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Robust transcoding sensory information with neural

spikes
Qi Xu, Jiangrong Shen, Xuming Ran, Huajin Tang, Gang Pan and Jian K. Liu

Abstract—Neural coding, including encoding and decoding,1

is one of the key problems in neuroscience for understanding2

how the brain uses neural signals to relate sensory perception3

and motor behaviors with neural systems. However, most of4

the existed studies only aim at dealing with the analogy signal5

of neural systems, while lacking a unique feature of biological6

neurons, termed spike, which is the fundamental information7

unit for neural computation as well as a building block for8

brain-machine interface. Aiming at these limitations, we pro-9

pose a transcoding framework to encode multi-modal sensory10

information into neural spikes, then reconstruct stimuli from11

spikes. Sensory information can be compressed into 10% in12

terms of neural spikes, yet re-extract 100% of information13

by reconstruction. Our framework can not only feasibly and14

accurately reconstruct dynamical visual and auditory scenes,15

but also rebuild the stimulus patterns from functional magnetic16

resonance imaging brain activities. Importantly, it has a superb17

ability of noise-immunity for various types of artificial noises18

and background signals. The proposed framework provides19

efficient ways to perform multimodal feature representation and20

reconstruction in a high-throughput fashion, with potential usage21

for efficient neuromorphic computing in a noisy environment.22

Index Terms—Neural Spikes, Cross-Multimodal, Reconstruc-23

tion, Decoding, Spatio-temporal Representations, Denoising.24

I. INTRODUCTION25

S
ENSORY information is an essential and integrative part26

of the brain for processing the environment we are in [1].27

The most basic stage of sensory perception is to recall the28

information perceived for higher cognition. Thus, intelligence29

machines are demanding an ability of representation and30

reconstruction of sensory information captured by various sen-31

sors, to achieve remarkably good computational intelligence32

tasks. Although various engineering effort has been made in33

this area, the biological information processing system still34

outperforms the best artificial systems in many fields such as35

processing cross-modalities and noise-immunity.36
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Currently, our brain brings various types of sensor infor- 37

mation with different sensory modalities from our surround- 38

ing environment. For which, neural coding is very essential 39

for comprehending how neural systems respond to outside 40

stimuli [2]. From the functional part of view, an efficient 41

and effective coding system consists of two elementary parts, 42

neural encoding and decoding [3] [4]. Encoding methods try to 43

transfer outside stimuli into specific responses for further pro- 44

cessing by downstream neural systems, then decoding aims to 45

analyse and predict external stimuli from those specific format 46

of data encoded by the encoding system. In biological coding 47

system, neurons transmit the information when they receive the 48

external stimuli by changing their membrane potential to fire 49

a series of fast event termed spikes, forming spatio-temporal 50

representations [5]. Thus spikes have been suggested as a 51

more biological format to represent the input-output relations 52

in neural systems than any other artificial one [6] [7], such 53

as choosing real value based data as transmission media in 54

artificial neural networks [8]. 55

For encoding and decoding in biological information pro- 56

cessing systems, there still remain big challenges to under- 57

standing the mapping between those external stimuli and 58

fundamental spiking activities. For decoding, although some 59

traditional methods have made significant progresses [9] [10], 60

most of them tried to build artificial models with simple linear 61

models and the questions are limited to either brain activity 62

pattern classification or visual stimuli recognition measured 63

by functional magnetic resonance imaging (fMRI) [11] [12]. 64

On the other hand, deep learning models have enjoyed a 65

great success in many areas of computer vision [8], it is 66

very common for modern artificial deep neural networks 67

(DNNs) to have tens of millions of parameters which lead 68

to higher dimensional complexity and hierarchical structures. 69

Inspired by biologically visual systems, hierarchical DNNs, 70

using convolutional and pooling units to code external stim- 71

uli, have already shown in resembling some complex visual 72

representations in human visual system [13]. For visual scenes, 73

convolutional neural networks (CNNs) have been adopted to 74

model the encoding of visual neurons, such as from retina, 75

visual cortex to inferotemporal cortex [14] [15]. Thus, it is 76

promising to build a more reasonable coding system between 77

external stimuli and neural information processing with the 78

aid of spiking activities and the structures of DNNs [7] [16]. 79

Recent studies show that it is promising to use DNNs working 80

with neural spikes for both encoding and decoding [17], [18], 81

[2]. 82

Inspired by the aforementioned studies, this paper proposes 83

an efficient and effective coding system with neural spikes 84
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for sensory information based on deep learning network85

