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Accurate and Fast Off and Online Fuzzy
ARTMAP-Based Image Classification With
Application to Genetic Abnormality Diagnosis

Boaz Vigdor and Boaz Lerner

Abstract—We propose and investigate the fuzzy ARTMAP
neural network in off and online classification of fluorescence in
situ hybridization image signals enabling clinical diagnosis of nu-
merical genetic abnormalities. We evaluate the classification task
(detecting a several abnormalities separately or simultaneously),
classifier paradigm (monolithic or hierarchical), ordering strategy
for the training patterns (averaging or voting), training mode
(for one epoch, with validation or until completion) and model
sensitivity to parameters. We find the fuzzy ARTMAP accurate in
accomplishing both tasks requiring only very few training epochs.
Also, selecting a training ordering by voting is more precise than
if averaging over orderings. If trained for only one epoch, the
fuzzy ARTMAP provides fast, yet stable and accurate learning as
well as insensitivity to model complexity. Early stop of training
using a validation set reduces the fuzzy ARTMAP complexity as
for other machine learning models but cannot improve accuracy
beyond that achieved when training is completed. Compared to
other machine learning models, the fuzzy ARTMAP does not
loose but gain accuracy when overtrained, although increasing its
number of categories. Learned incrementally, the fuzzy ARTMAP
reaches its ultimate accuracy very fast obtaining most of its
data representation capability and accuracy by using only a few
examples. Finally, the fuzzy ARTMAP accuracy for this domain is
comparable with those of the multilayer perceptron and support
vector machine and superior to those of the naive Bayesian and
linear classifiers.

Index Terms—Fluorescence in situ hybridization (FISH), fuzzy
ARTMAP neural network (NN), genetic abnormality diagnosis,
image classification, off- and online learning.

I. INTRODUCTION

N RECENT years, fluorescence in situ hybridization (FISH)

has proved itself as a useful tool in the analysis of human
chromosomes for clinical diagnosis and genetic research [1][2].
In contrast to conventional cytogenetics, FISH enables the de-
tection of chromosomal numerical abnormalities during cell in-
terphase. This analysis is vital in clinical applications requiring
rapid results, where it is difficult to culture cells in vitro or stim-
ulate cell proliferation. One of the most common applications
of FISH is the enumeration of signals representing the inspected
chromosomes within a population of cells, in a procedure known
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as signal (dot or spot) counting. Dot counting is used for de-
tection and analysis of chromosomal numerical aberrations in
e.g., prenatal inspection, diagnosis of tumors and haematopoi-
etic neoplasia as well as for demonstration of disease-related
chromosomal translocation [1]-[3]. However, one major limita-
tion of the FISH technique in dot counting is that a large number
of cells are needed to be scanned in order to get accurate estima-
tion of chromosome distribution over cell population. Manual
evaluation of cells by cytogenetic experts is laborious and time
consuming, therefore it is only but natural to pursuit the automa-
tion of dot counting.

Previous research [4] proposed performing automatic dot
counting based on signals classified as valid whereas signals
classified as artifacts are removed from the analysis. This
approach required the extraction of well-discriminating signal
features and establishment of a highly accurate classifier.
The research also studied different feature representations of
FISH signals, as well as ways to select the most discriminative
features appropriate to signal classification.

Extending the previous research to meet a broader range of re-
quirements, we are interested in this investigation in finding and
optimizing a classifier of signals demonstrating two genetic dis-
eases, Down syndrome (trisomy 21, i.e., an excess of one copy
of chromosome 21) and Patau syndrome (trisomy 13, i.e., an
extra copy of chromosome 13). Since we wish the classifier to
be adaptable to different cytogenetic applications, procedures
and laboratories, as well as capable to discriminate high-di-
mensional signal representations accurately, we concentrate on
neural networks (NNs) [5] that excel in classification problems.
An earlier study [6] demonstrated the accuracy of a multilayer
perceptron (MLP) NN in FISH signal classification. However,
the MLP model required both large sample size and extended
period for training. Frequently, these requirements are difficult
to achieve in routine clinical inspection, especially in small lab-
oratories and when the laboratory is required to provide a broad
range of services in different applications or under time pres-
sure. Therefore, we are interested here in providing the classifier
the ability to learn rapidly, sometimes utilizing only a few exam-
ples. We would also like the classifier to have both possibilities
of incremental (online) and batch (offline) learning in order to
address all requirements of the cytogenetic laboratory, its nat-
ural growth in activity and the increasing number of FISH ap-
plications. Incremental learning may be also beneficial in order
to accommodate any changes which have been accumulated
not necessarily from the outset but following an initial period
for which training was already completed successfully. These
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changes may not justify retraining the already trained classifier
on the whole of the data but only modifying classifier parame-
ters based on recent examples. These qualities are advantageous
for attaining fast pattern classification at any time and to assure
plasticity in learning patterns of novel classes while keeping sta-
bility in recognizing patterns belonging to familiar classes. Fi-
nally, accomplishing all theses objectives should not come at the
expense of achieving high classification accuracy.

A model that might achieve these objectives, as it is con-
sidered as one of the leading offline and incremental learning
models to classification, is the fuzzy ARTMAP NN [7]. The
fuzzy ARTMAP does extremely well in fast incremental super-
vised learning in a non-stationary environment. Moreover, the
fuzzy ARTMAP allows learning new data without forgetting
past data (tackling the so-called “plasticity-stability dilemma”
[8]), which is crucial for achieving incremental learning. It is
not always clear while experimenting with the MLP NN how
to select a model (i.e., decide on the numbers of hidden layers
and hidden neurons in each layer) with respect to the growing
complexity of the data. The fuzzy ARTMAP architecture how-
ever expands its complexity following increase in data com-
plexity and selects a model automatically during training. The
fuzzy ARTMAP and its variants have been found to be accurate,
fast learners as exemplified in performing various classification
tasks, such as automatic target recognition based on radar range
profiles [9], three-dimensional object understanding and predic-
tion from a series of two-dimensional views [10], QRS-wave
recognition [11], speaker-independent vowel recognition [12],
medical diagnosis of breast cancer and heart disease [13], on-
line handwritten recognition [14], classification of noisy signals
[15], and discrimination of alcoholics from nonalcoholics [16].

