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Abstract

Motivated by the great potential of deep learning in medical imaging, we propose an iterative 

positron emission tomography (PET) reconstruction framework using a deep learning-based prior. 

We utilized the denoising convolutional neural network (DnCNN) method and trained the network 

using full-dose images as the ground truth and low dose images reconstructed from downsampled 

data by Poisson thinning as input. Since most published deep networks are trained at a 

predetermined noise level, the noise level disparity of training and testing data is a major problem 

for their applicability as a generalized prior. In particular, the noise level significantly changes in 

each iteration, which can potentially degrade the overall performance of iterative reconstruction. 

Due to insufficient existing studies, we conducted simulations and evaluated the degradation of 

performance at various noise conditions. Our findings indicated that DnCNN produces additional 

bias induced by the disparity of noise levels. To address this issue, we propose a local linear fitting 

(LLF) function incorporated with the DnCNN prior to improve the image quality by preventing 

unwanted bias. We demonstrate that the resultant method is robust against noise level disparities 

despite the network being trained at a predetermined noise level. By means of bias and standard 

deviation studies via both simulations and clinical experiments, we show that the proposed method 
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outperforms conventional methods based on total variation (TV) and non-local means (NLM) 

penalties. We thereby confirm that the proposed method improves the reconstruction result both 

quantitatively and qualitatively.
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I. Introduction

With high performance levels and a striking pace of innovation, the field of machine 

learning, in particular deep learning, has witnessed surging popularity in many research and 

industrial fields in recent years. In the domain of medical imaging, the potential deep 

learning target areas fall into one of two categories [1]. The first category consists of image 

analysis tasks, such as lesion detection, image segmentation, and diagnostics. The second 

category spans tasks aimed at image quality improvement including artifact correction, 

denoising, and reconstruction. In the fields of computed tomography (CT) and positron 

emission tomography (PET), where it is crucial to limit the radiation dose on patients, dose 

reduction is usually accompanied by elevated noise levels. Image denoising is of particular 

significance in these fields, motivated by the need for preserving image quality in low-dose 

images. A number of deep learning approaches, all employing convolutional neural 

networks, have been applied to low dose CT (LDCT) [2], [3], [4]. All of these approaches 

have been designed to work for a pre-defined noise level for both training and testing. 

Accordingly, the noise level of training data was preset in way of maximizing the denoising 

performance for that particular level of noise. A preset noise level is a reasonable 

assumption in CT imaging because radiation dose can be partially controlled via scanner X-

source settings. Kang et al. [2] developed a wavelet-based CNN denoising method in which 

images at two dose levels (e.g. full-dose and quarter-dose) are processing via wavelet 

decomposition both in the training and application phases for the model. This promissing 

technique was awarded the second place of 2016 AAPM Low Dose CT Grand challenge [5]. 

Wu et al. [4] developed a cascaded deep learning method for denoising of LDCT images. 

The cascaded networks capture multiple features under different noise levels, which lead to 

higher image quality than single-network denoising. Chen et al. [6] proposed another CNN-

based CT denoising approach that exhibited better performance than total variation (TV), k-

clustering singular value decomposition (K-SVD), and patch-based block matching 3D 

(BM3D). However, since these methods also use a fixed noise level in the low-dose image 

during training, they are not suited in the context of iterative reconstruction, where the noise 

level of input image changes at each iteration. Recently, Wu et al. [7] proposed a k-sparse 

autoencoder for unsupervised feature learning in iterative CT reconstruction, and Gong et al. 
[8] proposed an optimization transfer based iterative PET reconstruction, in which the 

surrogate function is based on a deep learning model.

The potential of denoising methods based on deep learning in PET imaging has not been 

widely explored. Unlike CT scans, PET images do not have a consistent noise level making 

the training phase design challenging. Even with a fixed tracer injection dose, the uptake and 
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bio-distribution can greatly vary across individuals. Furthermore, image noise in PET is 

spatially variant in a signal-dependent fashion. The tracer distribution may depend on tracer 

type, tracer dose, scan duration, subject weight and more, resulting in a high degree of 

variation in the noise level. To compensate for the noise variation in PET reconstruction, an 

iterative reconstruction approach that combines the Poisson likelihood with a deep learning 

prior is a more effective strategy for improving PET image quality while reducing artifacts at 

various noise conditions than a standalone deep learning-based denoising scheme.

In this paper, we propose an iterative PET reconstruction approach using a deep learning 

prior and demonstrate its ability to exploit the full potential of deep learning under variable 

noise conditions. As shown in Fig. 1(a), we utilized and modified the denoising 

convolutional neural network (DnCNN) method [9] trained using patient datasets with a 

preset noise level. Note that the development of a new network architecture is beyond the 

scope of this paper. To generate a low-dose image for training, the Poisson thinning process 

was used for downsampling regular dose data in which coincidence events can be randomly 

discarded with a predetermined sampling factor. The reconstructed image from 6× 

downsampled low-dose data was used as input for the DnCNN and the full-dose image was 

used as the ground truth. Several important issues that arise from combining iterative PET 

reconstruction and deep learning are demonstrated by simulations in this pioneering study. 