models, named as deep spike pattern decoder (DSPD), that86

universally transcodes sensory information across multiple87

sensory modalities using neural spikes. Based on our recent88

work on decoding with neural spikes [18], the DSPD is an89

uniform coding framework consists of two parts: encoding and90

decoding. The encoding part maps outside sensory stimuli into91

image pixels, than transcodes pixels into neural representations92

efficiently in two ways. First in the spatial domain, compared93

to the high dimension of thousands of pixels, it only use a94

few hundreds of neurons to represented 100% of image pixels95

into 10% of neural spikes. Secondly, in the time domain,96

it can sample high-frequency images in videos into a spare97

temporal patterns, e.g., 30-60 Hz frame rates down to a few98

Hzs neural spikes firing sparsely over time. The transcoded99

spatialtemporal patterns in terms of neural spikes can be100

outputted and transferred in a high-throughput fashion to any101

downstream hardware for future processing.102

Based on transcoded spiking representations, one can con-103

duct any types of neural computation for practical tasks,104

ranging from classification, semantic recognition, to full-frame105

reconstruction. Here we show the capacity of our proposed106

framework in the context of coding of cross-multimodal sen-107

sory information, and its good capability of transfer learning,108

few-shot learning, and stimulus denoising. We evaluated our109

model on three different types of modal inputs: images, fMRI110

brain activities, and sound signals. In order to show the111

generalization ability, we applied the model to the clean and112

noise-free MNIST dataset and its four variations with strong113

noises and unrelated background signals. We also take the114

subsets from these datasets to show the capability of our model115

on few-shot learning. Experimental results demonstrate that116

our model is not only capable of perceiving and reconstructing117

corss-multimodal inputs (images, fMRI and sounds), but also118

having a good ability of generalization and noise-immunity.119

The qualitative and quantitative measurements show that our120

model can construct multimodal stimuli with a performance121

comparable to some other cognitive models. All together, our122

model provides an uniform and consistent coding system for123

efficiently and effectively transcodng sensory information via124

neural spikes. Inspired by biological underpinnings of how125

cross-multimodal patterns are perceived and represented by126

neural processing systems, our work suggest an approach127

of neuromorphic computing with neural spikes for handling128

multiple sources of sensor information.129

II. METHODS130

The proposed DSPD is a framework with a mixture of a131

biological encoding part and a deep neural nwtwork (DNN)132

based decoding part as illustrated in Figure 1. The encoding133

part is similar to an neural pathway of the sensory systems,134

which receive sensory information in the format of images,135

sound waves, or other types of artificial sensor data represented136

spatial, temporal, or spatiotemporal patterns. The output of the137

encoder is a sequence of spikes similar to biological neurons in138

response to stimuli. After encoding, the encoded information139

will be delivered to the decoding part. Depending on practical140

tasks, the different decoders can be built for signal reconstruc- 141

tion, object recognition, semantic classification, etc. One can 142

decode the spikes directly with spiking neural networks as 143

decoder. Or one can also convert spikes into different format 144

of data, for example, image pixels, to take advantage of the 145

state-of-the-art computer vision techniques. The benefit of 146

transcoding sensory information with neural spikes is to utilize 147

the core concept of neuromorphic computing, e.g., energy and 148

data efficient computing without loss of any information. Thus, 149

our proposed framework is a unified spike transcoding system 150

functioning as data compression, feature extraction, temporal 151

encoding and decoding. 152

In this study, we put our proposed framework into the 153

context of signal reconstruction in terms of image pixels. 154

However, it is noted that our framework is fixable to account 155

for other purposes, so that the exact architectures of the 156

encoder and decoder are fixable to adapt to be other types 157

of neural networks, or simple traditional statistical methods. 158

A. Transcoding with spikes 159

A spiking based encoding method differs from which in 160

conventional DNNs. For a pattern recognition such as image 161

classification task, DNNs usually take the raw pixel based 162

value as input directly. In contrast, the spiking based encoding 163

method would map those pixels into binary spike events 164

that happen over time. Depending on data format, one can 165

preprocess the raw sensory information by converting them 166

into image pixels, for example, transferring sound waveforms 167

into spectrograms of image pixels. Here the input images were 168

unified as a size of 64×64. Then an encoder is applied to 169

images to convert them into spikes. 170

Unlike the previous study [18] where the encoder consists 171

of a small number of retinal neurons. Here we used a set of 172

300 neurons to cover the whole image space. It is noted that 173

with larger sizes of input images, one can use more number of 174

neurons for encoding. All the encoding neurons were sampled 175

over the entire image space, such that each neuron is located 176

at a specific position in image space. The nonlinear filters 177

are based on the receptive fields of 80 RGCs measured in 178

experiment with white noise analysis [19] fitted with a 2D 179

Gaussian for each cell. We then resampled the receptive fields 180

of all 300 cells by rotating and shifting those experimental 181

80 cells to cover the pixel space of images, in this way one 182

can overcome the underrepresented location bias due to the 183

limitation of experimental recordings [20]. In addition, we 184

used three subunits for each encoding neuron to utilize the 185

idea of nonlinear subunits of sensory neurons. Each subunit 186

has a Gaussian filter as the receptive field to capture a local 187

image patch. Then the filtered image generates a value of 188

mean over all pixels, which is transferred to obtain a spike 189

count. Binary spikes are sampled from this processing to 190

obtain a spatiotemporal spike pattern. We also tested other 191

filters to generate spikes from inputs. Parameters of encoding 192

neurons are not sensitive to the model outputs, as the spike 193

pattern from the encoding neurons is playing a role of low- 194

dimension representing of inputs, which is not participated into 195

the training of the decoding part. 196



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Encoding to Spikes Decoding from Spikes

Images

Noisey images

fMRI signals

Sound signals

Spike representation
N

e
u

ro
n

 #

time

Autoencoder

Signal

Reconstruction

Signal

Denoising

Object 

Recognition

Semantic 

Recognition

Dimensionality reduction

Tasks

Fig. 1: The schematic diagram of DSPD framework.