In this work, we explore the fuzzy ARTMAP in off and
online FISH signal classification allowing the automation of
dot counting for genetic diagnosis of numerical abnormalities.
We focus on studying and optimizing the classifier to the task
and defer the implementation of dot counting based on the
classification results to another study. We investigate the fuzzy
ARTMAP in discriminating valid from artifact signals repre-
senting either a single or both Down and Patau syndromes, thus
establishing two and four-class classification problems, respec-
tively. We provide extensive examination of all main aspects
of the fuzzy ARTMAP, starting from parameter sensitivity,
ordering strategy for presenting training data to the classifier,
training mode and selecting a paradigm for the different clas-
sification tasks. Finally, we compare the performance of the
fuzzy ARTMAP in FISH signal classification to other machine
learning and NN models, and show that the fuzzy ARTMAP
achieves almost the highest accuracy and using lesser training
resources (either a training period or sample size) than the other
models. Together with the aforementioned characteristics,
this makes the fuzzy ARTMAP a prominent candidate for a
classification-based FISH dot-counter.

We briefly introduce FISH image acquisition, processing and
analysis, including FISH signal representation in Section II. The
main principles and dynamics of the fuzzy ARTMAP are sum-
marized in Section III. Section IV presents experiments we per-
formed using synthetic data in order to explore a several issues
of the fuzzy ARTMAP, as well as the FISH data, followed by
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a thorough analysis of the experimental results. We further dis-
cuss the results in Section V.

II. FISH IMAGE ANALYSIS AND SIGNAL REPRESENTATION

All stages of the biological procedure required for obtaining
FISH images were described in [4]. Red and green signals, cor-
responding to chromosomes 21 and 13 respectively, were seen
on blue DAPI stained nuclei. The analysis of these signals en-
abling the diagnosis of Down and Patau syndromes, respec-
tively, was preliminary described in [17]. A total of 400 im-
ages were collected from five slides, stored in tagged image file
format (TIFF) format and used in the signal classification ex-
periments.

By analyzing each of the three color channels—red, green,
and blue (RGB) of a FISH image separately—image processing
and segmentation could be facilitated [4]. Multispectral FISH
image analysis was beneficial not only to expedite prepro-
cessing and segmentation, but also to yield color-based features
that contribute to discriminative signal representation. Fol-
lowing image acquisition, the RGB color format was utilized
because preprocessing, nuclei and signal segmentation, as well
as the measurement of some features were performed more
easily using this color format. However, as intensities of red
and green signals, each measured in its own channel, were
very similar to each other, the RGB format was not suitable for
discriminating between signals of different colors. By contrast,
signals of different colors represented by the hue parameter of
the hue, saturation, intensity (HSI) color format [18] could be
easily resolved due to their different hues [4].

Following segmentation, twelve features were measured for
the signals and they are listed in Table 1. The features include
Area (a size measure) and Eccentricity (a shape measure), which
were previously suggested [19] to describe FISH signals. In ad-
dition, we measured a number of spectral features. We com-
puted at the specific color plane three RGB intensity-based mea-
surements: the Total and Average Channel Intensities and the
Channel Intensity Standard Deviation. We also computed four
HSI hue-based measurements: Maximum Hue, Average Hue,
Hue Standard Deviation, and Delta Hue. Delta Hue is the dif-
ference between the Maximum and Average Hue normalized by
the Average Hue. This feature was added to the set after ob-
serving that the difference between values of the average and
maximum hue for real signals was usually near zero, whereas for
some kinds of artifacts (e.g., overlap of signals of two different
colors) this difference was substantially large. Two additional
features of the set are the two coordinates of the eigenvector
corresponding to the largest eigenvalue of the red and green in-
tensity components of the signal. The last feature is the Average
Grey Intensity, i.e., average intensity over the three color chan-
nels. Previously [4], feature selection based on different qualita-
tive and quantitative methodologies was applied to these twelve
features in order to evaluate the contribution of each feature or
combination of features to the classification process. However,
since we focus in this study on the classifier, we skip feature se-
lection and employ the features altogether.

Finally, we obtained 3008 signals each represented by the
twelve features of Table I and a label associating the signal with
its class as determined by a cytogeneticist expert. Table II shows
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TABLE I
SET OF FISH SIGNAL FEATURES STUDIED IN THE WORK. TEXTURE INDICATES STANDARD DEVIATION OF CHANNEL INTENSITY (5) OR HUE (8). EIG. 1, 2 (10,
11) ARE ABBREVIATIONS FOR THE TWO COORDINATES OF THE EIGENVECTOR CORRESPONDING TO THE LARGEST EIGENVALUE OF THE RED AND GREEN
INTENSITY COMPONENTS OF THE SIGNAL

Number | Feature Number | Feature
1 Area 7 Average Hue
2 Eccentricity 8 Hue Texture
3 Total Channel Intensity 9 Delta Hue
4 Average Channel Intensity 10 Eig. 1
5 Texture 11 Eig. 2
6 Maximum Hue 12 Average Grey Intensity
TABLE II then the chosen category is said to win and learning is per-

SIGNAL DISTRIBUTION (NUMBER AND PERCENTAGE) AMONG THE FOUR
CLASSES INVESTIGATED, CORRESPONDING TO REAL SIGNALS AND ARTIFACTS
OF DOWN (RED) AND PATAU (GREEN) SYNDROMES

Class “red real” | “red artifact” | “green real” | “green artifact”
# patterns 500 1220 552 736
% 16.62 40.56 18.35 24.47

the distribution of the 3008 signals between the four classes es-
tablished by “real” (valid) and “artifact” signals of the two ex-
plored syndromes.

III. Fuzzy ARTMAP PRINCIPLES AND DYNAMICS

The fuzzy ARTMAP NN for incremental supervised learning
[7] incorporates two fuzzy adaptive resonance theory (ART) [8]
modules denoted as ART, and ART}. These are linked by a
map field module associating nodes (categories) from ART,
with nodes in ART}. The fuzzy ART module [20] performs fast
incremental unsupervised learning by clustering M-dimensional
input patterns into categories, each forming a hyperrectangle re-
gion in the M-dimensional input space, in three stages: category
choice, vigilance test, and learning. In the category choice stage,
a choice function is calculated for the (complement-coded [7])
input I and each existing category w;

o IAw]

J
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where A is the fuzzy AND operation, (X A Y);
min(z;,y;),« > 0 is a choice parameter! and the norm
is Ly. The chosen category is the one achieving the highest
value of the choice function. When a category J is chosen, a
hypothesis test called vigilance test is performed in order to
measure the category match to the input I. If the match function

exceeds the vigilance parameter p € [0, 1]

LA w,|]

=

IThe interested reader can find an elaborated examination of the role of the
choice parameter in [21].