When using the DnCNN in an iterative reconstruction setting, the noise level disparity of 

datasets across training and testing setups poses a key challenge. The performance of a 

neural network trained at a certain noise level can decrease significantly when the noise level 

exceeds that in the training datasets (see Sec. III). Furthermore, unwanted bias can be 

accumulated if the DnCNN prior is updated at every iteration in response to noise level 

changes. Thus, to use the trained network in iterative reconstruction, an additional function 

or network may be required to control bias. Recent methods [10], [11] have been developed 

to adaptively estimate noise levels of test samples using additional networks combined with 

the trained network. In this paper, instead of using additional networks, we propose a novel 

local linear fitting (LLF) function to correct the unwanted bias by combining both the input 

image and the deep learning prior as shown in Fig. 1(b), which is incorporated into the cost 

function. The LLF function is inspired by the nature of CNN that computes networks locally 

based on small image patches. Thus, the LLF calculates a 3D patch-based linear transform 

which can locally adjust the bias of the DnCNN image while preserving the features and 

edges of the DnCNN image.

For optimization, we utilize the ordered subsets separable quadratic surrogate (OS-SQS) 

method to maximize the Poisson log-likelihood [12] and use the alternating direction 

method of multipliers (ADMM) [13] and enforce convex inequality to split sub-optimization 

steps for DnCNN function and LLF. While convergence is not guaranteed due to 

nonlinearity of DnCNN, we demonstrate empirically that the cost function can converge 

with the DnCNN prior under various noise conditions.

For validation of the proposed method, we use both simulated and experimental data, the 

latter being a clinical dataset acquired using a High-Resolution Research Tomograph 

(HRRT) PET scanner. The noise level is controlled by a Poisson thinning process using 

prompt measurements. A down-sampling factor of 6 is used for training in both simulation 
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and experiments. In the simulation study, we demonstrate that the performance of DnCNN 

can degrade when the noise level changes, and the bias significantly increases after a certain 

number of iterations. Bias and standard deviation studies via both simulation and 

experiments demonstrate that the DnCNN prior with LLF can improve the image quality in 

iterative PET reconstruction. By means of the clinical studies, we confirm that the proposed 

method outperforms TV-based [14] and NLM-based [15], [16] penalties both quantitatively 

and qualitatively.

This paper is organized as follows. Section II presents the problem formulation and 

optimization setup of the proposed method using the LLF with a DnCNN prior. Section III 

evaluates the performance of LLF for bias control in DnCNN. Section IV describes the 

details of DnCNN training. Section V presents results from the clinical experiment. Section 

VI discusses several technical issues, while Section VII presents our concluding remarks.

II. Method

A. Denoising convolutional neural network

DnCNN [9] was originally developed to handle blind Gaussian noise and has two key 

attributes: residual learning [17] and batch normalization [18]. Residual learning in DnCNN, 

ensures that the model needs to learn only the noise features. However, unlike the 

conventional DnCNN approach, we did not use residual learning to ensure flexibility under 

varying noise levels. Noise in PET raw data is Poisson distributed, and there is substantial 

variation in the noise level from voxel to voxel in the reconstructed image. It is therefore 

critical to incorporate the intensity information of PET image during training. DnCNN has 6 

layers and a typical layer consists of convolution, rectified linear unit (ReLU) [19] and batch 

normalization (BN) [18] steps. More specifically, the convolution filter size is 3×3 with 64 

feature maps are generated in the convolutional layers. ReLU [19] is an activation function 

defined as the positive part of its value (f(x) = max(x, 0)), which allows for effective and 

faster training of deep neural networks compared to other activation functions such as 

sigmoid function. BN [18] is used to enable for higher learning rates by normalizing each 

sub-sample set (sub-sample sets are also commonly referred to as mini-batches). The cost 

function l(w) for our training phase is as follows:

l(w) = 1
2N ∑

i = 1

N
f xi; w − xi*

2

2
+ λ w

2

2
, (1)

where the network parameters w are learned iteratively. x and x* are the noisy (low dose) 

and clean (high dose) image pairs for training, reconstructed via ordinary Poisson ordered 

subsets expectation maximization (OPOSEM) [20]. λ is a weight decay parameter for the L2 

regularization to stabilize the training and is set to a value of 0.0005. N is the number of 

image pairs.
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B. Local linear fitting

Due to the disparity of noise levels between traning and testing datasets, the unwanted 

artifacts can be produced. Specifically, we observed several accumulation of bias when using 

the DnCNN multiple times in iterations, as will be demonstrated in Sec. III. To address this 

issue, we propose a novel 3-D local linear fitting (LLF) step to reduce unknown bias as 

shown in Fig. 1(b), which is inspired by the fundamental nature of CNNs that operate on 

localized image patches while its implementation is motivated by conventional guided 

filtering [21]. Thus, the LLF calculates a 3D patch-based linear transform so that we can 

locally adjust the bias of the DnCNN image while preserving features and edges.