B. Pattern decoding with spikes197

After encoding, sensory information is represented by a198

sequence of spatiotemporal spiking pattern. To fulfill our aim199

of signal reconstruction, we used a similar decoder as in our200

recent work [18]. We first upsampled the spatial dimension201

into the original input image size. Then we used a three-202

layer fully-connected neural network, which is similar to203

a multilayer perceptron. The first layer receives the spikes204

coming from the neural encoding layer and the number of the205

neurons in the first layer is the same as the neurons of neural206

encoding layer. here 300, e.g., the same dimension as the207

number of neuorns used for spiking representation. With the208

512 neurons in second layer (hidden layer) and 4096 neurons209

in third layer (output layer), we used the ReLU as activation210

functions to filter the non-negative value into image pixels.211

As input images are 64×64, 4096 neurons were used in third212

layer as the output for signal reconstruction.213

The propose of this upsampled image from spikes is to214

reconstruct the original signals, such that both have the same215

dimension. In case of implementing other tasks, upsampled216

images are not necessary. For the signal reconstruction, we217

adopt a typical autoencoder based on convolutional neural218

networks. This autoencoder consists of two parts as shown219

in Figure 1. In the first phase, the convolutional parts down220

sample the spike-based images. Notably, the most important221

part of the spike-based images are kept for recovering the222

texture and increasing the size. Meanwhile, through the de-223

creasing size of convolutional units, the noise and redundant224

components are filtered. Then the filtered images will recover225

through the increasing size of convolutional units in the up-226

sampling phase.227

The size of the autoencoder here we used is 64C7-128C5-228

256C3-256C3-US2-256C3-US2-128C3-US2-64C5-US2 (C229

means convolutional layer, US means upsampling). The230

activation function is ReLU and the dropout rate is 0.25, we231

also use strides (2, 2) for padding and batch normalization232

for accelerating the training to achieve the convergence state233

respectively. 234

Given an input pattern X , it will trigger a response s = 235

{s1, s2, s3...sn} within the encode method we just described 236

on the 300 RGCs, here we adopt spike firing rate such as si 237

in s to represent the spike count of each RGC cell within a 238

bin based on the sampling rating of pattern. Then the triggered 239

responses are first fed into spike-image dense layer based con- 240

verter which output an intermediate image Y1 = f1(X), then 241

the image-image autoencoder takes the Y 1 as input to map it 242

to match the target pattern. So we can get a refining recon- 243

struction pattern Y2 = f2(Y1), and the end-end training could 244

be implemented by the two joint parts. f1 and f2 are their 245

corresponding activation function, in this paper we adopted 246

ReLU. Based on this information flow, we could get the 247

training loss function, loss = λ1 ‖Y1 −X‖ + λ2 ‖Y2 −X‖. 248

With this loss function, the proposed model could be trained 249

successfully. 250

C. Datasets and codes 251

As shown in Figure 1, we evaluate our model on three 252

different types of signals (visual images, fMRI brain activ- 253

ity patterns, and sound signals [21] [22]). Specifically, we 254

employed various different datasets: orginal MNIST with 10 255

digital letters [23], MNIST with random white noise [24], 256

MNIST with background images [24], MNIST with different 257

level of artificial noise. fMRI brain activity datasets [25] 258

Fig. 5) and sound signals of 10 spoken letter datasets [26]. 259

We used a dataset of fMRI brain activity using handwritten 260

letter images as stimuli [25], which is fMRI imaging of hu- 261

mans containing 360 gray-scale handwritten character images. 262

It has equal number of character B, R, A, I, N, S. The original 263

image resolution is 56 × 56 and the corresponding fMRI 264

signals contain voxels (each fMRI character pattern has 2420 265

voxels) from V1 and V2 areas of all three subjects S1, S2 and 266

S3. 267

We also test our model on sound signals. We choose 0-9 268

digits of T1-46 speech corpus [27] with the audio samples 269
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read by 16 speakers for the 10 digits as in MNIST with 4136270

audio samples totally. This sound-image dataset is divided into271

4000 for training and 136 for testing. During the training272

process, the pairs of audio-image are used as the training273

samples simultaneously which are the same digital samples274

in noise image-image datasets and fMRI-image datasets. We275

used Auditory toolbox [28] for pre-processing the data, such276

that all of the audio samples are converted as the spectrograms277

with 1500 time steps and 39 frequencies, then we can get the278

a 58,500 × 1 vector (1500 × 39) for each sample.279

Although these signals have different dimensionality, we280

adjusted their sizes and the number of encoding neurons281

according to the computational ability of the machine. In282

our cases, the experiments were conducted on a workstation283

equipped with two-processor Intel(R) Xeon(R) Core CPU and284

one NVidia GeForce GTX 2080Ti GPU. The operating system285

is Ubuntu 16.04. Tensorflow [29] and Keras [30] were used286

for implementing our model.287

D. Performance evaluation288

We choose three different evaluating metrics to evaluate289

the performance on the proposed DSPD and other compared290

methods.291

1) Mean Square Error (MSE): MSE represents the final292

expectation of the squared error between the desired and293

original values. A detailed description of the MSE about the294

pair of patterns 〈X1,X2〉, with the resolution of H ×W is as295

follow:296

MSE =
1

H ×W

H
∑

i=1

W
∑

j=1

((X1(i, j)− X2(i, j))
2, (1)

Generally, lower MSE value means better pattern quality.297

2) Structural Similarity Index Metric (SSIM): SSIM is298

used for evaluating the structure comparison between two299

patterns. [31] thought this kind of metric with the assumption300

that human visual processing system can perceive the pattern301

including its variations and distortion through extracting the302

structural information changes.303

Based on the luminance (l), contrast (c) and structure (s) of304

two patterns x and y.305

SSIM(x, y) =
[

l(x, y)α · c(x, y)β · s(x, y)γ
]