2)

formed. Otherwise, the chosen category is removed from the
search for this pattern. As a result, a new category maximizing
the choice function (1) is chosen and the process continues until
a chosen category satisfies the vigilance test (2). The vigilance
parameter controls the similarity required between the chosen
category and the input pattern in order to allow learning, where
lowering the vigilance parameter provides broader generaliza-
tion (large categories) and vice versa. If none of the existing
categories meets the vigilance test, a new category is formed
and learning is performed without a vigilance test. Either way,
learning is accomplished by updating the weight vector? of the
winning (or new) category according to

new

wy

=B (IAwS) + (1 - B)ws 3)
where 5 € (0,1] is the learning rate and § = 1 defines fast
learning.

In pattern recognition tasks, the input I, to ART, is the pat-
tern and the input I to ART} is the pattern label. As ART,
inputs are labels, ART}, vigilance parameter py is configured to
one, so each label is clustered by a specific ART}, category. The
map field includes a matrix of weights w?® which maps ART,
categories to ART}, categories. The Jth row vector of w?® de-
notes the prediction of ART} categories as a result of the Jth
winning category in ART,. The map field is activated to pro-

duce the output

zap = y* Aw§ 4)
where ART), output, y”, has Boolean coordinates
» _ J 1, ifthe kth category wins in ART} )
Ye = 0, otherwise

SO |Zqp]| is the value of the weight that predicts the winning
ART}, Kth category as a result of the winning ART,, Jth cate-
gory. During the training phase, the map field performs a vigi-

2The initial weights are usually set at 1 [7].



VIGDOR AND LERNER: ACCURATE AND FAST OFF AND ONLINE FUZZY ARTMAP-BASED IMAGE CLASSIFICATION

lance test similarly to ART,, vigilance test, where if the match
function exceeds the map field vigilance parameter p,; € [0, 1]

[[€a ]
lly°ll

Z Pab (6)

then resonance and learning occur. This test assures that the pre-
diction of the correct class complies with the label represented
by the winning ART,, Kth category. Else, a match tracking pro-
cedure is activated for finding a better category in ART,,. In this
process, the map field raises ART, vigilance parameter p,

_ M A wi]

Pa = + 9,
1Ll

0<6K 1. @)

This ensures that the current Jth category fails the vigilance test
in ART, and is removed from the competition. The search in
ART, proceeds until an ART, category that predicts the correct
ART, category is chosen, otherwise a new category is created.
When the Jth category upholds the map vigilance test (6), its
association to the ART), categories is adapted by the following
learning rule:

w3 = B (wi I AY?) + (L= P w7 @)

which is activated during resonance in the map field. In fast
learning mode (G, = 1), the link between ART,, .Jth category
and ART}, Kth category is permanent, i.e., w%{ = 1 for all
data presentations. In the test phase, only ART, is active, so the
vigilance test in the map field is avoided. The class prediction
is deduced from the map field weights of the winning ART,
category.

IV. EXPERIMENTATION

A. The Methodology

We investigated the fuzzy ARTMAP classifier in discrimi-
nating FISH signals of two genetic syndromes. In all the ex-
periments, the fuzzy ARTMAP was configured to fast learning
(Ba = Bap = 1) and the choice parameter was set to a small
value v = 10~ similarly to [9], [14]. Depending on the exper-
iment, the ART, vigilance parameter was either configured to
a specific value or changed in [0, 1] in order to check possible
influence of this parameter on the classification accuracy and
number of categories.

Fig. 1 summarizes the experimental methodology that is de-
tailed in four levels: the classification task, classification para-
digm, ordering strategy and training mode. Three classification
tasks were studied: Discriminating real from artifact red signals
enabling Down syndrome detection (“red” in Fig. 1), discrimi-
nating real from artifact green signals enabling Patau syndrome
detection (“green” in Fig. 1) and accomplishing both tasks si-
multaneously (i.e., a four-class classification task) enabling the
detection of both syndromes (“4-class” in Fig. 1). We imple-
mented two classification paradigms. The first was a monolithic
classifier, i.e., a single fuzzy ARTMAP classifier that associated
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Fig. 1. Experimental methodology.

each signal with one of either the two or four classes. The second
paradigm, implemented for the four-class classification task,
was a two-stage hierarchical classifier. In the first stage, it clas-
sified the signals according to their color, i.e., red or green, and
in the second stage as real or artifact of each of the color classes.
The reasoning for this paradigm is that previous experience [6]
has showed that decomposing the four-class problem into two
two-class problems improves overall classifier performance.

One troublesome issue of using fuzzy ARTMAP classifiers is
the network inherent sensitivity to the presentation order of the
training data [7], [22]. In order to overcome this problem, we
implemented and compared two strategies named averaging and
voting. In the averaging strategy, we duplicated the training set
T, times and permuted each copy randomly. For each of these
copies we conducted the experiment independently and aver-
aged the classification accuracy over the experiments. Being
a random variable of the data ordering, the true classification
accuracy is approximated by the average accuracy over a sev-
eral fuzzy ARTMAPs classifying each a different data ordering.
Thus, the accuracy derived employing this strategy is a refer-
ence for the classifier accuracy and not a method for choosing
a single classifier. In the voting strategy [7], the classifier was
composed of T» fuzzy ARTMAP s each trained on a different
permutation of the training set. In the test, a decision module re-
ceived predictions of the T» fuzzy ARTMAP s associated with
the different orderings and reported the majority label as the
classifier decision. That is, both strategies are identical during
the training stage but differ in the test stage. In addition, the
voting strategy provides an ensemble classifier for the test. As
the voting strategy had been found superior to the averaging
strategy in a several applications [12], [13], it was interesting to
compare both strategies while classifying the FISH image data-
base. In the reported experiments, both 77 and 75 were equal
to 5.