Let x and xD be a noisy input image and an output image, respectively. The main assumption 

underlying the LLF is that x and xD in Fig. 1(b) have a local linear relationship, and their 

linear transfer function is calculated from the input image x. More specifically, we assume 

that the xi is a linear transform of xi
D in a local patch pi at a center voxel i.

xk = qixk
D + bi, ∀k ∈ pi, (2)

where qi and bi denote the linear coefficients of a patch pi. To calculate qi and bi, the noisy 

input image x is used. The LLF cost function in a local patch pi is as follows:

E qi, bi = ∑
k ∈ pi

qixk
D + bi − xk

2 + ϵqi
2 , (3)

where ϵ is a regularizing parameter meant to prevent large value of qi. However, ϵ also can 

introduce additional bias, thus, we set it close to zero. By minimizing the cost function, the 

solutions of qi and bi are calculated iteratively as follows:

qi
(n + 1) =

1
N p

∑k ∈ pi
xk

Dxk − bi
(n)xi

D

1
N p

∑k ∈ pi
xk

Dxk
D + ϵ

, (4)

bi
(n + 1) = xi − qi

(n + 1)xi
D, (5)

where xi and xi
D are the mean values of noisy image x and DnCNN image xD in patch pi at 

center voxel i. n is the iteration number and Np is the number of voxels in a 3-D patch. Note 

that the qi and bi have closed-form solutions [21], being mainly affected by pixel variations 

of patches from two images. With PET images having many zeros and large noise variations, 

variations of qi and bi tend to be large, which, in turn, can potentially degrade the 

performance (see Sec. VI). Thus, Eq. (4) firstly updates qi as a local scaling factor that is 

Kim et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



robust to noise variations and then Eq. (5) corrects small margins, which can be easily 

updated in iterative PET reconstruction. q(0) and b(0) are set to 1 and 0, respectively.

Now, the fitting output image x is

xi = qixi
D + bi . (6)

C. Formulation

We denote the reconstructed non-negative image as x = x1, …, xNv
∈ ℝ+

Nv and the PET 

measurement y = y1, …, yNm
∈ ℝ+

Nm. Nυ and Nm denote the numbers of voxels and 

sinogram bins, respectively. y is the number of photon counts that contain true, scatter and 

random coincidence events, which follows a Poisson statistical model:

yi Poisson [Ax]i + ri , (7)

where yi is the number of counts in the ith sinogram bin. ri is the mean value of scatter and 

random events [22] with the ith sinogram bin. A ∈ ℝ+
NmNv is the system matrix. Specifically, 

[Ax]i = ∑ j = 1
Nv ai jx j represents the line integral along an LOR and aij denotes the probability 

that a pair of annihilation photons emitted from the jth voxel of image x is detected at the ith 

sinogram bin.

We minimize the following cost function Ψo(x):

Ψo(x) = L(x) + R(x), (8)

where L(x) = ∑i = 1
Nm hi [Ax]i  denotes the negative log-likelihood function from the Poisson 

statistics, and hi(k) = k + ri − yi log(k + ri). hi(k)=k + ri − yilog k + ri . 

R(x) = β
2 x − q ⊙ f w(x) − b 2

2 and β > 0 is a hyper-parameter. fw(x) is the DnCNN function 

and all network weights w are already computed and fixed in training phase. Here, ⊙ is the 

Hadamard product. q and b are the LLF coefficients in Eq. (6).

D. Optimization

R(x) in Eq. (8) is hard to differentiate with respect to x because fw(x), q and b are functions 

of x. For simplifying our optimization and implementation, we first use the alternating 

direction method of multipliers (ADMM) to split the DnCNN function by setting xD = fw(x). 

The cost function becomes
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Ψo x, xD, η = L(x) + R x, xD + D x, xD, η , (9)

where R x, xD = β
2 x − q ⊙ xD − b 2 and D x, xD, η = γ

2 xD − f w(x) − η 2
2
. γ > 0 is a hyper-

parameter.

