
ar
X

iv
:1

20
3.

31
43

v1
  [

cs
.IT

]  
14

 M
ar

 2
01

2
1

Dynamic Compression-Transmission for
Energy-Harvesting Multihop Networks with
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Abstract—Energy-harvesting wireless sensor networking is an
emerging technology with applications to various fields such as
environmental and structural health monitoring. A distinguish-
ing feature of wireless sensors is the need to perform both
source coding tasks, such as measurement and compression,
and transmission tasks. It is known that the overall energy
consumption for source coding is generally comparable to that
of transmission, and that a joint design of the two classes of
tasks can lead to relevant performance gains. Moreover, the
efficiency of source coding in a sensor network can be potentially
improved via distributed techniques by leveraging the factthat
signals measured by different nodes are correlated.

In this paper, a data gathering protocol for multihop wireless
sensor networks with energy harvesting capabilities is studied
whereby the sources measured by the sensors are correlated.
Both the energy consumptions of source coding and transmis-
sion are modeled, and distributed source coding is assumed.
The problem of dynamically and jointly optimizing the source
coding and transmission strategies is formulated for time-
varying channels and sources. The problem consists in the
minimization of a cost function of the distortions in the source
reconstructions at the sink under queue stability constraints.
By adopting perturbation-based Lyapunov techniques, a close-
to-optimal online scheme is proposed that has an explicit
and controllable trade-off between optimality gap and queue
sizes. The role of side information available at the sink is
also discussed under the assumption that acquiring the side
information entails an energy cost. It is shown that the presence
of side information can improve the network performance both
in terms of overall network cost function and queue sizes.

Index Terms—Wireless Sensor Networks, Data Gathering,
Energy Harvesting, Distributed Source Coding, Lyapunov Op-
timization.

I. I NTRODUCTION

Wireless sensor networks have found applications in a
large number of fields such as environmental sensing and
structural health monitoring [1]. In such applications, the
maintenance necessary to replace the batteries when de-
pleted is often of prohibitive complexity, if not impossible.
Therefore, sensors that harvest energy from the environment,
e.g., in the form of solar, thermal, vibrational or radio
energy [2] [3], have been proposed and are now commercially
available.
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Given the interest outlined above, the problem of designing
optimal transmission protocols for energy harvesting wireless
sensor networks has recently received considerable attention.
In the available body of work reviewed below in Section I-B,
the only source of energy expenditure is the energy used
for transmission. This includes, e.g., the energy used by
the power amplifiers. However, a distinguishing feature of
sensor networks is that the sensors have not only to carry
out transmission tasks, but alsosensing and source coding
tasks, such as compression. The source coding tasks entail
a non-negligible energy consumption. In fact, reference [4]
demonstrates that the overall cost required for compression1

is comparable with that needed for transmission, and that a
joint design of the two tasks can lead to significant energy
saving gains. Another distinguishing feature of sensor net-
works is that the efficiency of source coding can be improved
via distributed source coding techniques (see, e.g., [5]) by
leveraging the fact that sources measured by different sensors
are generally correlated (see, e.g., [6]).

A. Contributions

In this paper, we focus on an energy-harvesting wireless
sensor network and account for the energy costs of both
source coding and transmission. Moreover, we assume that
the sensors can perform distributed source coding to leverage
the correlation of the sources measured at different sensors.
A key motivation for enabling distributed source coding in
energy-harvesting networks is that this enables sensors with
correlated measurements to trade energy resources among
them, to an extent determined by the amount of correlation.
For instance, a sensor that is running low on energy can
benefit from the energy potentially available at a nearby node
if the latter has correlated measurements. This is because,
through distributed source coding, the transmission require-
ments on the first sensor are eased by the transmission of
correlated information from the nearby sensor.

We study the problem of dynamically and jointly opti-
mizing the source coding and transmission strategies over
time-varying channels and sources. The problem consists in
the minimization of a cost function of the distortions in the
source reconstructions at the sink under queue stability con-
straints. Our approach is based on the Lyapunov optimization

1This reference considers transmission of Web data.
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strategy with weight perturbation developed in [7]. We devise
an efficient online algorithm that only takes actions based
on the harvested energy, on the current state of channel,
queues and energy reserves, and also based on the statistical
description of the source correlation. We prove that the
proposed policy achieves an average network cost that can be
made arbitrarily close to the optimal one with a controllable
trade-off between the sizes of the queues and batteries.

We also investigate the role of side information available
at the sink under the assumption that acquiring the side
information entails an energy cost. It is shown that properly
allocating the available (harvested) energy to both the tasks
of transmission and side information measurement has signif-
icant benefits both in terms of overall network cost function
and queue sizes.

B. Prior Work

We start by introducing related prior work that assumes
energy harvesting. The literature on this topic is quickly
increasing in volume but it mostly (with the exception of [8])
accounts only for the energy consumption of the transmission
component, and does not model the contribution of the source
coding part. In this context, references [9] and [10] studied
the problem of maximizing the throughput or minimizing
the completion time for a single link energy-harvesting
system by focusing on both offline and online policies (see
also [11], [12]). A related work is also reference [13] that
finds a power allocation policy that stabilizes the data queue
whenever feasible. Still, for a point-to-point system, using
large deviation tools, the effect of finite data queue lengthand
battery size is studied in [14] in terms of scaling results as
the battery and queue grow large. We now consider work on
multihop energy-harvesting networks. As mentioned above,
all the works at hand only account for the energy used for
transmission. Moreover, source correlations and distributed
source coding are not accounted for. In [7] assuming in-
dependent and identically distributed (i.i.d.) channel states
and energy harvesting processes, a Lyapunov optimization
technique with weight perturbation [15] is leveraged to
obtain approximately optimal strategies in terms of a general
function of the data rates under queue stability constraints.
The proposed technique obtains an explicit trade-off in terms
of data queue length and battery size. An extension of this
work that assumes more general arrival, channel state and
recharge processes along with finite batteries and queues is
put forth in [16]. Also related are [17], [18] and [19] that
tackle similar problems.

We now discuss work that accounts for the energy trade-
offs related to source coding and transmission. These works
(except [8]) do not model the additional constraints arising
from energy harvesting. Moreover, they do not allow for
distributed source coding. The joint design of source coding
and transmission parameters is investigated through various
algorithms, for either static scenarios in [20], [21] or dynamic
scenarios in [22], [23]. Specifically, references [22] and [23]
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Figure 1. A setN of energy-harvesting nodes communicate correlated
sources to a destinationd. For the more general model of Section VI, the
destinationd acts as a cluster head and communicates to a network collector
node (shown in dashed lines). In this latter model, the noded can collect
side information correlated to the sources measured by the nodes.

studied the trade-offs between energy used for compression,
or more generally source coding, and transmission by as-
suming i.i.d. source and channel processes and arbitrarily
large data buffer. Using Lyapunov optimization techniques,
a policy with close-to-optimal power expenditure and an
explicit trade-off with the delay is derived for a given average
distortion. The problem of optimal energy allocation between
source coding and transmission for a point-to-point system
was studied in [8].

Finally, distributed source coding techniques for multihop
sensor networks has been studied in [24] and [25]. In [24],
the problem of optimizing the transmission and compression
strategy was tackled under distortion constraints in a central-
ized fashion, whereas [25] proposes a distributed algorithm
that maximizes an aggregate utility measure defined in terms
of the distortion levels of the sources. Both these works do
not consider energy harvesting nor the energy consumption
of the sensing process.

C. Paper organization

The rest of the paper is organized as follows. In Section II
we present the system model and we state the optimization
problem. In Section III we obtain a lower bound on the
optimal network cost for the proposed problem. In Section IV
we present the proposed algorithm designed following the
Lyapunov optimization framework and we show how it can
be implemented in a distributed fashion. Section V formalizes
the main results of our paper and provide analytical insights
into the performance of the proposed policy. Section VI
proposes an extended version of the problem, where the
sink node acts as a cluster head that is able to acquire
correlated side information to improve the system perfor-
mance. In Section VII we prove the effectiveness of our
analytical analysis and discuss the impact of the optimization
parameters. Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a wireless network modeled by a direct graph
G = (N ∪ {d},L), whereN = {1, 2, . . . , N} is the set
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of nodes in the network,d is the destination (or sink), and
L ⊂ {(n,m): n,m ∈ N ∪{d}, n 6= m} represents the set of
communication links, see Fig. 1 for an illustration. We define
lmax as the maximum number of transmission links that any
noden ∈ N ∪ {d} can have. As discussed below, we allow
for fairly general interference models. We will consider a
more general model in Section VI in which the sink acts
as a cluster head for the set of nodesN , and reports to a
collector nodec (see Fig. 1).

