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Abstract—Energy-harvesting wireless sensor networkingis an ~ Given the interest outlined above, the problem of designing
emerging technology with applications to various fields sutas gptimal transmission protocols for energy harvesting lese
environmental and structural health monitoring. A disting uish- sensor networks has recently received considerable iattent

ing feature of wireless sensors is the need to perform both In th ilable body of K . d below in Section I-B
source coding tasks, such as measurement and compression,n € avallable body of work reviewed below In section [-B,

and transmission tasks. It is known that the overall energy the only source of energy expenditure is the energy used
consumption for source coding is generally comparable to tht for transmission. This includes, e.g., the energy used by
of transmission, and that a joint design of the two classes of the power amplifiers. However, a distinguishing feature of
tasks can lead to relevant performance gains. Moreover, the sensor networks is that the sensors have not only to carry
efficiency of source coding in a sensor network can be poteafly L . .
improved via distributed techniques by leveraging the factthat out transmission tasks, t_)m alsensing and Sou_rce coding .
signals measured by different nodes are correlated. tasks, such as compression. The source coding tasks entail
In this paper, a data gathering protocol for multihop wireless a non-negligible energy consumption. In fact, referende [4
sensor networks with energy harvesting capabilities is stlied demonstrates that the overall cost required for compressio
whereby the sources measured by the sensors are correlated.iS comparable with that needed for transmission, and that a

Both the energy consumptions of source coding and transmis- . . . o
sion are modeled, and distributed source coding is assumed.JoINt design of the two tasks can lead to significant energy

The problem of dynamically and jointly optimizing the source Saving gains. Another distinguishing feature of sensor net
coding and transmission strategies is formulated for time- works is that the efficiency of source coding can be improved

varying channels and sources. The problem consists in the via distributed source coding techniques (see, e.g., [5]) by

minimization of a cost function of the distortions in the souce leveraging the fact that sources measured by differenbsens
reconstructions at the sink under queue stability constramts.
are generally correlated (see, e.g., [6]).

By adopting perturbation-based Lyapunov techniques, a clse-
to-optimal online scheme is proposed that has an explicit
and controllable trade-off between optimality gap and quee A. Contributions

sizes. The role of side information available at the sink is hi f h . irel
also discussed under the assumption that acquiring the side N thiS paper, we focus on an energy-harvesting wireless
information entails an energy cost. It is shown that the presnce Sensor network and account for the energy costs of both

of side information can improve the network performance boh  source coding and transmission. Moreover, we assume that
in terms of overall network cost function and queue sizes. the sensors can perform distributed source coding to Igeera
Index Terms—Wireless Sensor Networks, Data Gathering, the correlation of the sources measured at different sensor
Energy Harvesting, Distributed Source Coding, Lyapunov Op A key motivation for enabling distributed source coding in
timization. energy-harvesting networks is that this enables sensdhs wi
correlated measurements to trade energy resources among
I. INTRODUCTION them, to an extent determined by the amount of correlation.

Wireless sensor networks have found applications in 9" instance, a sensor that is running low on energy can
large number of fields such as environmental sensing ap@nefit from the energy potentially available at a nearbyenod
structural health monitoring [1]. In such applicationsge thif the latter has correlated measurements. This is because,
maintenance necessary to replace the batteries when #&ough distributed source coding, the transmission regui
pleted is often of prohibitive complexity, if not impossibl Ments on the first sensor are eased by the transmission of
Therefore, sensors that harvest energy from the enviropméi®rrelated information from the nearby sensor.

e.g., in the form of solar, thermal, vibrational or radio We study the problem of dynamically and jointly opti-

energy [2] [3], have been proposed and are now commercialyjzing the source coding and transmission strategies over
available. time-varying channels and sources. The problem consists in

_ S o the minimization of a cost function of the distortions in the
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strategy with weight perturbation developed in [7]. We devi -
an efficient online algorithm that only takes actions based 0 ° el C\\
on the harvested energy, on the current state of channel, o
gueues and energy reserves, and also based on the statistic
description of the source correlation. We prove that the
proposed policy achieves an average network cost that can be e e
made arbitrarily close to the optimal one with a controkabl
trade-off between the sizes of the queues and batteries. e

We also investigate the role of side information available
?‘t the S,Ink undgr the assumption that acquiring the Slg%ure 1. A setN of energy-harvesting nodes communicate correlated
information entails an energy cost. It is shown that prapertources to a destinatios. For the more general model of Section VI, the
allocating the available (harvested) energy to both thkstaglestinationd acts as a cluster head and communicates to a network collecto
of transmission and side information measurement hasfsigrﬁ%ieirgf;mi o ‘iﬁfg?gt;mz)ih'g éﬂ'jréiie;{e“a"s‘fﬁ'e'dthbey;‘ﬁg’;” collect
icant benefits both in terms of overall network cost function
and queue sizes.

: studied the trade-offs between energy used for compression
B. Prior Work . L
or more generally source coding, and transmission by as-

We start by introducing related prior work that assumegming i.i.d. source and channel processes and arbitrarily
energy harvesting. The literature on this topic is quickligrge data buffer. Using Lyapunov optimization techniques
increasing in volume but it mostly (with the exception of)[8] 3 policy with close-to-optimal power expenditure and an
accounts only for the energy consumption of the transmissigyp|icit trade-off with the delay is derived for a given aage
component, and does not model the contribution of the sourgi8tortion. The problem of optimal energy allocation betwe
coding part. In this context, references [9] and [10] stddiesource coding and transmission for a point-to-point system
the problem of maximizing the throughput or minimizingyas studied in 8].
the completion time for a single link energy-harvesting Finally, distributed source coding techniques for multiho
system by focusing on both offline and online policies (segnsor networks has been studied in [24] and [25]. In [24],
also [11], [12]). A related work is also reference [13] thaghe problem of optimizing the transmission and compression
finds a power allocation policy that stabilizes the data @uedtrategy was tackled under distortion constraints in araént
whenever feasible. Still, for a point-to-point system,ngsi jzed fashion, whereas [25] proposes a distributed algorith
large deviation tools, the effect of finite data queue lemgtth  that maximizes an aggregate utility measure defined in terms
battery size is studied in [14] in terms of scaling results & the distortion levels of the sources. Both these works do

the battery and queue grow large. We now consider work @@t consider energy harvesting nor the energy consumption
multihop energy-harvesting networks. As mentioned abovgs, the sensing process.

all the works at hand only account for the energy used for
transmission. Moreover, source correlations and diseibu C. Paper organization

source coding are not accounted for. In [7] assuming in- ) ) )
dependent and identically distributed (i.i.d.) channeitest The rest of the paper is organized as follows. In Section Il

and energy harvesting processes, a Lyapunov optimizati§R present the system model an_d we state the optimization
technique with weight perturbation [15] is leveraged tgroblem. In Section Ill we obtain a lower bound on the
obtain approximately optimal strategies in terms of a gelnePpt'mal network cost for the prop_osed pro_blem. In Sec_t|0n v
function of the data rates under queue stability consgaintVe Present the proposed algorithm designed following the
The proposed technique obtains an explicit trade-off imger Lyapunov optimization framework and we show how it can
of data queue length and battery size. An extension of tt{}§ implemented in a distributed fashion. Section V fornesliz
work that assumes more general arrival, channel state 4R Main results of our paper and provide analytical insight
recharge processes along with finite batteries and queuel@ the performance of the proposed policy. Section VI
put forth in [16]. Also related are [17], [18] and [19] thatPrOPOS€S an extended version of the pr_oblem, where the
tackle similar problems. sink node acts as a cluster head that is able to acquire
We now discuss work that accounts for the energy trageQrrelated side .information to improve the _system perfor-
offs related to source coding and transmission. These wofR&Nce. In Section VII we prove the effectiveness of our
(except [8]) do not model the additional constraints ag-sinanalytlcal anaIyS|§ and discuss the impact of the optirntnat
from energy harvesting. Moreover, they do not allow foparameters. Section VIl concludes the paper.
distributed source coding. The joint design of source ogdin
and transmission parameters is investigated through wario Il. SYSTEM MODEL
algorithms, for either static scenarios in [20], [21] or dymic We consider a wireless network modeled by a direct graph
scenarios in [22], [23]. Specifically, references [22] aB8][ G = (N U {d}, L), where N/ = {1,2,..., N} is the set