To minimize the cost function, we use a majorizer of L(x) using separable quadratic 

surrogates (SQS) [12]:

L(x) ≤ ϕL
(n)(x) ≜ ∑

j = 1

N
ϕL, j

(n) x j , (10)

and

ϕL, j
(n) x j ≜ ∑

i = 1

M
gi jpi

(n) ai j
gi j

x j − x j
(n) + Ax(n)

i , (11)

where gi j =
ai j

∑ j′ = 1
N ai j′

 is a non-negative real value (gij = 0 only if aij = 0 for all I, j), and

pi
(n)(k) ≜ hi ki

(n) + ḣi ki
(n) k − ki

(n) +
vi

(n)

2 k − ki
(n) 2

(12)

where ki
(n) = Ax(n)

i at nth iteration, and vi
(n) is the curvature of pi

(n)(k), in which we used the 

precompute curvature 1/max(yi, ϵ) for the computational efficiency. ϵ = 10−9 is a small 

positive constant.

Differentiation of R(x, xD) with respect to x is still difficult because both q and b are 

functions of x. By additionally setting z(n) = q(n) ⊙ xD + b(n) + x(n), we can obtain a 

separable surrogate of R(x, xD):

R x, xD = β
2

2q ⊙ xD + 2b − 2x
2

2
(13)

= β
2

2q ⊙ xD + 2b − z(n) + z(n) − 2x
2

2
, (14)
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≤ β
4 2q ⊙ xD + 2b − z(n) 2 + z(n) − 2x 2 , (15)

≜ ϕR x, xD, q, b . (16)

Here, we use the convex inequality in Eq. (14) to split q and b from x. In sub-optimizations, 

q and b become functions of xD and z(n). Thus we can directly calculate their solutions as 

done in Eqs. (4) and (5).

Now, a majorizer of the cost function is

Ψo(x) ≤ Ψ x, q, b, xD, η
≜ ϕL

(n)(x) + ϕR
(n) x, xD, q, b + D x, xD, η .

(17)

Algorithm 1

Proposed method with ordered subsets

1: Initialize x(0) using OPOSEM.

2: Initialize q(0) = 1 and b(0) = 0.

3: for n = 0, 1, … do

4: for s = 0, 1, …, Ns − 1 do

5:  m = n × Ns + s

6:  for j = 1, 2, …, Nv do

7:   x j
D(m) =

βq j
mx j

m − βq j
mb j

m + γ f w xm
j

+ γη j
m

βq j
mq j

m + γ

8:   z j
m = q j

mx j
D(m) + b j

m + x j
m

9:   q j
m + 1 =

1
N p

∑k ∈ p j
xk
D(m)zk

m − 2b j
mx j

D(m)

2
N p

∑k ∈ p j
xk
D(m)xk

D(m) + ϵ

10:   b j
m + 1 = 1

2 z j
m − q j

m + 1x j
D(m)

11:   x j
m + 1 = x j

m −
ϕ̇L, j

m (x) + β 2x j
m − z j

m − γ
∂D xm

∂x j
ϕL, j(x) + 2β + αγ

12:   η j
m + 1 = η j

m − x j
D(m) − f w xm

j

13:  end for
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14: end for

15: end for

Therefore, we update x, xD, q, b and η alternatingly:

x j
D(n) =

βq j
(n)x j

(n) − βq j
(n)b j

(n) + γ f w x(n)
j
+ γη j

(n)

βq j
(n)q j

(n) + γ
, (18)

z j
(n) = q j

(n)x j
D(n) + b j

(n) + x j
(n), (19)

q j
(n + 1) =

1
N p

∑k ∈ p j
xk

D(n)zk
(n) − 2b j

(n)x j
D

2
N p

∑k ∈ p j
xk

D(n)xk
D(n) + ϵ

, (20)

b j
(n + 1) = 1

2 z j
(n) − q j

(n + 1)x j
D(n), (21)

x j
(n + 1) = x j

(n) −
ϕ̇L, j

(n) (x) + β 2x j
(n) − z j

(n) − γ
∂D x(n)

∂x j
t j

(22)

η j
(n + 1) = η j

(n) − x j
D(n) − f w x(n)

j
, (23)

where 
∂D x(n)

∂x j
=

∂ f w x(n)

∂x j

T
xD(n) − f w x(n) − η(n)  and j is a voxel index in an image. This 

voxel-wise computation makes the optimization parallelizable in our implementation. When 

updating x, we solve the hybrid gradient surrogates [23], [24] including the Lipschitz 

surrogates of SQS ϕL
(n)(x), second-order surrogates of ϕR

(n)(x) and D(x), which computes the 

gradient descent method with the pre-computed step size tj = t j = ϕ̈L, j(x) + 2β + αγ. The 

second derivative of DnCNN function is hard to compute, thus, we used a constant α(> 0) in 

Eq. (22) to control the speed of gradient, where α = 1 and γ = 0.1 were used. β is selected 
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based on the bias and standard deviation study as shown in Sec. V-A. Note that although we 

do not claim convergence due to the non-linearity of fw(x), we show that the proposed 

method can converge empirically, as presented in Sec. V.