In addition, we implemented and studied three modes of
training: “one-epoch,” “until completion,” and “with valida-
tion.” In the one-epoch training mode, the fuzzy ARTMAP is
trained using a single presentation of all the training patterns.
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When training until completion, the classifier is repeatedly
trained until predicting the training set perfectly.3 In the
training with validation mode, every training epoch the clas-
sifier accuracy is evaluated on a validation set and training is
progressed until no further increase of this accuracy is reached.
Training with validation is a popular approach in the machine
learning community aiming at the elimination of overfitting in
order to enhance generalization [5]. This approach also regards
the usage of training until completion as erroneous as it is
prone to overfitting [23]. On the other hand, the developers
of fuzzy ARTMAP defined training until completion as the
method of choice and it is used for fuzzy ARTMAP classifiers
frequently [7], [23]. The same three training modes were also
compared on artificial and ‘“real-world” databases in [23],
where the accuracy of training with validation was evaluated
on a validation set after presentation of every 100 training
patterns. For the artificial databases, training with validation
increased accuracy significantly only in about one half of the
inspected cases but reduced the number of categories in all
cases compared to training until completion. On the real-world
databases, no differences in either the accuracy or number of
categories were found between the training modes.

In all our experiments, we employed a cross-validation pro-
cedure in order to estimate the classification accuracy. First, the
randomly ordered database was divided into P equal size seg-
ments. The classifier was trained and tested P times, where in
each time the test set was a specific segment and the training set
a union of the remaining P-1 segments.# In this procedure, the
patterns were utilized similarly and equally for training and test,
while keeping disjoint test and training sets in each experiment.
Test and training accuracy results were averaged over the P ex-
periments. We used P = 10 segments, i.e., a CV-10 procedure.

We continue this section by first describing an experiment
using synthetic data which is used to build some understanding
of the fuzzy ARTMAP capability in classification and then
presenting the main experimentation of the fuzzy ARTMAP in
FISH signal classification.

B. Results for Synthetic Data

In order to get a preliminary insight into the way fuzzy
ARTMAP classifies data, we have investigated the model
accuracy and rise in the number of categories when trained
to classify 250 patterns of each of two classes generated syn-
thetically from two-dimensional Gaussian probability density
functions. The two Gaussians had medium overlapping, equal
a-priori probabilities, close means and covariance matrices of
opposite orientations. The generated patterns and the Bayes’
optimal decision boundaries are shown in Fig. 2. The Bayes’
bound [24] of classification accuracy was estimated as 78.0%.

The fuzzy ARTMAP was trained using a particular data or-
dering, p, = 0.6 and o = 10~ for one epoch or until comple-
tion. As is shown in Fig. 3 (top), the categories formed in the first
epoch of training cover most of the feature space. The additional

3Although until completion refers to 100% training accuracy, we stopped
training when the model accuracy reached 99%.

4In training with validation mode, another segment was used for validation
and P — 2 segments for training.
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Fig. 2. Two classes having each 250 patterns generated randomly from a (top)
two-dimensional Gaussian probability density function and the (bottom) corre-
sponding Bayes’ optimal decision boundaries for classifying the two classes.

categories, formed in the remaining epochs until training com-
pletion, reside mostly in the overlapping region between the two
classes, as can be seen in Fig. 3 (bottom). When an existing cat-
egory in the overlapping region that is associated with a specific
class fails to correctly represent a pattern of another class, match
tracking for this pattern begins. If no other existing category
matches the pattern, a new category having a larger weight (2)
and (7) and, thus, a smaller size [7] is formed. As long as these
categories are not too small, and having that the training and
test patterns are drawn from the same distribution, the new cate-
gories refine the decision boundaries and improve both training
and test accuracies. This is demonstrated in Fig. 4 where the
decision boundaries achieved following training for one epoch
act as a layout for the more elaborated decision boundaries es-
tablished in the remaining epochs. Overfitting the training pat-
terns begins only when the new categories are too small, how-
ever these categories cannot deteriorate the test accuracy much
if other categories for each class reside in the region. Repeated
for 50 training orderings and averaged over these orderings, the
training accuracy is raised from 78.2% for one epoch to 99.1%
when training completes and the test accuracy from 69.3% to
71.2%. The average number of categories has increased from
23.9 to 72.3. That is, though expensive in categories leading to
overfitting, the until completion training mode improves test ac-
curacy compared with the one-epoch mode.

C. Results for the Cytogenetic Problem

1) Between the Methodologies: In the first batch of exper-
iments with the cytogenetic database, we measured the fuzzy
ARTMAP sensitivity to the classification task, classification
paradigm, ordering strategy and training mode. We classified
FISH signals of each disease separately (i.e., two two-class clas-
sification problems) using the monolithic paradigm as well as
jointly (i.e., a four-class classification problem) using both the
monolithic and hierarchical paradigms. In these experiments,
we employed each of the three training modes—one-epoch,
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Fig. 3. Fuzzy ARTMAP categories formed while classifying the data shown
in Fig. 2 at the end of the first training epoch (top) and after this epoch and
until training completion (bottom). Solid and dashed line rectangles represent
categories of Classes 1 and 2, respectively.
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Fig. 4. Decision boundaries of the fuzzy ARTMAP classifying the data shown
in Fig. 2 and having the categories of Fig. 3 at the end of the (top) first training
epoch and at (bottom) training completion.

with validation and until completion, each of the ordering
strategies—averaging and voting and three values of the ART,
vigilance parameter p,, i.e., low (0.5), medium (0.7), and high
(0.9). Performance was evaluated using the test classification
accuracy as well as the numbers of categories and training
epochs needed for achieving this accuracy.

