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On the correction of anomalous phase oscillation in
entanglement witnesses using quantum neural

networks
E.C. Behrman, R.E.F. Bonde, J.E. Steck, and J.F. Behrman

Abstract—Entanglement of a quantum system depends upon
relative phase in complicated ways, which no single measure-
ment can reflect. Because of this, entanglement witnesses are
necessarily limited in applicability and/or utility. We propose
here a solution to the problem using quantum neural networks.
A quantum system contains the information of its entanglement;
thus, if we are clever, we can extract that information efficiently.
As proof of concept, we show how this can be done for the
case of pure states of a two-qubit system, using an entanglement
indicator corrected for the anomalous phase oscillation. Both the
entanglement indicator and the phase correction are calculated
by the quantum system itself acting as a neural network.

I. INTRODUCTION

The scientific process asks questions of the universe. Much
of the education of a scientist consists of learning, painstak-
ingly, how to ask those questions. If the question is ill-posed,
the answer will be ambiguous or even unintelligible; even
if it is well-posed, the question needs to be the one whose
answer is pertinent to whatever problem it is we wish to
solve. Simulations are one good route to finding out about
the clarity and worth of our questions, since variables can be
easily controlled and extraneousness determined.

Quantum imformation is the systematic use of the fun-
damental quantum mechanical nature of the universe to do
calculations that are either very difficult or even impossible to
do with a classical computer. Exactly what this allows us to
do, and how we can make use of that nature, turns out to be
a very difficult problem. The quantum system itself contains
that information. But how do we exploit those abilities? How
do we even find out what they are?

In this paper we use a Quantum Neural Network (QNN),
which necessarily complex-valued, to calculate the essential
attributes of the quantum information. While this is done in
simulation, the method, as outlined, could be implemented
experimentally to create a quantum computer, programmed
through neural network training, to calculate its own entan-
glement and phase.
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II. ENTANGLEMENT

Determination of entanglement is one very good example.
This is an important question because entanglement is what
allows us to do quantum computations [1]; it is an essentially
quantum question since no classical system can have quantum
correlations; thus, it is an excellent testbed for this general
problem. The quantum system which is our quantum computer
“knows” what its entanglement is, but how do we ask the
question? And how do we know if we have the right answer?

Given the density matrix, entanglement can actually be cal-
culated for the two-qubit system. For definiteness, we choose
the “entanglement of formation” EF [2], which is the number
of pure singlets necessary to create a given entangled state. Of
course, we may not even know the density matrix. We could
determine the density matrix through quantum tomography [3],
but the number of measurements necessary goes like 22N ,
where N is the number of qubits. Thus, as the system grows
this method becomes prohibitive. Is there instead a relatively
cheap way to determine the entanglement?

A number of researchers (see, e.g., [4], [5]) have devised
single measurement “entanglement witnesses”, to indicate
the presence or absence of entanglement. An entanglement
witness, W , is a Hermitian operator such that tr(Wρ) ≥ 0
for a density matrix ρ representing a fully separable (i.e.,
unentangled) state. Most of them are measures of “closeness”
to a single, entangled state, and fail for other kinds of
entangled states. This is easiest to understand by considering
the so-called “Bell” states:

|Φ+(θ1)〉 =
1√
2

[|00〉+ eiθ1 |11〉] (1)

|Φ−(θ2)〉 =
1√
2

[|00〉 − eiθ2 |11〉]

|Ψ+(θ3)〉 =
1√
2

[|01〉+ eiθ3 |10〉]

|Ψ−(θ4)〉 =
1√
2

[|01〉 − eiθ4 |10〉

For {θi} = 0, this is a commonly used basis for the two-qubit
system, the “Bell basis” (it is an orthonormal set). Each of
these states is fully entangled, EF = 1 (i.e., each could be
created using exactly one singlet), independent of the angle
θi.

A witness can be devised that measures closeness to any
one of these states. For example, the Mintert witness [4] is
given by WM = −4tr(ρ ⊗ ρV ), where V = P

(1)
− ⊗ (P

(2)
− −
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Fig. 1. The Mintert Witness, WM , set for closeness to |Ψ−(θ4 = 0)〉,
tested on each of the Bell basis states as functions of phase offset θ. Both
|Φ+〉 and |Φ−〉 are calculated to have zero entanglement, while |Ψ+〉 and
|Ψ−〉 oscillate, showing entanglement for half the range of θ. Note that the
correct answer is that each state is fully entangled for all θ values (i.e., the
witness should be negative everywhere.) This oscillation is what we are calling
“anomalous oscillation” in the entanglement witness.