To further accelerate the convergence speed, ordered subsets (OS) are exploited. We can set 

Ns equally distributed with angular bins. The system matrix A can be decomposed by 

subsets, A = A1, …, ANs
, and the computational cost per sub-iteration decreases almost 

linearly with respect to the number of subsets Ns. Details of the proposed method is 

described in Algorithm 1.

E. Implementation

Graphics processing unit (GPU) based 3-D PET reconstruction has been widely used in our 

previous work [16], [25], [26], [27]. To efficiently use memory and threads in a GPU kernel, 

main functions were separately parallelized: LLF function, forward and backward 

projectors, which are implemented in MATLAB (Mathworks, Inc. version 2016a) using 

MEX (C/C++ compiler) and CUDA (computed unified device architecture, NVIDIA). To 

incorporate the DnCNN into our existing GPU frameworks in MATLAB, we installed Caffe 

(deep learning platform) version 1 with GPU and MATLAB options [28].

III. Performance study of LLF for bias control in DnCNN

We performed a simulation study to evaluate the performance of DnCNN and LLF for bias 

control. Nineteen 3D brain phantoms from the Brainweb database [29] were utilized in the 

simulation study. We used eighteen images for training and one image for testing, with 50 

mid-axial slices were extracted from each image. The image size was 128×128×50 with 2 

mm3 resolution. The intensity of each pixel was simulated based on a one-hour FDG scan 

following which each image was projected to generate the noise-free sinogram. The 

sinograms were subsequently corrupted by Poisson noise based on emission counts over the 

one-hour scan duration. Attenuation and uniform random effects were also simulated. 

However, scatter was not included in our simulation. The EM algorithm with 100 iterations 

was used to generate the reconstructed images. During training, the reconstructed images 

using full counts and 6× downsampled counts were used as the ground truth and input 

respectively. For evaluation, we generated 20 Poisson random measurements from one 

noise-free sinogram, and then calculated the following normalized terms: 1) noise reduction 

ratio 
∑ j x j* − x j

D 2

∑ j x j* − x j
2 , 2) bias 

∑ j x j* − x j

∑ j x j*
2  and 3) standard deviation 

∑ j x j − x j
2

∑ j x j*
2 . Here x*is the 

ground truth image, x is the noisy input image and xD is the DnCNN image. For purposes of 

bias and standard deviation computation, x can represent either the DnCNN image or the 

image obtained using the DnCNN with LLF. x is an average image calculated from 

reconstructed images of 20 randomly generated datasets.

We observed the noise reduction ratios for different inputs of various noise levels using the 

same pretrained DnCNN. Noise reduction for images reconstructed from 2×, 4×, 6×, 8× and 

10× downsampled datasets was compared as shown in Fig. 2(a). The maximum performance 
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is achieved at the same noise level of the training process, which demonstrated that the noise 

level disparity between training and testing datasets degrades the performance. In Fig. 2(b), 

we tested the bias increase when using DnCNN multiple times as the input of DnCNN. We 

observed severe accumulation of bias for EM with DnCNN after a certain number of 

iterations. However, the LLF function successfully prevented this bias accumulation. In 

addition, a bias and standard deviation study was conducted as shown in Fig. 2(c) in which 

the DnCNN with LLF outperformed the performance of DnCNN. Fig. 3 shows the 

reconstructed images using EM and DnCNN with and without LLF at different iterations. 

We confirmed that the LLF significantly reduces the bias induced by the disparity of noise 

levels.

IV. Network training

A. Training datasets

For the network training, we used the existing data acquired for a schizophrenia dynamic 

study [30], providing high-quality full-dose reference images. The protocol of this study was 

approved by the Institutional Review Board (IRB) of the Gachon University of Medicine and 

Science. The High Resolution Research Tomograph (HRRT, Siemens, Konxville, TN, USA) 

PET scanner with 11C-3-amino-4 benzonitrile ([11C]DASB) was used. The HRRT is an 

ultra-high resolution brain-dedicated PET scanner that has a transaxial in-plane resolution of 

2.5 mm full-width-half-maximum (FWHM) with a voxel size of 1.25×1.25×1.25 mm3 [31]. 