A. Transmission Model

The transmission model follows the framework of,
e.g., [26]. According to this model, the network operates in
slotted time and, at every time slott = 1, 2, . . ., each node
n ∈ N allocates powerPn,m(t) ≥ 0 to each outgoing link
(n,m) ∈ L for data transmission. In what follows, we refer
to the number ofchannel uses (or transmission symbols) per
time slot as the baud rate multiplied by the slot duration. At
the generic time slott we defineP(t) = {Pn,m(t)}, with
(n,m) ∈ L, as the power allocation matrix and the total
transmission power of noden, that is

Pn(t) =
∑

m: (n,m)∈L

Pn,m(t), (1)

which is assumed to satisfy the constraintPn(t) ≤ Pmax,
for somePmax < ∞. The transmission rateµn,m(t) on
link (n,m) depends on the power allocation matrixP(t)
and on the currentchannel state S(t) = {Sn,m(t)} with
(n,m) ∈ L. The latter accounts, for instance, for the current
fading channels or for the connectivity conditions on the
network links. We assume thatS(t) takes values in some
finite setS = (s1, s2, . . . , sM ), is constant within a time slot,
but is independent and identically distributed (i.i.d.) across
time slots. We useρsi = Pr [S(t) = si] for i = 1, . . . ,M .
We write

µn,m(t) = Cn,m(P(t),S(t)), (2)

where Cn,m(P(t),S(t)) is the capacity-power curve for
link (n,m) expressed in terms of bits per channel use
(transmission symbol). The latter depends on the specific
network transmission strategy, which includes the modulation
and coding/decoding schemes used on all links. We assume
that functionCn,m(P(t),S(t)) is continuous inP(t) and
non decreasing inPn,m(t). An example of the function
Cn,m(P(t),S(t)) is the Shannon capacity obtained by treat-
ing interference as noise at the receivers, namely

Cn,m(P(t),S(t)) ∝ log

(
1 +

Pn,m(t)Sn,m(t)

N0 +
∑

(l,n)∈L Pl(t)Sl,n(t)

)
,

(3)

where Sn,m(t) represents the channel power gain on link
(n,m) andN0 is the noise spectral density. We assume that
there exists some finite constantµmax such thatµn,m(t) ≤
µmax for all t, any power allocation vectorP(t) and channel

state S(t). Moreover, following [7], we assume that the
functionCn,m(P(t),S(t)) satisfies the following properties:

Property 1: For any power allocation matrixP(t), we
have:

Cn,m(P(t),S(t)) ≤ ξPn,m(t), (4)

for some finite constantξ > 0;
Property 2: For any power allocation matrixP(t) and

matrix P′(t) obtained byP(t) by setting the entryPn,m(t)
to zero for a given(n,m) pair, we have:

Ca,b(P(t),S(t)) ≤ Ca,b(P
′(t),S(t)), (5)

for all (a, b) ∈ L, with (a, b) 6= (n,m).
Note that both properties are satisfied by typical choices of

functionCn,m(P(t),S(t)) such as (3). In fact,Property 1 is
satisfied if functionCn,m(P(t),S(t)) is concave with respect
to Pn,m(t), while Property 2 states that interference due to
power spent on other links cannot be beneficial.2 Finally, we
define the total outgoing transmission rateµn,∗(t) from a
noden ∈ N at time t as

µn,∗(t) =
∑

m: (n,m)∈L

µn,m(t), (6)

and the total incoming transmission rateµ∗,n(t) at a node
n ∈ N as

µ∗,n(t) =
∑

m: (m,n)∈L

µm,n(t). (7)

B. Data Acquisition, Compression and Distortion Model

At each time slot, each node of the network is able to
sense the environment and to acquire spatially correlated
measurements. The measurements are then routed through
the network to be gathered by a sink node, as illustrated in
Fig. 1. Before transmission, the acquired data is compressed
via adaptive lossy source coding by leveraging the spatial
correlation of the measurements. Specifically, we define the
source state at time t as the spatial correlation matrix
describing the signal within this time slot, which is referred
to asO(t) = {On,m(t)} with n,m ∈ N . We assume that
O(t) takes values in some finite setO = {o1, o2, . . . , oL},
remains constant within a time slot, but is i.i.d. across time
slots. Additionally, we define the mdfρoi = Pr[O(t) = oi].
Each noden ∈ N compresses the measured source with rate
Rn(t) ≤ Rmax bits per source symbol and targets a repro-
duction distortion at the sink ofDmin ≤ Dn(t) ≤ Dmax,
with 0 < Rmax, Dmin ≤ Dmax < ∞. Note that imposing
a strictly positive lower bound onDn(t) is without loss
of generality because the rateRn(t) is upper bounded by
a finite constant and therefore the distortionDn(t) cannot
in general be made arbitrarily small (see, e.g., [5]). The
distortion is measured according to some fidelity criterion
such as mean square error (MSE). We define the rate vector
asR(t) = (R1(t), . . . , RN (t)) and the distortion vector as

2This may not be the case if sophisticated physical layer techniques are
used, such as successive interference cancelation (see, e.g., [5]).
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R1(t)

R2(t)

g({1},O(t))− log(2πeD1(t))

g
({
2
},
O
(t
))

−
lo
g
(2
π
e
D

2
(t
))

R1(t) +R2(t) =

g({1, 2},O(t))− log((2πe)2D1(t)D2(t))

Figure 2. Illustration of the rate region (8) for correlatedsources and
N = {1, 2}. For all rate pairs(R1(t), R2(t)), there exists a coding schemes
that enables the sink to recover the two sources with distributed distortion
(MSE) levelsD1(t) andD2(t), respectively.

D(t) = (D1(t), . . . , DN(t)). Due to the spatial correlation
of the measurements,distributed source coding techniques
can be leveraged. Thanks to these techniques, the rates of
different users can be traded without affecting the achievable
distortions, to an extent that depends on the amount of
spatial correlation [5]. The adoption of distributed source
coding entails that, given certain distortion levelsD(t), the
ratesR(t) can be selected arbitrarily as long as they satisfy
appropriate joint constraints. Under such constraints, a sink
receiving data at the specified rates is able to recover all
sources at the given distortion levels.

To elaborate on this point, consider the following condi-
tions on the ratesRn(t) and distortionsDn(t) for n ∈ N :

∑

n∈X

Rn(t) ≥ g(X ,O(t))−log

(
(2πe)|X |

∏

n∈X

Dn(t)

)
, (8)

for all X ⊆ N , where g(X ,O(t)) denotes the joint con-
ditional differential entropy of the sources measured by the
nodes in the subsetX , where conditioning is with respect to
the sources measured by the nodes in the complementN \X .
For instance, for jointly Gaussian sources with zero mean and
correlation matrixO(t), we have

g(X ,O(t)) =
1

2
log

(
detO(t)

detO(t)|N\X

)
, (9)

whereO(t)|N\X represents the correlation submatrix of the
sources measured by nodes inN \ X . If the rates satisfy
conditions (8), it is known [27] that, for sufficiently small
distortions and any well-behaved joint source distribution,
the sink is able to recover all the sources within MSE levels
Dn(t) for all n ∈ N . We remark that this conclusion is also

valid for any distortion tupleD(t) if the sources are jointly
Gaussian.

As an example, the rate region forN = {1, 2} is sketched
in Fig. 2. The ratesR1(t) andR2(t) at which the two source
sequences are acquired and compressed at the two nodes can
be traded with one another without affecting the distortions
of the reconstructions at the sink, as long as they remain in
the shown rate region (8).

We account for the cost of source acquisition and com-
pression by defining a functionP c

n(Rn(t)) that provides the
power spent for compressing the acquired data at a particular
rateRn(t). For the sake of analytical tractability, we assume
that each functionP c

n(Rn(t)) is

P c
n(Rn(t)) = αnRn(t), (10)

for some coefficientαn ≥ 0. Finally, we remark that the
destinationd is assumed not to have sensing capabilities,
and thus is not able to acquire any measurements. We will
treat the extension to this setting in Section VI.

C. Energy Model

Every node in the network is assumed to be powered
via energy harvesting. The harvested energy is stored in an
energy storage device, or battery, which is modeled as an
energy queue, as in e.g., [7]. The energy queue sizeEn(t)
at a noden ∈ N measures the amount of energy left in
the battery of a noden at the beginning of time slott.
For convenience, we normalize the available energy to the
number of channel uses (transmission symbols) per slot.
Without loss of generality, we assume unitary slot duration
so that the amount of power consumed for transmission and
acquisition/compression is equivalent to the energy spentin
a time slot. Therefore, at any time slott, the overall energy
used at a noden ∈ N must satisfy the availability constraint

Pn + P c
n(Rn(t)) ≤ En(t). (11)

That is, the total consumed energy due to transmission and
acquisition/compression must not exceed the energy available
at the node.