of nodes in the networld is the destination (or sink), andstate S(¢). Moreover, following [7], we assume that the
L C {(n,m): n,m € NU{d},n # m} represents the set offunction C,, ,,,(P(t), S(¢)) satisfies the following properties:
communication links, see Fig. 1 for an illustration. We defin Property 1. For any power allocation matri(¢), we
Imax @s the maximum number of transmission links that arhave:

noden € N U {d} can have. As discussed below, we allow Crm(P(t),S(t)) < EPym(t), (4)
for fairly general interference models. We will consider ?o
more general model in Section VI in which the sink acts
as a cluster head for the set of nod¥s and reports to a
collector node: (see Fig. 1).

r some finite constarg > 0;

Property 2: For any power allocation matri(¢) and
matrix P’(¢) obtained byP(¢) by setting the entryP,, ,,,(t)
to zero for a given'n, m) pair, we have:

A. Transmission Model Cap(P(1), S(t)) < Cap(P'(1),S(t)), )

The transmission model follows the framework offor all (a,b) € £, with (a,b) # (n,m).
e.g., [26]. According to this model, the network operates in Note that both properties are satisfied by typical choices of
slotted time and, at every time slot= 1,2, ..., each node functionC, ,,(P(t),S(¢)) such as (3). In factProperty 1 is
n € N allocates power, ,,(t) > 0 to each outgoing link satisfied if functiorC,, ., (P(¢), S(t)) is concave with respect
(n,m) € L for data transmission. In what follows, we refef0 P (t), While Property 2 states that interference due to
to the number othannel uses (or transmission Symbo|s) perpower spent on other links cannot be benefi@:iﬁlnally, we
time slot as the baud rate multiplied by the slot duration. Atefine the total outgoing transmission ratg .(¢) from a
the generic time slot we defineP(t) = {P,..(t)}, with noden € N attimet as
(n,m) € L, as the power allocation matrix and the total _
transmission power of node, that is (1) = Z Hnm () ©

m: (n,m)eL
Put)= Y Pum(), (1) and the total incoming transmission rate ,,(¢) at a node
m: (n,m)eL n e N as
which is assumed to satisfy the constraibt(t) < Puax, fon(t) = (Z) L“’”»ﬂ(t)' @)
m: (m,n)e

for some Pp.x < oo. The transmission rate, ., (t) on
link (n,m) depends on the power allocation mati(t) . ) ) )
and on the currenthannel state S(t) = {S,.(t)} with B. Data Acquisition, Compression and Distortion Model

(n,m) € L. The latter accounts, for instance, for the current At each time slot, each node of the network is able to
fading channels or for the connectivity conditions on theense the environment and to acquire spatially correlated
network links. We assume th&(t) takes values in some measurements. The measurements are then routed through

finite setS = (s1,S,, ..., S ), IS constant within a time slot, the network to be gathered by a sink node, as illustrated in
but is independent and identically distributed (i.i.d.yass Fig. 1. Before transmission, the acquired data is compdesse
time slots. We uses, = Pr[S(t) =s;] for i = 1,..., M. Vvia adaptive lossy source coding by leveraging the spatial
We write correlation of the measurements. Specifically, we define the
finm () = Cpm (P(t), S(t)), (2) source state at time ¢ as the spatial correlation matrix

describing the signal within this time slot, which is refsr
where Cy, ,»(P(t),S(t)) is the capacity-power curve forto asO(t) = {0, .(t)} with n,m € N. We assume that
link (n,m) expressed in terms of bits per channel usg(¢) takes values in some finite sé& = {0y,0,,...,0.},
(transmission symbol). The latter depends on the specifi§mains constant within a time slot, but is i.i.d. acrossetim
network transmission strategy, which includes the mothrat sjots. Additionally, we define the mg,, = Pr[O(t) = o).
and coding/decoding schemes used on all links. We assupigch node: € V' compresses the measured source with rate
that function C,, ,»(P(t), S(¢)) is continuous inP(t) and R, (¢) < Ry.x bits per source symbol and targets a repro-
non decreasing inP, ,(t). An example of the function duction distortion at the sink ob,,;, < Dy (t) < Diax,
Cy,m(P(t),S(t)) is the Shannon capacity obtained by treatyith 0 < Riax, Dinin < Dmax < 0. Note that imposing
ing interference as noise at the receivers, namely a strictly positive lower bound orD,,(t) is without loss
P (S (1) of g(_anerality because the rafe,(¢) is_upp(_er bounded by
LM, m , a finite constant and therefore the distortibn, () cannot
N0+Z(l,n)€£ Pl(t)Sl-,n(t)> in general be made arbitrarily small (see, e.g., [5]). The
(3) distortion is measured according to some fidelity criterion
Euch as mean square error (MSE). We define the rate vector
as R(t) = (R1(t),...,Rn(t)) and the distortion vector as

Crm(P(t),S(t)) o log (1 +

where S, ,,,(t) represents the channel power gain on lin
(n,m) and Ny is the noise spectral density. We assume th

there exists some finite ConSta@&laX such thatﬂnam(t) < 2This may not be the case if sophisticated physical layerrigcies are
Imax Tor all ¢, any power allocation vectd?(t) and channel used, such as successive interference cancelation (see58.
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valid for any distortion tupldD(¢) if the sources are jointly
Gaussian.

As an example, the rate region f&f = {1, 2} is sketched
in Fig. 2. The rates?; (t) and R (t) at which the two source
sequences are acquired and compressed at the two nodes can
be traded with one another without affecting the distogion

/ of the reconstructions at the sink, as long as they remain in
© / the shown rate region (8).

a(t) + Ba(t) = ) We account for the cost of source acquisition and com-

9({1,2},0(t)) — log((2me)* D1 (t) Da (1)) pression by defining a functioR¢(R,,(t)) that provides the
power spent for compressing the acquired data at a panticula
rate R, (t). For the sake of analytical tractability, we assume
that each functiorP$(R,,(t)) is

[~ 9{2},0(1)) — log(2reDs (1)

C 9({1},0(t)) ~ log(2reDs (1)) Ri(1) " .
for some coefficienty,, > 0. Finally, we remark that the
destinationd is assumed not to have sensing capabilities,
Figure 2. lllustration of the rate region (8) for correlatedurces and

N = {1,2}. For all rate pairg 1 (). Ra (£)), there exists a coding cehemesand thus is not able to acquire any measurements. We will

that enables the sink to recover the two sources with digeibdistortion treat the extension to this setting in Section VI.
(MSE) levels D1 (t) and D2(t), respectively.