(2)

When the α,β and γ equal to 1, we can get the SSIM function306

which I used in this paper as shown in equation (3).307

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

x + c1)(σ2
x + σ2

y + c2)
(3)

SSIM could be used for describing the the positive relation308

with the pattern quality between the original and reconstructed309

patterns. In order to show more detailed performance, we also310

introduce another pattern quality metric named Peak Signal to311

Noise Ratio (PSNR).312

3) Peak Signal-to-Noise Ratio (PSNR): Given a clean pat-313

tern I1 and the reconstructed pattern I2with size M × N we314

can get the MSE as the same in equation (1), we can get the 315

PSNR as shown in equation 4: 316

PSNR = 10 · log10(
MAX2

I

MSE
) (4)

MAX2

I is the max value in whole pixel range. For instance, 317

if we used uint8 to represent an image, MAX2

I should be 255 318

(28 − 1). 319

III. RESULTS 320

A. One framework for multiple tasks 321

Our proposed model is a framework with a mixture of a 322

biological encoding part and a DNN based decoding part as 323

illustrated in Figure 1. The encoding part is similar to an 324

neural pathway of the sensory systems, which receive sensory 325

information in the format of images, sound waves, or other 326

types of artificial sensor data represented spatial, temporal, 327

or spatiotemporal patterns. The output of the encoder is a 328

sequence of spikes similar to biological neurons in response 329

to stimuli. After encoding, the encoded information will be 330

delivered to the decoding part. Depending on practical tasks, 331

the different decoders can be built for signal reconstruction, 332

object recognition, semantic classification, etc. One can decode 333

the spikes directly with spiking neural networks as decoder. 334

Or one can also convert spikes into different format of data, 335

for example, image pixels, to take advantage of the state-of- 336

the-art computer vision techniques. The benefit of transcoding 337

sensory information with neural spikes is to utilize the core 338

concept of neuromorphic computing, e.g., energy and data 339

efficient computing without loss of any information. Thus, 340

our proposed framework is a unified spike transcoding system 341

functioning as data compression, feature extraction, temporal 342

encoding and decoding. 343

In this study, we put our proposed framework into the 344

context of signal reconstruction in terms of image pixels. 345

However, it is noted that our framework is fixable to account 346

for other purposes, so that the exact architectures of the 347

encoder and decoder are fixable to adapt to be other types of 348

neural networks, or simple traditional statistical methods. To 349

reconstruct signals, we need to upsample the encoded spikes 350

into the remapping image space with the same size of signals, 351

4096 in our cases. According to the central limit theorem, 352

these remapping images are following a Gaussian distribution. 353

The intuition is that if one adds up all of different types of 354

images through each detailed pixel, we would get a white- 355

noise picture. In this sense, these remapping images are the 356

reservoir of input information and crucial for reconstructing 357

the final output signals to match the input signals. 358

As shown in Figure 1, we evaluate our model on various 359

different datasets for different tasks. 360

• MNIST data [23], where there are 10 digital images, 361

is used to demonstrate the feasibility of our model for 362

transcoding with neural spikes. 363

• MNIST with random noise [24], where each digital image 364

is embedded with a certain level of noise. Furthermore, 365

we also used data with different levels of noise to test the 366

model behavior, e.g. varied Gaussian noise with different 367

noise intensities. 368
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• MNIST with background images [24], where each digital369