It has a trans-axial diameter of 46.9 cm with an axial field of view of 25.2 cm, which is 

sufficient to cover the whole brain. A bolus injection of 577.6 MBq of [11C]DASB was 

administered and dynamic scan data over 90 mins was acquired. Transmission scans using a 
137Cs point source equipped in the HRRT scanner were also obtained for attenuation 

correction. Random events were acquired in rebinning process, and 3D single scatter 

simulation [25] was used for scatter estimation. Datasets consisting of a total of 27 control 

subjects and clinical patients were used for the network training. Although the data were 

acquired for the dynamic study, we directly rebinned a full-dose prompt sinogram from list-

mode data. The reconstructed images using full and downsampled data were used as ground 

truth and noisy images, respectively, during training. The training input image was 

reconstructed from a 6× downsampled prompt sinogram based on the Poisson thinning 

process, which discards coincidence events randomly by the downsampling factor. For 

example, if the downsampling factor is 6, we can assign uniform ([0,1]) random numbers to 

all coincidence events and then discard events over 0.167 (1/downsampling factor). Note that 

the Poisson thinning process should be applied to initial prompt data (listmode or sinogram) 

without normalization, random, scatter and attenuation corrections. Here, we assumed that 

the scatter and random fractions remain the same for low count data. After Poisson thinning, 

the downsampled prompt data was scaled up by downsampling factor to match the intensity 

level of the ground truth and to facilitate comparison. The ordinary Poisson ordered subsets 

expectation maximization (OPOSEM) method [20] was used for reconstruction with 6 outer 

iterations and 16 subsets.
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B. Training details

We first generated 80000 pairs of patches with a size of 32×32×5 from 27 reconstructed 

images using full data and 6× downsampled data. Here, we used 5 axial slices. Overlap of 

patches was allowed using a 8×8×3 sliding window. In reconstructed images, we discarded 

patches with mean value less than 10−5 due to the prevalence of near-zero patches otherwise. 

After patch extraction, 80000 patches were randomly shuffled to avoid similar patches being 

assigned to the same mini-batch. The DnCNN was trained with mini-batch size of 50 using 

adaptive learning rate optimization based on the “Adam” approach [32]. The initial learning 

rate was set to 0.001, and the two momentum factors were set to 0.9. We obtained the trained 

weights acquired after 100000 epochs.

C. Validation results

For validation of the proposed method, we used a volunteer dataset with a different 

radiotracer type and dosage compared to the training datasets. A bolus injection of 18F-FDG 

with 185 MBq was administered to the subject via intra-venously and data was acquired for 

75 mins. For the bias and standard deviation study, we generated 20 datasets with 10× 

downsampling factor based on the Poisson thinning random process. We also generated 

datasets with downsampling factors of 4, 6 and 8 to observe the robustness of the proposed 

method. For comparison, the proposed method was compared with state-ofthe-art methods 

such as OS-SQS with TV [14] and OS-SQS with NLM [15], [16].

V. Results

A. Hyper-parameter selection

For performance evaluation, we first conducted the bias and standard deviation trade-off 

study. The ground truth image was the OPOSEM image reconstructed from the fully 

sampled HRRT FDG data. We randomly generated 20 datasets with a 10× downsampling 

factor based on Poisson thinning. Bias and standard deviation studies were performed to 

compare reconstructed images generated using OPOSEM with Gaussian filtering, OS-SQS 

with TV, OS-SQS with NLM, OS-SQS with DnCNN and the proposed method. Here, the 

intensities of the reconstructed images were scaled up 10 times to calculate bias and 

standard deviation relative to the ground truth. The same initial image, such as the OPOSEM 

image from the 10× downsampled dataset with 6 outer iterations and 16 subsets, was used 

for all methods. Then, the reconstructed images from the penalized methods were obtained 

by various hyper-parameters after convergence, i.e. 64 sub-iterations (4 outer iterations and 

16 subsets). Since OS-SQS with TV and NLM have additional inner hyper-parameters, such 

as shrinkage factor in TV and patch size, searching window size and smoothing factor (σ) in 

NLM, we empirically selected the inner hyper-parameters and then changed the β-

parameters for the bias and standard deviation study to ensure a fair comparison involving 

best case scenarios for each method. In Fig. 4, the standard deviation of OPOSEM image 

with Gaussian filtering was the highest at the same bias. The standard deviation of OSSQS 

with DnCNN was smaller than the standard deviation of OS-SQS with TV penalty, and 

higher than the standard deviation of OS-SQS with NLM at the same bias. We also 
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compared the normalized root mean square errors (NRMSEs, 
∑ j x j* − x j

2

∑ j x j*
2 ) for the accuracy 

of quantification. We observed that, when the DnCNN and NLM were used as image filters 

on the initial OPOSEM image, the NRMSE of DnCNN (0.29) was smaller than the NRMSE 

of NLM (0.327), and the bias of DnCNN (0.081) was also smaller than the bias of NLM 

(0.085). However, we observed that the performance of OSSQS with DnCNN suddenly 

decreases after a certain number of iterations. The proposed method using DnCNN with 

LLF demonstrated the smallest bias and standard deviation, which confirmed that the LLF 

function reduced bias and standard deviation significantly. To perform fair comparisons, 

proper hyper-parameters were selected for OPOSEM with Gaussian filtering, OS-SQS with 

TV, OS-SQS with NLM, OS-SQS with DnCNN and the proposed method as pointed (i) in 

Fig. 4. We used the same hyper-parameters for the image quality comparisons reported 

below.