C. Energy Model

Every node in the network is assumed to be powered
via energy harvesting. The harvested energy is stored in an
enzrgy storage device, or battery, which is modeled as an

D(t) = (D(t),...,Dn(t)). Due to the spatial correlation
of the measurementslistributed source coding techniques

can be leveraged. Thanks to these techniques, the rate o rgy queue, as in e.g., [7]. The energy queue Bizé&)
different users can be traded without affecting the acluileva at a noden € A measures the amount of energy left in

distortions, to an extent that depends on the amount # battery of a node: at the beginning of time slot

spatial correlation [5]. The adoption of distributed S®ICor convenience, we normalize the available energy to the
coding entails that, given certain distortion lev#t), the | oo o« chan;’\el uses (transmission symbols) per slot.
ratesR(t) can be selected arbitrarily as long as they Sa‘tis{;(/ithout loss of generality, we assume unitary slot duration
apprppriate joint constraints_._ Under su_ch constraintsni S sq that the amount of power consumed for transmission and
receiving data at the §pec!fled rates is able to recover ﬁuquisition/compression is equivalent to the energy spent
sources at the given distortion levels. a time slot. Therefore, at any time slgtthe overall energy

_ To elaborate on this point, consider the following condiseq at a node ¢ A" must satisfy the availability constraint
tions on the rates,,(¢) and distortionsD,,(¢) for n € N:

Py + P(Ra(1)) < Eu(1). (11)

Z Ry (t) > g(&,0(t))—log <(27T6)X| H Dn(t)> , (8) That is, the total consumed energy due to transmission and
nex nex acquisition/compression must not exceed the energy &aila

at the node.

We denote byH,(t) < Hmax the amount of energy
arvestable by node at time slot¢, and we define the

for all X C N, whereg(X,0(t)) denotes the joint con-
ditional differential entropy of the sources measured by ti?1

nodes in the subset, where conditioning is with respect to .
: vectorH(t) = (Hy(¢),..., Hy(t)) as theenergy-harvesting
the sources measured by the nodes in the complefgat. state. We assume thalH(¢) takes value in a finite set

For instance, for jointly Gaussian sources with zero meah a

. : = {h;,h,,... hp}, and is constant for the duration

correlation matrixQ(t), we have of a time slot, but i.i.d. over time slots. Finally, we define
1 det O(t) the probabilityp,, = Pr[H(¢) = h;], which accounts for

g(¥,0(t)) = 7 log <W) ; possible spatial correlation of the harvestable energgsacr

different nodes.

whereO(t)[xn x represents the correlation submatrix of the The energy harvested at timés assumed to be available
sources measured by nodesAn\ X. If the rates satisfy for use at timef + 1. Moreover, each node € N can decide
conditions (8), it is known [27] that, for sufficiently smallhow much of the harvestable energf,(¢) to store in the
distortions and any well-behaved joint source distributio battery at time slot, and we denote the harvesting decision
the sink is able to recover all the sources within MSE levelsy H,(t), with 0 < H,(t) < H,(t). We define the harvest-

D, (t) for all n. € N. We remark that this conclusion is alsdng decision vector a#l(t) = (H,(t),..., Hx(t)). Variable



H,(t) is introduced, following [7], to address the issue ofevelsD(t), harvested energhi(t) and transmission powers
assessing the needs of the system in terms of capacitiedf). Moreover, for each node € N, let f, (D, (t)) denote
the energy storage devices. In fact, as in [7], we do not matte cost incurred by nodewhen its corresponding distortion
any assumption about the battery maximum size. HoweveristD,,(¢). We assume that each functi§(D,,(t)) is convex,
will be proved later that performance arbitrarily close he t finite and non-decreasing in the interjé@,in, Dimax]- OUr
optimal attainable with no limitations on the battery capac objective is to solve the following optimization problem:
can be achieved with finite-capacity batteries.

minimize F§ = > F7 (15)
" neN
D. Queueing Dynamics ©
. . where
We now detail the dynamics of the network queues. We =
defineE(t) = (Ey(t),...,En(t)) to be the vector of the E7 = limsup T Z E[f,(D,(t))], (16)
energy queue sizes of all nodes at titnerom the discussion T—ro0 t=0
above, for each node € V', E,(t) evolves as subject to the rate-distortion constraints (8), the enexgy-

_ _ _ pe 77 ability constraint (11) and network stability constraid#y.

Enlt+1) = Ea(t) = Pu(t) = Fi(Ba (1)) + Ha(0), (12) Note that (16) is the per-slot average cost for nade
since at each time slot, the energyP,(t) + Py (R,(t))
is consumed, while energif,(t) is harvested. We assume 1. L OWER BOUND
E,(0) >0 for all n € NV.

We also define the vectdd (¢) = (U1(t),...,Un(t)), for
each time slot, to be the network data queue backlog, whe
U, (t) represents the amount of data queued at ngdehich
is normalized on the number of channel uses per time s@ﬂ _ d e
for convenience of notation, that is it is expressed in teoins he lower bound is expresied n ter(mo? of an (g timization
bits over channel uses per slot. Denote gise ratio between ProPlem ove(g)parame(tsgﬁ( Vo= Ry, Ry and
the number of channel uses per slot and the number of souRE’ = [Di™,...,Dy”] for all o; € O, P®) with
samples per slot. Sindetypically accounts for the ratio of the entries %, for each(n,m) € £ and for alls; € S, and
channel and source bandwidth, it is conventionally referrdd(®+) — [I?l(hk), . .,I?J(J‘k)] for all hy € H. The proof is
to asbandwidth ratio, [5]. We assume that each quelig(t) based on relaxing the stability constraint (14) by imposirey
evolves according to the following dynamics: necessary condition that the average arrival rate at eaeh da
Ro(t) gueue be smaller than or equal to the average departure rate,

b and by also relaxing the energy availability constraint) (iy.

(13) requiring it to be satisfied only on average. Finally, Lagi@an
since at any time slot, each noden € A can transmit, relaxation is used on the resulting problem. The detailfef t
and thus remove from its data queue, at mest.(¢) bits proof are available in Appendix A.
per channel use, while it can receive at mpst,(t) bits Theorem 3.1: The optimal network cosf|; satisfies the
per channel use due to transmissions from other nodedowing inequality:
and R, (t)/b bits per channel use due to data acquisi- .
tion/congpr/ession. We assume ttigt(0) = 0 for all n € V. VEy 2 dA, v, ), (17)
_Following_ standard d_efinitions_ _[28], we say that the networg, 51 \ ¢ Ri@]\’fl)’v e RY,x € RY, whered(A, v, X)
is stable if the following condition holds true:

In this section, we obtain a lower bound on the optimal
I%etwork costF of problem (15). This result will be used
in Section V to obtain analytical performance guarantees
our online optimization policy, presented in Section IV.

Un(t +1) < max{Un(t) — pn (1), 0} + pra,n(t) +

is given by
T-1
1 — i
limsup — Z Z E[U,(t)] < oo. (14) d(Av, x) = Z Po; Zpsj Z Phy. o, 5; by, ()‘(0 ),U,X),
T—o00 T t=0 neN 0,€0 SjES hiyeH
(18)

Notice that the network stability condition (14) impliesath
the data queué’,(t) of each noden € N is stable in the  with dq, s n, (A®), v, x) defined in (19), where the infi-

sense thatimsup %ZtT:’Ol E[U,(t)] < co. mum is taken under constraints:
o 0 < R < R Dinins < D) < Dy, 20
E. Optimization Problem foralln e N,0; € O,
Define ©(t) = (S(t),0(t), H(t), U(t),E(t)) as the state 0 < P%) < P, foralln e N,s; € S, (21)

of the network at time slot. A (past—dependent) policy = ando < f{'éhk) <y, forallnme N hy €H. (22)
{n(t): t=1,2,...} is a collection of mappings between the ’
past and current stat§®(7): 7 = 1,...,t} and the current

decision (R(t), D(t),H(t),P(t)) on ratesR(t), distortion Proof: See Appendix A. [ |



dOi,Sj,hk (A(01)7 'U, X)

_ Z R%Oi)

{ Z Via( i Aleo [g(Xm,oi) — log ((gﬁe)lxm H D7(loi)>

(S) (hy)
R©i) D ) PG HOg m=1 nEXm

0;)
Z Un[ T+ s, n(P(J) Sj) — ,Un,*(P(sj)ij)