image is embedded with a background natural image. A370

random patch from a white and black was used as the371

background. Those patches were extracted randomly from372

a set of pictures downloaded online.373

• CIFAR10[32] is a RGB based dataset which consists374

of 50,000 training images and 10,000 test images in 10375

classes, the image size is 32×32. It has natural images376

with complex patterns and objects which was used by377

the proposed DSPD to show its reconstruction ability.378

The same as Gaussian MNIST, we also used data with379

different levels of Gaussian noise to test the model380

denoise behavior.381

• fMRI brain activity under viewing handwritten im-382

ages [25], where the datasse consists of fMRI signals383

viewing the letters of B, R, A, I, N, S.384

• Sound signals of 10 spoken letter datasets [26], where385

different people read 10 digits of MNIST. The dataset386

includes audio-image pairs which were used to build the387

relationship between audio waves and images.388

B. Signal Reconstruction and Denoising389

In order to show the capability of the proposed DSPD390

for signal reconstruction, we use visual images regarding to391

mimic the static image reconstruction as one of the most392

important functions in biological visual processing system.393

We applied DSPD on five static image datasets which are394

dividend into two categories: pure dataset MNIST and noisy395

datasets random-MNIST (with random noise), background-396

MNIST (with background images), rotation-MNIST (rotated397

digital) and rotation-background-MNIST (rotated digital with398

background images) as show in Fig. 3. The dataset is divided399

into two parts: training set (50,000 training samples) and400

test set (10,000 test samples) for MNIST and its variation.401

Different from other reconstruction models [18] [33] which402

only focus on image without any other noise, DSPD have403

strong generation ability in noisy environment caused by ran-404

dom (rand), background (bg), rotation (rot) and background-405

rotation (bg-rot).406

In order to further explore the model’s generalization ability407

in noisy environment, we divide the sizes of the training408

set and test set to verify that the DSPD can achieve better409

performance on small-size datasets than any other models. For410

examples, when the training samples are 90 and test samples411

are 10 means, we choose 90 training samples from the whole412

50,000 training samples randomly and they are uniformly413

distributed in 0-9 ten classes.414

As shown in Fig. 3, we choose standard MNIST and its415

four variations to show the noise immunity of DSPD, these416

four noisy MNIST datasets have random, background, rotation417

and rotation-background noise respectively. The first two rows418

in Fig.2 represent the qualitative evaluations showing that the419

DSPD have strong denoising ability when it deals with the420

random-MNIST and background-MNIST, the reconstructed421

images from random and background MNIST appear clear422

without noise. However, when the datasets have rotated ob-423

jects, DSPD cannot reconstruct meaningful images. Presum-424

ably, because rotation is symmetrical in in all directions,425

that break the unity of directionality in digital images, for 426

instances, if a handwritten image 6 is rotated more than 90 427

degree or even 180 degree, then it becomes some wrong types 428

such as 9, which can not be discriminated by the model. 429

In order to further demonstrating that the strong rotation is 430

more symmetrical, we used t-SNE [34] to visulize the structure 431

of sample population represented by images after upsampling 432

spikes (Fig. 3). From Fig. 3, one can see that when t-SNE is 433

applied on clean MNIST images, the 0-9 ten classes could be 434

splitted better when rot (rotation) MNIST. As shown in Fig. 3 , 435

the encoded patterns from rotation MNIST are mixed together 436

so that them can not be separated well. Although the patterns 437

all look like white-noise, they are significantly different. From 438

the encoding point of view, this could also explain the meaning 439

about the patterns after encoding and give the reason why the 440

reconstructed images from rotation and rotation-background 441

MNIST look like zeros in the last two rows in Fig. 3. 442

Not only limited by the quality evaluations on visualization, 443

we also make some more detailed quantitative evaluations. 444

Table I. To show the advantage of spike transcoding,, we 445

implement and compare our DSPD with another recent state- 446

of-the-art method termed deep generative multi-view model 447

(DGMM) [35]. DGMM is designed in the context of fMRI 448

decoding, here we test it for signal reconstruction. As DGMM 449

is designed for reconstructing small size datasets, in order 450

to compare the reconstruction performance with DSPD, we 451

extract a small subset from whole dataset as using 90 images 452

for training and 10 images for rebuilding. And the MNIST 453

and its four variations are not uniformly distributed in 50,000 454

training samples and 10,000 test samples, in order to avoid to 455

the imbalanced training problem, we choose 40,000 and 8000 456

equally distributed training samples and 8000 test samples 457

as the maximum experimental condition. From table I, we 458

can see that DSPD perform better than DGMM when in 459

small size 90 training samples and 10 test samples on MSE, 460

SSIM and PSNR. DSPD reaches a PSNR peak at 13.11 when 461

reconstructing from random MNIST. If the training and test 462

samples from small size dataset (90/10) move to large size 463

dataset (40,000/8000), these performance evaluation metrics 464

of DSPD on random and background MNIST are better than 465

these evaluated on 90 training and 10 test. On the whole, there 466

is no huge performance gap on random (MSE: 0.032 SSIM: 467

0.52 PSNR: 14.72), background (MSE: 0.048 SSIM: 0.421 468

PSNR: 13.77). This is thought to be due to the increasing 469

training samples from random and background MNIST could 470

help train the framework and improve the decoding perfor- 471

mance. 472

We then further test the model with different levels of noise. 473

Based on the clean MNIST images, we added Gaussian noise 474

wit increasing levels of noise by varying the parameter of σ. 475

As shown in Fig. 2 left, we varied the degree of σ from 0 476

(clean) to 0.1 (strong noise). With the increasing of noise level, 477

the images look like more fuzzy. With those noise MNIST 478

images as input, the proposed DSPD could reconstruct the 479

pictures as shown in Fig. 2 right. One can observe that the 480

proposed framework could rebuild the pattern successfully 481

and the reconstructed samples could denoise very well with 482

different level of noise, except the strong noise (σ = 0.1), 483
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Input images

s=0

s=0.01

s=0.05

s=0.1

Output images

Fig. 2: Reconstructed images from noisy MNIST.

