are preserved by the flow of the dynam-
ical system (4)-(5).

Theorem 18 (Bi-virus Monotonicity). Let G*Y =
(G*,GY) and G5 = (GF,GY%) be two bilayer e-
networks with

GY < G* and G% = G".
Define the initial conditions
zo = (x0,¥0) and 2(0) = (x(0),y(0)),
with xg < x(0) and yo > y(0). Then,
y (t20,G74) =

X (t, Zg, szé) <

s, =

y (t,2(0),G™Y)  (15)

x (t,z(0), G™Y) (16)
for all time t, t > 0.
Proof. Assume that
y(0) # yo or x(0) # xo.
We write y (¢,29), x (t,20,) instead of y (t,zo, Gfg)

S

y (t,2(0), G*™Y) and x (t,z(0), G*Y). Define
T=inf{t:t>0,y(tz(0) £y (tz) or
x (t,2(0)) 2 % (t,20)} -
Assume that 7" < oo. Then, for

i,j€{1,..., M} with i j,

and x (t, Zo, waé); ory (t,2(0)), x (¢,2(0)) instead of

we have one of the following:

yi(T,2(0))=yi(T’ z0) and y; (T',2(0))<y; (T’ z0) (17)
z;(T,2(0))=x;(T, zo) and z; (T, z(0))>z;(T, zo). (18)

Without loss of generality, choose configuration (17)
and assume j € N (i) is the closest node to i where
we have strict inequality y; (7, z(0)) < y; (T, zo).

Case I: If x1 (T,2(0)) +y1 (T,2(0)) < 1, then, from
Theorem 24 we have

(n) ()
Yi(T,2(0)) < y,(T,20).

Therefore, from Theorem 22 in Section V, we have
that

Jer >0: 41 (¢,2(0) <wy1(t,z0), VT <t<T+e.
Also,

y; (T,2(0)) <y; (T,20) =
362 >0: Yj (t,Z(O)) < Yj (t,Zo) R VT <t< T+62.

Thus,
v (t,z(0) <y(t,z0), V T<t<T+e
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with € = €1 A €. Similarly, we have that
x(t,2(0)) >x(t,2z9), VT <t<THa

for some a > 0.
Case 2: If 21 (T,z(0)) + y1 (T,z(0)) = 1, then,

i1 (T, 2(0)) 491 (T, 2(0)) = = (21(T) + 1:(T)) < 0

P

Je>0: 2 (¢,2(0

=

)+ (£,2(0)) <1

for all t € (T,T + e). In any case, we reach a con-
tradiction on the definition of 7T, and the Theorem is
proved. O

We can now drop the symmetry on the initial condi-
tions assumed in Lemma 17.

Theorem 19 (Regular bilayer e-network). Let G*Y =
(G*,GY) € E2(V) be regular e-networks with v* = &
and v¥ = ~§. Let zg = (X0, Yy0) be the initial condition
with xg # 0. If GY =* G” and ~§d* > 1 then,

x (t,20; G*Y) — (1 - d%g) 1y
y (t,20;G™Y) — Oy,
otherwise, if v§d* <1
x (t,20; GY) — On. (19)
|

In words, if in a bilayer regular e-network the strain y
is x-weaker than the strain z, then the strain y dies out,
whereas the x-stronger strain persists, if strong enough.

Proof. First, let us assume that xo > €1 > 0 for some
positive € (all entries are strictly positive). Define the
symmetric initial conditions

z; = (xb,y8) = (e1,1) € RN xRV
z2 = (x3,y2) = (1,00 € RN xRV~
If v*d* > 1 then,
1 . 1 x
Ny
< liminf x (¢, 2o, G™Y) 2n
t—o00
< limsupx (t, 2z, G*Y) (22)
t—o00
1
< : 2 Ty 1
< tlggox(t,zo,G ) 1 ’dem(23)
and

hmsupy (t7Z07Gz’y) <

t—o00

: 1 T,y
tll}glo y (ta Zy, G )(24)
= 0, (25)

where the first and last equalities in equations (20)-(23)
hold from Lemma 17, and the first and third inequalities

10

in equations (20)-(23) hold from Theorem 18. Equa-
tions (24)-(25) are now obvious.