# 3 v [p s e ]}

nEX,, neN neN
IV. PROPOSEDPOLICY « Power Allocation: Define the weight of a linKn, m) as
In this section, we propose an algorithm designed fol- Wi om () = max{U, (t) — Un(t) — 4,0}, (24)

lowing the Lyapunov optimization framework, as developed _

in [26] [28], to solve the optimization problem (15). In par-  Whered = lmaxfimax+Rmax, and choos@ () = p with
ticular, we aim at finding an online policy for problem (15) entriesp,, , for (n,m) € L to be an (.)ptlmal solution
with close-to-optimal performance, by using Lyapunov opti  ©f the following optimization problem:

mization with weight perturbation. The technique of weight
perturbation, as proposed in [7], is used to ensure that the malelze Z Z Cn.m (P> S(1) W, m (£)

energy queues are kept close to a target value. This is done neN meN\n (25)
to avoid battery underflow in a way that is reminiscent of +(En(t) — 0n)pn |,

the battery management strategies put forth in [14], and is

further discussed below. wherep, = 37, -\, Pnoms SUDjECt to constraint8 <

The proposed policy operates by approximately minimiz-  Pn < Pmax, for eachn € NV;
ing at each time slot the one-slot conditional Lyapunov ¢ Queues Update: Update E(¢) and U(t) according
drift plus penalty [28] of the energy and data queues ((12) to (12) and (13), respectively.
and (13), respectively) of the network. The optimization Remark 4.1: In the algorithm proposed above, the energy
is done in an on-line fashion based on the knowledge afailability constraint (11) is not explicitly imposed. e
the current channel statg(¢), observation stat®(¢), data ever, as discussed in Section V, with a proper choice of
queue sizedU(t) and energy queue sizds(t). Note that the weight vecto®, the battery levels are guaranteed to be
no knowledge of the statistics of the states is required, sigsch that condition (11) is never violated. In other words,
it is standard with Lyapunov optimization techniques [26}he effect of the weight vectd® is to ensure that, whenever
[28]. Using this approach, we obtained the following onlinéhe algorithm requires to draw energy from the batteries
optimization algorithm. for transmission or acquisition/compression, there issggne

Algorithm: Fix a weight® = [6;,...,0x] € RY and available at the corresponding nodes to satisfy the request
a parameterV > 0. At each time slott, based on the
values of the queueg(t) andU(t), channel stateS(¢) and
observation state®(t), perform the following:

 Energy Harvesting: For each noden € N, choose
H,(t) that njinimizes(En(t)—en)Hn(t) under the con-
straint0 < H,(t) < H,(t). Thatis, if (E,(t) — 0,) <
0, perform energy harvesting and store the harvest
energy, i.e., set,(t) = min{6, — E,(t), Hn(t)};
otherwise, perform no harvesting, i.e., 3&t(¢) = 0;

« Rate-Distortion Optimization: Choose the source acqui-.
sition/compression rate vect®(¢t) =r = [r1,...,rnN]
and the distortion level®(t) = d = [dy,... ,dN] to
be an optimal solution of the following optimization
problem:

A. Price-based Distributed Optimization

While the Energy Harvesting step can be performed in-
dependently by all nodes, tHRate-Distortion Optimization
problem (23) and th&ower Allocation problem (25) require

sntrallzed optimization. Decentralized implementagiaf
fhe Power Allocation problem (25) are discussed in many
papers, see, e.g., [29]. Here we discuss how to (approxi-
mately) solve thdRate-Distortion Optimization problem (23)

in a distributed fashion via dual decomposition [30] [319. T
this end, we introduce the Lagrange multiplierss RS '
for the 2" — 1 coupling constraints (8), thus obtaining the
Lagrangian function for problem (23):

minimize Un(t)rn — (En(t) — 0n) Py (10) LrdA) = Z Gn(trn = (En(t) = Bn) Palra)

r neN
Ry (23) ©
+Via(dn)], +V +ZA [ (Xm, O(t))
subject to the rate-distortion region constraint (8), and
to the constraint® < 7, < Ruax and Dyin < d,, < — log (27T€)|Xm‘ H dy | - Z r|, (26)
Dinax, for all n € N; I€EX,, 1E€EX,



where the second sum runs over all thé — 1 subsetsY,, minimization (27), foe some > 0. Although this operation

of M. We will use the notationY,,, for the subsets of\" is bound to make the solution only approximate, the quality
throughout the rest of the paper. Moreover, the dual functi@f the approximation can be controlled by keepingmall.

for problem (23) is

G(A) = inf £(r,d, A), (27) V. PERFORMANCEANALYSIS
with constraints) < r,, < Rmax @nd Doin < dy, < Dinax In this section, we provide analytical insights into the
and the Lagrange dual problem is given by performance of the policy proposed in Section IV. To this

end, we define the parametgts = min {«,,, 1} (recall (10))

fn dn _fn Dmax 1 1
and v, = SUPp_. <4, <Dy {—lig()dn/zgmx) )}, which is

Following the dual decomposition approach [30] [31], thgnlte under the given assumptions. ) )

problem of calculating the dual function (27) for a given 1€orem5.1: Under the proposed algorithm with =
multiplier vector A can be decomposed inty local opti- [01:- -+ On], whereb, = 32V + a, Riax + Pruax, We have:
mization subproblems, one for each node A. Moreover, 1) The data queue and the energy queue of all nodes are
solution of the dual problem (28) can be performed in an  bounded as:

iterative fashion using the subgradient method [30], as it i

maximize G(A). (28)

standard practice [30] [31]. This leads to the followingce¥i 0< En(t) <6, (31)
based distributed iterative solution of the dual probler) (2 and0 < Uy(t) <7V + Ruax, (32)
for time slott:

Initialize (1) > 0. Then, for each iteratiomn = 1,2, ... respectively, for all nodes € A and all timest;

« For the given\(7) = A, each source node solves the 2) When a noden € N allocates a non-zero power to

local optimization problem any of its outgoing links (i.e.,P,(t) > 0), and/or
o . when it chooses a non-zero source acquisition rate
ogrnanf?:,ngI:ff%dngDmaxU"(t)T" — (En(t) = 0n) Py (ra) (i.e., R.(t) > 0), thus expending energy for source
acquisition/compression, we have that:
+ VE(d) = (og(d) +7) S Ams (29) a P

obtaining the optimal valueg-’ (\), % (X)); _ N o
« The dual variables\ are updated using the subgradient ~ This condition guarantees that the energy availability

method [30, Section 6.1] as constraint (11) is satisfied for all nodese N and all
timest (see Remark 4.1 and Remark 5.2).
A(T+1) = A7) + era(A(7)), (30)  3) The overall costFy (15) achieved by the proposed

where ¢, is a positive scalar step size amg\) = scheme satisfies the bound

> 8(Xm, O(t)) ~log(2me) ¥l =57\ log(dy; (X)) + x v, B

r’(A) is a subgradient of functio(\). kg = ;{Fn < Ig + Vv’ (34)
With various choices for the weights (e.g.,e, = 1/7), e
due to the concavity of functiofi(\), the procedure above where F; is the optimal cost of prob-
is guaranteed to converge to the optimal value of the dual lem (15) and the finite constantB is

problem (28) [30, Section 3.4]. Moreover, under the given B = N (umax(umax + Rmax) + anax/Q) +
assumptions, problem (23) is convex and satisfies Slater's N/2(H2,. + o2R2.. + P2.. + 20, RmaxPuax) +
condition [32]. Therefore, strong duality holds, which g N (Slmaxfimax + H2 i /4).