We denote byHn(t) ≤ Hmax the amount of energy
harvestable by noden at time slot t, and we define the
vectorH(t) = (H1(t), . . . , HN (t)) as theenergy-harvesting
state. We assume thatH(t) takes value in a finite set
H = {h1,h2, . . . ,hP }, and is constant for the duration
of a time slot, but i.i.d. over time slots. Finally, we define
the probabilityρhi

= Pr[H(t) = hi], which accounts for
possible spatial correlation of the harvestable energy across
different nodes.

The energy harvested at timet is assumed to be available
for use at timet+1. Moreover, each noden ∈ N can decide
how much of the harvestable energyHn(t) to store in the
battery at time slott, and we denote the harvesting decision
by H̃n(t), with 0 ≤ H̃n(t) ≤ Hn(t). We define the harvest-
ing decision vector as̃H(t) = (H̃1(t), . . . , H̃N (t)). Variable
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H̃n(t) is introduced, following [7], to address the issue of
assessing the needs of the system in terms of capacities of
the energy storage devices. In fact, as in [7], we do not make
any assumption about the battery maximum size. However, it
will be proved later that performance arbitrarily close to the
optimal attainable with no limitations on the battery capacity
can be achieved with finite-capacity batteries.

D. Queueing Dynamics

We now detail the dynamics of the network queues. We
defineE(t) = (E1(t), . . . , EN (t)) to be the vector of the
energy queue sizes of all nodes at timet. From the discussion
above, for each noden ∈ N , En(t) evolves as

En(t+ 1) = En(t)− Pn(t)− P c
n(Rn(t)) + H̃n(t), (12)

since at each time slott, the energyPn(t) + P c
n(Rn(t))

is consumed, while energỹHn(t) is harvested. We assume
En(0) ≥ 0 for all n ∈ N .

We also define the vectorU(t) = (U1(t), . . . , UN(t)), for
each time slott, to be the network data queue backlog, where
Un(t) represents the amount of data queued at noden, which
is normalized on the number of channel uses per time slot
for convenience of notation, that is it is expressed in termsof
bits over channel uses per slot. Denote asb the ratio between
the number of channel uses per slot and the number of source
samples per slot. Sinceb typically accounts for the ratio of the
channel and source bandwidth, it is conventionally referred
to asbandwidth ratio, [5]. We assume that each queueUn(t)
evolves according to the following dynamics:

Un(t+ 1) ≤ max {Un(t)− µn,∗(t), 0}+ µ∗,n(t) +
Rn(t)

b
,

(13)
since at any time slott, each noden ∈ N can transmit,
and thus remove from its data queue, at mostµn,∗(t) bits
per channel use, while it can receive at mostµ∗,n(t) bits
per channel use due to transmissions from other nodes
and Rn(t)/b bits per channel use due to data acquisi-
tion/compression. We assume thatUn(0) = 0 for all n ∈ N .
Following standard definitions [28], we say that the network
is stable if the following condition holds true:

limsup
T→∞

1

T

T−1∑

t=0

∑

n∈N

E[Un(t)] < ∞. (14)

Notice that the network stability condition (14) implies that
the data queueUn(t) of each noden ∈ N is stable in the
sense thatlimsup

T→∞

1
T

∑T−1
t=0 E[Un(t)] < ∞.

E. Optimization Problem

DefineΘ(t) = (S(t),O(t),H(t),U(t),E(t)) as the state
of the network at time slott. A (past-dependent) policyπ =
{π(t): t = 1, 2, . . .} is a collection of mappings between the
past and current states{Θ(τ): τ = 1, . . . , t} and the current
decision(R(t),D(t), H̃(t),P(t)) on ratesR(t), distortion

levelsD(t), harvested energỹH(t) and transmission powers
P(t). Moreover, for each noden ∈ N , let fn(Dn(t)) denote
the cost incurred by noden when its corresponding distortion
is Dn(t). We assume that each functionfn(Dn(t)) is convex,
finite and non-decreasing in the interval[Dmin, Dmax]. Our
objective is to solve the following optimization problem:

minimize
π

Fπ
0 =

∑

n∈N

Fπ
n (15)

where

Fπ
n = limsup

T→∞

1

T

T−1∑

t=0

E[fn(Dn(t))], (16)

subject to the rate-distortion constraints (8), the energyavail-
ability constraint (11) and network stability constraint (14).
Note that (16) is the per-slot average cost for noden.

III. L OWER BOUND

In this section, we obtain a lower bound on the optimal
network costF ∗

0 of problem (15). This result will be used
in Section V to obtain analytical performance guarantees
on our online optimization policy, presented in Section IV.
The lower bound is expressed in terms of an optimization
problem over parametersR(oi) = [R

(oi)
1 , . . . , R

(oi)
N ] and

D(oi) = [D
(oi)
1 , . . . , D

(oi)
N ] for all oi ∈ O, P(sj) with

entriesP (sj)
n,m for each(n,m) ∈ L and for all sj ∈ S, and

H̃(hk) = [H̃
(hk)
1 , . . . , H̃

(hk)
N ] for all hk ∈ H. The proof is

based on relaxing the stability constraint (14) by imposingthe
necessary condition that the average arrival rate at each data
queue be smaller than or equal to the average departure rate,
and by also relaxing the energy availability constraint (11) by
requiring it to be satisfied only on average. Finally, Lagrange
relaxation is used on the resulting problem. The details of the
proof are available in Appendix A.

Theorem 3.1: The optimal network costF ∗
0 satisfies the

following inequality:

V F ∗
0 ≥ d(λ,υ,χ), (17)

for all λ ∈ R
L(2N−1)
+ ,υ ∈ R

N
+ ,χ ∈ R

N , whered(λ,υ,χ)
is given by

d(λ,υ,χ) =
∑

oi∈O

ρoi

∑

sj∈S

ρsj

∑

hk∈H

ρhk
doi,sj ,hk

(λ(oi),υ,χ),

(18)

with doi,sj ,hk
(λ(oi),υ,χ) defined in (19), where the infi-

mum is taken under constraints:

0 ≤ R(oi)
n ≤ Rmax,Dmin ≤ D(oi)

n ≤ Dmax,

for all n ∈ N , oi ∈ O,
(20)

0 ≤ P (sj)
n ≤ Pmax, for all n ∈ N , sj ∈ S, (21)

and0 ≤ H̃(hk)
n ≤ hk,n, for all n ∈ N ,hk ∈ H. (22)

Proof: See Appendix A.
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doi,sj ,hk
(λ(oi),υ,χ) = inf

R(oi),D(oi),P(sj),H̃(hk)

{
∑

n∈N

V fn(D
(oi)
n ) +

2N−1∑

m=1

λ(oi)
m

[
g(Xm, oi)− log

(
(2πe)|Xm|

∏

n∈Xm

D(oi)
n

)

−
∑

n∈Xm

R(oi)
n

]
+
∑

n∈N

υn

[
R

(oi)
n

b
+ µ∗,n(P

(sj), sj)− µn,∗(P
(sj), sj)

]
+
∑

n∈N

χn

[
P (sj)
n + P c

n(R
(oi)
n )− H̃(hk)

n

]}
(19)

IV. PROPOSEDPOLICY

In this section, we propose an algorithm designed fol-
lowing the Lyapunov optimization framework, as developed
in [26] [28], to solve the optimization problem (15). In par-
ticular, we aim at finding an online policyπ for problem (15)
with close-to-optimal performance, by using Lyapunov opti-
mization with weight perturbation. The technique of weight
perturbation, as proposed in [7], is used to ensure that the
energy queues are kept close to a target value. This is done
to avoid battery underflow in a way that is reminiscent of
the battery management strategies put forth in [14], and is
further discussed below.

The proposed policy operates by approximately minimiz-
ing at each time slot the one-slot conditional Lyapunov
drift plus penalty [28] of the energy and data queues ((12)
and (13), respectively) of the network. The optimization
is done in an on-line fashion based on the knowledge of
the current channel stateS(t), observation stateO(t), data
queue sizesU(t) and energy queue sizesE(t). Note that
no knowledge of the statistics of the states is required, as
it is standard with Lyapunov optimization techniques [26],
[28]. Using this approach, we obtained the following online
optimization algorithm.