B. Image comparison

Fig. 5 compares the full dose OPOSEM image, 10× dose OPOSEM image with Gaussian 

filtering of FWHM 2.4 mm, 10× dose OPOSEM image with DnCNN, OS-SQS with TV, 

OS-SQS with NLM, OS-SQS with DnCNN and the proposed method; all based on the 

selected hyper-parameters in the bias and standard deviation study, and all iterative methods 

used 10× downsampled data. NRMSEs of OS-SQS with TV, OS-SQS with NLM, OS-SQS 

with DnCNN and the proposed method were 0.29, 0.294, 0.286 and 0.266, respectively. As 

revealed by magnified views of the full dose OPOSEM image, OS-SQS with NLM and the 

proposed method, overall structure and shape for the proposed method is visually more 

similar to the ground truth than the result from OS-SQS with NLM. Furthermore, we 

selected a region of interest (ROI) in Fig. 5(i) and compared structural similarity (SSIM) 

index. SSIM is defined by 
2μr * μr + c1 2σr*r + c2

μr*
2 + μr

2 + c1 σr
2 * σr

2 + c2
, where r* and r are the ROIs of the 

ground truth the and the reconstructed image, respectively. μ is the average, σ2 is the 

variance and σr*r is the covariance of r* and r. c1 = 2.5×10−5 and c2 = 2.25×10−4 were used. 

SSIMs of OPOSEM image with Gaussian filtering, OS-SQS with TV, OS-SQS with NLM 

and the proposed method were 0.461, 0.466, 0.487 and 0.496, respectively. We confirmed 

that the local structures of the proposed method were also quantitatively more similar to the 

ground truth compared to other methods.

To demonstrate the robustness of the proposed method, we performed a convergence study 

using various downsampling factors: 4, 6, 8 and 10 as shown in Fig. 6. The OPOSEM image 

using each downsampled dataset was used as the initializer. Convergence was ensured, and 

images were compared at 100 iterations. The NRMSEs of reconstructed images using 4×, 

6×, 8× and 10× downsampled data were 0.224, 0.244, 0.260 and 0.266, respectively. The 

image qualities corresponding to different downsampling factors were visually similar. We 

confirmed that the performance of the proposed method for different downsampling factors 

was consistent. It should be noted that the DnCNN was trained using [11C]DASB datasets 

and tested using [18F]FDG dataset. Although the noise levels (injection dose) and the 
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intensity distributions of the two datasets were different, the proposed method provided the 

robust image quality. In addition, although we are not able to guarantee convergence, Fig. 6 

demonstrated that the proposed method converged empirically at various noise conditions.

C. Execution time

We used NVIDIA’s Titan GPU and CUDA in MATLAB. Main functions, such as forward 

and backward projectors, were implemented in Mex function of MATLAB with CUDA. 

DnCNN was implemented with Caffe v1 in MATLAB, which was easily incorporated with 

main functions. We implemented the 3D version of LLF function using a MATLAB script, 

which was partially parallelized exploiting gpuArray function. In HRRT geometry of the 

sinogram with 256 × 288 × 1281 (radial, azimuthal, planes for 3 segments) and the image 

256 × 256 × 207 (x, y, z), the projection, back-projection, DnCNN, LLF functions took 3 

sec, 3 sec, 2 sec and 2 sec, respectively. Here, the execution time of DnCNN was similar to 

that of GPU-based TV, and much less than GPU-based NLM.

VI. Discussion

Since the Caffe v1 platform does not support 3D convolution, this can potentially degrade 

the performance of DnCNN using 3D PET images. In Fig. 7, when the DnCNN was trained 

using only 2D transaxial slices, we observed axial artifacts in the coronal view. To solve this 

issue, we used five adjacent slices in DnCNN to promote axial relationships in the network. 

In our implementation, five channels corresponding to five slices were used in the Caffe 

script. To compute a fully 3D DnCNN image, the five channels with a sliding window with 

respect to one axial slice were used. By using overlapping adjacent slices in the DnCNN, 

axial artifacts were significantly removed.

A conventional DnCNN model was based on a residual image calculated by subtracting a 

high dose image from a noisy low dose image for training image pairs. To evaluate the 

relationship of the noise level and the intensity of the PET image, we compared 

reconstructed images of the proposed method and the DnCNN trained by the residual image. 

All hyper-parameters and settings were the same. In our observation, the NRMSEs of the 

DnCNN using residual image and the proposed method were 0.278 and 0.266, respectively. 

Thus, we directly used the full dose image as groundtruth for training.