tees that the optimal value of the dual problem (28) coirgide  pygof- See Appendix C. -

with the optimal value of (23), and the optimal value of (28) romark 520 The fact that (33) implies that the proposed

IS attalned_at some valua®. However, in order for th_e algorithm satisfies the energy availability constraint)(at
illustrated iterative procedure to converge to an optimal.p time slot follows since each node c N cannot

solution (?*,d*) of prol:_)Iem (23),_we nged tha.t the ‘_’alueconsume an energy larger thak Riax + Puax in @ time
of the paif (r,d) at which the infimum in (27) is attalnedslot. In fact, a, Ry iS the maximum energy spent for

for A = A* coincides with the optimal pair for the Originalcompressing the acquired data afl.. is the maximum
problem (23). This can be guaranteed if the Lagrangigh,smission energy consumption. o

function £(r, d, A) IS strictly convex in(r, d) [30, Sectlo_n Remark 5.3: Following [16], under the modified stability
3.4]. As proposed in [33] this can be enforced by add'ngr%quiremenﬂimsu 1 ETfl Un(t) < oo, foralln € N
small terme(||r||?+||d||?) to £(r,d, A) while performing the it T et=1 7 ’ ’

the proposed algorithm can be proven to guarantee near-
3This pair exists in virtue of the Weierstrass theorem [30]. optimal performance with probability one.



VI. EXTENSION WITH SIDE INFORMATION AT THE SINK the following optimization problem:

minimize Un(t)rn — (En(t) — 0n)Pr (1)

We now consider an extended version of the problem stud- (ed)ra Jn (36)
|_ed thus far, in which the sink nodg rather than being the + Vi (d)] + (Ba(t) — 02) PS5 (ra),
final destination for the sources measured at the sensdss, ac )
as a cluster head and communicates to a network collector Subject to 3° cprn > g(X,0(t),7a) —
nodec (see Fig. 1), on a communication link modeled as 108 ((27€)!* [T, cx dn) . ¥X € N, 0 < 1y < Rinax
for any other pair of node (see Section II-A). The key novel ~ @Nd Diin < dn < Dinax, n € N and0 < rq < Ruax;
aspect of this extended model is that natlean measure a * Power Allocation: Define the weight of a linkn, m) €
source correlated with that of the sensors and use such side £ as' (24) and choos®(t) = p with entriesp,, ., for
information to improve the system performance. Specificall (%) € £ to be an optimal solution of the following
thanks to the side information available at natjethe rate optimization problem:
requirements for communication from the sensorsi toan o
be reduced. However, nodk which is powered by energy- maxpuze %%[ ZN: Crn (P, S(E)) Wom (1)
harvesting as all the sensors, also needs to communicdte wit " meNin
nodec. Therefore, a new trade-off arises between the energy ~ + (En(t) — 9n)pn] + Ca,e(Ps S(t))Wa,c(t)
allocated byd to acquire side information and that used by + (Bat) — 04)pa
d to communicate with. ’

We now discuss how the model discussed in Section Il ,
needs to be modified in order to account for the different * Queues Update: Up_date E(t) and Eq(t) _accordmg
setting of interest here. First, the destinati@racquires a to (12), U(#) according to (13) and@/(t) using (35).
source signal which is correlated with the sensor's mea- | he algorithm proposed above is a simple modification of
sures with a rateRy(¢). This affects the rate-distortionthe algorithm proposed in Section IV that accounts for the
constraints (8) in that the entropy functigh’, O(t)) should need to allocate rate and power also for naetldt can be
now be conditioned on the side information available droven thatthis algorithm has similar optimality propestas
the receiver (see, e.g., [34]). This leads to modified rati1e algorithm of Section IV as summarized in Theorem 5.1.
distortion constraints (8) with a functiog(X’, O(t), Ra(t)) We _omit a formal statement of this result here, since it is a
that also depends oR,(t). An example of this function will Straightforward extension of Theorem 5.1.
be given in Section VII. The energy used for acquiring the

(37)

subject to0 < p,, < Ppax, for eachn € N U {d}.

side information is given byP$(R,(t)) = aqRa4(t) and the VII. NUMERICAL RESULTS
slot duration similar to all other nodes. Moreover, the data In this Section, we provide further insights into the per-
gueue at nodéd evolves as formance of the system under study, via some numerical

results. We consider the network topology of Fig. 1, where
the set /' of nodes gathers spatially correlated data and
transmits it to the sink nodé. We first consider the set-up
without side information at the sink described in Sectian ||
where iq..(t) and pi. 4(t) represent, respectively, the transywe assume that nodefd, 2,3} collect the measurements,
mitted and received data at tinieand transmission is to the while nodes{4,5} are only used as relays (or equivalently
collector node-. Note that no other node is connected to thﬁ‘]easure zero-power Sources)_ The Signa| Samp|es measured
network collectorc apart fromd. The energy queu&y(t), at nodes{1,2,3} are jointly Gaussian with zero mean and

instead, evolves according to (12) FinaIB,(t) and S(t) time_independent correlation matrix
are extended to consider the additional liftk c) € £ and

Ua(t +1) < max {Uq(t) — pra.c(t),0} + pea(t), (35)

the rate achievable on that link is given By, .(P(t), S(t)), Ihww
which is assumed to have the same properties as for all Ot)=|w 1 T ’ (38)
w W

other links (see Section II). We refer to the power used for
transmission by nodé as P;. where w € [—1,1] is the spatial correlation coefficient.
In what follow we modify the algorithm proposed inThe channel state matrig(t) has independent entries that
Section IV in order to address the new setting outlined abovase Rayleigh distributed, while the energy harvesting mect
The modified algorithm works as follows: H(t¢) has independent entries that are uniformly distributed

. in [0, Hyax|. Both channel and energy harvesting statistics
« Energy Harvesting: Follow the same procedure as fory.e i id. across time slots.

the algorithm discussed in Section 1V, for all nodes oy the channel capacity function, we consider
including noded; Com(P(1),S(t) = 10g(1 + P (t)Snm(t)) for all

« Rate-Distortion Allocation: ChooseR,,(t) and D,,(t),
n=1,...,N, andR,(t) to be the optimal solution of 4we remind thatC is extended to consider the lirld, c).
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Figure 3. FJ vs maximum and average network queue sizelfe V' < Figure 4. F§ vs maximum and average network queue size for different
10000. Each pair of values for sum-distortion and queue size igioétl for values of source correlatio@, from 0 to 0.99, with step length0.1. (V =
a different value ofl/, from 1 to 10000, with step length500. (w = 0.5) 1000)

(n,m) € L, while the entropy function is given by (9)quite substantial, leading in the best case ¢ 1) to a
and the cost function ist,(D,(t)) = D,(t) for all decrease of a factdy in terms of distortion and of a factor
n € N. Moreover, we set the numerical values = 1, 2.3 in terms of queue size at the nodes.
Hpax = 3, Dmin = 0.001 and Ppax = ayRimax, With Finally, we evaluate the performance in the scenario of
Ruax = g({1,2,3},0(t)) — log ((2meDmin)®). In what Section VI, where the sink nodé acts as a cluster head,
follows, we refer tonetwork queue size as the sum of the that measures a source correlated with that of the remaining
queue sizes of all nodes ' sensors and communicates the gathered data to mode
We first examine the effect of parameter, which was (see Fig. 1). To this end, we replace the entropy function
shown in Theorem 5.1 to characterize té 1/V) trade- g(X,O(¢)) with a functiong(X’, O(t), R4(t)), that takes into
off between the network queue size and the additive gapcount the side information obtained Bywith rate R4(t).
with respect to the lower bound of Theorem 3.1. To thig/e recall thatR,(¢) is a decision variable of the new prob-
end, in Fig. 3, we sev = 0.5 and plot the average sum-lem, see (36). Following [34], the functigiiX’, O(t), Rq(t))
distortion FJ as a function of the maximum and averagé& given by (9) where the correlation matrix (38) should
network queue size for different value of the paraméfer now be conditioned on the side information available at
Confirming the results of Theorem 5.1, we observe that thige destination [34]. According to the simple source model
sum-distortionF gradually converges to the lower bound sedescribed in Appendix F, we assume that this conditional
by the optimal valud for increasing/. A closer inspection covariance matrix is given by
of the results also reveals an almost linear increase of the