which is similar in top right corner of Fig. 3. Although the484

reconstructed samples with strong noise is not visually perfect485

as those from light noise, we can also recognize the digit shape486

easily.487

The proposed DSPD could not only reconstruct high quality488

from noisy handwritten digits, but also get good reconstruction489

performance from noisy natural image-complexity dataset,490

here we adopted CIFAR10 as experimental dataset.491

As shown in figure 4, with different levels of Gaussian492

noise (from σ = 0 to σ = 0.1), the proposed DSPD493

could reconstruct images from noisy CIFAR10 dataset. The494

proposed DSPD was trained on 50,000 images and rebuilt495

from 10,000 test samples. Different from MNIST digits, the496

proposed model could reconstruct similar quality figures with497

both clean noise or strong noise visually. This also means498

more natural images with higher complexity have strong anti-499

noise ability. One possible reason is that natural images with500

complex patterns contain more information including color,501

texture and shape, while digits are much more simple. So from502

Figure 4, the proposed DSPD show its strong anti-noise ability503

in real-life natural environments.504

C. Reconstruction of fMRI Signals505

The presented DSPD framework could not only reconstruct506

high-quality images and show strong noise immunity, but507

also perform well on object recognition from fMRI signals.508

We used a fMRI dataset with the simuli as handwritten509

letter images for testing the model. In order to show the510

reconstruction ability of DSPD, we also compared our DSPD511

with the DGMM [35]. Visually we observe that proposed512

DSPD can rebuild better quality patterns compared the results513

from DGMM.514

Fig. 5 represented the reconstructed samples produced by515

DSPD and DGMM. Fig. 5 left are reconstructed patterns of516

DSPD and DGMM with 90 training samples and 10 recon-517

structing samples. We can observe that the proposed DSPD518

show more clear reconstructed samples compared to the results519

from DGMM. And there is a similar conclusion no matter on520

subjects S1, S2 and S3, or brain areas V 1 and V 2, when the521

training samples increased to 300 and reconstructing samples522

are 60 as shown in Fig. 5 right. Compared to the results from523

DSPD, DGMM generates more blurry reconstructed images.524

Table II shows more detailed performance quantitative eval-525

uation on fMRI Handwritten characters dataset of DSPD and526

DGMM. As mentioned before, this fMRI based character527

dataset has three subjects S1, S2 and S3 from V 1 and V 2528

of human retinal systems. Here we used 300 image-fMRI 529

pairs for training and 60 for reconstructing. As shown in 530

table II, in subject 1 (S1), the proposed DSPD could perform 531

bettern the DGMM on MSE, SSIM and PSNR. As for S2, 532

DGMM could get better reconstruction performance on MSE 533

(0.059) and PSNR (13.02) in character patterns from V2 areas, 534

DSPD achieve the best performance on SSIM (0.45). When 535

we observe the performance evaluation metrics located on S3, 536

except DGMM has the best PSNR (12.508) in V1 areas, the 537

proposed DSPD nearly behave better than DGMM on MSE 538

and SSIM no matter in V1 and V2 areas. In short, the proposed 539

DSPD behave better in most cases, but that is not a big 540

difference. So, from the quality and quantitative evaluation of 541

DSPD and DGMM, we can conclude that the proposed DSPD 542

achieve better reconstruction performance on fMRI character 543

datasets. 544

D. Decoding Sound Signal 545

In order to further explore the potential of our model frame- 546

work, we apply it on a sound dataset with audio waveform 547

by differnet human subjects reading 10 digits of MNIST. As 548

shown in Fig. 6, the same as used in [26] , we choose 0-9 549

digits as the audio samples and standard MNIST for images 550

(see Methods). For a single digit, the samples are collected 551

from different human subjects reading it for audio data and 552

writing it for MNIST image data. There are different mappings 553

between audio digits and image digits. To induce noise and 554

show the generalization of audio data, we designed two types 555

of audio-image pairing dataset as shown in Fig. 6. Fig. 6 A 556

is the dataset A, in which we choose different image samples 557

for different audio samples in the the sample class as one 558

image-per audio. Whileas, in dataset B, we use the same image 559

samples to represent the same class of audio samples, which 560

means the images in one class are the same for differnt audio 561

samples. 562

For sound-image dataset A (one image-per audio) and 563

dataset B (one image-per class), we choose a subset about 564

90 training samples and 10 test samples to show the recon- 565

struction performance as shown in Fig. 7A and B. And for 566

a further comparison, we divide the full size (4136 samples) 567

as 4000 training samples and 136 test samples respectively, 568

the selected reconstructed samples are presented in Fig. 7C 569

and D. We can observe that compared to the generated from 570

dataset B, dataset A generates more blurry images which 571

indicate the reconstructed samples from dataset A could learn 572

the underlying shape, structure and texture of the presented 573
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Rotated MNISTMNIST

Input images Output images

Noise

Background

Rotation

Rotation with

background

Fig. 3: Reconstructed images from different versions of MNIST. Different t-SNE visualization images between clean and rot

MNIST based spatio-temporal patterns after encoding.

TABLE I: Comparison of noise immunity between DSPD and DGMM on MNIST and its variations.

Random Background Rotation Bg-rotation

Model MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR

DSPD (90/10) 0.049 0.15 13.11 0.056 0.381 12.90 0.072 0.417 11.67 0.087 0.290 10.99

DGMM (90/10) 0.062 0.36 12.02 0.080 0.358 11.33 0.124 0.243 9.39 0.090 0.288 10.59

DSPD (40K/8K) 0.032 0.52 14.72 0.048 0.421 13.77 0.068 0.489 11.77 0.092 0.276 10.58

σ=0 

 

σ=0.01 

 

σ=0.05 

 

σ=0.1 

Fig. 4: Reconstructed images from noisy CIFAR10.