Algorithm: Fix a weight θ = [θ1, . . . , θN ] ∈ R
N
+ and

a parameterV > 0. At each time slott, based on the
values of the queuesE(t) andU(t), channel statesS(t) and
observation statesO(t), perform the following:

• Energy Harvesting: For each noden ∈ N , choose
H̃n(t) that minimizes(En(t)−θn)H̃n(t) under the con-
straint0 ≤ H̃n(t) ≤ Hn(t). That is, if (En(t)− θn) <
0, perform energy harvesting and store the harvested
energy, i.e., setH̃n(t) = min{θn − En(t), Hn(t)};
otherwise, perform no harvesting, i.e., setH̃n(t) = 0;

• Rate-Distortion Optimization: Choose the source acqui-
sition/compression rate vectorR(t) = r = [r1, . . . , rN ]
and the distortion levelsD(t) = d = [d1, . . . , dN ] to
be an optimal solution of the following optimization
problem:

minimize
r,d

∑

n∈N

[Un(t)rn − (En(t)− θn)P
c
n(rn)

+V fn(dn)],

(23)

subject to the rate-distortion region constraint (8), and
to the constraints0 ≤ rn ≤ Rmax andDmin ≤ dn ≤
Dmax, for all n ∈ N ;

• Power Allocation: Define the weight of a link(n,m) as

Wn,m(t) = max{Un(t)− Um(t)− δ, 0}, (24)

whereδ = lmaxµmax+Rmax, and chooseP(t) = p with
entriespn,m for (n,m) ∈ L to be an optimal solution
of the following optimization problem:

maximize
p

∑

n∈N

[ ∑

m∈N\n

Cn,m(p,S(t))Wn,m(t)

+(En(t)− θn)pn

]
,

(25)

wherepn =
∑

m∈N\n pn,m, subject to constraints0 ≤
pn ≤ Pmax, for eachn ∈ N ;

• Queues Update: Update E(t) and U(t) according
to (12) and (13), respectively.

Remark 4.1: In the algorithm proposed above, the energy
availability constraint (11) is not explicitly imposed. How-
ever, as discussed in Section V, with a proper choice of
the weight vectorθ, the battery levels are guaranteed to be
such that condition (11) is never violated. In other words,
the effect of the weight vectorθ is to ensure that, whenever
the algorithm requires to draw energy from the batteries
for transmission or acquisition/compression, there is energy
available at the corresponding nodes to satisfy the request.

A. Price-based Distributed Optimization

While the Energy Harvesting step can be performed in-
dependently by all nodes, theRate-Distortion Optimization
problem (23) and thePower Allocation problem (25) require
centralized optimization. Decentralized implementations of
the Power Allocation problem (25) are discussed in many
papers, see, e.g., [29]. Here we discuss how to (approxi-
mately) solve theRate-Distortion Optimization problem (23)
in a distributed fashion via dual decomposition [30] [31]. To
this end, we introduce the Lagrange multipliersλ ∈ R

2N−1
+

for the 2N − 1 coupling constraints (8), thus obtaining the
Lagrangian function for problem (23):

L(r,d,λ) =
∑

n∈N

[Un(t)rn − (En(t)− θn)P
c
n(rn)

+ V fn(dn)] +
∑

m

λm

[
g(Xm,O(t))

− log

(
(2πe)|Xm|

∏

l∈Xm

dl

)
−
∑

l∈Xm

rl

]
, (26)
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where the second sum runs over all the2N − 1 subsetsXm

of N . We will use the notationXm for the subsets ofN
throughout the rest of the paper. Moreover, the dual function
for problem (23) is

G(λ) = inf
r,d

L(r,d,λ), (27)

with constraints0 ≤ rn ≤ Rmax andDmin ≤ dn ≤ Dmax

and the Lagrange dual problem is given by

maximize
λ�0

G(λ). (28)

Following the dual decomposition approach [30] [31], the
problem of calculating the dual function (27) for a given
multiplier vectorλ can be decomposed intoN local opti-
mization subproblems, one for each noden ∈ N . Moreover,
solution of the dual problem (28) can be performed in an
iterative fashion using the subgradient method [30], as it is
standard practice [30] [31]. This leads to the following price-
based distributed iterative solution of the dual problem (28)
for time slot t:

Initialize λ(1) � 0. Then, for each iterationτ = 1, 2, . . .:

• For the givenλ(τ) = λ, each source noden solves the
local optimization problem

minimize
0≤rn≤Rmax, Dmin≤dn≤Dmax

Un(t)rn − (En(t)− θn)P
c
n(rn)

+ V fn(dn)− (log(dn) + rn)
∑

m: n∈Xm

λm, (29)

obtaining the optimal values(r∗n(λ), d
∗
n(λ));

• The dual variablesλ are updated using the subgradient
method [30, Section 6.1] as

λ(τ + 1) = λ(τ) + ǫτa(λ(τ)), (30)

where ǫτ is a positive scalar step size anda(λ) =∑
m g(Xm,O(t))−log(2πe)|Xm|−∑n∈N log(d∗n(λ))+

r∗n(λ) is a subgradient of functionG(λ).

With various choices for the weightsǫτ (e.g., ǫτ = 1/τ ),
due to the concavity of functionG(λ), the procedure above
is guaranteed to converge to the optimal value of the dual
problem (28) [30, Section 3.4]. Moreover, under the given
assumptions, problem (23) is convex and satisfies Slater’s
condition [32]. Therefore, strong duality holds, which guaran-
tees that the optimal value of the dual problem (28) coincides
with the optimal value of (23), and the optimal value of (28)
is attained at some valueλ∗. However, in order for the
illustrated iterative procedure to converge to an optimal
solution (r∗,d∗) of problem (23), we need that the value
of the pair3 (r,d) at which the infimum in (27) is attained
for λ = λ∗ coincides with the optimal pair for the original
problem (23). This can be guaranteed if the Lagrangian
function L(r,d,λ) is strictly convex in(r,d) [30, Section
3.4]. As proposed in [33] this can be enforced by adding a
small termǫ(||r||2+||d||2) toL(r,d,λ) while performing the

3This pair exists in virtue of the Weierstrass theorem [30].

minimization (27), foe someǫ > 0. Although this operation
is bound to make the solution only approximate, the quality
of the approximation can be controlled by keepingǫ small.

V. PERFORMANCEANALYSIS

In this section, we provide analytical insights into the
performance of the policy proposed in Section IV. To this
end, we define the parametersβn = min {αn, 1} (recall (10))

and γn = supDmin≤dn≤Dmax

[
fn(dn)−fn(Dmax)
log(dn/Dmax)

]
, which is

finite under the given assumptions.
Theorem 5.1: Under the proposed algorithm withθ =

[θ1, . . . , θN ], whereθn = γn

βn
V +αnRmax +Pmax, we have:

1) The data queue and the energy queue of all nodes are
bounded as:

0 ≤ En(t) ≤ θn, (31)

and0 ≤ Un(t) ≤ γnV +Rmax, (32)

respectively, for all nodesn ∈ N and all timest;
2) When a noden ∈ N allocates a non-zero power to

any of its outgoing links (i.e.,Pn(t) > 0), and/or
when it chooses a non-zero source acquisition rate
(i.e., Rn(t) > 0), thus expending energy for source
acquisition/compression, we have that:

En(t) ≥ αnRmax + Pmax. (33)

This condition guarantees that the energy availability
constraint (11) is satisfied for all nodesn ∈ N and all
times t (see Remark 4.1 and Remark 5.2).

3) The overall costFπ
0 (15) achieved by the proposed

scheme satisfies the bound

Fπ
0 =

∑

n∈N

Fπ
n ≤ F ∗

0 +
B

V
, (34)

where F ∗
0 is the optimal cost of prob-

lem (15) and the finite constant B is
B = N

(
µmax(µmax +Rmax) +R2

max/2
)

+
N/2(H2

max + α2
nR

2
max + P 2

max + 2αnRmaxPmax) +
N(δlmaxµmax +H2

max/4).

Proof: See Appendix C.
Remark 5.2: The fact that (33) implies that the proposed

algorithm satisfies the energy availability constraint (11) at
each time slot follows since each noden ∈ N cannot
consume an energy larger thatαnRmax + Pmax in a time
slot. In fact, αnRmax is the maximum energy spent for
compressing the acquired data andPmax is the maximum
transmission energy consumption.