maximum and time average network queue size with respect 1 —wwit) w(l—wa(t) w(l—we(t))

to V, as suggested by Theorem 5.1 (not shown). Ot)=|w(l —wa(t)) 1—wwa(t) w(l—wa))],
Next, we evaluate the impact of the spatial correlation w1l —wi(t)) wl—wa(t)) 1—wwy(t)

parameterv. As discussed, an increasingis expected to (39)

lead to a reduction in the energy consumption for the sarwéierewq(t) = 1—2-F2() We consider the same simulation
reconstruction accuracy at the sink thanks to the spatRarameters as above and we additionallyset= 1 and, only
energy trade-offs enabled by distributed source codings THor noded, Hyax = 12.

is confirmed by the results in Fig. 4, where we plot the Fig. 5 shows the sum-distortiod{] and the average
sum-distortionFJ versus the average and maximum networketwork queue size versus € [0,1). As a reference, we
gueue size, where each point is obtained for a differentevalbompare the performance of the proposed algorithm with that
of the correlationw in [0,1). We note that an increasing of a scheme that sef3;(¢) = 0. This scheme, therefore, does
leads to a reduction of both the network queue sizegfid not acquire side information at the sink and instead uslize
Note that the performance with = 0 corresponds to that all the available energy at the sink for transmission to node
of a conventional source coding system (i.e., not leverag-It can be seen that gains in terms of memory and distortion
ing distributed source coding) as, in this case, distridbutean be obtained by properly allocating the available energy
source coding does not offer any advantage and redutesween the tasks of transmission and source coding at the
to conventional compression. Thus, comparison between #iek node, e.g., a reduction of more thas and21% is
performance withw = 0 andw > 0 reveals the gain of obtained forv > 0.9 for the queue size an#, respectively.
leveraging distributed source coding. Note that this gain i
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VIII. CONCLUSIONS

(6]

(7]

(8]

El

[10]

[11]

[12]

. . [13]
Energy harvesting poses new challenges in terms of energy
management of wireless networks. In sensor networks, these
challenges are compounded by the need for balancing Fl]
energy consumed by source coding tasks (i.e., data com-
pression) against that used for transmission. Moreover, 5]
correlation among the data readings collected by different
sensors, if leveraged via distributed source coding, makes
it possible to exploit spatial energy trade-offs across the
sensors, thus allowing for better performance in terms of
memory usage and distortion at the sink. Based on the;
above, this work has proposed a dynamic online optimization

strategy for multihop wireless sensor networks with ener

harvesting capabilities. This strategy jointly optimizesirce
coding and data transmission activities for time-varying

sources and channels, by ensuring queue stability at E]gh
nodes and energy neutrality. The proposed technique, base
on Lyapunov optimization, has been analytically shown o]

be characterized by &/,1/V) trade-off, revealing a linear

relationship for queue and battery sizZ€)(and an inverse
proportionality in terms of optimality gapl{V), whereV

is a tunable parameter of the algorithm. Numerical results
have demonstrated the key role of source correlation and
distributed source coding in the system performance.
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APPENDIXA
PROOF OFTHEOREM3.1
Proof: Define as¢* the optimal value of the following
problem:
K
minimize V Z Z Po; Z (0: )f (D(07 ]) (40)
neN 0; €O k=1
subject to:

g(X,0;) — log(2me)! ! H D(ol
nex

< Z ngi[;cl,for all Y CN,0,€0,kell,
nex

K
PO
k=1

0, €0

<Zp ZQ(&)

S;€S k=1

> ps Z o (P(SZ) ) > po, ZK: 9P (Rfjf[%])

S;€ES k=1 0,0 k=1

K
= > @éhi)ﬁiﬁi],for allneN,

h,eH k=1
0<19(01 sz)sp( i) < <1
forallol-eOSieS h-e’H ke ll,

Z,ﬂ(oz_ Z _1290]@ _ ’
P
forallolelOSZeSh €H,

0 < R < R, Din < D)) < Dinas

forallmne N,0, € O,k el,...,K]|,

O<P(SEI)€] <Pmaxaf0r all neN,SiGS,kE [1’

K], (41)
(o

k]+Zp Z@k (P 5)

S;€S =

s;),forall n e NV, (42)

(43)

- K],

- K],
- K],
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where the minimization is taken over varrablé,,%’ ), o I =),

,(gh), R(°1U)€], D(°l[,)ﬂ Hfl [}3] and P [J for all n € N,

oieOSLeSheHandke[l, , K], with
K

K = 2N + 2. Varrables{R(OT[ ]} and {D Ol[)] can

be interpreted, respectively, as fhe set of rates and tiéster
selected by node € A/ when the source state B(t) = o;.
Specifically, noden selects rate‘z( and drstortronD( i)

i[k]
with probability 19k when the source state () = o;.

K
Variables {Pf;)1 [k]} can be seen as the transmission

powers allocated to ITﬁr]kn m) € L, when the channel state

S(t) = s;. Each powerP(S’) 18] is selected With probability

,:") if S(t) = s;. Finally, vanables{H( [Tk)} represent
the harvested energy when the energy har%/estrng state is

H(t) =h; = [hi1,...,h;n]. Each energ)H [k is selected

with probability ™" if H(t) = h,. Note that we added the
constant in the optimization function for our later analysis.

Theorem A.1: The optimal network cosFj; satisfies the
following inequality:

VE] > o, (44)
where ¢* is the optimal value of the optimization prob-
lem (40). The proof of Theorem A.1 is in Appendix B.

A generally looser lower bound can be evaluated by the
weak duality in Lagrange optimization theory [32], which
is easily seen to lead to Theorem 3.1. In fact, in (18), the
parameters\'S”) for m = [1,....2Y — 1] ando; € O
are the L(2Y — 1) Lagrange multipliers corresponding to
constraints (41), parameters, for n = [1,...,N] are
the Lagrange multipliers corresponding to constraints) (42
and parameterg,, for n = [1,...,N], are the Lagrange
multipliers corresponding to constraints (43). ]

APPENDIXB
PROOF OFTHEOREMA.1

Proof: We follow an argument similar to the one used
in [15]. Consider any stable policy, i.e., a policy such that
the condition (14) is satisfied under. Since E[u. ,(t) +
R,(t)/b — pin+(®)] < (N — 1)ptmax + Rmax/b, from [28,
Theorem 2.8], constraint (14) implies the mean rate stgbili
constraint and thus the condition

T-1
T—o0 =0 (45)
=
liminf — ; Bt 1 ()],

for each noden € N. We thus relax problem (40) by
substituting (14) with (45). We further relax the energy
availability constraint (11), imposing average stabifity the
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energy queues (see (12)) where the infimum is taken with the constraifts< r, <
Ruax andd,, > 0, and the dual problem is given by:

T-1
. 1 .
limsup Z E[P () +F; (Rn(t))] maximize G(A,v). (50)
T— o0 T ?
t=0 (46) A=0,v>0
T-1 . .
. 1 ~ Lemma C.1: Any dual optimal vectotz* (i.e., a vectorA
o h;“j‘;f T ; E[H,(t)] maximizing (50)) satisfies the conditions
For the relaxed problem, we can show as in [15] that the Z A 7V, (51)
optimal policy is stationary and depends only on the source m: nEXy,

and channel state. From this, by Caratheodory’s theorein [3f), 411 , ¢ A Moreover, any primal optimal? satisfies the
we obtain that the problem at hand is equivalent to (48). -ondition

ri = argmin U, (t)r, — (En(t) — 0,)P5(rn)