P
(2)
+ ), P− is the projector onto the antisymmetric states, and
P+ is the projector onto the symmetric states. As proposed
this witness is set up to work well for states close to the
singlet (antisymmetric) state, |Ψ−(θ4 = 0)〉, so it does not
detect entanglement in either |Φ+〉 or |Φ−〉. Worse, the witness
increasingly fails to detect entanglement in |Ψ−(θ4)〉 as θ4
increases. See Figure 1, which shows WM (set for closeness
to the EPR singlet, |Ψ−(θ4 = 0)〉) , calculated for each of the
Bell states as functions of their respective θ. Entanglement is
indicated by negativity of the result. The straight line showing
the constant result of zero shows that this witness predicts
no entanglement for either |Φ+〉 or |Φ−〉. The two oscillatory
curves correspond to the |Ψ+〉 and |Ψ−〉 states. At θ = π/2
each becomes the other; thus, at that point, |Ψ−〉 is predicted
to lose entanglement and |Ψ+〉 to become entangled.

Witnesses can be “reset” so that they will work for other
members of the Bell basis; for this witness, all that is necessary
is to change the projection operators. See Figure 2, which
shows results of this procedure: all the predictions now lie atop
each other (as they must do by symmetry.) So, if you know
which entangled state your unknown state is close to, you can
use a witness which will correctly predict its entanglement.
However this creates an obvious dilemma: you must have
knowledge of the state before you do the measurement to gain
knowledge of the state.

All single measurement witnesses must show this anoma-
lous oscillation [6], shown in Figures 1 and 2. Clearly, it would
be of value to devise a corrector to this oscillation, so that
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Fig. 2. The Mintert Witness, WM , set for closeness to each of the Bell
basis states (at θ = 0) in turn, and tested as functions of phase offset θ. All
show exactly the same oscillatory behavior. Again, the correct answer is that
each state is fully entangled for all θ values (the witness should be negative
everywhere.)

the witness would then correctly predict that all the states of
Equation 1 are fully entangled. With such a method, we could
thereby determine whether a general, unknown, input state was
entangled, and perhaps even the degree of entanglement. We
propose here such a method, using a quantum neural network.

III. QUANTUM NEURAL NETWORK

In previous work we have shown that a quantum system can
be trained to deal with both parts of the problem: that it can
be trained to output an entanglement indicator[6], [8], [9] or
a phase indicator [7]. Briefly, the details are as follows.

For the 2-qubit system, we write for the Hamiltonian:

H = KAσxA +KBσxB + εAσzA + εBσzB + ζσzAσzB (2)

where {σ} are the Pauli operators corresponding to each of the
two qubits, A and B, KA and KB are the tunneling amplitudes,
εA and εB are the biases, and ζ the qubit-qubit coupling.
(Generalization to an N-qubit system is possible [8], [9] but
will not be considered here.) The time evolution of the system
is given by the Schrödinger equation:

dρ

dt
=

1

ih̄
[H, ρ] (3)

where ρ is the density matrix and H is the Hamiltonian.
The parameters {K, ε, ζ} determine the time evolution of the
system in the sense that, if one or more of them is changed,
the way a given state will evolve in time will also change.
This is the basis for using our quantum system as a neural
network. The role of the “weights” of the network is played
by the parameters of the Hamiltonian, {K, ε, ζ}, all of which
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we take to be experimentally adjustable as functions of time
(see, e.g., [10], for the case of SQuID charge qubits.) By
adjusting the parameters using a neural learning algorithm we
can train the system to evolve in time to a set of chosen target
outputs at the final time tf , in response to a corresponding
(one-to-one) set of given inputs. Because the time evolution is
quantum mechanical (and, we assume, coherent), a quantum
mechanical function can be mapped to an observable of the
system’s final state, a measurement made at the final time
tf . The time evolution of the quantum system is calculated by
integrating the Schrödinger equation numerically in MATLAB
Simulink, using ODE4 (Runge-Kutta), with a fixed integration
step size of 0.05 ns [11]. The system was initialized in each
input state in the training set, in turn, then allowed to evolve for
190 ns. A measurement is then made at the final time; this is
the “output” of the network. An error, target−output, is cal-
culated, and the parameters are adjusted slightly to reduce the
error. This is repeated for each (input, target) pair multiple
times until the calculation converges on parameters that work
well for the entire training set. Complete details, including a
derivation of the quantum dynamic learning paradigm using
backpropagation [12] in time [13], are given in [6] and in [7].