Remark 5.3: Following [16], under the modified stability
requirementlimsup

T→∞

1
T

∑T−1
t=1 Un(t) < ∞, for all n ∈ N ,

the proposed algorithm can be proven to guarantee near-
optimal performance with probability one.
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VI. EXTENSION WITH SIDE INFORMATION AT THE SINK

We now consider an extended version of the problem stud-
ied thus far, in which the sink noded, rather than being the
final destination for the sources measured at the sensors, acts
as a cluster head and communicates to a network collector
node c (see Fig. 1), on a communication link modeled as
for any other pair of node (see Section II-A). The key novel
aspect of this extended model is that noded can measure a
source correlated with that of the sensors and use such side
information to improve the system performance. Specifically,
thanks to the side information available at noded, the rate
requirements for communication from the sensors tod can
be reduced. However, noded, which is powered by energy-
harvesting as all the sensors, also needs to communicate with
nodec. Therefore, a new trade-off arises between the energy
allocated byd to acquire side information and that used by
d to communicate withc.

We now discuss how the model discussed in Section II
needs to be modified in order to account for the different
setting of interest here. First, the destinationd acquires a
source signal which is correlated with the sensor’s mea-
sures with a rateRd(t). This affects the rate-distortion
constraints (8) in that the entropy functiong(X ,O(t)) should
now be conditioned on the side information available at
the receiver (see, e.g., [34]). This leads to modified rate-
distortion constraints (8) with a functiong(X ,O(t), Rd(t))
that also depends onRd(t). An example of this function will
be given in Section VII. The energy used for acquiring the
side information is given byP c

d (Rd(t)) = αdRd(t) and the
slot duration similar to all other nodes. Moreover, the data
queue at noded evolves as

Ud(t+ 1) ≤ max {Ud(t)− µd,c(t), 0}+ µ∗,d(t), (35)

whereµd,c(t) andµ∗,d(t) represent, respectively, the trans-
mitted and received data at timet, and transmission is to the
collector nodec. Note that no other node is connected to the
network collectorc apart fromd. The energy queueEd(t),
instead, evolves according to (12). Finally,P(t) and S(t)
are extended to consider the additional link(d, c) ∈ L and
the rate achievable on that link is given byCd,c(P(t),S(t)),
which is assumed to have the same properties as for all
other links (see Section II). We refer to the power used for
transmission by noded asPd.

In what follow we modify the algorithm proposed in
Section IV in order to address the new setting outlined above.
The modified algorithm works as follows:

• Energy Harvesting: Follow the same procedure as for
the algorithm discussed in Section IV, for all nodes
including noded;

• Rate-Distortion Allocation: ChooseRn(t) and Dn(t),
n = 1, . . . , N , andRd(t) to be the optimal solution of

the following optimization problem:

minimize
(r,d),rd

∑

n∈N

[Un(t)rn − (En(t)− θn)P
c
n(rn)

+ V fn(dn)] + (Ed(t)− θd)P
c
d (rd),

(36)

subject to
∑

n∈X rn ≥ g(X ,O(t), rd) −
log
(
(2πe)|X |

∏
n∈X dn

)
, ∀X ⊆ N , 0 ≤ rn ≤ Rmax

andDmin ≤ dn ≤ Dmax, n ∈ N and0 ≤ rd ≤ Rmax;
• Power Allocation: Define the weight of a link(n,m) ∈

L as4 (24) and chooseP(t) = p with entriespn,m for
(n,m) ∈ L to be an optimal solution of the following
optimization problem:

maximize
p

∑

n∈N

[ ∑

m∈N\n

Cn,m(p,S(t))Wn,m(t)

+ (En(t)− θn)pn

]
+Cd,c(p,S(t))Wd,c(t)

+ (Ed(t)− θd)pd,

(37)

subject to0 ≤ pn ≤ Pmax, for eachn ∈ N ∪ {d}.
• Queues Update: Update E(t) and Ed(t) according

to (12),U(t) according to (13) andUd(t) using (35).
The algorithm proposed above is a simple modification of

the algorithm proposed in Section IV that accounts for the
need to allocate rate and power also for noded. It can be
proven that this algorithm has similar optimality properties as
the algorithm of Section IV as summarized in Theorem 5.1.
We omit a formal statement of this result here, since it is a
straightforward extension of Theorem 5.1.

VII. N UMERICAL RESULTS

In this Section, we provide further insights into the per-
formance of the system under study, via some numerical
results. We consider the network topology of Fig. 1, where
the setN of nodes gathers spatially correlated data and
transmits it to the sink noded. We first consider the set-up
without side information at the sink described in Section II.
We assume that nodes{1, 2, 3} collect the measurements,
while nodes{4, 5} are only used as relays (or equivalently
measure zero-power sources). The signal samples measured
at nodes{1, 2, 3} are jointly Gaussian with zero mean and
time-independent correlation matrix

O(t) =




1 ω ω
ω 1 ω
ω ω 1



 , (38)

where ω ∈ [−1, 1] is the spatial correlation coefficient.
The channel state matrixS(t) has independent entries that
are Rayleigh distributed, while the energy harvesting vector
H(t) has independent entries that are uniformly distributed
in [0, Hmax]. Both channel and energy harvesting statistics
are i.i.d. across time slots.

For the channel capacity function, we consider
Cn,m(P(t),S(t)) = log(1 + Pn,m(t)Sn,m(t)) for all

4We remind thatL is extended to consider the link(d, c).
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Figure 3. Fπ

0
vs maximum and average network queue size for1 ≤ V ≤

10000. Each pair of values for sum-distortion and queue size is obtained for
a different value ofV , from 1 to 10000, with step length500. (ω = 0.5)

(n,m) ∈ L, while the entropy function is given by (9)
and the cost function isfn(Dn(t)) = Dn(t) for all
n ∈ N . Moreover, we set the numerical valuesαn = 1,
Hmax = 3, Dmin = 0.001 and Pmax = αnRmax, with
Rmax = g({1, 2, 3},O(t)) − log

(
(2πeDmin)

3
)
. In what

follows, we refer tonetwork queue size as the sum of the
queue sizes of all nodes inN .

We first examine the effect of parameterV , which was
shown in Theorem 5.1 to characterize the(V, 1/V ) trade-
off between the network queue size and the additive gap
with respect to the lower bound of Theorem 3.1. To this
end, in Fig. 3, we setω = 0.5 and plot the average sum-
distortion Fπ

0 as a function of the maximum and average
network queue size for different value of the parameterV .
Confirming the results of Theorem 5.1, we observe that the
sum-distortionFπ

0 gradually converges to the lower bound set
by the optimal valueF ∗

0 for increasingV . A closer inspection
of the results also reveals an almost linear increase of the
maximum and time average network queue size with respect
to V , as suggested by Theorem 5.1 (not shown).

Next, we evaluate the impact of the spatial correlation
parameterω. As discussed, an increasingω is expected to
lead to a reduction in the energy consumption for the same
reconstruction accuracy at the sink thanks to the spatial
energy trade-offs enabled by distributed source coding. This
is confirmed by the results in Fig. 4, where we plot the
sum-distortionFπ

0 versus the average and maximum network
queue size, where each point is obtained for a different value
of the correlationω in [0, 1). We note that an increasingω
leads to a reduction of both the network queue size andFπ

0 .
Note that the performance withω = 0 corresponds to that
of a conventional source coding system (i.e., not leverag-
ing distributed source coding) as, in this case, distributed
source coding does not offer any advantage and reduces
to conventional compression. Thus, comparison between the
performance withω = 0 and ω > 0 reveals the gain of
leveraging distributed source coding. Note that this gain is

ω = 0.99
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Figure 4. Fπ

0
vs maximum and average network queue size for different

values of source correlationω, from 0 to 0.99, with step length0.1. (V =
1000)

quite substantial, leading in the best case (ω → 1) to a
decrease of a factor3 in terms of distortion and of a factor
2.3 in terms of queue size at the nodes.

Finally, we evaluate the performance in the scenario of
Section VI, where the sink noded acts as a cluster head,
that measures a source correlated with that of the remaining
sensors and communicates the gathered data to nodec
(see Fig. 1). To this end, we replace the entropy function
g(X ,O(t)) with a functiong(X ,O(t), Rd(t)), that takes into
account the side information obtained byd with rateRd(t).
We recall thatRd(t) is a decision variable of the new prob-
lem, see (36). Following [34], the functiong(X ,O(t), Rd(t))
is given by (9) where the correlation matrix (38) should
now be conditioned on the side information available at
the destination [34]. According to the simple source model
described in Appendix F, we assume that this conditional
covariance matrix is given by

O(t)=




1− ωωd(t) ω(1− ωd(t)) ω(1− ωd(t))
ω(1− ωd(t)) 1− ωωd(t) ω(1− ωd(t))
ω(1− ωd(t)) ω(1− ωd(t)) 1− ωωd(t)



 ,

(39)
whereωd(t) = 1−2−Rd(t). We consider the same simulation
parameters as above and we additionally setαd = 1 and, only
for noded, Hmax = 12.