APPENDIXC 0<ry < Rumax
52
PROOF OFTHEOREM5.1 e Y (52)

Proof: mnEXm
1) From the energy harvesting part of the algorithm, we
have thatE, (t) < 6,, since harvesting is performed only The proof of Lemma C.1 can be found in Appendix D.
when E,,(t) < 6,, and the maximum amount of harvested According to (52) we have that; > 0 is an optimal
energy in that case id,, — E,(t). This proves (31). We solution of problem (23) only if the value of the right-hand
now prove (32) by induction on. Inequality (32) holds for side of (52) evaluated at, = 0 is larger than the value
t = 0, sincel,,(0) = 0 for all n. Then, assuming that (32)obtained by evaluating it at;;, which can be expressed,
is satisfied for alln at time¢, we show that it holds also for using (10), as
time ¢ + 1. To this end, we consider separately the different . . .
possible cases in which a nodereceives or not data from Un(t)rn + (O — En(t))anry, — 17, Z Am < 0. (33)
other nodes (i.e., endogenous data) and/or acquires otsnot i menEXn
measurement (i.e., exogenous data). First, if nedeceives From (31), (51) and (53), we further obtain:
neither endogenous nor exogenous data, then we have that y
Un(t+1) < U,(t) <4,V 4+ Rmax, Which proves the claim. Un(t) < Z Am SV, (54)
Second, assume that nodec A receives endogenous, but m: REXm
not exogenous, data. It follows from (25) that, for some nodehich implies that a node receives exogenous data from
m € N, with m # n, we must have outside the network only whed/, (t) < ~,V. Hence,
recalling thatR,,(t) < Rmax, We obtain the desired result
Un(t) < Um(t) =9 < ’YnV + Rmax — 4. (47) Un(t + 1) < an + Ripax-

However, since any node can receive at mMost fimax bits Finally, if a noden receives both endogenous and exoge-
per channel use of endogenous data, we have from (47) d¥s data, we have from (47) tha, () < 7.V — lmaxhimas-
the definition of§ that U, (t + 1) < 7,V < 74V + Rmax, SiNCEA node can receive at Most,x/imax bits per channel
which proves the claim. use of endogenous data aft},., bits per channel use of

We now analyze the case where nadeeceives exoge- €X09€N0us data,_ we have the desired inequéalifft + 1) <
nous, but not endogenous, data. This implies that- 0 is  7»Y + Rmax, Which completes the proof of part 1).
obtained from the solution of problem (23). We define th@) T0 prove the claim, we need to show that if

corresponding Lagrangian function as En(t) < anRunax + Pon (55)
Lr,d, A v) = then the following two conditions must be satisfied:
=Y WUat)ra = (Ea(t) = 02) Pi(ra) + VEa(dn)] a) the Rate-Distortion problem (23) is minimized by choos-
neN ing R,(t) = % = 0 (which implies P¢(t) = 0) for all
+3 A [g(xm, O(t)) — log ((27re)‘Xm‘ I1 dl) nenN;
m IEX,, b) the Power Allocation problem (25) selects a power matrix
_ Z n} + Z n(dy — Do), (48) P(t) such thatP, (t) = 0 for.all neN. B
e, neN .Fromllfem_ma C.1, and in particular from (52), condition a)
where we have relaxed the constraints (8) and constrailnstsverlfled it
dn, < Dmax. The Lagrange dual function is given by Un(t)rn — (En — 0n) Py (1)

— Ty Z A5 >0, forallr, >0, (56)

m: nEXy,

G(A,v) = inf £(r,d, A, v), (49)
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where we recall that\* is any optimal dual vector of (U(¢),E(t) — ). Following the standard definition [28], the
problem (50). This is proved by the following inequalities: quadratic perturbed Lyapunov function is given by

Un(t)rn - (En - 0 anrn - Z /\* 1 N
m: ne X L(z(t) = 35 G
n=1
> U n + V nin —In A;kn
(t)r Bn QnT " m:;Xm _ li(U (t))2 + 1 i(E (t)— 6 )2
>Un(t)rn + —Vapr, — rayaV n=1 n=1
) = L(U(t) + L(E(t) - 6), (58)
Qp — Pn)Tn
= Unlt)rn + 3V Bn 20 while the one-slot conditional Lyapunov drift(Z(t)) is
where the first inequality follows from (55) and the assump-  A(z(t)) = E[L(Z(t + 1)) — L(Z(t))|Z(1)]. (59)

tion of Theorem 5.1 that,, = 22V + anRmax + Pmax;

the second from (51); and the last inequality follows frorfhe proof of the following lemma can be found in Ap-

Un(t) > 0, r, > 0 and from the definition of5,,. This pendix E.

proves (56) and thus that condition a) is satisfied if (5500l  Lemma C.2: Under any feasible policy for problem (15)
To prove b) we first note that the bound (32) implies thate have the inequality

the weight (24) satisfies the inequality

< B + U —Hn,x + Usn t
Wem(t) = max{U,(t) — Un(t) — 0,0} 7;, ) ©
< vV — I fhama, (57) FR.OIZ0] + Y (Bult) - en)E[ — PS(Rn(t))
for all (n,m) € £ and for all timet¢. We now show by B neN
contradiction that condition b) holds when (55) is satisfied —P,(t) + H(t)|Z(t)}, (60)
To this end, assume that the power allocation veEtbithat
maximizes (25) at time is such that some entry;  is with B = N (1tmax (Hmax + Rmax) + R2,0,/2)  +

positive. Starting fromP*, we now obtain a new power N/2(H2  + a2R2_ + P2 + 20, RiaxPuax)-

allocation vectorP, in which we setP, ,, = 0. Clearly,  The proposed policy is based on the minimization
the power matrixP is also feasible. We demonstrate that thgf the drift- plus penalty function [26] [28]A(Z(t)) +
objective function of (25) when evaluated Bt is smaller >
than atP, thus leading to a contradiction. DenotingGIP)
the objective function of (25), this is shown by the follogin

nen fn ‘Z } This amounts to finding a
policy that minimizes the right-hand side of (61) (where
the inequality follows from (60)). Minimization of (61) is

inequalities: done with respect t¢R(t), D(¢), H(t), P(¢)) for the given
G(P*) — G(P) = (S(t),0(t), H(t), U(t), E(t)) under the constraints (8) and
. 0 < Ry £ Rmaxy, Dmin < Dy < Diax, as per definition
- ;n ;\ nt(P7, S(t)) = Cr o (B, S(E)] Wt (1) of policy in Section II-E. It is now not difficult to see that,
n S n

similar to [7], by Lagrangian relaxation of the constrai(&}

H(En(t) = 0n) Py the dual function of the said minimization problem, when

< Crm (P, S(t)Wim () + (En(t) — 0,) Py 1, considering fixedO(t) = o;, S(t) = s;, H(t) = hy and
< Con(P* . S(0) (Y — basttmas) + (Ea(t) — 0,) P, fixed queue lengthgU(t), (1)), is given by d(\®)) —
, o 7 ; .
< (V= lnatiman)EPE .+ (En(t) — 00)P do,.s; by, (A ,U(t),_E(_t) 0) as defined in (19). Note that
’ Y ’ the Lagrange multipliers\(%) are associated to the con-
< (Y V = Imaxtimax)§ Py — B—fof,m <0, straints (8). Moreover, by convexity and Slater's condigip

we have that strong duality holds, and thus the minimum
where the first inequality derives from,, ;(P*,S(t)) — of (61) equa|gd( %)) for a given value\(©) = X(©)*,
pna(P,S(t)) < 0 for all I # m (Property 2), the second  From the discussion above, the minimum of the right-hand
from (57), the third fronProperty 1 and the fourth from (55). side of the bound (61) equals
This shows thalP* is not optimal for (25), thus leading to

a contradiction, which completes the proof of 2). B + E[do, 5,0, A", U(t), E(t) — 0)|Z(t)] =