A. QNN entanglement indicator

For the entanglement indicator, we chose as our output
the qubit-qubit correlation function [14] evaluated at the final
time, 〈σzA(tf )σzB(tf )〉2, and trained the indicator using a
training set of four (one fully entangled state, two product
(unentangled) states, and one partially entangled state.) That
is, the input,output) pairs are:

input = |Ψ(0)〉 (4)
output = 〈σzA(tf )σzB(tf )〉2 → target

with prepared input states at zero time, and corresponding
targets, given in Table I, which also shows the trained val-
ues and the entanglement of formation, calculated using the
analytic formula [2] for comparison. Note that the QNN indi-
cator systematically underestimates EF for partially entangled
states; this is because we found through simulation that the
net naturally trained to the target value of 0.44. See [6] for
details. That is, we seek here not exact agreement with EF
(in which case we would train the state 1√

3
(|00〉+ |01〉+ |10〉)

to a target value of 0.55), but a robust and internally self
consistent measure, which we would hope would track well
with an analytic measure like EF .

Note that the results in Table I are retrained from our
previous work [6], this time using continuously varying func-
tions rather than functions piecewise constant in time; training
was, as might be expected, much more rapid, and the trained
parameter functions more symmetric: KA and KB lie right on
top of each other, as do εA and εB . Both ε and ζ were simple
oscillatory functions, of only a single frequency; however, K
seems to exhibit two frequencies. We curvefit each function to
a Fourier series. The agreement was very good. Coefficients
for the fits are shown in Table II. The trained functions, with
their curvefits, are shown in Figures 3 and 4.
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Fig. 3. The functions εA = εB and ζ, as functions of time, as trained for
the entanglement indicator, and plotted with a single frequency Fourier fit.
Each was started out (pre-training values) as a constant function: εA = εB =
ζ = 10−4GHz.
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Fig. 4. The function KA = KB as a function of time, as trained for
the entanglement indicator, and plotted with a two-frequency Fourier fit. K
was started out (pre-training values) as a constant function: KA = KB =
1.875× 10−3GHz.
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TABLE I
TRAINING DATA FOR QNN ENTANGLEMENT WITNESS.

Input state |Ψ(0)〉 Target Trained EF
1√
2

(|00〉+ |11〉) 1.0 0.998 1.0
1
2

(|00〉+ |01〉+ |10〉+ |11〉) 0.0 1.2× 10−5 0.0
1√
1.25

(0.5|10〉+ |11〉) 0.0 1.8× 10−4 0.0
1√
3

(|00〉+ |01〉+ |10〉) 0.44 0.44 0.55
RMS 4.4× 10−6

Epochs 100

TABLE II
CURVEFIT COEFFICIENTS FOR PARAMETER FUNCTIONS K , ε, ζ , FOR QNN

ENTANGLEMENT WITNESS.

f(t) = a0 + a1cos(ωt) + b1sin(ωt) + a2cos(2ωt) + b2sin(2ωt)

coefficient K epsilon zeta
a0 0.0019495 1.014× 10−4 1.012× 10−4

a1 −1.002× 10−6 2.824× 10−5 1.109× 10−5

b1 6.868× 10−6 9.577× 10−6 −3.96× 10−5

a2 2.981× 10−6 — —
b2 −4.562× 10−7 — —
ω 0.01645 0.02674 0.05282
RMS 1.069× 10−7 1.88× 10−6 7.982× 10−6

This indicator gives good results for large classes of input
states, including both pure and mixed states, and is not
restricted to states “close” to any particular state. We have
also [8], [9] extended our work to the 3-, 4-, and 5-qubit
cases, and found that as the size of the system grows, the
amount of additional training necessary diminishes; thus, our
method may be very practical for use on large computational
systems. But as it is a single measurement, we too get
anomalous oscillation. See Figure 5, which shows that the
QNN indicator tracks very well with EF for states of the
form a00|00〉+ a11e

iφ|11〉 as a function of a00, but predicts,
incorrectly, that the entanglement is a function of φ. Another
way of looking at this is shown in Figure 6 and Figure 7. If
we confine our testing to states with only real coefficients, the
QNN gives an excellent approximation to the entanglement
of formation. Figure 6 shows a comparison of the QNN
entanglement indicator for 50,000 randomly generated states
with real coefficients for the 2-qubit system. Agreement is
excellent (45◦ yellow line is ideal); however, if we relax the
restriction, and include complex coefficients (or, equivalently,
nonzero phase offsets), our agreement becomes quite bad (see
Figure 7.) So, we need to know the phase offset(s) of the
system before we can calculate the entanglement.