Fig. 5 shows the sum-distortionFπ
0 and the average

network queue size versusω ∈ [0, 1). As a reference, we
compare the performance of the proposed algorithm with that
of a scheme that setsRd(t) = 0. This scheme, therefore, does
not acquire side information at the sink and instead utilizes
all the available energy at the sink for transmission to node
c. It can be seen that gains in terms of memory and distortion
can be obtained by properly allocating the available energy
between the tasks of transmission and source coding at the
sink node, e.g., a reduction of more than25% and21% is
obtained forω ≥ 0.9 for the queue size andFπ

0 , respectively.
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VIII. C ONCLUSIONS

Energy harvesting poses new challenges in terms of energy
management of wireless networks. In sensor networks, these
challenges are compounded by the need for balancing the
energy consumed by source coding tasks (i.e., data com-
pression) against that used for transmission. Moreover, the
correlation among the data readings collected by different
sensors, if leveraged via distributed source coding, makes
it possible to exploit spatial energy trade-offs across the
sensors, thus allowing for better performance in terms of
memory usage and distortion at the sink. Based on the
above, this work has proposed a dynamic online optimization
strategy for multihop wireless sensor networks with energy
harvesting capabilities. This strategy jointly optimizessource
coding and data transmission activities for time-varying
sources and channels, by ensuring queue stability at the
nodes and energy neutrality. The proposed technique, based
on Lyapunov optimization, has been analytically shown to
be characterized by a(V, 1/V ) trade-off, revealing a linear
relationship for queue and battery size (V ) and an inverse
proportionality in terms of optimality gap (1/V ), whereV
is a tunable parameter of the algorithm. Numerical results
have demonstrated the key role of source correlation and
distributed source coding in the system performance.
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APPENDIX A
PROOF OFTHEOREM 3.1

Proof: Define asφ∗ the optimal value of the following
problem:

minimize V
∑

n∈N

∑

oi∈O

ρoi

K∑

k=1

ϑ
(oi)
k fn

(
D

(oi)
n,[k]

)
(40)

subject to:

g(X , oi)− log(2πe)|X |
∏

n∈X

D
(oi)
n,[k]

≤
∑

n∈X

R
(oi)
n,[k], for all X ⊆ N , oi ∈ O, k ∈ [1, . . . ,K], (41)

∑

oi∈O

ρoi

K∑

k=1

ϑ
(oi)
k

R
(oi)
n,[k]

b
+
∑

si∈S

ρsi

K∑

k=1

̺
(si)
k µ∗,n(P

(si)
k , si)

≤
∑

si∈S

ρsi

K∑

k=1

̺
(si)
k µn,∗(P

(si)
k , si), for all n ∈ N , (42)

∑

si∈S

ρsi

K∑

k=1

̺
(si)
k

(
P

(si)
n,[k]

)
+
∑

oi∈O

ρoi

K∑

k=1

ϑ
(oi)
k P c

n

(
R

(oi)
n,[k]

)

=
∑

hi∈H

ρhi

K∑

k=1

ϕ
(hi)
k H̃

(hi)
n,[k], for all n ∈ N , (43)

0 ≤ ϑ
(oi)
k , ̺

(si)
k , ϕ

(hi)
k ≤ 1,

for all oi ∈ O, si ∈ S,hi ∈ H, k ∈ [1, . . . ,K],
K∑

k=1

ϑ
(oi)
k = 1,

K∑

k=1

̺
(si)
k = 1,

K∑

k=1

ϕ
(hi)
k = 1,

for all oi ∈ O, si ∈ S,hi ∈ H,

0 ≤ R
(oi)
n,[k] ≤ Rmax, Dmin ≤ D

(oi)
n,[k] ≤ Dmax,

for all n ∈ N , oi ∈ O, k ∈ [1, . . . ,K],

0 ≤ P
(si)
n,[k] ≤ Pmax, for all n ∈ N , si ∈ S, k ∈ [1, . . . ,K],

0 ≤ H̃
(hi)
n,[k] ≤ hi,n, for all n ∈ N ,hi ∈ H, k ∈ [1, . . . ,K],

where the minimization is taken over variablesϑ(oi)
k , ̺(si)k ,

ϕ
(hi)
k , R

(oi)
n,[k], D

(oi)
n,[k], H̃

(hi)
n,[k] and P

(si)
n,[k] for all n ∈ N ,

oi ∈ O, si ∈ S, hi ∈ H and k ∈ [1, . . . ,K], with

K = 2N + 2. Variables
{
R

(oi)
n,[k]

}K

k=1
and

{
D

(oi)
n,[k]

}K

k=1
can

be interpreted, respectively, as the set of rates and distortions
selected by noden ∈ N when the source state isO(t) = oi.
Specifically, noden selects rateR(oi)

n,[k] and distortionD(oi)
n,[k]

with probability ϑ
(oi)
k when the source state isO(t) = oi.

Variables
{
P

(si)
n,m,[k]

}K

k=1
can be seen as the transmission

powers allocated to link(n,m) ∈ L, when the channel state
S(t) = si. Each powerP (si)

n,m,[k] is selected with probability

̺
(si)
k if S(t) = si. Finally, variables

{
H̃

(hi)
n,[k]

}K

k=1
represent

the harvested energy when the energy harvesting state is
H(t) = hi = [hi,1, . . . , hi,N ]. Each energỹH(hi)

n,[k] is selected

with probabilityϕ(hi)
k if H(t) = hi. Note that we added the

constantV in the optimization function for our later analysis.
Theorem A.1: The optimal network costF ∗

0 satisfies the
following inequality:

V F ∗
0 ≥ φ∗, (44)

where φ∗ is the optimal value of the optimization prob-
lem (40). The proof of Theorem A.1 is in Appendix B.

A generally looser lower bound can be evaluated by the
weak duality in Lagrange optimization theory [32], which
is easily seen to lead to Theorem 3.1. In fact, in (18), the
parametersλ(oi)

m for m = [1, . . . , 2N − 1] and oi ∈ O
are theL(2N − 1) Lagrange multipliers corresponding to
constraints (41), parametersυn for n = [1, . . . , N ] are
the Lagrange multipliers corresponding to constraints (42)
and parametersχn for n = [1, . . . , N ], are the Lagrange
multipliers corresponding to constraints (43).

APPENDIX B
PROOF OFTHEOREM A.1

Proof: We follow an argument similar to the one used
in [15]. Consider any stable policyπ, i.e., a policy such that
the condition (14) is satisfied underπ. SinceE[µ∗,n(t) +
Rn(t)/b − µn,∗(t)] ≤ (N − 1)µmax + Rmax/b, from [28,
Theorem 2.8], constraint (14) implies the mean rate stability
constraint and thus the condition

limsup
T→∞

1

T

T−1∑

t=0

E

[
µ∗,n(t) +

Rn(t)

b

]
≤

liminf
T→∞

1

T

T−1∑

t=0

E[µn,∗(t)],

(45)

for each noden ∈ N . We thus relax problem (40) by
substituting (14) with (45). We further relax the energy
availability constraint (11), imposing average stabilityfor the
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energy queues (see (12))

limsup
T→∞

1

T

T−1∑

t=0

E[Pn(t)+P c
n(Rn(t))]

= limsup
T→∞

1

T

T−1∑

t=0

E[H̃n(t)].

(46)

For the relaxed problem, we can show as in [15] that the
optimal policy is stationary and depends only on the source
and channel state. From this, by Caratheodory’s theorem [35],
we obtain that the problem at hand is equivalent to (40).

APPENDIX C
PROOF OFTHEOREM 5.1

Proof:
1) From the energy harvesting part of the algorithm, we
have thatEn(t) ≤ θn, since harvesting is performed only
when En(t) < θn and the maximum amount of harvested
energy in that case isθn − En(t). This proves (31). We
now prove (32) by induction ont. Inequality (32) holds for
t = 0, sinceUn(0) = 0 for all n. Then, assuming that (32)
is satisfied for alln at timet, we show that it holds also for
time t+ 1. To this end, we consider separately the different
possible cases in which a noden receives or not data from
other nodes (i.e., endogenous data) and/or acquires or not its
measurement (i.e., exogenous data). First, if noden receives
neither endogenous nor exogenous data, then we have that
Un(t+1) ≤ Un(t) ≤ γnV +Rmax, which proves the claim.
Second, assume that noden ∈ N receives endogenous, but
not exogenous, data. It follows from (25) that, for some node
m ∈ N , with m 6= n, we must have

Un(t) ≤ Um(t)− δ ≤ γnV +Rmax − δ. (47)

However, since any node can receive at mostlmaxµmax bits
per channel use of endogenous data, we have from (47) and
the definition ofδ that Un(t + 1) ≤ γnV ≤ γnV + Rmax,
which proves the claim.