3) The proof of 3) is a relatively simple application of :fB—i—d()\*,U(t),E(t) —0) (62)
the general theory of [26] [28]. The details are provided

in the following for completeness. We first define the staggr someA* < RY L2"-1) (\* collects all A(®)*). But by

dard one-slot conditional Lyapunov Drift-plus penalty bét Theorem 3.1, we have that
queuesE(t) and U(t). To this end, we defineZ, (t) =
(Un(t), En(t) — 6,,) and the corresponding vect@&(t) = VE] > d(A*,U),E(t) — 0). (63)
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AZ() + VE | 3 f.(D }z )| < B+ > (Ealt) - 6,)E [Ha(t)|Z(0)]
neN neN
+E | Y (Un(t)Ru(t) — (En(t) — 02)P5(Ry ())+an(Dn(t)))’Z(t)]
neN
=15 < > Com(P(t),SH)(Un(t) = Un(t) + (En(t) —9n)Pn(t)> Z(t)]- (61)
neN \m: (n,m)eL

From (61), we can now write that for the considered policge an optimal solution of the (primal) problem (23). Exis-

that minimize (61), we have the inequality

> (D

neN

Moreover, taking expectation oved(t) and summing the
above overt =0,...,7 — 1, we have:

+VZIE > (D
(65)

= neN
Rearranging the terms, using the fact tig#%(¢)) > 0 and
L(Z(0)) = 0, dividing both sides byi’'T, and taking the
limsup asT — oo, we get'

limsup Z Z E[f,

T— 00
nEN
This shows that our pollcy satisfies the desired claim.

A(Z(t)) + VE <B+VE;. (64)

E[L(Z(T)) -

<TB+TVEF}.

B
|<Fi+ = 66
0+V (66)

It remains to be discussed whether the proposed poli
does indeed minimize (61). It can be seen, similar to [7] that
the proposed policy minimizes a modified version of (61)

where(U,,(t) —Upn(t)) is replaced bymax{U, (t) — Uy, (t) —
3,0} (cf. (24)). Moreover, wherd,, — E,,(t)) < H,(t), we

harvest a reduced amount of energy. This implies that the
right-hand side of (61) under the proposed policy is geheral
larger than with the policy discussed above that minimiz%

the right-hand side of (61). However, the loss is at most
0< > > tnm(®)6 < Nolmaxpimax  (67)
neN m: (n,m)eL

for the power allocation part of the algorithm, and

05 3 (On — Ba®)(Halt) — (6 — Ba(t))) < e

max
neN

4
(68)

tence of(r*,d*) and (A*, v*) is guaranteed by Weierstrass
theorem [36, Proposition 2.1.1] and by Slater’s conditi®®, [
Proposition 3.5.4, part a)]. By [36, Proposition 6.1.1]e th
following conditions must be satisfied hy* and (A*, v*):
primal feasibility, namelyd! < Dp.x, and the comple-
mentary slackness conditions;(d, — D) = 0 for all

n € N, and (r*,d*) = argmin £(r,d, \*, v*) where the
minimization is taken under the constraimts > D,,;, and

0 < rf < Rpax for all n € N. From (48), the given
conditions imply that

Vi, (Dmax) — log(Dmax) Z Ar
m: nEX,
(69)
_ <an(d —log(d},) Z A )
m: nEXy,

must be satisfied. This is because the Lagrangian
£(r,d, A*,v*) when evaluated atl, = d} should be no
I&;ger than ford,, = Dmax. We thus have the inequalities

Z d*) - fn(Dmax)V
m: neX,, B 1Og(d* /Dmax)
fn(dn) - fn(Dmax)
< su V=V,
= Duinedo Do | 108(dn/ Dina) 7

here the second inequalities follows sinBg,;, < d! <

max and the third from the definition of,,. [ |
APPENDIXE

PROOF OFLEMMA C.2

Proof: First, let us consider the time evolution of the
data queud/,,(t) of a generic node. By squaring both sides
of (13) and using the fact that for anyc R, (max(z,0))? <
22, we have:

for the energy harvesting. This shows that (66) also holds fo

the proposed policy as long as we substitBtevith B. This
concludes the proof. ]

APPENDIXD
ProoF OFLEMMA C.1

Proof: Let A* andv™* be an optimal solution of the dual
problem (50), and* = [r},...,ry] andd* = [d}, ..., d}]

(Un(t+1))* = (Un(t))? = (max(Un(t) = ptn,+(1), 0)
Fhn(t) + Ru(t))? = (Un ()

(Nn ()% 4 (e (t) + R (1))? = 23, (8) (a0 (1)

Ry () + 2Un () (= pin,« (1) + pran(t) + Rn(t))

(Mn ()% + (e, (t) + R (1))

F2Un () (=i« (1) + pran(£) + R (1))

)
)
)

(70)



By defining By = fimax (max + Rmax) + R2,,./2, we then
see that:
STt + 1) + (U ()7
< By 4 Up(t)[—in,« () + pe,n(t) + Rn (1)) (71)
Similarly, let us consider the perturbed evolution of the
energy queudv, (¢). By squaring both sides of (12) we have:
(En(t + 1) - en)2 - (En(t) - en)2 =
= (Eﬂ(t) - Pﬁ(Rn(t)) - Pn(t) + ﬁn(t) - en)2
— (En(t) = 6n)*
= (_Pri(Rn(t)) _Pn(t)'i_ﬁn(t))z _
+2(En(t) - on)(_Pﬁ(Rn(t)) - Pn(t) + Hn(t)) (72)

By defining By = 3(HZ, + o?RZ, + P2, +
20y, Rimax Pmax), We then see that:
1

5 [(Ba(t+1) = 0.0 = (Ba(t) — 0,)’]

< B + (En(t) = 0n)(—P5(Ra(1)) = Pa(t) + Ha(t)). (73)

Now by summing (71) and (73) over alh € W,
and by defining B = N(By + Bg) =
N(MmaX(Mmax+RmaX)+Rr2nax/2) + N/2(Hr2nax +
a2 R2,.. + P2, + 20, Rinax Prax), We have:

n max max

L(Z(t+1)) — L(Z(t)) < B

N
+ 3 Un(O)(=pn e (t) + pan(t) + Ra(t))
n=1

N
+ Z(En (t) - en)(_Pg(Rn(t)) - Pn(t) + ﬁn(t)] (74)
n=1

Taking the expectation on both sides over the random obser-
vation, channel and energy harvesting and conditioning on
Z(t), the lemma follows. [ |

APPENDIXF
SOURCE MODEL

Here we present a simple source model for which we
determine numerical results in Section VII. Let the source
signals measured at sensors\inbe spatially correlated with
parametew. Since the measurements are Gaussian we can
write for theith sensotX; = \/wA++/1 — wB;, with A and
B; independent Gaussian random variables with zero mean
and unitary variance. Moreover, we assume that the sink is
able to measurdl with an accuracy that depends on the rate
R, used for acquisition. From standard rate-distortion tieor
we have the relationshiR; = I(A;Y'), whereY is the side
information available at the sink. By choosing the optimal
test channel” = |/wgA + /1 — wyC, wherew, denotes the
correlation between the measureméhtat the sink andA
(see, e.g., [5]), we obtain the equations reported in the tex
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