B. Phase indicator

Since the phase offset is yet another quality of the system,
the system should, itself, be able to supply us with information
about its own phase. And so it can. We choose the “charge”
basis, in which a general pure state can be written

|Ψ(0)〉 = a00|00〉+ a01e
iξ|01〉+ a10e

iθ|10〉 (5)
+a11e

iφ|11〉
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Fig. 5. QNN entanglement indicator for states of the form a00|00〉 +
a11eiφ|11〉, where a00 and a11 are both positive real, as a function of both
relative magnitude and φ, and compared with the entanglement of formation.
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Fig. 6. QNN entanglement for 50,000 randomly generated pure states of
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a11 are all real, as a function of the entanglement of formation. Points lying
along the dashed yellow line are states for which the entanglement predicted
by the QNN witness exactly matches the entanglement of formation.

where normalization requires that

√
a200 + a201 + a210 + a211 = 1 (6)
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TABLE III
CURVEFIT COEFFICIENTS FOR PARAMETER FUNCTIONS K , ε, ζ , FOR QNN

PHASE INDICATOR.

f(t) = a0 + a1cos(ωt) + b1sin(ωt)

coefficient K epsilon zeta
a0 0.002512 8.945× 10−5 7.445× 10−4

a1 5.156× 10−5 −1.005× 10−5 −6.346× 10−4

b1 −3.781× 10−6 8.4e− 005 1.359× 10−4

ω 0.0658 0.03454 0.06402
RMS 7.556× 10−6 3.869× 10−6 4.468× 10−6

Since an overall phase is physically meaningless we may take
out any overall phase factor; that is, without loss of generality
we may take the coefficient of the |00〉 basis state to be real.
We then write each of the other coefficients as its magnitude
times a phase factor; thus, each anm will be a real number,
and the phase factor, if any, will be written in explicitly. There
are, thus, three independent phases for the two-qubit system.
Our training set consisted of (input,output) pairs of the form

input = |Ψ(0)〉 =
1√
2

(|00〉+ eiφ|11〉) (7)

output = |〈11|Ψ(tf )〉|2 → target = cos2(φ/2)

with 11 different values of φ from −π to π. Training was rapid
and good. Figure 8 shows the trained parameter functions for
the phase indicator. KA and KB lie right on top of each other,
as do εA and εB . Each was started out (pre-training values) as
a constant function: KA = KB = 2.5× 10−3GHz, and εA =
εB = ζ = 10−4GHz. Each trained rapidly to what seemed
obviously to be a single oscillatory function. We therefore
curvefit each function to a single term in the Fourier series.
Coefficients for the fits are shown in Table III.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Time (ns)

P
ar

am
et

er
 (

M
H

z)

Phase Parameter Curvefits

 

 

K
ε
ζ

Fig. 8. The functions KA = KB , εA = εB , and ζ, as functions of time, as
trained for the phase offsets, and plotted with curvefits to single oscillatory
functions, as explained in the text. On the scale of the graph the curvefits are
indistinguishable from the plotted points of the trained values.

Agreement is good even with the fitted functions in place of
the trained ones; and it is certainly easier to use a fixed analytic
function than a large collection of discrete data samples. For
testing on more general states than those of Equation 7,
though, we needed to expand the target function.

Because quantum computational power comes from en-
tanglement, it is not surprising that the ability of the net
to determine a relative phase between two basis states de-
pends on there being entanglement between those states, and,
indeed, the size of the signal diminishes with decreasing
entanglement. For the Bell states with unequal magnitude,
a00|00〉 + a11e

iφ|11〉 , we found that if we used the target
function 2( 1

2−a
2
00)2a211+2a00a11 cos2(φ/2) we got excellent

results. Note that 2a00a11, the coefficient in front of the
cos2(φ/2) term, is the concurrence for this state - a monotonic
measure, like EF , of the entanglement [2]. Testing on states of
the form a00|00〉+a01|01〉+a11eiφ|11〉 was equally good when
we again adjusted for the diminished amount of entanglement
in the target function.

In fact, the parameter functions {KA = KB , εA = εB , ζ}
we found through training only on the eleven states of
Equation 7 gave us all three of the phases {φ, θ, ξ}, with
symmetrically adjusted outputs and target functions (e.g., to
find θ we used the output |〈10|Ψ(tf )〉|2.)