LLF function has the same cost function of the conventional guided filter. The cost function 

leads to the following closed-form solution:

qi
(n + 1) =

1
N p

∑k ∈ pi
xk

Dxk − xixi
D

σi
2 + ϵ

, (24)

bi
(n + 1) = xi − qi

(n + 1)xi
D, (25)
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where σi is the standard deviation of xi
D at the ith-patch. Unlike natural images corrupted by 

Gaussian noise (the original design target for the guided filter), the PET image has large 

variations in noise levels. In PET reconstruction, we found that qi in Eq. (24) is not stable 

due to large variations in ˙i, which degrades the overall performance as shown in Fig. 8. 

Therefore, we updated qi by means of a scaling operation and then corrected the margin by 

bi iteratively. This approach outperforms the closed-form solution and is robust against noise 

variations.

In our implementation, the numerical differentiation method was implemented for fw(x) with 

respect to x. Recent platforms, such as Tensorflow, support the automatic differentiation 

method [33], which is more computationally efficient and accurate compared to symbolic 

and numerical gradient methods, respectively. In future, we will utilize the another platform 

supporting the automatic differentiation method and the 3D convolution operation, and will 

extend the proposed method using 3D CNN-based dynamic PET reconstruction for 

parametric imaging. In addition, further improvements in image quality is still required for 

the clinical use. To this end, we will explore other deep learning networks for our 

framework.

VII. Conclusion

We proposed an iterative PET reconstruction framework using the ordered subsets separable 

quadratic surrogates (OSSQS) approach with a denoising convolutional neural network 

(DnCNN) and a local linear fitting (LLF) function. The optimization utilized the alternating 

direction method of multipliers (ADMM) and convex inequality to split suboptimizations, 

which variables were updated alternatingly. For training of the DnCNN, the full-dose image 

was used as the ground truth and a low-dose image with 6× downsampled data was used as 

the input. Our computer simulations demonstrated that the LLF function reduced the 

unwanted bias generated by DnCNN due to the disparity in noise levels between the training 

and testing datasets. In clinical experiments, the bias and standard deviation of the proposed 

method outperformed those of OS-SQS with TV and OS-SQS with NLM. The image quality 

of the proposed method was visually improved compared to that of other methods. In 

addition, the proposed method was proven robust against noise variations for a range of 

different downsampling factors. In future, we will extend this method to incorporate 3D 

CNNs applied to dynamic PET reconstruction for parametric imaging.
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Fig. 1. 
(a) Training of DnCNN with full dose image as the groud truth and low dose image as input. 

Low dose data is generated by Poisson thining process at a pre-defined noise level ϵ, and 

multislices along axial direction are used. (b) The trained DnCNN and local linear fitting are 

combined in iterative PET reconstruction.
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Fig. 2. 
(a) The performance of noise reduction for different downsampling datasets. Because we 

trained the network using 6× downsampled data, the performace was highest with the 6× 

downsampled data. (b) Comparison of bias increase by iteration. We iterated DnCNN and 

DnCNN with LLF by setting the output image as input of next iteration. (c) Comparison of 

bias and standard deviation.
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Fig. 3. 
Reconstructed images using EM and DnCNN (a) without LLF and (b) with LLF at iterations 

(i) 2, (ii) 5 and (iii) 8.
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Fig. 4. 
Bias and standard deviation studies for OPOSEM image with Gaussian filtering, OS-SQS 

with TV, OS-SQS with NLM, OS-SQS with DnCNN and the proposed method, calculated 

from 20 random datasets with 10× downsampling factor. By selecting similar biases, the 

hyper-parameters of (i) were used for image quality comparison throughout our experiments. 

The OPOSEM image using full data was used as the ground truth.
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Fig. 5. 
Image comparison of (a) full dose OPOSEM image, (b) 10× low dose OPOSEM image, (c) 

10× low dose OPOSEM image with Gaussian filtering of FWHM 2.4 mm and (d) 10× low 

dose OPOSEM image with DnCNN. Iterative reconstrution images using (e) OS-SQS with 

TV, (f) OS-SQS with NLM and (g) the proposed method. The initial image of (e)–(g) is 10× 

low dose OPOSEM image. Magnified views of (i) full dose OPOSEM image, (ii) OS-SQS 

with NLM and (iii) the proposed method; and ROI in (i) is used for SSIM comparison.
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Fig. 6. 
Convergence study using various downsampling factors: (a) 4, (b) 6, (c) 8 and (d) 10. The 

initial image was OPOSEM image using each downsampled data. The converged images 

were compared at 100 iterations.
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Fig. 7. 
Coronal views of reconstructed images using DnCNNs trained with (a) single slice and (b) 

five slices.
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Fig. 8. 
Comparison of NRMSEs using the guided filter and the LLF.
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