images, but they could not learn finer details. Although the574

images in dataset A are various, the proposed DSPD may learn575

some more different basic information such as shape, texture576

and structure and extract the common information among them577

all, the proposed model could be trained over multiple same578

samples of the same class, which is more easier and helpful579

for a network model.580

IV. DISCUSSION581

In this paper, we proposed a robust cross-multimodal pattern582

reconstruction model named deep spike-to-pattern decoder583

(DSPD). This cognitive model combines neural encoding and584

DNN based decoding parts in a same framework, with the585

help of neural encoding method, this biological plausible586

reconstruction model can encode the outside stimuli to spa- 587

tiotemporal patterns. Based on these kinds of advantages, the 588

proposed DSPD has strong generalization ability and become 589

robust in noisy environment. Furthermore, it is the first attempt 590

to encode various kinds of stimuli: image, fMRI and sound in a 591

uniform framework. We show the reconstruction performance 592

of the presented DSPD applied on MNIST, variational MNIST, 593

fMRI-digits datasets, fMRI-characters datasets, sound-image 594

dataset A and dataset B is comparable to some other state-of- 595

the art reconstruction models. We argue the encoding method 596

and decoding structure adopted by DSPD could help to extract 597

more important features and lead to train a more robust and 598

efficient cognitive reconstruction model. In the future, we will 599

adopt more types of external stimuli such as ECoG, EEG and 600
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TABLE II: Evaluation of neural decoding performance of DGMM and proposed DSPD on fMRI character dataset with three

subjects S1, S2 and S3 from v1 and v2 areas.

Models
Character fMRI-S1 Character fMRI-S2 Character fMRI-S3

MSE SSIM PSNR MSE SSIM PSNR MSE SSIM PSNR

DGMM-V1 0.068 0.212 11.87 0.060 0.266 12.79 0.069 0.27 12.508

DSPD-V1 0.063 0.427 12.46 0.067 0.43 12.38 0.064 0.46 12.35

DGMM-V2 0.071 0.210 11.83 0.059 0.27 13.02 0.079 0.29 11.95

DSPD-V2 0.061 0.442 12.44 0.063 0.45 12.79 0.063 0.47 12.506

Objects

DSPD-S1 -V1

DSPD-S1-V2

DSPD-S2 -V1

DSPD-S2 -V2

DSPD-S3-V1

DSPD-S3-V2

Reconstructed with 90 training samples Reconstructed with 300 training samples

Fig. 5: Presented fMRI characters and Reconstructed Results

of DSPD three subjects S1, S2 and S3 from the V 1 and V 2
areas (the left images are with 90 training samples and the

right images are with 300 training samples).

Dataset A

One-image-per-audio

Dataset B

One-image-per-class

“Zero”

“Three”

“Four”

“Five”

“Six”

“Seven”

“Eight”

“Nine”

“Two”

“One”

Fig. 6: Two Types of Sound Datasets. Dataset A means one

image corresponds one paired audio sample, Dataset B

means one image corresponds one audio class.

etc.601

Because of the event driven nature of the spiking activities,602

it would be beneficial for implementations of neuromorphic603

hardware chips with aid of its structure. Furthermore, this work604

proposes a more biological realistic reconstruction framework605

which can achieve nearly real-time encoding and decoding606

various patterns by neural spikes. The potential showed by607

DSPD is promising with the hope that this cognitive model608

could help us how mammalian neocortex and neural circuits609

are performing computations in high-level visual tasks.610

A. Neural Encoding and Decoding 611

How information is represented in the brain still remains 612

unclear, but this leads to one of the core problems in neural 613

processing system. However, there is strong evidence [36], 614

[20] to believe that spike trains are an optimal way for 615

transmission and information representation. Unlike neurons 616

in traditional convolutional neural networks (CNNs), which 617

communicate via real values, neurons in computational sys- 618

tems such as spiking neural network (SNN) communicate 619

via spikes. Spiking based systems have been shown to be 620

more computationally powerful than traditional artificial neural 621

networks (ANNs), including CNNs. Moreover, these systems 622

are event-driven, computation in synapses and neurons are 623

triggered by incoming spikes. Driven by sparse spike trains, 624

most synapses and neurons in neural circuits are idle for 625

most of the time, which allows those spiking based models 626

to run inference with low computational cost and low power. 627

They are advantageous to deal with spatio-temporal patterns, 628

through spike-based learning and memory mechanisms [37]. 629

However, compared with deep CNNs, typical artificial spik- 630

ing systems are surely at a great disadvantage about feature 631

extraction because of shallow structures with few biologically 632

based neurons. The difficulty for building a deep biological 633

coding system lies on the complex neural dynamics, shallow 634

layer cannot detect and capture some deeper and hidden 635

information. [38] and [39] explored the visual system using 636

the hierarchical simple cell and complex cell feedforward 637

model, and showed that there is a high resemblance of the 638

feature extraction process between the model and biological 639

brain. Nevertheless, the previous work [38] does not model the 640

coding flow in a biological realism way, i.e., relying on a non- 641

biological classifier such as support vector machine. Aiming at 642

this issue, CSNN [16] proposes a brain-inspired spiking based 643

coding framework, which consists of a partial CNN and a 644

SNN. CSNN is able to exploit the powerful feature extraction 645

ability of the CNN to increase the coding performance of the 646

computational neural system. 647

There still exist big challenges about constructing robust 648

coding system which is believed to originate from the invari- 649

ant representation of cross-multimodal features. In biological 650

coding processing, the information which is received from the 651

outside and communicate between the neurons is discrete. 652

Before run-time, every real value of the outside image is 653

encoded into spike trains by the feat of encoding methods, 654

then the spikes are communicated between the corresponding 655

neurons of the networks. The existed encoding rules can be 656

classified into rate based coding, temporal based coding and 657

others. 658

The rate based coding [40] is used to encode images into 659
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A. Image synthesized from audio-image dataset A with 90 training samples and 10 test samples. B. Image synthesized from audio-image dataset B with 90 training samples and 10 test samples.