Tables III-Table V show, respectively, for the three values
of the vigilance parameter, the monolithic paradigm fuzzy
ARTMAP performance for the averaging strategy, the three
training modes and the three classification tasks. Similarly,
Tables VI-VIII show the fuzzy ARTMAP performance using
the voting strategy. Studying the figures in the tables, we sum-
marize that both the numbers of categories and training epochs
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increase when training progresses from one-epoch, thorough
with validation and until completion in all cases studied, when
most of the categories are formed in the first epoch. The number
of categories is also enlarged with the increase of p, in all cases.
As expected, the voting strategy yields higher test accuracy
than the averaging strategy for all cases. Averaged over all
classification tasks, training modes and values of the vigilance
parameter, the voting strategy is accurate in 84.2% compared
to 80.8% for the averaging strategy. The red signals are easier
to classify than the green ones (85.8% accuracy versus 82.2%
when averaging over all experiments), probably since they are
more common in the database (~ 60%) and brighter in inten-
sity. Simultaneous classification of signals of both syndromes
yields slightly lower test accuracy (81.6% when averaging over
all experiments) than for each of the separate syndromes. In
agreement with the experiment for the synthetic database, ex-
periments with the cytogenetic database show an advantage of
the until completion training mode on the one-epoch and with
validation modes for both the voting strategy (85.2% versus
84.4%, and 85.0%, respectively) and especially the averaging
strategy (83.0% versus 80.0% and 81.8%, respectively). Test
accuracies averaged over all cases for the three training modes
are 84.1% (until completion), 82.2% (one-epoch) and 83.4%
(with validation).

Extending the experiments of the four-class classification
problem to the hierarchical strategy, Table IX shows a similar
pattern of results to that shown by the monolithic paradigm.
Averaged over all experiments, the accuracy of the hierarchical
paradigm is slightly inferior to that of the monolithic paradigm
(80.1% versus 81.6%).

2) Vigilance Sensitivity: In order to examine the sensitivity of
the fuzzy ARTMAP to different values of the vigilance param-
eter p,, we repeated the experiment with the red signals (Down
syndrome), averaging strategy and the three training modes for
increasing values of p,. Figs. 5-7 show, respectively, for the
one-epoch, with validation and until completion training modes,
the training, validation (if applicable) and test classification ac-
curacies for increasing values of p,. In the one-epoch training
mode and most of the range of p, (Fig. 5), the gap between
the training and test accuracies is relatively small (3—-4%), but it
grows as training continues (7-8% for training with validation
(Fig. 6) and ~13% for until completion (Fig. 7)). Accuracies
for all training modes can be divided roughly into three ranges
(except of course that training accuracy for the until completion
mode is fixed inherently at (almost) 100% for all values of the
vigilance parameter). In the first range where 0 < p, < 0.2, the
accuracies (estimated means and standard deviations) are iden-
tical. In the second range (0.2 < p, < 0.7) the accuracies are
similar but not identical. In the third region (0.7 < p, < 1),
the training accuracy rises (usually) monotonically to 100% in
one-epoch and with validation, while the test accuracy drops
by approximately 4%, 3%, and 1% for training with validation,
until completion and for one-epoch, respectively. In this region,
the vigilance is very high, so more categories representing only
very few signals (and even single signals for vigilance values
near 1) are formed. Despite the drop in the fuzzy ARTMAP test
accuracy for high vigilance values, this accuracy is high and re-
markably stable for a wide range of vigilance values.
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TABLE III
MEAN (STANDARD DEVIATION) VALUES OVER CV-10 OF THE TRAINING, TEST, AND VALIDATION (VAL.) (IF APPLICABLE) CLASSIFICATION ACCURACIES OF
THE MONOLITHIC FUZZY ARTMAP PARADIGM UTILIZING THE AVERAGING STRATEGY AND p, = (.5 FOR THE THREE CLASSIFICATION TASKS. 1-3 REFER
TO TRAINING MODES ONE-EPOCH, WITH VALIDATION AND UNTIL COMPLETION, RESPECTIVELY. ALSO INCLUDED, THE NUMBERS OF ART, CATEGORIES
AND TRAINING EPOCHS

Task Mode | Training (%) Val. (%) Test (%) Categories Epochs

1 86.2 (1.8) - 78 (3.7) 113.1 (7.9) 1(0)

4-class 2 94.4 (3.6) 81.4 (1.9) | 802 (2.4) | 155.9 (30.2) 3.4 (1)
3 99.3 (0.3) - 81.8 (1.8) | 222.4 (10.8) | 5.3 (0.7)

1 88.3 (2.3) - 83.9 (3.3) 457 (7) 1.(0)

red 2 91.6 (3.9) 85.7 (3.1) | 84.1 (3.4) 56.2 (19) 3(1.1)
3 99.4 (0.3) - 85.8 (2.8) 103.7 (7.2) | 5.6 (0.7)

1 84.8 (3.4) - 78.1 3.5) 42.5(5.7) 1(0)
green 2 90 (4.1) 82 (3.2) 81.3 (3.5) | 50.7 (153) | 2.7 (0.9)
3 99.5 (0.3) - 82.6 3.2) 100.3 (7.5) | 5.4 (0.7)

TABLE IV

MEAN (STANDARD DEVIATION) VALUES OVER CV-10 OF THE TRAINING, TEST, AND VALIDATION (VAL.) (IF APPLICABLE) CLASSIFICATION ACCURACIES OF
THE MONOLITHIC FUZZY ARTMAP PARADIGM UTILIZING THE AVERAGING STRATEGY AND p, = (.7 FOR THE THREE CLASSIFICATION TASKS. 1-3 REFER
TO TRAINING MODES ONE-EPOCH, WITH VALIDATION AND UNTIL COMPLETION, RESPECTIVELY. ALSO INCLUDED, THE NUMBERS OF ART, CATEGORIES
AND TRAINING EPOCHS

Task Mode | Training (%) Val. (%) Test (%) Categories Epochs

1 86.3 (2.2) - 77.4 (3.6) 1309 (8.5) 1(0)
4-class 2 943 (3.9 81.5(2.2) | 798 (2.4) 166 (31.7) 3.6 (1.2)
3 99.3 (0.3) - 81.6 (2.2) | 233.1 (10.3) | 5.2(0.6)

1 87.6 3.7) - 82.5(4.2) 53.2 (4.6) 1(0)

red 2 92 (3.1) 859 (2.4) | 84.6 (2.8) | 62.8 (17.1) 2.8 (1)
3 99.4 (0.3) - 85.7 (2.6) 1159 (8.1) | 5.7 (0.9)

1 84.8 (3.4) - 79 (3.8) 533 (4.1) 1(0)
green 2 91.2 (4.5) 82.4 3.6) | 80.3 (4.1) 66 (17.6) 3(1.2)
3 99.5 (0.3) - 81.6 (2.7) 111.3 (8) 5.4 (0.7)