Now, assume xo # 0, with some entry possibly equal
to zero. Theorems 22 and 24 (refer to Section V) imply
that there exists 0 > 0 such that

x (, 20, G™Y) > 0 V¢ € (0, 6). (26)
Choose tg € (0,0), and we have
tlggox(t,zo) = tlirgox(t,z (to,z0))  (27)
1
= 1-—1 28
(1- ) e8)

where the first equality is due to the semi-group property
associated with the flow to autonomous ODEs, and the
second equality holds from our previous argument that
assumed xg > 0. In other words, as long as there is some
— possibly tiny — degree of infection of the stronger virus
strain x in the bilayer regular e-network, such strain will
prevail eventually, with a degree of infection given by the
equation (28). O

As a simple illustration, Fig. 4 shows the possibility of
bounding any configuration by simpler symmetric well-
characterized configurations. Such bounds are preserved
for all £, ¢ > 0 as established in Theorem 18.

Figure 4: Population of blue (lighter color) in the center
bipartite network is lower and upper bounded by the
corresponding populations in the left and right bipartite
networks. The same goes, in the other way around, for
the red (darker) population. The symmetric configura-
tions in the left and right bipartite networks induce well-
known solutions that bound the qualitative behavior of
the middle configuration.

We can now establish the main Theorem of this paper,
Theorem 20.

Theorem 20 (Natural Selection). Let GY <* G7. Then,
y (t,20; G*Y) — 0.
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Additionally, if v*d* > 1 then,

1
T < Timi Ty

1 v S htrgg.}fx(t,zo,G ) (29)
< limsupx (t,2zo; G™Y) (30)

t—o00

1
< - =T (3])

yrd

In words, the x-weaker strain y dies out and the *-
stronger strain persists if strong enough. For instance,
assuming that the ODE (4)-(5) models a Dengue versus
vaccines epidemics, then a policy of vaccination that
could guarantee the x-inequality

cDengue _x ~Policy of Vaccination
could, in theory, exterminate the epidemics.

Proof. Let G’ (respectively, G*) be an outer (respec-
tively, inner) regular e-network of GY (respectively, G*)
such that

G'=za, (32)
which is possible to choose as by assumption GY <* G*.
Let also G be an outer regular e-network of G*. Define

(Qw,éy) and ng =

the bilayer e-networks G, :=

(é””,o). If 42d” > 1, then

1
(1 - vmd””)

lim x (t zo,Gl )

t—o0

< liminf x (¢, zg; G™Y)
t—o00
< limsupx (t,zo; G*Y)
t—o00
< lim x (t ZO,GQW)
t—o00

(-7
yid

limsupy (¢,20; G*Y) < limy (t,zo;gf’y) =0,
t—o00

t— o0
where the convergences are due to Theorem 19 and
the inequalities follow from Theorem 18. The remaining

—T . .
case ¥*d < 1 is now obvious. O

The next Theorem extends Theorem 20 to the case of
multivirus epidemics. It states that if G x-dominates all
the other strains in the network then, the weaker strains
necessarily die out. The ODE governing the multivirus
epidemics is given by,

yzk: Z 'Y]zy]k ( Z yzé ) yzk (33)

fori=1,...,Nand k = 1,..., M, where y;;(t) stands
for the degree of infection at node ¢ by virus type k. This

11

is the corresponding dynamics obtained from the peer-
to-peer rules of infection in the limit of large networks
for the multivirus case (refer to [7]). Also, for simplicity,
we write (with only one sub-index)

yie(t) = (yie(t), - -, yne(t))

as the vector stacking the degree of infection across
nodes due to the virus k.

Theorem 21. Let G! =* G? = ... = GM bpe
the e-networks associated with viruses k = 1,..., M
governed by the ODE (33). Then,

Ym (t) — 0

for all m > 2. Additionally, if v*d" > 1 then, (yi
obeys inequalities (29)-(31).

(1))

Proof. First, it is easy to check that if (y(t¢)) is solution
to the ODE (33) and if y;(0) = Oy for some k €
{1,..., K} then, y4(t) = O for all time ¢ > 0. In words,
if a virus strain is not present in the network at time
to > 0 then, it will remain extinct for all future times
t > to. Now, let

y1(0)

72(0) ° Y

IN IV

{ y1(0)

Zk;él ¥&(0)
Define (7(1)) := ((y1,¥2) (. (51(0),52(0): G
as the bi-virus flow over the bilayer regular e-network

1,2

G’ = (Gl, G ) (35)

with initial condition (y¥1(0),y2(0)). The inequali-
ties (34) are preserved by the dynamics, i.e.,

{}’1() > yi(t)
Do YE(t) < Va(t)

for all t > 0, where (y(t)) and (y(¢)) are solutions
to (33) with initial conditions

y(0) € RM*N and y(0) € RV

(36)