C. Image synthesized from audio-image dataset A with 4000 training samples and 136 test samples. D. Image synthesized from audio-image dataset B with 4000 training samples and 136 test samples.

Fig. 7: Image synthesized from Dataset A (one image-per audio) and Dataset B (one image-per class) with small size

training samples (90) and full size training samples (4000). Images in first line are the presented samples and figures in

second line are reconstructed results.

dense spikes, a higher firing rate is defined as high sensory660

variable which can be represented as the average number of661

spikes counting within a temporal encoding window. The rate662

based coding always uses dense spikes (Poisson spike trains)663

to represent the neurons firing rate. To encode a real value,664

rate coding tends to generate many spikes, especially if the665

real value is large, which imposes high computational load on666

downstream spiking neurons. [41] proposes a novel algorithm667

which adopted filtered spike train as transition from original668

images. The sparse coding [42] clusters a relatively small669

subset of neurons which have nearly the same firing rate.670

Although these rate based coding mechanisms are to some671

extent successful, the power consumption of the whole system672

is large. The precision of the encoded value increases with the673

time span of the spike train, which is roughly proportional to674

the number of spikes in the spike train. In addition, given675

the time span of the spike train, the number of spikes in the676

spike train is roughly proportional to the encoded value [43].677

Therefore, with rate coding, many spikes have to be generated678

to encode a large value with high precision, which imposes a679

high computational load on downstream neurons. On the other680

hand, to generate a spike train, spikes have to be generated681

with different spike times. With rate coding, spike times of682

individual spikes are not used to convey information at all.683

Furthermore, studies [44], [45] have proved that neurons684

in human retina firing more likely as temporal coding mech-685

anism compared to rate based coding ways [20]. Patterns686

encoded from temporal coding can carry more information687

in spatiotemporal spikes and consume fewer computational688

resources than rate based coding. So based on the advantages689

lying in temporal encoding, this paper adopts a biological690

temporal encoding methods as the primary encoding layer.691

Compared with the spiking neuron models such as IF, LIF,692

Adex, Izhikevich in SNN or Aurel Lazar’s Time Encoding693

Machines[46], our model is not a spike-in spike-out model.694

We only consider the question of reconstructing visual stimuli695

from neuron responses, i.e. decoding is an essential part in this696

study. Here we propose a decoding model that reconstructs697

natural scenes directly from neural signals. Different from698

HTM[47] (hierarchical temporal memory) which focuses on699

time-coherent information in analysis of brain’s model, we700

expect that our decoder will help to solve some problems on 701

neural decoding (e.g. what characters of spikes are important 702

for neural coding), and provide some clues on the questions 703

of brain-machine interface, such as neural neuroprosthesis. 704

Some recent work[48], [49], [50] have encoded dynamic 705

video scenes, speech and biomedical signals with DVS (Dy- 706

namic Vision Sensors) or other Neuromorphic hardware chips 707

successful. Our proposed model is so far implemented on 708

Ubuntu software system, in the future, we will take DVS 709

sensors as one of the beginning of sensory information 710

acquisition equipment and implement the DSPD model on 711

our designed Darwin[51] Neuromprphic hardware system to 712

achieve a software-hardware integrated spiking recognition 713

framework for artificial machine vision. 714

B. Multimodal Pattern Reconstruction 715

There has already been various studies for how to con- 716

struct the visual pattern reconstruction systems. Typical vi- 717

sual reconstruction aim at reconstructing the original stimuli 718

by using the neural response, for instances, rebuilding the 719

visual scenes which the animals saw before through ob- 720

taining each pixel of those scenes from the neural signals 721

produced by visual system, including neural spikes and fMRI 722

activity [18] [52] [53]. [54] proposed a Bayesian canonical 723

correlation analysis model to build a bridge between visual 724

scenes and the corresponding brain activities, however due to 725

the limitation of simple linear shallow framework, it cannot get 726

some complex features. [18] [55] constructed the rebuilding 727

systems with the aid of deep neural networks, compared to 728

traditional simple mapping methods, these models could obtain 729

more meaningful and complex features, thus leading to better 730

performance. [56] combined the probabilistic inference with 731

the generative adversarial networks and applied it into a face 732

image - evoked brain activities, which usually cannot converge 733

to the global optimum with the constrain of a n equilibrium 734

between the generator and discriminator [57]. 735

Although the aforementioned work greatly promote the 736

research in the area of pattern reconstruction, accurately recon- 737

structing the cross-multimodal still remains challenging from 738

two main aspects: 1. Those models are short of more biological 739

coding activities such as spikes encoding and decoding from 740
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with neural coding method, since the spikes generated with741

neural coding are the unique output neurons of retinas. 2.742

They only focused on one or two modals pattern reconstruction743

tasks such as fMRI and images, cross-multimodal pattern744

rebuilding is necessary and pivotal for understanding how745

neural representation in biological neural system. In order746

to address these limitations, this paper proposed a cross747

multi-modal pattern reconstruction with hierarchical structures748

from spiking activities, named deep spike-to-pattern decoder749

(DSPD). Recent advances in experimental techniques enables750

us to record neural signals from multiple brain areas si-751

multaneously [58]. Thus, our proposed decoding approach752

make it possible to decoding of multimodal information from753

neural signals of multiple brain areas with one single decoding754

framework. We expect that the method presented here will755

advance the methodology of analyzing neural spikes, as well756

as the applicability of neuromorphic computing.757
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