TABLE V

MEAN (STANDARD DEVIATION) VALUES OVER CV-10 OF THE TRAINING, TEST AND VALIDATION (VAL.) (IF APPLICABLE) CLASSIFICATION ACCURACIES OF
THE MONOLITHIC FUZZY ARTMAP PARADIGM UTILIZING THE AVERAGING STRATEGY AND p, = (.9 FOR THE THREE CLASSIFICATION TASKS. 1-3 REFER
TO TRAINING MODES ONE-EPOCH, WITH VALIDATION AND UNTIL COMPLETION, RESPECTIVELY. ALSO INCLUDED, THE NUMBERS OF ART, CATEGORIES
AND TRAINING EPOCHS

Task Mode | Training (%) Val. (%) Test (%) Categories Epochs
1 90.8 (1.1) - 79 (2.2) 205.5 (6.4) 1(0)
4-class 2 96.4 (2.8) 81.5(2.2) | 80.2(1.9) | 272.4 (22.2) 34 (1)
3 99.4 (0.3) - 81 (1.9) 3279 (12.3) 4.3 (0.5)
1 91.7 (1.6) - 82.6 (3.6) 135.4 (6) 1 (0)
red 2 96.3 (2.4) 85.1 3.1) 84 (2.8) 138.3 (12.1) 3(D)
3 99.4 (0.3) - 84.5 (2.9) 168.1 (6.9) 4.4 (0.6)
1 89.9 (2.1) - 79.2 (3.8) 122.5 (4.9) 1(0)
green 2 95.4 (3.3) 82.8 (3.2) | 814 (3.2) 125 (11.1) 3.08 (1.09)
3 99.5 (0.3) - 82.2 (3.3) 156.7 (7) 4.1 (0.6)
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THE MONOLITHIC FUZZY ARTMAP PARADIGM UTILIZING THE VOTING STRATEGY AND p, = 0.5 FOR THE THREE CLASSIFICATION TASKS. 1-3 REFER

TABLE VI
MEAN (STANDARD DEVIATION) VALUES OVER CV-10 OF THE TRAINING, TEST AND VALIDATION (VAL.) (IF APPLICABLE) CLASSIFICATION ACCURACIES OF
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TO TRAINING MODES ONE-EPOCH, WITH VALIDATION AND UNTIL COMPLETION, RESPECTIVELY. ALSO INCLUDED, THE NUMBERS OF ART, CATEGORIES
AND TRAINING EPOCHS

Task Mode | Training (%) Val. (%) Test (%) Categories Epochs

1 86 (1.6) - 82.8 (2.3) | 109.7 (10.3) 1 (0)

4-class 2 92.8 3.6) | 80.6 (2.8) | 83.6 (1.5 | 160.7 (30.8) | 2 (1.1)
3 99.4 (0.3) - 83.8 (1.3) | 2222 (12.5) | 5.2(0.7)

1 88.1 (1.8) - 87 2.7) 423 (3.9) 1 (0)

red 2 92.9 (3.4) 85.8 3) 87.8 (2) 68.6 (17.9) 2(13)
3 99.5 (0.3) - 87.3 (1.8) 105.2 (8.9) 5.4 (0.7)

1 84.8 (3) - 84.3 (2.1) 41.5 (5) 1 (0)
green 2 91.8 (4) 824 (29) | 84.73 (4.1) | 684 (16.3) | 2.1 (1.13)
3 99.5 (0.9) - 84.4 (2.8) 98.1 (5.6) 5.2 (0.8)

TABLE VII

MEAN (STANDARD DEVIATION) VALUES OVER CV-10 OF THE TRAINING, TEST AND VALIDATION (VAL.) (IF APPLICABLE) CLASSIFICATION ACCURACIES OF
THE MONOLITHIC FUZZY ARTMAP PARADIGM UTILIZING THE VOTING STRATEGY AND p, = 0.7 FOR THE THREE CLASSIFICATION TASKS. 1-3 REFER TO
TRAINING MODES ONE-EPOCH, WITH VALIDATION AND UNTIL COMPLETION, RESPECTIVELY. ALSO INCLUDED, THE NUMBERS OF ART, CATEGORIES AND
TRAINING EPOCHS

Task Mode | Training (%) Val. (%) Test (%) Categories Epochs

1 86.2 (2.8) - 82.6 (1.3) 124.9 (9) 1(0)
4-class 2 93.3 (2.9) 80.8 (2) 83 (1.2) 1753 (24.8) | 2.1 (1.1)
3 99.4 (0.2) - 84.5(1.9) | 2363 (9.1) | 5.3(0.6)

1 88.2 (2.5) - 88.2 (3.4) 51.7 (4.6) 1(0)
red 2 92.7 3) 85.4 (2.6) | 87.9(23) | 752 (15.6) | 1.8 (0.9)
3 99.5 (0.3) - 87.5(2.6) | 1149 (6.5 | 5.6 (0.8)

1 85.2 (3.1) - 83.8 3) 52.6 (4.1) 1(0)
green 2 92.9 (3.4) 82.6 (3.2) | 84.1 (1.6) | 80.5(15.3) | 2.1 (1.2)
3 99.5 (0.3) - 84.3 (2.9) 112.6 (7) 5.6 (0.3)

TABLE VIII

MEAN (STANDARD DEVIATION) VALUES OVER CV-10 OF THE TRAINING, TEST AND VALIDATION (VAL.) (IF APPLICABLE) CLASSIFICATION ACCURACIES OF
THE MONOLITHIC FUZZY ARTMAP PARADIGM UTILIZING THE VOTING STRATEGY AND p, = 0.9 FOR THE THREE CLASSIFICATION TASKS. 1-3 REFER TO
TRAINING MODES ONE-EPOCH, WITH VALIDATION AND UNTIL COMPLETION, RESPECTIVELY. ALSO INCLUDED, THE NUMBERS OF ART, CATEGORIES AND
TRAINING EPOCHS