IV. CORRECTION OF ANOMALOUS PHASE OSCILLATION

The phase information seems inextricably linked with the
entanglement information. For the simple case of a fully
entangled state, either 1√

2
[|00〉+eiφ|11〉] or 1√

2
[|01〉+eiθ|10〉],

our phase indicator returns the cosine squared (of φ or θ,
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Fig. 9. The entanglement of 1√
2

[|00〉 + eiφ|11〉], as a function of φ, as
calculated by the QNN, both with and without phase correction as described
in the text, and compared with EF (equal to 1 for all φ.) Results are exactly
similar for the 1√

2
[|01〉+ eiθ|10〉] states.

respectively) for the projections, so the procedure is straight-
forward: Using two copies of a given state, measure the phase
offset on one copy, then apply a rotation operator to the other,
and measure the entanglement. Results are shown in Figure
9. The linkage does happen in both directions, though. If we
examine the anomalous oscillation in, e.g., Figure 5, it is also
remarkably close to a cosine squared. A good approximation
is shown in Figure 10. Results are exactly similar for the
[a01|01〉+ eiθa10|10〉] states. For partially entangled states of
the type [a00|00〉 + a01|01〉 + eiφa11|11〉] (and symmetrical
equivalents, such as [a00|00〉+a01|10〉+eiθa10|10〉] ) we also
get a function of the “contaminant” (for the above state, the
magnitude a01) times the cosine squared. This is shown in
Figure 11.

V. DISCUSSION AND FURTHER WORK

We have shown that, for the simple case of a single phase
offset of a pure state, we can train a quantum neural network to
correct the anomalous oscillation in an entanglement witness.
If we know that our experimental setup produces, say, pairs
of states of the form 1√

a200+a
2
11

[a00|00〉 + eiφa11|11〉] with a

high degree of probability, our method would allow for good
reproducible determination of the entanglement. Of course this
is not a complete solution even to the measurement of the
entanglement of a two qubit system. That is, our results in the
previous section do not transform Figure 7 completely into
Figure 6, as we have allowed only one of the coefficients at a
time to be complex.

We consider this work to be only proof-of-concept: Though
our phase indicator does give us all relative phases, we

Fig. 10. The entanglement of [a00|00〉 + eiφa11|11〉], as a function of
φ and a00, as calculated by the QNN, and compared with a curvefit to
sin2(2a00) cos2(φ) (the partially transparent grid, superimposed.)

Fig. 11. The entanglement of [a00|00〉+a01|01〉+eiφa11|11〉], as a function
of φ and a01, as calculated by the QNN, and compared with a curvefit to
0.9 cos2(1.3a01) cos2(φ) (the partially transparent grid, superimposed.)
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need something more to solve this problem completely, for
three reasons. First, because each measurement we make on
a quantum system destroys all other information, so that
we would need, minimum, four copies of our input state.
With so many measurements necessary, it seems it might
be easier simply to determine the state completely and then
to calculate EF or whatever we wish to know, analytically.
Second, inversion of the phase indicator target functions is
increasingly problematic for the general input state. And third,
it is not true that if we successfully unwind all the phases
we will be able to recover the entanglement of the original
state. Consider the entanglement of formation of the “flat
state” (equal magnitudes of all of the charge basis states
1
2 [|00〉 + eiξ|01〉 + eiθ|10〉 + eiφ|11〉]). The concurrence for
this state is simply C = | sin[φ−(ξ+θ)2 ]|, and since EF is
a monotonic bijective function of the concurrence, we can
easily see that (since C is maximum) EF = 1 whenever the
difference in phase between the “Bell part” and the “EPR
part” is π. That is, if the “Bell-type” entanglement and the
“EPR-type” entanglement are exactly in phase, the superpo-
sition is a product state, and, thus, has zero entanglement;
if they are exactly out of phase, the density matrix cannot
be factorized, and, thus, is entangled. This type of phase
dependence actually causes entanglement, so, if we wish to
determine the entanglement for a general input state, we will
have to do more than simply determine all the phases and
unwind them. It is not yet completely clear how much of
this behavior the trained QNN net has already captured, since
for all real coefficients, including negative ones, we get good
results (Figure 6). Further work is needed, and is ongoing.

We have not considered here the multiple qubit systems that
are of most interest to practical quantum computing; however,
it is worth considering that a neural approach has natural
advantages for scale-up. In fact, our entanglement indicator
did easily generalize from two to three to four to five qubits
[8], [9]. We have also not considered mixed states, though
our entanglement indicator [6] did work also for these types
of states, which gives us hope that this, larger, work may be
easily extended to those also.
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