We now analyze the case where noden receives exoge-
nous, but not endogenous, data. This implies thatrn > 0 is
obtained from the solution of problem (23). We define the
corresponding Lagrangian function as

L(r,d,λ,υ) =

=
∑

n∈N

[Un(t)rn − (En(t)− θn)P
c
n(rn) + V fn(dn)]

+
∑

m

λm

[
g(Xm,O(t))− log

(
(2πe)|Xm|

∏

l∈Xm

dl

)

−
∑

l∈Xm

rl

]
+
∑

n∈N

υn(dn −Dmax), (48)

where we have relaxed the constraints (8) and constraints
dn ≤ Dmax. The Lagrange dual function is given by

G(λ,υ) = inf
r,d

L(r,d,λ,υ), (49)

where the infimum is taken with the constraints0 ≤ rn ≤
Rmax anddn ≥ 0, and the dual problem is given by:

maximize
λ�0,υ�0

G(λ,υ). (50)

Lemma C.1: Any dual optimal vectorλ∗ (i.e., a vectorλ
maximizing (50)) satisfies the conditions

∑

m: n∈Xm

λ∗
m ≤ γnV, (51)

for all n ∈ N . Moreover, any primal optimalr∗n satisfies the
condition

r∗n = argmin
0≤rn≤Rmax

Un(t)rn − (En(t)− θn)P
c
n(rn)

− rn
∑

m: n∈Xm

λ∗
m.

(52)

The proof of Lemma C.1 can be found in Appendix D.
According to (52) we have thatr∗n > 0 is an optimal

solution of problem (23) only if the value of the right-hand
side of (52) evaluated atrn = 0 is larger than the value
obtained by evaluating it atr∗n, which can be expressed,
using (10), as

Un(t)r
∗
n + (θn − En(t))αnr

∗
n − r∗n

∑

m: n∈Xm

λ∗
m ≤ 0. (53)

From (31), (51) and (53), we further obtain:

Un(t) ≤
∑

m: n∈Xm

λ∗
m ≤ γnV, (54)

which implies that a noden receives exogenous data from
outside the network only whenUn(t) ≤ γnV . Hence,
recalling thatRn(t) ≤ Rmax, we obtain the desired result
Un(t+ 1) ≤ γnV +Rmax.

Finally, if a noden receives both endogenous and exoge-
nous data, we have from (47) thatUn(t) ≤ γnV − lmaxµmax.
Since a noden can receive at mostlmaxµmax bits per channel
use of endogenous data andRmax bits per channel use of
exogenous data, we have the desired inequalityUn(t+1) ≤
γnV +Rmax, which completes the proof of part 1).
2) To prove the claim, we need to show that if

En(t) < αnRmax + Pmax, (55)

then the following two conditions must be satisfied:

a) the Rate-Distortion problem (23) is minimized by choos-
ing Rn(t) = r∗n = 0 (which impliesP c

n(t) = 0) for all
n ∈ N ;

b) the Power Allocation problem (25) selects a power matrix
P(t) such thatPn(t) = 0 for all n ∈ N .

From Lemma C.1, and in particular from (52), condition a)
is verified if

Un(t)rn − (En − θn)P
c
n(rn)

− rn
∑

m: n∈Xm

λ∗
m > 0, for all rn > 0, (56)
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where we recall thatλ∗ is any optimal dual vector of
problem (50). This is proved by the following inequalities:

Un(t)rn − (En − θn)αnrn − rn
∑

m: n∈Xm

λ∗
m

> Un(t)rn +
γn
βn

V αnrn − rn
∑

m: n∈Xm

λ∗
m

≥ Un(t)rn +
γn
βn

V αnrn − rnγnV

= Un(t)rn + γnV
(αn − βn)rn

βn
≥ 0

where the first inequality follows from (55) and the assump-
tion of Theorem 5.1 thatθn = γn

βn
V + αnRmax + Pmax;

the second from (51); and the last inequality follows from
Un(t) ≥ 0, rn > 0 and from the definition ofβn. This
proves (56) and thus that condition a) is satisfied if (55) holds.

To prove b) we first note that the bound (32) implies that
the weight (24) satisfies the inequality

Wn,m(t) = max{Un(t)− Um(t)− δ, 0}
≤ γnV − lmaxµmax, (57)

for all (n,m) ∈ L and for all time t. We now show by
contradiction that condition b) holds when (55) is satisfied.
To this end, assume that the power allocation vectorP∗ that
maximizes (25) at timet is such that some entryP ∗

n,m is
positive. Starting fromP∗, we now obtain a new power
allocation vectorP, in which we setPn,m = 0. Clearly,
the power matrixP is also feasible. We demonstrate that the
objective function of (25) when evaluated atP∗ is smaller
than atP, thus leading to a contradiction. Denoting asG(P)
the objective function of (25), this is shown by the following
inequalities:

G(P∗)−G(P) =

=
∑

n∈N

∑

l∈N\n

[Cn,l(P
∗,S(t))− Cn,l(P,S(t))]Wn,l(t)

+(En(t)− θn)P
∗
n,m

≤ Cn,m(P∗,S(t))Wn,m(t) + (En(t)− θn)P
∗
n,m

≤ Cn,m(P∗,S(t))(γnV − lmaxµmax) + (En(t)− θn)P
∗
n,m

≤ (γnV − lmaxµmax)ξP
∗
n,m + (En(t)− θn)P

∗
n,m

< (γnV − lmaxµmax)ξP
∗
n,m − γn

βn
V P ∗

n,m < 0,

where the first inequality derives fromµn,l(P
∗,S(t)) −

µn,l(P,S(t)) ≤ 0 for all l 6= m (Property 2), the second
from (57), the third fromProperty 1 and the fourth from (55).
This shows thatP∗ is not optimal for (25), thus leading to
a contradiction, which completes the proof of 2).
3) The proof of 3) is a relatively simple application of
the general theory of [26] [28]. The details are provided
in the following for completeness. We first define the stan-
dard one-slot conditional Lyapunov Drift-plus penalty of the
queuesE(t) and U(t). To this end, we defineZn(t) =
(Un(t), En(t)− θn) and the corresponding vectorZ(t) =

(U(t),E(t) − θ). Following the standard definition [28], the
quadratic perturbed Lyapunov function is given by

L(Z(t)) =
1

2

N∑

n=1

||Zn(t)||2

=
1

2

N∑

n=1

(Un(t))
2 +

1

2

N∑

n=1

(En(t)− θn)
2

= L(U(t)) + L(E(t)− θ), (58)

while the one-slot conditional Lyapunov drift∆(Z(t)) is

∆(Z(t)) = E [L(Z(t+ 1))− L(Z(t))|Z(t)] . (59)

The proof of the following lemma can be found in Ap-
pendix E.

Lemma C.2: Under any feasible policy for problem (15)
we have the inequality

∆(Z(t)) ≤ B̃ +
∑

n∈N

Un(t)E[−µn,∗(t) + µ∗,n(t)

+Rn(t)|Z(t)] +
∑

n∈N

(En(t)− θn)E
[
− P c

n(Rn(t))

−Pn(t) + H̃(t)|Z(t)
]
, (60)

with B̃ = N
(
µmax(µmax +Rmax) +R2

max/2
)

+
N/2(H2

max + α2
nR

2
max + P 2

max + 2αnRmaxPmax).
The proposed policy is based on the minimization

of the drift-plus-penalty function [26] [28]∆(Z(t)) +

V E

[∑
n∈N fn(Dn(t))

∣∣∣Z(t)
]
. This amounts to finding a

policy that minimizes the right-hand side of (61) (where
the inequality follows from (60)). Minimization of (61) is
done with respect to(R(t),D(t), H̃(t),P(t)) for the given
(S(t),O(t),H(t),U(t),E(t)) under the constraints (8) and
0 ≤ Rn ≤ Rmax, Dmin ≤ Dn ≤ Dmax, as per definition
of policy in Section II-E. It is now not difficult to see that,
similar to [7], by Lagrangian relaxation of the constraints(8),
the dual function of the said minimization problem, when
considering fixedO(t) = oi, S(t) = sj , H(t) = hk and
fixed queue lengths(U(t),E(t)), is given by d̃(λ(oi)) =
doi,sj ,hk

(λ(oi),U(t),E(t)− θ) as defined in (19). Note that
the Lagrange multipliersλ(oi) are associated to the con-
straints (8). Moreover, by convexity and Slater’s conditions,
we have that strong duality holds, and thus the minimum
of (61) equals̃d(λ(oi)) for a given valueλ(oi) = λ(oi)∗.