Task Mode | Training (%) Val. (%) Test (%) Categories Epochs
1 904 (1.3) - 82.7 (1.9) | 256.7 (7.5) 1 (0)
4-class 2 95.7 (2.2) 80.6 (2.1) | 83.6 (1.2) | 282.5(18.2) | 2.4 (1.1)
3 99.4 (0.3) - 83.9 (1.8) | 326.3 (10.2) | 4.2 (0.5)
1 91.8 (1.4) - 86.1 (3.7) | 134.6 (4.1) 1 (0)
red 2 96.1 (2.2) 85.1 3) | 87.1 (2.1) | 1457 (10.5) | 2.1 (1)
3 99.5 (0.2) - 87.8 2.1) | 1693 (7.5) | 4.4 (0.6)
1 90 (2.6) - 824 (3.1) | 122.6 (5.6) 1(0)
green 2 95.62.1) | 82135 | 83537 | 13379 | 2.1 09D
3 99.6 (0.3) - 834 (4) 154.9 (6.6) 4.1 (0.7)
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TABLE IX
MEAN (STANDARD DEVIATION) VALUES OVER CV-10 OF THE TRAINING AND TEST CLASSIFICATION ACCURACIES OF THE HIERARCHICAL FUZZY ARTMAP
PARADIGM UTILIZING THE AVERAGING AND VOTING STRATEGIES, p, = 0.5,0.7,0.9 AND CLASSIFYING THE TWO SYNDROMES SIMULTANEOUSLY. 1-3 REFER TO
TRAINING MODES ONE-EPOCH, WITH VALIDATION AND UNTIL COMPLETION, RESPECTIVELY

Mode | Vigilance Averaging Averaging Voting Voting

Training (%) Test (%) Training (%) Test (%)
1 81.5 (2.8) 74.5 (3.3) 84.9 (1.9) 81.3 (1.7)
2 0.5 92.5 (4.1) 78.7 (2.9) 93.4 (3.4) 82.0 (1.9)
3 99.5 (0.3) 80.6 (2.0) 99.4 (0.3) 81.8 (1.3)
1 82.7 (3.3) 74.8 (4.4) 84.8 (2.4) 81.9 (2.3)
2 0.7 933 (3.2) 79.0 (2.6) 92.4 (2.7) 81.2 (1.6)
3 99.4 (0.3) 80.4 (2.5) 99.4 (0.3) 82.1 (1.3)
1 90.0 (1.6) 77.0 (2.7) 90.2 (1.2) 82.7 (1.5)
2 0.9 96.2 (1.5) 79.4 (2.4) 952 (2.1) 82.5 (2.3)
3 99.4 (0.2) 80.1 (2.7) 99.4 (0.2) 83.1 (1.5)

In order that the fuzzy ARTMAP accuracy could be im-
proved, the overlapping regions between classes (responsible
for most of the errors) should affect the training process
more heavily. This could be accomplished by either a larger
training set (having signals in these regions) or by providing the
model more flexibility in learning the existing signals within
these regions. Since our data is not large enough, the fuzzy
ARTMAP should gain flexibility from increasing either p,,
thereby allowing more categories to be formed, or the number
of training epochs. The first case is more appropriate to the
one-epoch training mode whereas the second case to training
with validation and until completion. However, increasing both
pa (the number of categories) and training period yields the
model over-flexibility which results in the undesirable phenom-
enon of overfitting the training set at the expense of inferior
generalization to an independent (test) set, which is especially
pronounced in training with validation and until completion
in the third region of p,. This is indeed manifested in the 4%
and 3% drop in test accuracies for the with validation and until
completion modes, respectively, compared to only 1% drop for
the one-epoch mode when moving from small to large values
of p,.

3) Incremental Learning: We evaluated the fuzzy ARTMAP
classifying signals of Down syndrome (the red signals) in
incremental (online) learning (p, = 0.5). For this purpose, we
compiled a database composing of 500 red signals of each
of the real and artifact classes, and employed randomly 900
of these signals in training while keeping 100 signals for the
test. In each of 45 training iterations, we continued training
the network using ten additional training signals from each
class and tested the incrementally learned network on the
same 100 test signals. In each iteration, we recorded the fuzzy
ARTMAP number of categories and accuracy on both the
training and test sets. We repeated this procedure until all 900
signals have been presented to the network, i.e., one training
epoch, and continued this procedure for a several epochs
and until no change of the training and test accuracies was
noticed. We also repeated the whole experiment using CV-10
and 5 training orderings and averaged the fuzzy ARTMAP
performance over all experiments. The number of categories

as well as test and training accuracies are shown in Fig. 8 for
the first eight epochs of the incremental learning of the fuzzy
ARTMAP. The number of categories rises monotonically and
smoothly to 64.4. The training accuracy for the first signals
of each epoch is high and it reduces until the end of the
epoch as more variants of the signals (noise) participate in
the training set. However, from epoch to epoch, the slope of
this reduction becomes more moderate until being flat at the
seventh epoch, as the fuzzy ARTMAP learns to predict the
training set perfectly. The corresponding test accuracy varies
between 78.5% and 87.1% during the first epoch and then
gradually converges to 85.4% after seven epochs.

V. DISCUSSION

The fuzzy ARTMAP was extensively experimented in off and
online classification of FISH image signals needed for genetic
abnormality diagnosis. The main aspects of the problem, that
is, selecting a classifier paradigm (monolithic or hierarchical),
ordering strategy (averaging or voting) and training mode (one-
epoch, with validation or until completion) as well as evaluating
parameter sensitivity (vigilance parameter) were examined for
different classification tasks associated with the detection of ei-
ther a single or two genetic syndromes simultaneously.

When comparing ordering strategies, the test accuracy can be
interpreted as a random variable of the training set representa-
tion order. Therefore, the averaging strategy is a simple sample
mean estimation of this random variable. The voting strategy, in-
corporating knowledge from different orderings of the training
set, was originally suggested [7] in order to improve prediction
accuracy. The results obtained in our study indicate that this in-
corporation of knowledge succeeds in diminishing prediction
error and thereby the results supply additional evidence to the
importance of the voting strategy in fuzzy ARTMAP training.
Another ordering strategy [22], which is based on the max-min
clustering method to identify a fixed ordering, is computation-
ally efficient thus worthwhile for evaluation for the cytogenetic
problem.