(37

obeying inequalities (34). We can establish this fact
through similar invariance type of arguments as, for
instance, in the proof of Theorem 18: let 7" be the hitting
time to invalidate any of the inequalities in equation (36),
assume that 7' < oo and reach a contradiction (we do
not repeat the steps here). Now, from Theorem 19

{ymﬁ) > 510> (1 3lgn) In g,
Dok Ye(t) < ya(t) = On

The remaining upper/lower bounds can be obtained
similarly and the Theorem is proved. O

Theorem 20 (or more generally 21) states that
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if y7d” > 1 and GY <* G* then, the set

N
1

— | x{0}"
7d(¢7)
is an attractor to (4)- (5) with basin of attraction B =
{(%0,¥y0) € D2(V) : x¢ # 0}. Theorem 19 states that,

when symmetry is assumed, namely, G* is regular then,
the attractor A reduces to the singleton

sy} o

V. AUXILIARY RESULTS

1
A=|1— 11—
yrd (G")

This Section contains three auxiliary Theorems that
are necessary to prove the Theorems in Section IV. We
simply enunciate and prove them.

Theorem 22. Let f : (0,400) — R be an analytic
function. If for some T' € R we have

(k) (m)
AT)>0and f(T)=0
Vm=0,1,...,k —1and k > 1 then, there exists € > 0
such that f(t) > 0 for all t € (T, T + ¢).

Proof. Without loss of generality, assume 7" = 0. Since
f € C¥(R) then,

FO) = FO)+ FO)+ FOE + ...+ f () ()
- 0+ ((?u “”)t’“

tk

<=—2 VYV te(0,9).

Then,
(k) t
f(0)+$ >0, Vte(0,9).

r(t)\ &
k)t >0, V te(0,0).
O

For notational simplicity, in the Theorems 23 and 24
we define the flows

(z(t) = (x(1),y () := ((x,¥) (¢,2(0); G*¥))

and

= ((%y) (t,2(0); G*Y))

12

over the same bilayer e-network G**¥ but, with possibly
different initial conditions

and

Theorem 24 extends Theorem 15 for the bi-virus dy-
namics case. Theorem 24 relies on the next Theorem 23.

Theorem 23. Let y;(0) = y;(0) and x;(0) = z;(0). Let
N (i) = U, N(i). Then:

{ Yy (0) = yx(0)

20(0) = 71(0) V keN"(i)

4

() ® 0 )
Y;(0) =9,(0) and ;(0) =7;(0), V £ < n.

Proof. We apply induction on n. For n =1,

Z ’ijiyj (t)

(1 —zi(t) — wi(t)) — wi(t)

Z%Zyj )19% —5i(t)) — wi(2).

Note that y;(0) = y;(0), V
Z;(0). By 1nspect10n y;(0) =
yz(O) = 4:(0).

Now, assume Theorem 23 holds for n—1. We establish
that it holds for n. We have:

Z%l ]8

j€N() and z;(0) =
¥;(0) and (by assumption)

(1 —:(0) —2;(0)) (39)

A

n—1
n—1 (Z) (n—1-10)
- ( ) (Z lyqz yq(o )
{=1

B

(n—1—2)
Z’yjl yJ(O)

Do 5,0 | (1=5:(0) = F(0)  (40)
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B
(":1)
- yv(o)
C
= n— 1
o Z Z%z J'
=1
D

Recall the assumption

{ yx(0) = yx(0)
71(0) = 71(0)

From the induction hypothesis, V j € N (i), V£ =

®) © ©® O
L...,n—1, ¥;(0) =y,(0), z;(0) =z;(0) and also

(0) )
Y; (0) = g;(0), V £ <n—1. Therefore, by inspec-

tion, we conclude that the terms A, B, C, and D
for both equatlons (39) and (40) match together, and,

v ke N @), (41)

(n)
thus, ¥, (0) = yj (0). The same reasoning goes with

) )

x; (0) =z, (0), and we conclude the proof of the
Theorem. O

= 7;(0), z;(0) = 7;(0) and
(i) and

Y&(0) = yx(0) n;
{ x2(0)<£€(0) V ke N"(i)\ {m}

with strict inequality ym(0) > 4, (0) for some m €
(n) (n)
N (). Then, ¥;(0) > 7,(0).
Proof. We apply induction on the number of hops n.
Case I: For n = 1, from the assumptions of the
Theorem, namely, ,(0) > ¥, (0) for some m € N (i)
we conclude that y;(0) > ¥;(0) since

Zﬁiyj(o) (1 —2;(0) — 4;(0)) — y;(0)
DA% (0) | (1= 2:(0) = yi(0)) — i (0)
= @Z(O)

Case 2: Induction step. Assume that Theorem 24
holds for n — 1 and let us prove that it holds for n.
We consider successively the terms A, B, C, and D in
equations (39) and (40).