From the discussion above, the minimum of the right-hand
side of the bound (61) equals

B̃ + E[doi,sj ,hk
(λ(oi)∗,U(t),E(t) − θ)|Z(t)] =

= B̃ + d(λ∗,U(t),E(t) − θ) (62)

for someλ∗ ∈ R
L(2N−1)
+ (λ∗ collects allλ(oi)∗). But by

Theorem 3.1, we have that

V F ∗
0 ≥ d(λ∗,U(t),E(t)− θ). (63)
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∆(Z(t)) + V E

[
∑

n∈N

fn(Dn(t))
∣∣∣Z(t)

]
≤ B̃ +

∑

n∈N

(En(t)− θn)E
[
H̃n(t)|Z(t)

]

+E

[
∑

n∈N

(Un(t)Rn(t)− (En(t)− θn)P
c
n(Rn(t)) + V fn(Dn(t)))

∣∣∣Z(t)
]

−E

[
∑

n∈N

(
∑

m: (n,m)∈L

Cn,m(P(t),S(t))(Un(t)− Um(t)) + (En(t)− θn)Pn(t)

)∣∣∣∣∣Z(t)
]
. (61)

From (61), we can now write that for the considered policy
that minimize (61), we have the inequality

∆(Z(t)) + V E

[
∑

n∈N

fn(Dn(t))

∣∣∣∣∣Z(t)
]
≤ B̃ + V F ∗

0 . (64)

Moreover, taking expectation overZ(t) and summing the
above overt = 0, . . . , T − 1, we have:

E[L(Z(T ))− L(Z(0))] + V

T−1∑

t=0

E

[
∑

n∈N

fn(Dn(t))

]

≤ T B̃ + TV F ∗
0 . (65)

Rearranging the terms, using the fact thatL(Z(t)) ≥ 0 and
L(Z(0)) = 0, dividing both sides byV T , and taking the
limsup asT → ∞, we get:

limsup
T→∞

∑

n∈N

1

T

T−1∑

t=0

E[fn(Dn(t))] ≤ F ∗
0 +

B̃

V
. (66)

This shows that our policy satisfies the desired claim.
It remains to be discussed whether the proposed policy

does indeed minimize (61). It can be seen, similar to [7] that
the proposed policy minimizes a modified version of (61)
where(Un(t)−Um(t)) is replaced bymax{Un(t)−Um(t)−
δ, 0} (cf. (24)). Moreover, when(θn − En(t)) < Hn(t), we
harvest a reduced amount of energy. This implies that the
right-hand side of (61) under the proposed policy is generally
larger than with the policy discussed above that minimizes
the right-hand side of (61). However, the loss is at most

0 ≤
∑

n∈N

∑

m: (n,m)∈L

µn,m(t)δ ≤ Nδlmaxµmax (67)

for the power allocation part of the algorithm, and

0 ≤
∑

n∈N

(θn − En(t))(Hn(t)− (θn − En(t))) ≤
NH2

max

4

(68)
for the energy harvesting. This shows that (66) also holds for
the proposed policy as long as we substituteB̃ with B. This
concludes the proof.

APPENDIX D
PROOF OFLEMMA C.1

Proof: Let λ∗ andυ∗ be an optimal solution of the dual
problem (50), andr∗ = [r∗1 , . . . , r

∗
N ] andd∗ = [d∗1, . . . , d

∗
N ]

be an optimal solution of the (primal) problem (23). Exis-
tence of(r∗,d∗) and (λ∗,υ∗) is guaranteed by Weierstrass
theorem [36, Proposition 2.1.1] and by Slater’s condition [36,
Proposition 3.5.4, part a)]. By [36, Proposition 6.1.1], the
following conditions must be satisfied byd∗ and (λ∗,υ∗):
primal feasibility, namelyd∗n ≤ Dmax, and the comple-
mentary slackness conditionsυ∗

n(d
∗
n − Dmax) = 0 for all

n ∈ N , and (r∗,d∗) = argmin L(r,d,λ∗,υ∗) where the
minimization is taken under the constraintsdn ≥ Dmin and
0 ≤ r∗n ≤ Rmax for all n ∈ N . From (48), the given
conditions imply that

V fn(Dmax)− log(Dmax)
∑

m: n∈Xm

λ∗
m

−
(
V fn(d

∗
n)− log(d∗n)

∑

m: n∈Xm

λ∗
m

)
≥ 0,

(69)

must be satisfied. This is because the Lagrangian
L(r,d,λ∗,υ∗) when evaluated atdn = d∗n should be no
larger than fordn = Dmax. We thus have the inequalities

∑

m: n∈Xm

λ∗
m ≤ fn(d

∗
n)− fn(Dmax)

log(d∗n/Dmax)
V

≤ sup
Dmin≤dn≤Dmax

[
fn(dn)− fn(Dmax)

log(dn/Dmax)

]
V = γnV,

where the second inequalities follows sinceDmin ≤ d∗n ≤
Dmax and the third from the definition ofγn.

APPENDIX E
PROOF OFLEMMA C.2

Proof: First, let us consider the time evolution of the
data queueUn(t) of a generic noden. By squaring both sides
of (13) and using the fact that for anyx ∈ R, (max(x, 0))2 ≤
x2, we have:

(Un(t+ 1))2 − (Un(t))
2 = (max(Un(t)− µn,∗(t), 0)

+µ∗,n(t) +Rn(t))
2 − (Un(t))

2

≤ (µn,∗(t))
2 + (µ∗,n(t) +Rn(t))

2 − 2µn,∗(t)(µ∗,n(t)

+Rn(t)) + 2Un(t)(−µn,∗(t) + µ∗,n(t) +Rn(t))

≤ (µn,∗(t))
2 + (µ∗,n(t) +Rn(t))

2

+2Un(t)(−µn,∗(t) + µ∗,n(t) +Rn(t)). (70)
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By definingBU = µmax(µmax +Rmax) +R2
max/2, we then

see that:
1

2
[(Un(t+ 1))2 + (Un(t))

2]

≤ BU + Un(t)[−µn,∗(t) + µ∗,n(t) +Rn(t)]. (71)

Similarly, let us consider the perturbed evolution of the
energy queueEn(t). By squaring both sides of (12) we have:

(En(t+ 1)− θn)
2 − (En(t)− θn)

2 =

= (En(t)− P c
n(Rn(t)) − Pn(t) + H̃n(t)− θn)

2

− (En(t)− θn)
2

= (−P c
n(Rn(t)) − Pn(t) + H̃n(t))

2

+2(En(t)− θn)(−P c
n(Rn(t)) − Pn(t) + H̃n(t)). (72)

By defining BE = 1
2 (H

2
max + α2

nR
2
max + P 2

max +
2αnRmaxPmax), we then see that:

1

2

[
(En(t+ 1)− θn)

2 − (En(t)− θn)
2
]

≤ BE + (En(t)− θn)(−P c
n(Rn(t))− Pn(t) + H̃n(t)). (73)

Now by summing (71) and (73) over alln ∈ N ,
and by defining B̃ = N(BU + BE) =
N
(
µmax(µmax +Rmax) +R2

max/2
)

+ N/2(H2
max +

α2
nR

2
max + P 2

max + 2αnRmaxPmax), we have:

L(Z(t+ 1))− L(Z(t)) ≤ B̃

+

N∑

n=1

Un(t)(−µn,∗(t) + µ∗,n(t) +Rn(t))

+

N∑

n=1

(En(t)− θn)(−P c
n(Rn(t))− Pn(t) + H̃n(t)]. (74)

Taking the expectation on both sides over the random obser-
vation, channel and energy harvesting and conditioning on
Z(t), the lemma follows.

APPENDIX F
SOURCE MODEL

Here we present a simple source model for which we
determine numerical results in Section VII. Let the source
signals measured at sensors inN be spatially correlated with
parameterω. Since the measurements are Gaussian we can
write for theith sensorXi =

√
ωA+

√
1− ωBi, with A and

Bi independent Gaussian random variables with zero mean
and unitary variance. Moreover, we assume that the sink is
able to measureA with an accuracy that depends on the rate
Rd used for acquisition. From standard rate-distortion theory,
we have the relationshipRd = I(A;Y ), whereY is the side
information available at the sink. By choosing the optimal
test channelY =

√
ωdA+

√
1− ωdC, whereωd denotes the

correlation between the measurementY at the sink andA
(see, e.g., [5]), we obtain the equations reported in the text.