When assessing the experimental results for the training
modes, we observe that training until completion produces
higher accuracy than training with validation or for one-epoch.
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Fig. 5. Mean (+standard deviation) of the training and test accuracies of the fuzzy ARTMAP classifying Down syndrome signals using the averaging strategy
for increasing values of the vigilance parameter, p,, and the one-epoch training mode.

This observation highlights the fuzzy ARTMAP from other
NNs, such as the MLP, and machine learning models, as
training until completion usually leads these models to overfit
the data. Overfitting in machine learning models should be
avoided since the increase in training accuracy is at the expense
of generalization to new data, and indeed different means to
stop training before completion, such as the use of a validation
set, are commonly applied. Interestingly, instead of loosing test
accuracy when training progresses beyond a certain point, the
fuzzy ARTMAP reaches and maintains high test accuracy until
training is completed. Moreover, this conclusion is true for both
off and online learning. The explanation to this phenomenon
is that after approximately the first epoch, new categories are
created in order to represent “noisy” training patterns, i.e.,
variants of patterns already learned by the existing categories.
Each of these additional categories represents only a several
training patterns or even a single pattern, and thus it has minor
size and influence on the already-established representation.
Therefore, the chances that these categories win the competition
to represent next coming (or test) patterns is small. Although
these additional categories are responsible to overfitting the
training set (and increase of the training accuracy) they do
not affect the test much, as most test patterns are likely to be
represented by the large, previously established categories.
However, those test patterns that are found to be represented
and classified more accurately by the additional, rather than
previously established, categories intensify the test accuracy.
That is, this special kind of overtraining increases the com-

putational complexity and memory requirements of the fuzzy
ARTMAP classifier, and not only that it does not deteriorate
the classifier generalization capability but it improves it. It will
require further experimentation to judge whether the rise of
performance when using training until completion is consistent
with other than the cytogenetic domain.

Also very interesting to note is the contribution of a validation
set to fuzzy ARTMAP learning. Compared to NNs and other
machine learning models that gain both reduced complexity
and improved accuracy from employing a validation set, the
fuzzy ARTMAP only gains reduced complexity, i.e., a smaller
number of categories. The accuracy of the model trained with
validation has always been inferior to that when training until
completion. This is mainly due to two reasons. First is that
stopping training only because the accuracy on a validation set
ceasestoincrease at some pointdoes notinfer thatlearning cannot
continue and better representations be found as is explained
previously. Second is the fact that drawing a validation set from
(a not too large) training set reduces the number of patterns
left for training and thus also the number of possible categories
shaping the decision boundary. Similar conclusions can be
drawn from analyzing the results of experiments held with
other real-world databases [23]. Finally, as the test accuracy
fluctuates intensively in the first epoch of the training (Fig. 8),
and even if the highest accuracy is indeed reached on the
validation set during this epoch, it is risky to count on validating
the accuracy every constant number of patterns during the
first epoch.
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TABLE X
ACCURACIES OF THE FUZZY ARTMAP AND OTHER STATE-OF-THE-ART
MACHINE LEARNING PARADIGMS CLASSIFYING THE SAME FISH SIGNALS OF
BOTH DOWN AND PATAU SYNDROMES

Classifier Test accuracy (%)
Bayesian Neural Network (BNN) 87.1
Multi-Layer Perceptron (MLP) Neural Network 84.8
Fuzzy ARTMAP (until completion) 84.5
Support Vector Machine (SVM) 84.2
Fuzzy ARTMAP (one-epoch) 82.8
Linear Classifier 79.6
Naive Bayesian Classifier (NBC) 78.0

Although slightly inferior to the accuracy achieved when
trained until completion, the high accuracy of the fuzzy
ARTMAP when trained for one-epoch demonstrates its capa-
bility in fast offline learning. During and immediately after the
first epoch, the fuzzy ARTMAP establishes most of the cate-
gories it will end with and accomplishes most of its learning.
In our case, this indicates that data representation of the cyto-
genetic domain has been constructed almost completely during
the first epoch of training. Changes in the number of categories
and test accuracy after this first epoch are relatively small
although the training accuracy keeps improving. In addition,
training for one epoch is less sensitive to the value of the
vigilance parameter and thus to overfitting. Similarly to offline
learning, when learned incrementally the fuzzy ARTMAP
builds its representation and accuracy mainly during the pre-
sentation of the first patterns before rapidly converges to a high
classification accuracy.

Finally, Table X demonstrates that the accuracy of the fuzzy
ARTMAP when trained until completion is either comparable
to that of other state-of-the-art classifiers, such as the support
vector machine [25] and the MLP NN [26], or superior to that
of other classifiers, such as the naive Bayesian classifier and the
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linear classifier [26]. Still, the accuracy of the fuzzy ARTMAP,
as well as those of all the above classifiers, are inferior to that of
the Bayesian NN (BNN). Compared to the other classifiers, the
BNN sophisticatedly gains its enhanced precision by combining
a priori information with that acquired from the data. How-
ever, it depends on the availability of this information a priori
and ways to introduce it to the model, as well as on methods
(e.g., Markov chain Monte Carlo) to alleviate the computational
difficulties when the model has a large number of parameters
(network weights) [27]. When compared to the MLP, the most
popular NN, the fuzzy ARTMAP NN trained until completion
achieves comparable accuracy, however it requires less than six
training epochs compared to hundreds of epochs that are re-
quired for the MLP [26]. If loosing some accuracy is acceptable
(~2% for the cytogenetic data), then training (either on or of-
fline) may end after one epoch or sooner employing the fuzzy
ARTMAP. Both options make the fuzzy ARTMAP a remark-
able alternative to the MLP NN.

We would summarize that experimenting with the fuzzy
ARTMAP in FISH signal classification demonstrates a model
which rapidly and accurately classifies signals in all tasks,
both off and online, using all paradigms, model parameters,
ordering strategies and training modes. The fuzzy ARTMAP
shows a high degree of plasticity to the different objectives,
however without loosing its stability and enhanced classifica-
tion performance rendering itself an excellent candidate for
genetic abnormality diagnosis and classification-based FISH
dot counting. We further believe that most of the conclusions
deduced in our study to the cytogenetic domain, such as, the
superiority of the voting ordering strategy and training until
completion mode can be generalized to other problems, but
further experimentation is needed.
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