A: Note that for some j € N(i) we have that
m € N1 (5) where m is defined in the assumptions

13

of the Theorem. Thus, by the induction hypothesis,
n— n—1
we have ( yjl)(O) > ( ﬂj()O), and, hence, the term
A in equation (39) is greater than its counterpart in
equation (40).

B and C: From Theorem 23, it should be now clear
that these terms match together between equations (39)
and (40).

¢ (£)
D: From Theorem 23, it follows that (x)j (0) =z;(0)
for all £ =1,...,n — 1 and thus, term D is the same

for both equations.
(n) (n)
Therefore, ¥;(0) > y;(0) and the Theorem is proved.
O

VI. CONCLUDING REMARKS

In this paper, we established a sufficient condition
for survival of the fittest in a bi-virus epidemics over
bilayer e-networks via a qualitative analysis of the ODE
model (4)-(5). More precisely, we have proved that
if GY <* G*, then the set

1 1

A=1-— 1 - —

N N
= x 10
ydt At o

is an attractor of the dynamical system (4)-(5), with
basin of attraction given by B = {(x¢,y0) : xo # 0},
where GY and G are the e-networks associated with
the strains = and y. We recall that the inequality ‘=<*’
introduced in this work is defined as

GV =P G" =GV =G G =G,

where G* = (V,7%), G’ = (V,3¥) are inner and
outer regular e-networks of G* and GY, respectively,
and GY <* G* means ﬁyay < ~*d®. These concepts
allowed us to prove the survival of the fittest sufficient
condition without having to resort to Lyapunov stability
theory — a Lyapunov function is not known. Namely, we
proved that the flow to (4)-(5) of bi-virus epidemics in
a general pair of e-networks G*Y = (G®, GY) preserves
skewed bounds on bilayer e-networks: if S* <X G7,
SY = GY then,

X (ta (XOv yO) 5 Gw,y)

Z X(t; (X07y0);SI7y)
y (t,(x0,y0);G"Y) <

y (¢, (%0,¥0);9%Y).

Then, we combined this result with a qualitative result
on regular e-networks (that we proved): if S¥ <* S* are
regular e-networks, then

y (ta (X07 YO) 5 Srﬁy) — 0.

and x (t, (X0, ¥0) ; S™Y) accumulates to the attractor A,
if the strain x is strong enough. And that was how we
proved the natural selection phenomenon for general e-
networks in the main Theorem, Theorem 20.
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The ODE (4)-(5) also admits a non-trivial co-resilient
situation: both strains survive in the long run as shown
in a numerical simulation depicted in Figure 5. By
non-trivial, we mean that the co-resilience takes place
for a subset on the rate parameters space of non-zero
Lebesgue measure. Figure 5 considers the evolution of
a bi-virus epidemics over two e-networks G* and GY
where the condition G* >* GY is violated. In this case,
Figure 5b shows that the two strains of virus may persist
in the network. As future work, we plan to establish

0 1000 2000 3000 4000 5000 G000 7000 BOCD 9000 10000

(b

Figure 5: Epidemics evolution over 3-node e-networks
G® = (V,4") and GY = (V,~Y). Curves in blue (lighter
color) and red (dark color) represent the evolution of the
degree of infection at each node by virus strains = and
y (one curve per node).

the conditions on the underlying e-networks G* and GY
such that there may emerge attractors in the dynamical
system (4)-(5) that defy natural selection.

Finally, as we mentioned in the Introduction, the
discrete-time counter-part of such logistic ODEs exhibit
chaotic behavior and its solutions do not, in general,
converge to the equilibria (refer to [11]). Therefore,
results on the global stability of such dynamical systems
are crucial to understand the behavior of its solutions
from the initial conditions to the attractors. Currently,
we understand that the overall literature on epidemics,
population dynamics, response analysis in bio-chemical
chain reactions, food chain or on the study of general
logistic dynamical systems over networks is lacking rig-
orous qualitative analysis. One of the goals of our work
is to lay down novel techniques other than Lyapunov
stability theory to help close this gap.
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